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Abstract—Reinforcement learning (RL) algorithms can achieve
state-of-the-art performance in decision-making and continuous
control tasks. However, applying RL algorithms on safety-critical
systems still needs to be well justified due to the exploration
nature of many RL algorithms, especially when the model of
the robot and the environment are unknown. To address this
challenge, we propose a data-driven safety layer that acts as
a filter for unsafe actions. The safety layer uses a data-driven
predictive controller to enforce safety guarantees for RL policies
during training and after deployment. The RL agent proposes an
action that is verified by computing the data-driven reachability
analysis. If there is an intersection between the reachable set
of the robot using the proposed action, we call the data-driven
predictive controller to find the closest safe action to the proposed
unsafe action. The safety layer penalizes the RL agent if the
proposed action is unsafe and replaces it with the closest safe one.
In the simulation, we show that our method outperforms state-
of-the-art safe RL methods on the robotics navigation problem
for a Turtlebot 3 in Gazebo and a quadrotor in Unreal Engine
4 (UE4).

Index Terms—Reinforcement learning, robot safety, task and
motion planning.

I. INTRODUCTION

Safety of Cyber-Physical Systems (CPSs) has always been
of great interest to researchers [1]. This imposes a great
challenge for reinforcement learning controllers due to the
exploration nature of many reinforcement learning algorithms
[2]. This is especially true when the environment and/or
system models are both time-varying or subject to noise [3].
Recently, many techniques have been proposed to mitigate the
safety problems of RL algorithms. An RL agent is considered
to be safe if it meets an ergodicity requirement that it can reach
each state it visits from any other state it visits, allowing for
reversible errors [4], [5]. To justify the widespread deployment
of RL controllers, we need to ensure the safety of RL algo-
rithms during training and after deployment [6]. In this work,
we propose a safety layer to address the safety challenges of
RL algorithms in a totally data-driven way when the robot
model is unknown. We utilize data-driven predictive control
[7] to impose strict safety constraints on RL agents. This is
considered a step towards making data-driven methods more
convenient and practical for safety-critical systems.
A. Related Work

Safe RL aims to maximize an objective function while
respecting safety constraints. Many methods have been pre-
viously proposed to address the problem of safety for RL
agents. One popular approach imposes constraints on the
expected return [8], [9]. Other include risk measures [10],
[11], [12], [13] or impose constraints on the Markov Decision
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Process (MDP) [14] or avoid regions in the MDP where the
safety constraints may be violated [15], [16]. We note that
these approaches are different from just penalizing the agent
with large negative rewards. This type of penalty can lead to
undesired behavior from the agent and may cause the training
to be unstable.

Another major approach to safe RL modifies the exploration
process to filter out unsafe actions taken by the RL agent.
This can be achieved by two methods. The first one uses a
risk-directed exploration, and the second depends on the use
of external knowledge [5]. Risk-directed exploration usually
uses a risk-measure to determine the probability of selecting
different actions during the exploration process [5], [17]. Ex-
ternal knowledge, on the other hand, can be done by providing
a set of demonstrations [18], or the use of control theoretic
approaches. Control theoretic approaches usually require a
partial or a complete system model to predict whether the
system will reach an unsafe state and prevent it. For example,
one can utilize control barrier functions and control Lyapunov
functions to guarantee the system safety or stability [19], [20],
[21], [22]. Others use reachability-based methods to calculate
the reachable sets of the system. Safety is then achieved when
the reachable set of the system lies within the safe region.
However, if they don’t, action correction techniques can be
used, such as sampling to find a safe action or projecting the
RL action into the safe set. This can be done efficiently in
case of parameterized reachability as in [23].

One final remark, our proposed method is closely related
to [24], [25]. They both use data collected offline to enforce
safety constraints on the system. However, the former uses a
first-order approximation shown to be quite conservative. The
latter gives no regard to how much the adjusted action is close
to the RL agents’ action of choice. The proposed approach,
however, tries to be as little invasive as possible to the RL
agents’ action of choice, similar to [26].

Trajectory or path planning is considered a fundamental
problem in robotics. It aims to find the shortest and most
obstacle-free path from the start to the goal state. The path can
be a set of states (position and orientation) or waypoints. Many
methods have been proposed to address the planning problems
in robotics. They are mainly classified into two categories:
classical approaches and learning-based approaches. Classical
approaches can be further divided into grid-based search
algorithms and sampling-based search algorithms. Grid-based
search algorithms usually find a path using a minimum travel
cost like Dijkstra’s algorithm and A∗. Grid-based algorithms
are guaranteed to find the shortest path given enough computa-
tion time and resources. However, in most real-life scenarios,
finding a reasonable path or a trajectory in an acceptable
computation time is preferable. Sampling-based algorithms
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take this approach. That is, they sample the configuration
space to reach a reasonable solution. Sampling algorithms
such as RRT∗ [27, Ch. 5] are probabilistically complete and
are suitable for both low and high-dimensional search spaces.
Recent approaches to path planning rely heavily on learning-
based approaches. Many Deep Reinforcement Learning (DRL)
techniques have been developed to address the planning prob-
lem, especially in uncertain environments. Some of these
approaches depend on model-based reinforcement learning
for planning [28]. Others utilize hierarchical reinforcement
learning for planning tasks [29], [30]. A clear advantage of
these methods is that, given enough training samples, they
can be optimized while remaining computationally efficient.

Limitations. We assume a discrete-time setting and model
the system as a linear model. We leave the continuous-
time setting in reachability analysis [31]), non-linear system
models, and the amount of data required to guarantee safety
for future work.

Contributions. The main contributions of this paper can be
summarized as follows:
1) We propose a safety filter using data-driven predictive

control to enforce safety constraints while being as little
invasive as possible to the RL agents’ choice of action
when the model of the robot is unknown.

2) We demonstrate the proposed method for the motion
planning problem. We show through experiments that the
proposed method is, indeed, able to guarantee safety. We
also compare the proposed method against a baseline
RL agent, Safe Exploration in Continuous Action Spaces
(SECAS) [24], and Safe Advantage-based Intervention for
Learning policies with Reinforcement (SAILR) [32].

Next, in Section II, we provide the problem statement and
formulate the safe RL problem. Section III discusses the
proposed method, and Section IV goes through the evaluation
and discusses the result. Finally, Section V presents concluding
remarks and discusses future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

We now define the notation used throughout the paper, set
representations for our reachability analysis, the system and
its reachable sets, and our assumptions about data and noise.
A. Notation and Set Representations

Natural numbers are denoted by N, and n-dimensional real
numbers by Rn. The element at row i and column j of a matrix
A is denoted by (A)i,j , the column j of A by (A):,j . The
pseudoinverse of a matrix A is denoted by A†. For simplicity,
the Minkowski sum, defined by Z1 ⊕ Z2 = {z1 + z2 | z1 ∈
Z1, z2 ∈ Z2}, is denoted by + instead of ⊕ as the type can
be determined from the context. Similarly, we use Z1−Z2 to
denote Z1+−1Z2. The Cartesian product is given by A×B =

{
[
a⊤ b⊤

]⊤ | a ∈ A, b ∈ B}.
Reachable sets are represented using zonotopes.

Definition 1. (Zonotope [33]) Given a center cZ ∈ Rn and
γZ ∈ N generator vectors in a generator matrix GZ =

[g
(1)
Z , . . . , g

(γZ)
Z ] ∈ Rn×γZ , a zonotope is the set

Z =
{
x ∈ Rn

∣∣∣ x = cZ +

γZ∑
i=1

β(i) g
(i)
Z ,−1 ≤ β(i) ≤ 1

}
,

where β(i) is called the zonotope’s factor. We use the short-
hand notation Z = Z(cZ , GZ) for a zonotope.

Given a linear map L, one can show that LZ =
Z(LcZ , LGZ). Given two zonotopes Z1 = ⟨cZ1

, GZ1
⟩ and

ZZ2
= ⟨cZ2

, GZ2
⟩, their Minkowski sum is computed by

Z1 + Z2 =
〈
cZ1

+ cZ2
, [GZ1

, GZ2
]
〉
. (1)

We compute the Cartesian product of two zonotopes Z1 and
Z2 by

Z1 ×Z2 =
〈[

cZ1

cZ2

]
,

[
GZ1

0
0 GZ2

]〉
. (2)

We also make use of matrix zonotopes to represent families
of matrices:

Definition 2. (Matrix zonotope [34, p. 52]) Given a center
matrix CM ∈ Rn×T and γM ∈ N generator matrices G̃M =

[G
(1)
M , . . . , G

(γM)
M ] ∈ Rn×(TγM), a matrix zonotope is defined

as

M =
{
X ∈ Rn×T

∣∣∣ X=CM+

γM∑
i=1

β(i) G
(i)
M ,−1 ≤ β(i) ≤ 1

}
.

(3)

Definition 3. (Interval Matrix [34, p.42]) An interval matrix
I specifies the interval of all possible values for each matrix
element between the left limit I and right limit I:

I = [I, I], I, I ∈ Rr×c (4)

B. System Dynamics and Reachable Sets
We assume a discrete time linear system model:

x(t+ 1) = Ax(t) + Bu(t) + w(t).

y(t) = Cx(t) + v(t).
(5)

with the system matrices A ∈ Rn×n and B ∈ Rn×m,
C ∈ Rp×n, state x(t) ∈ Rn, input u(t) ∈ Rm, process noise
w(t) ∈ Rn, and measurement noise v(t) ∈ Rn. We assume
that the states of the system are measurable and compact, i.e.,
the system output matrix is given by C = I , and thus the
measured output is y(t) ∈ Rn. Given that C = I , we call
the y(t) the state which is corrupted by extra noise v(t). The
input and output constraints are given by

u(t) ∈ Ut ⊂ Rm,

y(t) ∈ Yt ⊂ Rn.
(6)

Reachability analysis computes the reachable set of a sys-
tem, which is the set of states y(t) which can be reached given
a set of uncertain initial states Y0 ⊂ Rn and a set of possible
inputs Zu,t at each time step t ∈ N. More formally, we define
the reachable set at time N ∈ N as follows:

Definition 4. The reachable set Rt after N time steps, subject
to a sequence of inputs u(t) ∈ Zu,t, noise w(t) ∈ Zw,
measurement noise v(t) ∈ Zv , ∀ t ∈ {0, . . . , N − 1}, and
initial set Y0 ∈ Rn, is the set

RN =
{
y(N) ∈ Rn

∣∣x(t+ 1)=Ax(t) +Bu(t) + w(t),

y(t) = x(t) + v(t), x0 ∈ Y0, u(t) ∈ Zu,t, v(t) ∈ Zv,

and w(t) ∈ Zw,∀ t = 0, · · · , N − 1
}
. (7)
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In this work, we assume unknown system dynamics. How-
ever, we still seek to over-approximate the reachable sets of the
system using data-driven reachability [35]. This way, we show
that we are able to enforce safety constraints on a black-box
system leveraging only data-driven methods.

To enable safety guarantees, we leverage the notion of
failsafe maneuvers from mobile robotics [36]. Note that many
real robots have a braking safety controller available, similar
to the notion of an invariant set [37], [31]. Also, failsafe
maneuvers exist even when a robot cannot remain stationary,
such as loiter circles for aircraft [38].

We do not assume a distribution for the noise. However,
we require that the noise obeys the following assumptions for
numerical tractability and robustness guarantees.

Assumption 1. We assume that w(t) is bounded by noise
zonotope Zw = Z(cw,Gw).

Assumption 2. We assume that v(t) is bounded by a zonotope
Zv = Z(cv,Gv). Furthermore, we assume that the one-step
propagation Av(t) is bounded by a zonotope Av(t) ∈ ZAv

for all time steps.

In this work, unsafe regions of state space, or obstacles are
denoted by as Yobs ⊂ Rn, and since the focus of this work
is not motion forecasting of other actors in the environment,
obstacles are assumed to be static and not to move (yet
they change from one episode to another). We emphasize,
however, that this work can be extended to handle dynamic
environments by using frameworks that use the reachability of
other agents [39], [40].
C. Safe RL Problem Formulation

We formulate the safe RL problem as follows. Let Ygoal ⊂
Rn denote a goal the agent aims to reach while avoiding the
obstacles (unsafe sets) Yobs ⊂ Rn. Let ntotal ∈ N denote a
total number of time steps in the training procedure, and niter
denote the number of steps per episode. At time t, let ŷ(t) ∈
RnRL denote the state of the RL agent (which contains the
state y(t) of the robot, plus additional information such as
sensor measurements and previous actions). Let u(t) denote
the action chosen by the RL agent at time t. Let

r : (ŷ(t), Ygoal, u(t)) 7→ R (8)

denote a real-valued reward function. We seek to learn a policy

π⋆ : ŷ(t) 7→ u(t) (9)

which maximizes the cumulative reward. Furthermore, we
require that, if we roll out the trajectory given the policy π
from any initial condition in the set Y0, then the trajectory is
safe.

III. SAFE REINFORCEMENT LEARNING

We propose a new framework to enforce safety constraints
on the RL agents without previous knowledge of the environ-
ment or the robot model apriori. The idea is to introduce a
safety layer that filters out any unsafe action choice taken by
the RL agent in a totally data-driven way while being as little
invasive as possible for the agent’s choice of action. Since
the framework uses data-driven methods to enforce safety, the
proposed method can handle time-varying systems by updating

Algorithm 1: Safe Reinforcement Learning

1 Initialize the RL agent with a random policy πθ, empty
replay buffer B, number of steps per episode niter,
and a safe plan p0

2 for each episode do
3 initialize RL task.
4 ŷ(1)← observe initial environment state.
5 for k = 1 : niter do
6 u(k)← sample RL policy
7 R̂k ← Z(y(k),0) // init. reachable set

8 pk ← enforce safety
(
R̂k, u(k), y(k)

)
// Alg. 2

9 if pk == ∅ then
10 // if there is no found safe plan
11 execute failsafe maneuver; continue

12 u(k)← get first (safe) action from pk

13 rk ← ρ(ŷ(k), u(k)) // get reward
14 ŷ(k + 1)← observe new state
15 add (ŷ(k), u(k), rk, ŷ(k + 1)) to B
16 train the RL agent πθ using a batch from B

the data matrices to accommodate changes to the environment
or the system model.

The proposed safety filter is summarized in Algorithm 1. It
uses a receding-horizon strategy to create a new safe plan pk in
each k receding-horizon motion planning iteration. Consider a
single planning iteration k (Lines 4–16). Suppose the robot has
previously created a safe plan pk−1 (such as staying stopped
indefinitely). At the beginning of each iteration, our framework
samples the RL policy for a new action u(k) (Line 6). Next,
it enforces safety on the action chosen by the RL agent by
solving a data-driven optimal control problem as in Algorithm
2. If Algorithm 2 fails to find a safe plan, it executes a failsafe
maneuver instead (Lines 9–11). Then, we apply the first action
of the safe plan to the environment, get a reward, observe the
environment, and train the RL agent from the replay buffer
(Lines 12–16). We note that the proposed algorithm can be
used during both training and deployment. That is, the safety
layer can operate even for an untrained policy while initializing
πθ with random weights.

Data-driven predictive control solves an optimization prob-
lem to find a reachable set (represented by a zonotope)
under some constraints [7]. It utilizes data-driven reachability
analysis [35], [41] under the hood to overapproximate the
reachable sets of an unknown system from noisy data collected
offline. In this work, we assume a linear system model.

We consider q input-state trajectories of lengths Ti ∈ N,
i = 1, · · · , q, with total duration Ttotal =

∑q
i Ti. We denote

the data as (y
(i)
k )tik=0, (u(i)

k )ti−1
k=0 , i = 1, · · · , q. To further ease

the, we rearrange the data in the following matrices:

Y− =
[
y
(1)
0 , · · · , y(1)t1−1, · · · , y

(q)
0 , · · · , y(q)tq−1

]
, (10a)

Y+ =
[
y
(1)
1 , · · · , y(1)t1 , · · · , y(q)1 , · · · , y(q)tq

]
, (10b)

U− =
[
u
(1)
0 , · · · , u(1)

t1−1, · · · , u
(q)
0 , · · · , u(q)

tq−1

]
, (10c)
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and similarly for the unknown noise realizations V−, V+ and
W−. It follows directly from Assumptions 1 and 2 that
the noise realizations are within corresponding matrix noise
zonotopes V−, V+ ∈ Mv , W− ∈ Mw and AV− ∈ MAv as
shown in [41].

Next, we compute a set of models consistent with the
collected data which is utilized to compute the data-driven
reachable sets in the following lemmas.

Lemma 1 ([7]). Given input-output trajectories D = {U−, Y }
of the system (5), then

MΣ = (Y+ −Mw −Mv +MAv)

[
Y−
U−

]†
(11)

contains all matrices
[
A B

]
that are consistent with the data

and noise bounds.

Lemma 2 ([7]). Given input-output trajectories D = {U−, Y }
of the system in (5), then

R̂t+1 =MΣ(R̂t ×Zu,t) + Zw + Zv −ZAv, (12)

contains the reachable set, i.e., R̂t+1 ⊇ Rt+1 where R̂0 =
Z(y(0), 0), and Zu,t = Z(u(t), 0).

To enforce safety, we must generate a plan instead of a
single action. The reason behind this is that safety can’t be
enforced for a single action as the actuation of the system is
finite (e.g., a robot needs N time steps to brake). Algorithm 2
enforces safety while being as little invasive as possible to the
RL agents’ choice of action. This is done by solving a data-
driven optimal control problem as in Line 2 of Algorithm 2.
This optimization problem is solved under some constraints
(avoiding obstacles). First, we apply data-driven reachability
on the state zonotope R̂t+k+1|t in (13b). The computed
reachable set R̂t+k+1|t, which includes the output in line
(13e), is ensured to satisfy the output constraints Yt+k+1 in
order to guarantee the safety in (13d). The initial state in the
optimization problem is set to be the same as the robot state
in (13f).

Remark 1. The constraints (13d) is implemented by convert-
ing both zonotopes into intervals and ensuring that

R̂u,t+k+1|t ≤ Yu,t+k+1, R̂l,t+k+1|t ≥ Yl,t+k+1

where R̂u,t+k+1|t and R̂l,t+k+1|t are the upper and lower
bounds of R̂t+k+1|t, and Yu,t+k+1 and Yl,t+k+1 are the upper
and lower bounds of Yt+k+1.

We conclude this section by formalizing the safety guaran-
tees of our proposed algorithm.

Theorem 1. Suppose the assumptions on the robot and
environment from Section II all hold, and, at time k = 0, the
robot is at safe state. Suppose also that, at each time k > 0, the
robot rolls out a new pk, and adjusts the plan using Algorithm
2. Then, the robot is guaranteed to be safe at all times k ≥ 0.

Proof. The proof can be done by induction. At the time 0,
the agent can apply a braking action ubrk to stay safe for all
time. Assume a safe plan exists at time k ∈ N. Then, at any
timestep k + 1, in case of failure of Algorithm 2 to find a
safe plan, and since the plan is always larger than the number

Algorithm 2: Enforce Safety Using Data Driven Pre-
dictive Control
Input: action u(k), state y(k), obstacles Yobs, initial

reachable set R̂k, time limit tmax, planning
horizon nplan, and process noise zonotope Zw

Output: Safe plan pk, if available
1 Set the reference input action r ← u(k), and the

obstacles free area to Yi+k+1

2 Solve the optimization problem (for i = 0, . . . , nplan)
where the input action zonotope Zu,k←Z

(
ui+k|k, 0

)
min
u,y
∥uk|k − r∥2 (13a)

s.t. R̂i+k+1|k=MΣ(R̂i+k|k×Zu,k)+Zw+Zv−ZAv,
(13b)

ui+k|k ∈ Ui+k, (13c)

R̂i+k+1|k ⊆ Yi+k+1, (13d)

yi+k+1|k ∈ R̂i+k+1|k, (13e)
yk|k = y(k) (13f)

3 if all R̂j ∩ Yobs = ∅ then
4 return pk = (uj)

nplan

j=k // found a safe plan
5 else
6 return pk = ∅ // No safe plan was found

of steps required by the robot to brake to a stop fully, the
robot always has a failsafe braking maneuver that enables it
to stop indefinitely; otherwise, if a new plan is found, the
plan is safe for two reasons. First, the reachability algorithm
is guaranteed to contain the true reachable set of the system
[35, Theorem 2] because the noise zonotopes bound noise as
in Assumptions 1 and 2. Second, when adjusting an unsafe
action with Algorithm 2, the algorithm will only return a safe
plan in which the first action is as close as possible to the RL
action of choice while enforcing the hard constraints of safety.
We emphasize that in order for a plan to be deemed safe, the
plan length must be larger than the number of steps needed
for the robot to brake to a full stop.

IV. EXPERIMENTS

We evaluate the proposed frameworks on two motion
planning tasks in simulation: A Turtlebot in Gazebo and a
Quadrotor in Unreal Engine 4 (UE4). Fig. 1 shows our simu-
lation environments. The simulation shows that the proposed
framework shields the RL agents from unsafe actions while
maximizing the objective. Next, we describe our simulation
environments in detail.
A. Simulation Environments Setup
1) Turtlebot Setup

We use Turtlebot 3 in the Gazebo simulator. The robot has a
longitudinal velocity in [0, 0.25] m/s, and an angular velocity
in [−0.5, 0.5] rad/s. We clip the upper longitudinal velocity at
0.25 m/s to be consistent with the real robot dynamics. The
robot is also provided with wheel encoders, an IMU to estimate
the robot’s speed and position, and a planar lidar with 18 laser
measurements is evenly spanning 180◦. In each episode, the
robot is spawned randomly in a safe spot. It’s required to reach

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 12:17:54 UTC from IEEE Xplore.  Restrictions apply. 



5

(a) Turtlebot3 Environment (b) Quadrotor Environment

Fig. 1: Evaluation Environments.

the goal on the map denoted by the green circle in Fig. 1(a).
The goal is chosen at a random location in each episode, and
the obstacles are spawned randomly in each episode as well.
2) Quadrotor

The quadrotor is simulated in Unreal Engine 4 (UE4).
They have a similar dynamics with a velocity ranging from
[−5,−5,−5] m/s to [5, 5, 5] m/s. Both are an IMU to estimate
the rotors’ position and velocity and are provided with a multi-
channel 3D lidar. The lidar spans a range of 360◦ horizontally
and a range of 60◦ vertically. Again, the environments’ obsta-
cles and goals are spawned randomly at the beginning of each
episode. The goal of the quadrotor is to reach a goal position
while avoiding the obstacles.
B. RL Agent Setup
1) Turtlebot Environment

We use TD3 [42] as our RL agent. The state vector ŷ ∈
R26 consists of the state of the physical robot ∈ R8 (position
and orientation) estimated from the noisy wheel encoders and
IMU, and the lidar measurements ∈ R18.
2) Quadrotor Setup

Similar to the Turtlebot example, we use TD3 as our RL
agent. The state vector ŷ ∈ R189 consists of the state of the
physical robot ∈ R9 (position only) estimated from the noisy
IMU, and the lidar measurements ∈ R180.
C. Results and Discussion

The results are summarized in Table I, and Fig. 2. We see
that the proposed method could achieve the highest reward and
outperform all the other methods. As for the safety constraints,
we see from Table I that both the proposed method and SECAS
could impose hard safety constraints (i.e., having 0 collision
rate). However, both SAILR and TD3 agents couldn’t have
full constraint satisfaction. Regarding the goal rate and the
robot speed, our proposed method outperforms all the other
methods without being overly conservative. Finally, regarding
computation time, we see that the vanilla TD3 RL agent
outperformed all the other methods due to the absence of any
safety modules in the framework. However, we note that the
proposed method is real-time even when dealing with large
data matrices since the calculations can be done efficiently on
GPUs.

V. CONCLUSION

This paper proposes a framework for safe reinforcement
learning. The proposed framework leverages data-driven meth-
ods to provide safety guarantees. The framework was evaluated

on a path planning task for Turtlebot 3 and a quadrotor,
where we proved mathematically and experimentally that the
proposed method could indeed provide safety under reasonable
assumptions. For future work, we will explore continuous-
time settings, reducing the conservativeness of our reachability
analysis, and minimizing the amount of data needed to guar-
antee safety.
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