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Abstract— We propose a method to perform set-based state
estimation of an unknown dynamical linear system using a data-
driven set propagation function. Our method comes with set-
containment guarantees, making it applicable to safety-critical
systems. The method consists of two phases: (1) an offline
learning phase where we collect noisy input-output data to
determine a function to propagate the state-set ahead in time;
and (2) an online estimation phase consisting of a time update
and a measurement update. It is assumed that known finite sets
bound measurement noise and disturbances, but we assume
no knowledge of their statistical properties. These sets are
described using zonotopes, allowing efficient propagation and
intersection operations. We propose a new approach to compute
a set of models consistent with the data and noise-bound,
given input-output data in the offline phase. The set of models
is utilized in replacing the unknown dynamics in the data-
driven set propagation function in the online phase. Then, we
propose two approaches to perform the measurement update.
Simulations show that the proposed estimator yields state sets
comparable in volume to the 3σ confidence bounds obtained
by a Kalman filter approach, but with the addition of state
set-containment guarantees. We observe that using constrained
zonotopes yields smaller sets but with higher computational
costs than unconstrained ones.

I. INTRODUCTION

Set-based estimation involves the computation of a set,
which is guaranteed to contain the system’s true state at
each time step given bounded uncertainties [1]. Existing set-
based observers require a system model to propagate the
state set at each time step [2], [3]. We address the problem of
propagating the state set using only noisy offline input-output
data and merging this with online measurements to obtain a
time-varying state set which is guaranteed to contain the true
system’s state at each time-step. This problem is essential in
safety-critical applications [4].

Two popular set-based estimators are interval observers
and set-membership observers. Interval-based observers gen-
erally generate state estimates by utilizing an observer gain
to fuse a model-based time update of the state with current
measurements. For example, the authors in [5] propose an ex-
ponentially stable interval-based observer for time-invariant
linear systems. Set-membership observers generally follow a
geometrical approach by intersecting the state-space regions
consistent with the model with those from the measurements
to obtain the current state set [6]. This approach has been
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extended to sensor networks with event-based communi-
cation in [7] and multi-rate systems in [8]. Various set
representations have been used for set-membership observers
such as ellipsoids [9], polytopes [10] and zonotopes [11].
Zonotopes are a special class of polytopes for which one
can efficiently compute linear maps, and Minkowski sums –
both frequent operations performed by set-based observers.

All the aforementioned observers use a model of the
underlying system to propagate the state set. However, iden-
tifying a system model is often time-consuming, and the
identified model is not necessarily well-suited for estimation
or control. Recent works based on Willems’ fundamental
lemma [12] have shown that system trajectories can be used
directly to synthesize controllers. The authors in [13] present
an extended Kalman filter and model predictive control
(MPC) scheme computed directly from system trajectories.
Stability and robustness guarantees for such a data-driven
control scheme are presented in [14], and for an MPC scheme
in [15]. An alternative approach is to find a set of models
that is consistent with data and use this set of models to
propagate a state set [16].

Our contribution is a novel method to perform set-
based state estimation with set-containment guarantees given
bounded, noisy measurements and known inputs. The algo-
rithm, summarized in Fig. 1, consists of an offline learning
phase to determine a state-propagation function f(·) directly
from data, and an online estimation phase to perform a
time update using f(·) and measurements iteratively to
track the system state. A new approach to compute the
set of models consistent with the data and noise bound
from input-output data is proposed different from input-
state data in [16], [17]. Then, we present two approaches to
perform the measurement update utilizing either the singular
value decomposition (SVD) of the observation matrix or
an optimization formulation. We compare the approaches in
simulation. Our method is shown to yield set-based state
estimates similar in size to 3σ confidence bounds of an
approach based on system identification and a Kalman filter,
but with the addition of set-containment guarantees. The code
to recreate our findings is publicly available1.

The rest of this paper is outlined as follows. Sec. II
introduces the preliminaries and problem statement. We
present our method in Sec. III and evaluate it in Sec. IV.
Finally, Sec. V concludes the paper.

1https://github.com/alexberndt/data-driven-set-based-estimation-
zonotopes
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Fig. 1: The proposed method showing the offline learning phase yielding f(·) and the online estimation phase which utilizes
f(·) to perform the time update, followed by a measurement update yielding the set R̂k at time-step k.

II. PRELIMINARIES AND PROBLEM STATEMENT

We denote the i-th element of a vector or list A by A(i).
We first introduce some set representations.

Definition 1. (Zonotope [18]) Given a center c ∈ Rn and
a number ξ ∈ N of generator vectors in a generator matrix
G = [g(1), ..., g(ξ)] ∈ Rn×ξ, a zonotope is a set

Z =
{
x ∈ Rn

∣∣∣ x = c+

ξ∑
i=1

β(i) g(i) ,−1 ≤ β(i) ≤ 1
}
. (1)

We use the shorthand notation Z = 〈c,G〉.

Given two zonotopes Z1 and Z2, we use the notation +
for the Minkowski sum, and Z1−Z2 to denote Z1 + (−Z2)
not the Minkowski difference.

Definition 2. (Matrix zonotope [4, p.52]) Given a center
matrix C ∈ Rn×k and ξ ∈ N generator matrices G(i) ∈
Rn×k where i ∈ {1, . . . , ξ}, a matrix zonotope is the set

M =
{
X ∈ Rn×k

∣∣∣ X = C+

ξ∑
i=1

β(i)G(i) ,−1 ≤ β(i) ≤ 1
}
.

We use the notation M = 〈C,G(1:ξ)〉, where G(1:ξ) =
[G(1), . . . , G(ξ)].

Definition 3. (Interval matrix [4, p. 42]) An interval matrix
I specifies the interval of all possible values for each matrix
element between the left limit I and right limit Ī:

I =
[
I, Ī
]
, I, Ī ∈ Rr×c (2)

We consider estimating the set of all possible system states
using an array of q sensors. Our system is described as

x(k + 1) = Atrx(k) +Btru(k) + w(k), (3a)

yi(k) = Cix(k) + vi(k), i ∈ {1, . . . , q}, (3b)
where x(k) ∈ Rn is the system state, u(k) ∈ Rm the input,
yi(k) ∈ Rpi the measurement of sensor i, x(0) ∈ X0 the
initial condition where X0 is the initial bounding zonotope.
Furthermore, the system matrices Atr ∈ Rn×n and Btr ∈
Rn×m are unknown whereas Ci ∈ Rpi×n is known for
all i ∈ {1, . . . , q}. The noise w(k) ∈ Zw and vi(k) ∈
Zv,i are assumed to belong to the bounding zonotopes

Zw = 〈cw, Gw〉 ⊂ Rn and Zv,i = 〈cv,i, Gv,i〉 ⊂ Rpi for
i ∈ {1, . . . , q}, respectively. We denote the Frobenius norm
by ‖.‖F and the null space of a matrix A by ker(A). We
compute the pseudoinverse of an interval matrix by adapting
[19, Thm 2.40]. The pseudoinverse of an interval matrix is
denoted by †.

Let Rk denote a set containing x(k) given the exact
system model and bounded, but unknown, process and mea-
surement noise. The problem addressed in this paper is to
develop an algorithm that returns a set R̂k ⊇ Rk, which
is guaranteed to contain the true state x(k) at each time
instance k, i.e., x(k) ∈ R̂k for all k, given input-output data
and bounds for model uncertainties and measurement noise
without knowledge of the model

[
Atr Btr

]
.

III. DATA-DRIVEN SET-BASED ESTIMATION

Our proposed data-driven set estimator consists of two
phases: an offline learning phase and an online estimation
phase. In the offline phase, we compute the function to
perform the time update. The online phase consists of itera-
tively performing a time update and a measurement update.
We denote the time and measurement updated sets at k by
R̃k ⊂ Rn and R̂k ⊂ Rn, respectively.

A. Offline Learning Phase

The objective of this phase is to compute a function
f : Rn × Rm → Rn, such that R̃k+1 = f(R̂k,Uk), i.e.,
f returns R̃k+1 given a known input zonotope Uk and the
measurement updated set R̂k at time-step k such that we can
guarantee x(k+ 1) ∈ R̃k+1 for all k. During this phase, we
assume that we have offline an access to an input sequence
u(k) and noisy output zi(k) such that

zi(k) = Cix(k) + γi(k), (4)
where the noise γi(k) is bounded by the zonotope
Zγ,i = 〈cγ,i, Gγ,i〉, i.e., γi(k) ∈ Zγ,i,∀k. We have
for all sensors vertically combined noisy output z(k) =[
z1T

(k) ... zq
T

(k)
]T

and similarly for γ and C. For the
sake of clarity, we differentiate the notation of the offline
noisy output zi(k) from the online noisy output yi(k) and
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similarly for the measurement noise. Given an experiment
yielding a sequence of noisy data of length T , we can
construct the following sequences

Z+ =
[
z(1) . . . z(T )

]
,

Z− =
[
z(0) . . . z(T − 1)

]
,

U− =
[
u(0) . . . u(T − 1)

]
.

(5)

We further construct
Z =

[
z(0) . . . z(T )

]
,

and similarly for other signals. The data D =
[
U− Z

]
can be from one sensor or multiple sensors. Furthermore,
we denote the sequence of unknown process noise w(k) as
W− =

[
w(0) . . . w(T−1)

]
. Here, W− ∈ Mw where

Mw = 〈CM,w, G
(1:ξT )
M,w 〉 is the matrix zonotope resulting

from the concatenation of multiple noise zonotopes Zw =

〈cw, [g(1)
w , . . . , g

(ξ)
w ]〉 as

CM,w =
[
cw . . . cw

]
,

G
(1+(i−1)T )
M,w =

[
g

(i)
w 0n×(T−1)

]
,

G
(j+(i−1)T )
M,w =

[
0n×(j−1) g

(i)
w 0n×(T−j)

]
,

G
(T+(i−1)T )
M,w =

[
0n×(T−1) g

(i)
w

]
,

for all i = {1, . . . , ξ}, j = {2, . . . , T − 1} [16]. In a similar
fashion, we describe the unknown noise and matrix zonotope
of γ(k) as Γ+,Γ− ∈Mγ = 〈CM,γ , G

(1:ξT )
M,γ 〉. We denote all

system matrices
[
A B

]
that are consistent with the data:

NΣ = {
[
A B

]
| X+ = AX− +BU− +W−,

Z− = CX− + Γ−,W− ∈Mw,Γ
+ ∈Mγ ,

Γ− ∈Mγ}.
By definition,

[
Atr Btr

]
∈ NΣ as

[
Atr Btr

]
is one of

the systems that are consistent with the data. The following
theorem finds a set of models MΣ that over-approximates
NΣ, i.e., NΣ ⊆ MΣ, which defines f(·) introduced above.
For this, we aim to determine the mapping of the observa-
tion Z+ and Z− to the corresponding state-space region.
Specifically, we construct a zonotope Zx|zi(k) ⊂ Rn that
contains all possible x ∈ Rn given zi(k), Ci and bounded
noise γi(k) ∈ Zγ,i satisfying (4), for each i. This can be
written as

Zx|zi(k) =
{
x ∈ Rn

∣∣∣ Cix = zi(k)−Zγ,i
}
. (6)

Extending (6) to a matrix zonotope allows to find the
mapping of Z+ and Z− to the state space which is utilized to
compute theMΣ. We omit the time index k and sensor index
i when possible for simplicity. We assume a prior known
upper bound M on the state trajectory, i.e., M ≥ ‖x‖2.

Lemma 1. Given input-output trajectories D =
[
U− Z

]
of the system (3). Then, the matrix zonotope

MΣ = (M+
x|z −Mw)

[
M−x|z
U−

]†
(7)

contains all matrices
[
A B

]
that are consistent with the

data D and the noise bounds, i.e., NΣ ⊆MΣ, withM+
x|z =

〈C+
M,x|z, G

(1:ξT+1)
M,x|z 〉 and M−x|z = 〈C−M,x|z, G

(1:ξT+1)
M,x|z 〉

where

C+
M,x|z = V1Σ−1

r×rP
>
1

(
Z+ − CM,γ

)
, (8)

C−M,x|z = V1Σ−1
r×rP

>
1

(
Z− − CM,γ

)
, (9)

G
(i)
M,x|z = V1Σ−1

r×rP
>
1 G

(i)
M,γ , i = {1, . . . , ξT}, (10)

G
(ξT+1)
M,x|z = MV21(n−r)×T , (11)

for all M ≥ ‖x‖2, with P1, V1, Σ and V2 obtained from the
SVD of C. Assuming C has rank r, then

C =
[
P1 P2

] [ Σr×r 0r×(n−r)
0(p−r)×r 0(p−r)×(n−r)

] [
V >1
V >2

]
, (12)

where a matrix with non-positive index is an empty matrix.

Proof. From (12), we rewrite (4) as P1ΣV >1 x = z − γ,
so x = V1Σ−1P>1 (z − γ). Since γ is bounded by
Zγ = 〈cγ , Gγ〉, we can write

x = V1Σ−1P>1
(
z − cγ

)︸ ︷︷ ︸
cx|z

−V1Σ−1P>1 Gγ︸ ︷︷ ︸
G′

x|z

β, |β| ≤ 1.

This set corresponds to all possible x values within the
range space of C satisfying (4). By definition, if r = n,
then V2 = ∅, V1 spans the domain of x, and 〈cx|z, G′x|z〉
sufficiently defines all possible x satisfying (4). However,
if r < n, V1 only spans a subset of the domain of x. To
ensure Zx|z contains all possible x we include a basis for
ker(C) in Gx|z by appending the generator V2M to Gx|z ,
and ensuring M ≥ ‖x‖2 such that V2M includes all x values
in the directions of V2. In both cases for r, the generator
matrix can be written as

Gx|z =
[
G′x|z V2M

]
=
[
V1Σ−1P>1 Gγ V2M

]
,

and the set Zx|z = 〈cx|z, Gx|z〉. This result extends to
the case when r < p using similar argumentation in the
respective cases r = n and r < n. Considering the matrix
version of Zx|z results in proving M+

x|z and M−x|z . Then,
we extend the proof of [17, Lem.1] for input-output data: For
any

[
A B

]
∈ NΣ, we know that there exists a W− ∈Mw

such that
AX− +BU− = X+ −W−. (13)

Every W− ∈ Mw can be represented by a specific choice
β̂

(i)
M,w, −1 ≤ β̂

(i)
M,w ≤ 1, i = 1, . . . , ξM,w, that results in a

matrix inside the matrix zonotope Mw:

W− = CM,w +

ξM,w∑
i=1

β̂
(i)
M,wG

(i)
M,w.

Rearranging (13) and considering M+
x|z and M−x|z as an

over-approximation of X+ and X−, respectively, yields[
A B

]
=

M+
x|z−CM,w−

ξM,w∑
i=1

β̂
(i)
M,wG

(i)
M,w

[M−x|z
U−

]†
(14)

Hence, for all
[
A B

]
∈ NΣ, there exists β̂

(i)
M,w,

−1 ≤ β̂(i)
M,w ≤ 1, i = 1, . . . , ξM,w, such that (14) holds.

Therefore, for all
[
A B

]
∈ NΣ, it also holds that[

A B
]
∈ MΣ as defined in (7), which concludes the

proof.
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Given that we have found a matrix zonotope MΣ that
contains the true system dynamics

[
Atr Btr

]
∈MΣ, we can

utilize it in computing the time update reachable set R̃k in
the following theorem.

Theorem 1. The set R̃k over-approximates the exact reach-
able set, i.e., R̃ ⊇ Rk where

R̃k+1 =MΣ(R̃k × Uk) + Zw, (15)

and R̃0 = X0.

Proof. As
[
Atr Btr

]
∈MΣ according to Lemma 1 and start-

ing from the same initial set X0, it follows that R̃k⊇Rk.

B. Online Estimation Phase using Zonotopes

In this subsection, we present the online estimation phase.
We are now considering the system (3a) with observations
(3b). This phase consists of a time update and a measurement
update. In Sec. III-A, we derived the function f(·) for the
time update. We next present two approaches to perform the
measurement update.

1) Approach 1 - Reverse-Mapping: For this approach, we
aim to determine the mapping of an observation yi(k) to the
corresponding state-space region. Similar to Lemma 1, we
construct a zonotope Zx|yi(k) ⊂ Rn that contains all possible
x ∈ Rn given yi(k), Ci and bounded noise vi(k) ∈ Zv,i
satisfying (3b), for each i.

Proposition 1. Assume ‖x‖2 ≤ K. Given a measurement
yi(k) with noise vi(k) ∈ Zv,i = 〈cv,i, Gv,i〉 satisfying (3b),
the possible states x that correspond to this measurement are
contained within the zonotope Zx|yi = 〈cx|yi , Gx|yi〉, where

cx|yi = V1Σ−1
ri×riP

>
1

(
yi(k)− cv,i

)
,

Gx|yi =
[
V1Σ−1

ri×riP
>
1 Gv,i V2M

]
,

(16)

for all M ≥ K, with P1, V1, Σ and V2 obtained from the
SVD of Ci as in (12).

Proof. The proof follows immediately from Lemma 1.

Remark 1. In our case, Zx|yi(k) will eventually be in-
tersected with R̃k = 〈c̃k, G̃k〉. It is therefore sufficient to
set M ≥ radius(R̃k) + ‖V >2 c̃k‖2 instead of the more
conservative M ≥ ‖x‖2, where radius(R̃k) returns the
radius of a minimal hyper-sphere containing R̃k [20].

Having determined the sets Zx|yi(k) for all i ∈ {1, . . . , q},
we can compute the measurement updated set R̂k given the
predicted set R̃k and each measurement set Zx|yi(k) as

R̂k = R̃k ∩qi=1 Zx|yi(k), (17)
which can be performed using the standard intersection
operations presented in [11], [20].

2) Approach 2 - Implicit Intersection: Contrary to Ap-
proach 1, here, we do not explicitly determine the sets
Zx|yi(k). Instead, R̂k is determined directly from the set
R̃k, the measurements yi(k) and some weights λik for i ∈
{1, . . . , q}. We then optimize over the weights to minimize
the volume of R̂k.

Proposition 2. The intersection of R̃k = 〈c̃k, G̃k〉 and the
q regions for x corresponding to yi(k) with noise vi(k) ∈
Zv,i = 〈cv,i, Gv,i〉 satisfying (3b) can be over-approximated
by the zonotope R̂k = 〈ĉk, Ĝk〉 with

ĉk = c̃k +

q∑
i=1

λik

(
yi(k)− Cic̃k − cv,i

)
, (18)

Ĝk =

[
(I −

q∑
i=1

λikC
i)G̃k −λ1

kGv,1 . . . −λqkGv,q
]
,

(19)
where λik ∈ Rn×pi for i ∈ {1, . . . , q} are weights.

Proof. The proof is based on [21, Prop.1] but with zonotopes
as measurements instead of strips. Let x ∈ R̃k∩Zx|y1∩· · ·∩
Zx|yq . Then there exists a z such that x = c̃k+G̃kz. Adding
and subtracting

∑q
i=1 λ

i
kC

iG̃kz yields

x = c̃k +

q∑
i=1

λikC
iG̃kz + (I −

q∑
i=1

λikC
i)G̃kz. (20)

From (3b), we obtain Cix = yi − cv,i −Gv,idi. Using x =
c̃k + G̃kz yields CiG̃kz = yi(k) − Cic̃k − cv,i − Gv,id

i,
which we insert into (20) to obtain

x = c̃k +

q∑
i=1

λik

(
yi(k)− Cic̃k − cv,i −Gv,idi

)
+
(
I −

q∑
i=1

λikC
i
)
G̃kz,

=

[
(I −

q∑
i=1

λikC
i)G̃k −λ1

kGv,1 . . . −λqkGv,q
]

︸ ︷︷ ︸
Ĝk


z
d1

...
dq


︸ ︷︷ ︸
zb

+ c̃k +

q∑
i=1

λik(yi(k)− Cic̃k − cv,i)︸ ︷︷ ︸
ĉk

= Ĝkz
b + ĉk.

Note that zb ∈ [−1, 1] since di ∈ [−1, 1] and z ∈ [−1, 1].
R̂k adheres to Definition 1 with center ĉk and generators
Ĝk.

As in [11], we find the optimal weights λik ∈ Rn×pi from

λ̄∗k = arg min
λ̄k

‖Ĝk‖2F , (21)

where λ̄k = [λ1
k . . . λ

q
k].

The online estimation phase is illustrated in the block
diagram of Fig. 1. The detailed estimation phase is pre-
sented in Algorithm 1. The function measZon() executes
Proposition 1, and optZon() Proposition 2. The function
reduce(R̃k+1) reduces the order of R̃k+1 using the method
proposed in [22], which ensures the number of generators in
R̃k+1 remains relatively low, avoiding potential tractability
issues after multiple iterations.

C. Online Estimation Phase using Constrained Zonotopes

When intersecting zonotopes, the result is an over-
approximation of the true intersection. However, it is possible
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Algorithm 1 Online Estimation Phase

R̂0 = X0

k = 1
while True do
R̃k = f(R̂k−1, 〈u(k − 1), 0〉) using (15)
if Approach 1 then

foreach i ∈ {1, . . . , q} do
Zx|yi(k) = measZon

(
yi(k),Zv,i, Ci

)
using (16)

end
R̂k = R̃k

⋂q
i=1Zx|yi(k)

if Approach 2 then
〈ĉk, Ĝk〉 = optZon(R̃k, y(k), C,Zv)
Ĝ∗k, λ̄

∗ ← Solve (21)
R̂k = 〈ĉk, Ĝ∗k〉

R̃k = reduce(R̂k) using [22]
k ← k + 1

end

to determine the exact intersection of constrained zonotopes.

Definition 4. (Constrained zonotope [23]) An n-dimensional
constrained zonotope is

C = {x ∈ Rn | x = cC +GCβ, ACβ = bC , ‖β‖∞ ≤ 1} ,
(22)

where cC ∈ Rn is the center, GC ∈ Rn×ng the generator
matrix and AC ∈ Rnc×ng and bC ∈ Rnc the constraints. In
short, we write C = 〈cC , GC , AC , bC〉.

When using constrained zonotopes, we replace the time
and measurement updated sets R̃k and R̂k by the constrained
zonotopes C̃k and Ĉk, respectively.

1) Approach 1 - Reverse-Mapping: This approach works
directly with constrained zonotopes. The sets Zx|yi(k)

of Proposition 1 are constrained zonotopes with no
AC , bC constraints. The intersection in (17) becomes
Ĉk = C̃k ∩qi=1 Zx|yi(k) which can be performed as described
in [23].

2) Approach 2 - Implicit Intersection: We adapt Proposi-
tion 2 to use constrained zonotopes.

Proposition 3. The intersection of C̃k = 〈c̃k, G̃k, Ãk, b̃k〉
and q regions for x corresponding to yi(k) as in (3b) can be
described by the constrained zonotope Ĉk = 〈ĉk, Ĝk, Âk, b̂k〉
with weights λik ∈ Rn×pi for i ∈ {1, . . . , q} where

ĉk = c̃k +

q∑
i=1

λik
(
yi(k)− Cic̃k − cv,i

)
,

Ĝk =

[
(I −

q∑
i=1

λikC
i)G̃k −λ1

kGv,1 . . . −λqkGv,q
]
,

(23)

Âk =


Ãk 0 . . . 0

C1G̃k Gv,1 . . . 0
...

. . .
CqG̃k 0 . . . Gv,q

 , (24)

b̂k =


b̃k

y1(k)− C1ck − cv,1
...

yq(k)− Cqck − cv,q

 . (25)

Proof. We follow a similar approach to [24, Thm. 6.3] and
[23], but extend the proof by defining measurement sets as
zonotopes instead of strips. Zx|yi refers to Zx|yi(k) unless
specified otherwise. Let xk ∈ C̃k ∩Zx|y1 ∩ · · · ∩ Zx|yq , then
there exists a zk ∈ [−1, 1] such that

xk = c̃k + G̃kzk, Ãkzk = b̃k. (26)
Using (3b) and the measurement noise 〈cv,i, Gv,i〉, we write

Cix = yi(k)− cv,i −Gv,idi, (27)
where di ∈ [−1, 1]. Inserting (26) into (27) yields

CiG̃kzk = yi(k)− Cic̃k − cv,i −Gv,idi, (28)
which, combined with (26), yields

Ãk 0 . . . 0
C1Gk Gv,1 . . . 0

...
. . .

CqGk 0 . . . Gv,q


︸ ︷︷ ︸

Âk


zk
d1

...
dq


︸ ︷︷ ︸
zb

=


b̃k

y1(k)− C1ck − cv,1
...

yq(k)− Cqck − cv,q


︸ ︷︷ ︸

b̂k

.

(29)

Adding and subtracting
∑q
i=1 λi,kC

iG̃kzk to (26) yields

xk = c̃k +

q∑
i=1

λikC
iG̃kzk + (I −

q∑
i=1

λikC
i)G̃kzk. (30)

If we now insert (28) into (30), we obtain

x =

[
(I −

q∑
i=1

λikC
i)G̃k −λ1

kGv,1 . . . −λmi

k Gv,q

]
︸ ︷︷ ︸

Ĝk

zb

+ ĉk−1 +

q∑
i=1

λjk
(
yi(k)− Cic̃k − cv,i

)
︸ ︷︷ ︸

ĉk

= Ĝkzb + ĉk.

Hence, x(k) ∈ Ĉk and (C̃ ∩ Zx|y1 ∩ · · · ∩ Zx|yq ) ⊆ Ĉk.
Conversely, let x(k) ∈ Ĉk. Then, there exists a zb such
that (22) in Definition 4 is satisfied. Partitioning zb into
zb = [zk, d

1 . . . , dq]T , it follows that we can construct
a constrained zonotope C̃k = {c̃k, G̃k, Ãk, b̃k} given that
‖zk‖∞ ≤ 1. Thus, x(k) ∈ C̃. Similarly, we can get the
constraints in (27). Inserting (26) in (28) results in obtaining
all the equations in (27). Therefore, x(k) ∈ Zx|yi(k), ∀i ∈
{1, . . . , q}. Thus, x(k) ∈ (C̃k ∩ Zx|y1 ∩ · · · ∩ Zx|yq ) and
Ĉk ⊆ (C̃k ∩ Zx|y1 ∩ · · · ∩ Zx|yq ), which concludes the
proof.

IV. EVALUATION

We evaluate our method by considering an input-driven
variant of the rotating target described in [11]. We set

Atr =

[
0.9455 −0.2426
0.2486 0.9455

]
, Btr =

[
0.1
0

]
(31)
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with q = 3 measurements parameterized as follows

C1 =
[
1 0.4

]
, C2 =

[
0.9 −1.2

]
, C3 =

[
−0.8 0.2

0 0.7

]
,

Zv,1 = 〈0, 1〉,Zv,2 = 〈0, 1〉,Zv,3 = 〈[0 0]>, I2〉.
The noise signals are characterized by the zonotopes
Zγ = 〈[0 0]>, 0.02I2〉 and Zw = 〈[0 0]>, 0.02I2〉. We run
the offline learning phase with T = 500 and inputs sampled
uniformly from the set U = 〈0, 10〉. The noise signals vi(k),
w(k) and γ(k) are sampled uniformly from their respective
zonotope sets using the command randPoint(Z) as described
in [20].

After learning f(·), we run the online estimation phase.
The initial state set is X0 = 〈[0 0]>, 15I2〉 and the true
initial state is x(0) =

[
−10 10

]>
. Once again, we sample

the inputs uniformly from U . We evaluate both the zonotope
and constrained zonotope methods, each time using either of
the two proposed measurement update approaches. Fig. 2a
shows the bounds of R̂k in the x1 state dimension for
both approaches. Fig. 2b shows the equivalent results when
our method uses constrained zonotopes. As expected, x(k)
is always contained within R̂k (or Ĉk) at each time step.
Although both measurement update approaches yield similar
set sizes on average, the set evolution of Approach 2 is
comparatively smoother.

Furthermore, we compare our results with N4SID subspace
identification [25] combined with a Kalman filter (KF). In
Fig. 3, we show the sets R̂k and Ĉk, using either mea-
surement update approach, using zonotopes or constrained
zonotopes. We also show the ellipse corresponding to the
3σ uncertainty bound of the KF estimate, indicating that our
estimator provides state sets comparable in size to that of the
KF. We should mention that KF bounds come without any
guarantees.

Referring to both Fig. 2 and Fig. 3, it is clear that the
constrained zonotopes yield smaller state sets at each time
step. However, this comes at the cost of increased com-
putational load. Running our simulations on a Dell laptop
with an 8-core i5-8365U processor at 1.6GHz, the average
computation time per iteration for Approach 1 increased from
0.656sec to 1.267sec. when using constrained zonotopes;
for Approach 2, the corresponding times were 0.221sec and
0.971sec, respectively. For all our approaches, we observed
that reducing the order of the sets to 5, which reduces the
number of generators in R̂ (or Ĉ), was critical to keep the
computational load low.

V. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we introduced a novel zonotope-based
method to perform set-based state estimation with set con-
tainment guarantees using a data-driven set propagation func-
tion. We presented an approach to compute the set of model
that is consistent with the data and noise bounds given input-
output data. Then, we presented two approaches to perform
the measurement update which merges the time updated
state set with the observed measurements. We extended
our method to use constrained zonotopes, which yielded

0 10 20 30 40 50
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-5

0

5

10

(a) Using zonotopes showing bounds of R̂k in x1

0 10 20 30 40 50

-10

0

10

(b) Using constrained zonotopes showing bounds of Ĉk in x1

Fig. 2: Bounds of the set R̂k in (a), and Ĉk in (b), projected
onto the first state dimension x1 of x(k) using measurement
update approaches 1 and 2.

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

Fig. 3: Sets R̂k using measurement update approaches 1 and
2, and the equivalent sets Ĉk using constrained zonotopes
(CZ), compared to the KF’s 3σ confidence bounds.

smaller state sets at the cost of increased computational load.
Our results show state sets comparable in size to the 3σ
uncertainty bounds obtained when running N4SID subspace
identification and a Kalman filter, but with the added feature
of set-containment guarantees and without requiring any
knowledge of the statistical properties of the noise.

Future work includes evaluating our proposed estimator
on real-world examples as well as gaining more insight
into the limitations of our method when applied to more
complex dynamical systems. Additionally, improving the
zonotope intersection operation to lessen the degree of over-
approximation of the resultant state set would yield tighter
state set estimates at each time step.
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