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Abstract— The paper proposes a practical method for a sig-
nificant dimensionality reduction of Volterra kernels, defining
a discrete nonlinear model of a signal by Volterra series of
higher order. In system identification of Volterra series, the
Volterra kernels and nonlinear inputs of the system can be
described by super-symmetrical tensors. The reduction of their
dimensionality is obtained by a tensor decomposition technique
called Higher Order Singular Value Decomposition (HOSVD).
The main contribution of the paper is a cascade learning
algorithm for the system identification based on residuals of
least squares minimization. Numerical examples for Volterra
system of order four are used to illustrate the approach.

I. INTRODUCTION

A. Motivation

Volterra series and Wiener series are one of the most
universal nonlinear system models [15]. At the same time,
the Volterra series model has a simple homogeneous power
series structure similar to Taylor series expansion (albeit in
function space) and a more compact form comparing to the
Wiener series. The resulting Volterra kernels, included in the
model, are tensors of increasing ranks. The Volterra system
model of order M and memory N is fully described by
a set of kernels, which are tensors of sizes: 1 (scalar), N
(vector), N2 (matrix), N3 (cube), N4 (4-way tensor), and
so on till a tensor of size NM (M -way tensor of dimension
N ). That causes the need for lowering the dimensionality of
the higher-order tensors incorporated in the model, to reduce
the number of coefficients we need to identify. Reducing the
complexity of the system model is of paramount importance
to the design of controllers and control algorithms. This is
even more important for nonlinear systems as well as for
systems that include learning components, like for example
in adaptive control. Reducing the dimension of the kernels
in the Volterra series model is a much better approximation
than just using the associated functional series expansion in
function space, because like in the simpler linear case, the
dimensionality reduction implies reduction in the structure
of the nonlinear system, like which inputs affect more sig-
nificantly certain outputs, that cannot be captured by just the
norm of the input function (which underlies the truncation of
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the Taylor series). In the easier linear case eigenvalue- and/or
singular value decomposition can be directly associated with
reduced models based on keeping the most significant input-
output subspaces rather than relying on the norm size of
the input vector. Thus the aim of the paper is to develop
a methodology for more meaningful reduction of nonlinear
system models based on a structural decomposition of the
input output relations based on keeping the most significant
such relations as revealed by the proposed singular value
decomposition of the associated Volterra series kernels.

B. Related Work

Chronologicaly, the oldest identification scheme is cross-
correlation method [10], [13], [14], using the property that
every Volterra functional is orthogonal to all Wiener func-
tionals [21] of higher orders. The discrete analogue of the
Wiener series is orthogonalized for Gaussian white noise
input with zero mean [12]. This assumption not always
can be fulfilled due to limitations of applications. The new
approach to Wiener and Volterra system identification was a
polynomial kernel regression [3], [4]. The other modification
of the original cross-correlation method [10] was based on
the idea of differentiating the variance of the kernels for
various orders, called multiple-variance method [11].

The Fast Orthogonal Algorithm and the Exact Orthogonal
Algorithm [9] also perform othogonalization, but allow for
arbitrary system inputs. There are also attempts to solve the
identification problem by statistical learning approaches and
kernel methods [5], based on minimizing the empirical error.

For the problem of lowering the dimension of higher-
order tensors multiple solutions have been developed, lead-
ing to tensor decompositions. Currently the most popular
tensor decomposition method is the so called Canonical
Polyadic Decomposition (CPD) [7]. This decomposition was
named also PARAFAC [6], CANDECOMP [1] and Tensor
Rank Decomposition. The method represents tensors mT ∈
RN1×N2×···×Nm of order m as a linear combination of r
rank−1 tensors (vectors)

mT =

r∑
i=1

λia
(1)
i ⊗ a

(2)
i ⊗ · · · ⊗ a

(m)
i , (1)

where λi ∈ R is a scalar, and factor matrices a
(m)
i ∈ RNm .

The oldest tensor decomposition method is the Tucker
Decomposition [17], [18], [19], which was designed to
decompose a tensor 3T ∈ RN1×N2×N3 of order 3 in the
following way

3T = (U1, U2, U3)⊗ 3S (2)



to a core tensor 3S ∈ RN1×N2×N3 and orthogonal factor
matrices U1, U2 and U3 of matching sizes. Its generalization
for tensors mT ∈ RN1×N2×···×Nm of order m higher than
3 is called Higher Order Singular Value Decomposition
(HOSVD) [2], and has an analogous form

mT = (U1, U2, · · · , Um)⊗ mS. (3)

The last method is explained in detail in later sections of the
paper.

C. Main Contribution

The main contribution of this paper is a sequential learning
algorithm for a nonlinear system identification based on a
Volterra series model. The Volterra series model of higher-
order can be described by kernels in the form of super-
symmetric tensors. Using that specific representation of
Volterra kernels, we were able to modify the standard Higher-
Order Singular Value Decomposition (HOSVD) algorithm.
The new approach decreases the number of calculations
necessary to perform HOSVM of m-way super-symmetric
tensors by m-times. The presented identification schema
utilizes HOSVD, which is reducing tensor dimensions for
kernels of order m = 3 and higher at each step of the
multistage procedure.

The paper is divided into eight sections. In Section II the
most popular definitions of nonlinear Volterra series system
models are introduced in two cases: a full model of higher
order with kernels as super-symmetric tensors, and a reduced
lower triangular model with a cropped range of indexes.
In Section III we present a sketch of the cascade learn-
ing algorithm for system identification. The details of the
HOSVD in the general case and for super-symmetric tensors
are described in Section IV. The practical cascade algorithm
for identification of Volterra series system model of higher-
order with parallel reduction of dimensionality of particular
tensors by the HOSVD is proposed in Section V. The space
complexity of the Volterra kernel and its decomposed version
is analyzed in Section VI. At the end of the paper, we
describe our simulation results and conclusions.

II. NONLINEAR VOLTERRA SERIES MODELS

The Volterra series represents one of the earliest nonlinear
system model dated back to the end of XIX century [20]. It
can be interpreted as a polynomial representation of a system
(in input-output function spaces) with increasing degree of
nonlinearity, similar to a power series expansion by the
Taylor series (for functions), but with memory effect. The
first-order Volterra series is just a linear approximation of the
input-output map characterized by a typical transfer function
or impulse response of the linear systems.

The models, approach and algorithms of this paper can
be extended to handle multi-input multi-output nonlinear
systems. In the interest of simplicity, especially since the
indexing becomes much more complex, we investigate in
this paper single input single output systems, with excitation
xt and response yt at discrete time instances t. We define

the discrete Volterra series system model Myt of order M
and finite memory N in the following way:

Myt = hx0 +

N∑
i1=1

hx1(i1)xt−i1

+

N∑
i1=1

N∑
i2=1

hx2(i1, i2)xt−i1xt−i2 (4)

+ . . .

+

N∑
i1=1

· · ·
N∑

iM=1

hxM (i1, . . . , iM )xt−i1 · · ·xt−iM .

We should mention that the constant hx0 = Eyt (in
the stochastic input case) can be easily estimated, and
is often removed from the assumed models for sim-
plicity. The main concern of this paper is dimension-
ality reduction connected to memory N . It means that
the response of the system uses N past excitations
xt−1, xt−2, . . . , xt−N . The multi-dimensional transfer func-
tions hx1(i1), hx2(i1, i2), . . . , hxM (i1, . . . , iM ) are called the
Volterra kernels of order 1, 2, . . . ,M , respectively – see
Fig. 1. Each of the kernels hxm(i1, . . . , im) is a super-
symmetrical m-way tensor of dimension N , producing the
same tensor for all possible index permutations. The total
number of tensor elements is equal to

N × · · · ×N︸ ︷︷ ︸
m times

= Nm,

which might be a huge number, depending on the memory
size N and kernel order m.

Fig. 1. The Volterra kernels of orders m = 0, 1, 2, 3 and dimension N = 4
are: a scalar hx

0 , a vector 1Hx, a matrix 2Hx, and a cube 3Hx

Due to the multiplication alternation, a large part of
the sum elements reoccurs. A common approach is to use
instead reduced lower triangular kernels hx,4m (i1, . . . , im)
with a clipped range of indexes. The reduced model has the
following form:

Myt = hx,40 +

N∑
i1=1

hx,41 (i1)xt−i1

+

N∑
i1=1

N∑
i2=i1

hx,42 (i1, i2)xt−i1xt−i2 (5)

+ . . .

+

N∑
i1=1

· · ·
N∑

iM=iM−1

hx,4M (i1, . . . , iM )xt−i1 · · ·xt−iM .

In order to preserve the super-symmetry of the kernel tensors,
we will consider in the following only the model (4).



III. IDENTIFICATION SCHEME

We denote the Volterra series of order M as a sum of
M + 1 components, to simplify the notation. Let

Myt =

M∑
m=0

y
(m)
t (6)

= hx0 +

M∑
m=1

N∑
i1=1

· · ·
N∑

im=1

hxm(i1, . . . , im) xt−i1 · · ·xt−im

= hx0 +

M∑
m=1

<m Hx, mX >F ,

where < . , . >F denotes the Frobenius inner product of two
tensors of the same size. For a non-reduced model (4), the
Volterra kernel of order m is a m-way tensor of dimension
N , or simply a Dm array of Nm cells

mHx = (hxm; i1,...,im)N,...,Ni1,...,im=1 ∈ RN
m

, (7)

where all indexes i1, . . . , im run from 1 till N . The m-th
degree homogeneous functional of input observations xt−i
creates the m-way super-symmetric tensor

mX = x⊗m = (xt−i1 · · ·xt−im)N,...,Ni1,...,im=1 ∈ RN
m

. (8)

The subscript ⊗m denotes the symmetric outer product, as
defined in [16].

The identification scheme is a sequential MSE procedure.
We minimize the following residuals for the initial steps

r
(1)
t =yt − y(0)t = yt − hx0 , (9)

r
(2)
t =yt − y(0)t − y

(1)
t = r

(1)
t − <1 Hx, 1X >F , (10)

r
(3)
t =yt − y(0)t − y

(1)
t − y

(2)
t = r

(2)
t − <2 Hx, 2X >F ,

(11)

and generally
r
(m+1)
t = r

(m)
t − y(m)

t , (12)

where

y
(m)
t =<m Hx, mX >F (13)

=

N∑
i1=1

· · ·
N∑

im=1

hxm(i1, . . . , im)xt−i1 · · ·xt−im .

The identification of the Volterra series system model of
order M in a sequential way, defined by (9)-(12), leads to
minimizing the residuals in (M + 1)-steps. In each step, we
obtain the kernel estimates: a constant scalar ĥx0 in the first
step, a vector 1Ĥx in the second step, a matrix 2Ĥx, a cube
3Ĥx, and a 4-way tensor 4Ĥx in following steps, and so on.

IV. HIGHER-ORDER SINGULAR VALUE
DECOMPOSITION

A. HOSVD Algorithms

Algorithm 1 presents the proposed general procedure of
reducing the dimension of an m-way tensor mT , without
necessarily preserving the property of super-symmetry.

In the super-symmetric case, every unfolding (flattening)
of a tensor mT to a matrix Aj gives the same matrix of

Algorithm 1 HOSVD of m-way tensor mT
Input: mT ∈ RNm

Output: mT̂ ∈ RNm

and mS ∈ RK1×K2×···×Km

LOOP
1: for j = 1 to m do
2: Unfold the tensor mT (i1, . . . , im) to a matrix Aj with

N rows and N (m−1) columns, where the jth tensor’s
index ij becomes the row index of the matrix.

3: Perform SVD of Aj , keep the left-hand side orthog-
onal matrix Uj and matrix Σj with singular values
σj = (σj,1, . . . , σj,N ) on the diagonal in descending
order, Σj ← diag(σj).

4: Number of remaining dimensions Kj ← N .
LOOP

5: for k = 1 to N do
6: if (σj,k ≤ ε) then
7: Number of remaining dimensions Kj ← Kj −1.
8: end if
9: end for

10: Truncate Uj ← Uj( : , 1 : Kj), dropping all singular
values σj,k ≤ ε.

11: end for
12: Calculate m-way tensor U ← (U1, U2, · · · , Um).
13: Calculate core tensor mS ← UT ⊗ mT .
14: Calculate tensor estimate mT̂ ← U ⊗ mS.
15: return mT̂ and mS.

size N × N (m−1). So for every choice of the tensor index
j ∈ {1, 2, . . . ,m}, which will become the row index of the
matrix during the flattening of the tensor, we obtain the same
matrix Aj . Then, we can reduce the number of calculations
by removing the outer loop in Algorithm 1. As a result, the
calculations of the HOSVD for an m-way tensor mT are
m-times faster.

Algorithm 2 was used by us to calculate the HOSVD
of an m-way super-symmetric tensor mT = x⊗m, ob-
tained from tensor product of delayed system inputs
{xt−1, xt−2, . . . , xt−N}. The initial dimension of tensor
x⊗m was N , and after decomposition and removing small
singular values, its dimension is lowered to K. K is the
number of left (not deleted) singular values on the diagonal
of the matrix Σ. As a result, the initial tensor mT has Nm

cells, and the recovered tensor mT̂ has also Nm cells.
During the procedure we obtain the reduced core tensor

mS = s⊗m, which is also an m-way super-symmetric tensor,
but of lower dimension K (K 6 N ), and it has only Km

cells. The dimension is not reduced (i.e. it is K = N ), only if
there were no zero singular values and no non-zero singular
values were dropped after decomposition.

B. Singular Values and Reconstruction Error

The matrix Aj (a flattened version of the tensor) is
factorized by Singular Value Decomposition (SVD) to the
form

Aj = UjΣjV
T
j . (14)



Algorithm 2 HOSVD of m-way super-symmetric tensor mT
Input: mT ∈ RNm

Output: mT̂ ∈ RNm

and mS ∈ RKm

1: Unfold the tensor mT (i1, . . . , im) to a matrix A with N
rows and N (m−1) columns, where the 1st tensor’s index
i1 becomes the row index of the matrix.

2: Perform SVD of A, keep the left-hand side orthogonal
matrix U1 and matrix Σ with singular values
σ = (σ1, . . . , σN ) on the diagonal in descending order,
Σ← diag(σ).

3: Number of remaining dimensions K ← N .
LOOP

4: for k = 1 to N do
5: if (σk ≤ ε) then
6: Number of remaining dimensions K ← K − 1.
7: end if
8: end for
9: Truncate U1 ← U1( : , 1 : K), dropping all singular

values σi ≤ ε.
10: Calculate m-way tensor U ← (U1, U1, · · · , U1).
11: Calculate core tensor mS ← UT ⊗ mT .
12: Calculate tensor estimate mT̂ ← U ⊗ mS.
13: return mT̂ and mS.

The diagonal matrix Σj consists of the singular values in
descending order. Let us drop all singular values σk smaller
than given ε. All corresponding columns of matrix Uj and
rows of Σj are deleted. Then, the error between Aj and the
reconstructed Âj is equal to

errε =
∑

k∈{σ≤ε}

σ2
k < #{σ ≤ ε} · ε2, (15)

where the number of the deleted singular values is

#{σ ≤ ε} = N −K, (16)

while the number of the remaining singular values is K.
In the application of HOSVD presented in the paper for the
Volterra kernels mH, the number K is becoming a reduced
dimension of the core tensor mS.

C. Super-symmetric Tensor Case

The m-th degree homogeneous functional mX = x⊗m is
an m-way super-symmetric tensor [8]. The consequence is
that also the corresponding Volterra kernel of order m has
to be super-symmetric, and we denote it as mHx = h⊗m.
Using the HOSVD, we can transform tensor x⊗m to a super-
symmetric core tensor s⊗m by calculating the tensor product
of the tensors x⊗m and UT . The reason to perform HOSVD
is dimensionality reduction of a tensor with accompanying
small estimation error due to dropping some of the singular

values. We have

Myt = hx0 +

M∑
m=1

<m Hx, mX >F (17)

= hx0 +

M∑
m=1

< h⊗mx , x⊗m >F (18)

≈ hx0 +

M∑
m=1

< h⊗ms , s⊗m >F (19)

= hx0 +

M∑
m=1

<m Hs, mS >F (20)

All orthogonal matrices Uj , j = 1, 2, . . . ,m, are lin-
ear transformations, and preserve inner product. For super-
symmetric tensors, all the left-hand side matrices Uj of the
SVD of matrix Aj are identical. We mentioned before that
all flattened versions Aj of super-symmetric tensor produce
always the same matrix. In case, we do not drop any singular
values, the Frobenius inner product will retain the same value

< h⊗mx , x⊗m >F=< h⊗ms , s⊗m >F (21)

for s = UT1 x and hs = UT1 hx.

V. VOLTERRA KERNELS DIMESIONALITY
REDUCTION

We present a cascade learning algorithm (see Algorithm 3)
performing system identification of Volterra series of a fixed
order M and memory N using a set of input and output
signals {xt−1, xt−2, . . . , xt−N ; yt} for t = 1, . . . , T . The
whole procedure is performed in (M+1)-steps. In the initial
three steps, kernels of lower orders m = 0, 1 and 2 are
recovered without any reduction of kernel size: in the first
step – a constant ĥx0 , in the second step – a vector 1Ĥx,
and in the third step – a matrix 2Ĥx. The proposed method
is based on dimensionality reduction by the HOSVD of the
tensors of order m = 3 and higher, described in the previous
section. It is worth noting that what is called in literature the
dimension N of a tensor is, in our case, the memory N of
the Volterra series system model.

The dimensionality reduction is firstly performed for an
m-way super-symmetric tensor mX = x⊗m of dimension
N , resulting from the use of delayed inputs measurements
{xt−1, xt−2, . . . , xt−N}, leading to an m-th degree homoge-
neous functional. The HOSVD allows for dropping singular
values of zero or near-zero values as in standard SVD, and
the number K of not-rejected singular values is the new
dimension of the decomposed and reduced tensor mX̂ . The
size of the tensor mX̂ induces the identical size of the
corresponding Volterra kernel tensor mHx. So as a result, the
reduction is done for both tensors at each step. Next, using
the least squares technique, we estimate the corresponding
lower-dimensional kernel mHx, according to the equation

r
(m+1)
t = r

(m)
t − <m Hx, mX̂ >F . (22)

In the next step, we use the residual r(m+1)
t obtained as a

result of the minimization in previous step.



Algorithm 3 Volterra kernels dimensionality reduction
Input: inputs xt−1, xt−2, . . . , xt−N and outputs yt for t =

1, . . . , T
Output: the Volterra kernels mHx for m = 0, 1, . . . ,M

(Order 0)
1: Calculate hx0 ← Eyt.
2: Calculate residual r(1)t ← yt − hx0 .

(Order 1)
3: Prepare 1X ← x.
4: Obtain 1Hx by minimizing
r
(2)
t = r

(1)
t − <1 Hx, 1X >F .

5: Calculate residual r(2)t ← yt − y(2)t .
(Order 2)

6: Prepare 2X ← x⊗2.
7: Obtain 2Hx by minimizing
r
(3)
t = r

(2)
t − <2 Hx, 2X >F .

8: Calculate residual r(3)t ← yt − y(3)t .
(Order m = 3, . . . ,M )

9: for m = 3 to M do
10: Prepare mX ← x⊗m.
11: Perform the HOSVD (Algorithm 2) for mX ,

and obtain a reduced-size tensor mX̂ .
12: Obtain mHx by minimizing

r
(m+1)
t = r

(m)
t − <m Hx, mX̂ >F .

13: Calculate residual r(m+1)
t ← yt − y(m+1)

t .
14: end for
15: return all mHx for m = 0, 1, . . . ,M .

VI. SPACE COMPUTATIONAL COMPLEXITY FOR
VOLTERRA KERNELS

The discrete Volterra series system model of order M and
finite (dimension) memory N , given by (4), uses the super-
symmetric kernels mHx, where m ≤ M . The total number
of the parameters (the amount of memory cells) of the kernel
hxm(i1, . . . , im) in the full model is

#P� = Nm ∼ O(Nm), (23)

where m is the order of the kernel. Due to the super-
symmetry, the parameters with permuted indexes share the
same values, causing that the data stored in such a kernel is
redundant.

For the reduced model (5), using the lower triangular
kernels hx,4m (i1, . . . , im) with a clipped range of indexes, the
number of parameters describing each kernel is significantly
lower, and equal

#P4 =
(N +m− 1)!

(m)!(N − 1)!
∼ O(Nm), (24)

which is the number of all m-element combinations of
indexes from N - element set, with repetitions.

The proposed method of the Volterra kernels decomposing
by HOSVD leads to even more meaningful reduction of
parameters needed to store the same data. As shown in
Algorithm 2, the Volterra kernel mHx ∈ RNm

of order
m can be decomposed to two components: a m-way tensor

U = (U1, U1, · · · , U1) and a core tensor mS. But in fact,
from numerical point of view, we only need to remember
one orthogonal matrix U1 ∈ RN×K and the core tensor
mS ∈ RKm

. If we do not truncate the matrix U1, and leave
all N singular values of matrix Σ intact, then we can re-
obtain the exact original Volterra kernel in the following way

mH = U ⊗ mS. (25)

But in that case, we would use N2+Nm parameters to store
the decomposed tensor, which is higher number than for the
original full Volterra kernel.

However, the goal of this decomposition is to keep only
valuable data, considering the reconstruction error (15). If we
truncate the orthogonal matrix U1 to K-columns (see Algo-
rithm 2), what means leaving only the K-most significant
singular values, then we can reconstruct the estimate mĤx
of Volterra kernel by the tensor product

mĤ = U ⊗ mS, (26)

where this time U consists of truncated matrices
U1 ∈ RN×K . The synthesis of the estimate mĤx is
using only

#PHO = NK +Km ∼ O(Km) (27)

parameters, and K ∈ {1, 2, 3, . . . , N}.
The amount of memory space required to store the full

information about a Volterra kernel is presented in Fig. 2.
The two standard approaches (full super-symmetrical kernel
and reduced triangular kernel) use O(Nm) space, where
N is the tensor dimension (memory of the Volterra series
system model) and m is the order of the kernel. The space
complexity for the decomposed by HOSVD and truncated
kernel depends on the reduced dimension K, and is O(Km),
which can be meaningly smaller if K < N .

0 20 40 60 80 100
dimension N

100

101

102

103

104

105

106

107

108

nu
m

be
r 

of
 p

ar
am

et
er

s 
to

 s
to

re
 th

e 
ke

rn
el

K=N

K=75

K=50

K=25

K=10

K=5

K=2
K=1

full super-symmetric kernel
reduced triangular kernel
decomposed kernel by HOSVD
truncated decomposed kernels

Fig. 2. Space complexity (the amount of cells) for different models of
Volterra kernel 4Hx of order m = 4 for various dimensions N .



VII. SIMULATIONS

We performed a series of simulations, trying to identify
Volterra kernel of order m = 4. In each simulation, we
assumed a fixed Volterra kernel mHx of the system with
the following super-symmetrical entries:

4Hx(i1, i2, i3, i4) = f(i1)⊗ f(i2)⊗ f(i3)⊗ f(i4), (28)

where

f(i) =
N − i+ 1

N
, i ∈ {1, 2, 3, . . . , N}. (29)

The example of the Volterra kernel 4Hx for dimension
N = 6 is presented, in sliced form, in Fig. 3. The color scale
is ranging from 0 – deep blue to 1 – bright yellow.

H4(:,:,1,1) H4(:,:,2,1) H4(:,:,3,1) H4(:,:,4,1) H4(:,:,5,1) H4(:,:,6,1)

H4(:,:,1,2) H4(:,:,2,2) H4(:,:,3,2) H4(:,:,4,2) H4(:,:,5,2) H4(:,:,6,2)

H4(:,:,1,3) H4(:,:,2,3) H4(:,:,3,3) H4(:,:,4,3) H4(:,:,5,3) H4(:,:,6,3)

H4(:,:,1,4) H4(:,:,2,4) H4(:,:,3,4) H4(:,:,4,4) H4(:,:,5,4) H4(:,:,6,4)

H4(:,:,1,5) H4(:,:,2,5) H4(:,:,3,5) H4(:,:,4,5) H4(:,:,5,5) H4(:,:,6,5)

H4(:,:,1,6) H4(:,:,2,6) H4(:,:,3,6) H4(:,:,4,6) H4(:,:,5,6) H4(:,:,6,6)

Fig. 3. The original Volterra kernel 4Hx for N = 6.

Then, a set of input and output signals
{xt−1, xt−2, . . . , xt−N ; yt} was generated for the assumed
kernel and t = 1, . . . , T, where the number of samples T
varied from 2, 500 to 50, 000. Next step was to recover
the Volterra kernel, using only the prepared set of delayed
inputs and outputs. The performance of the identification
technique was measured by the Frobenius norm error
||mHx −m Ĥx||2F between the original assumed Volterra
kernel and the recovered Volterra kernel. We used a discrete
Gaussian white noise with zero mean and variance equal
A = 9 as the input signals. But it is worth mentioning
that these examples are not an assumption for the proposed
method, and almost any signal could serve as an input
signal.

The input signal was transmitted though the Volterra series
system with non-zero entries only for the prepared kernel
4Hx of order m = 4. In this way, we received the output
signal {yt}, which together with the input signal {xt} served
in the learning process. For minimization, we used the least

squares technique with LASSO regularization to minimize
the number of non-zero coefficients in the kernels. The
reconstructed tensors of order 4 containing the identified
by the HOSVD Volterra kernels mĤx (sliced versions) are
shown in Figs. 4 and 5. The kernel estimation error measured
by the Frobenius norm for various numbers of samples and
reduced dimension (reduced number of singular values) to
K = 2, 3, 4, 5 are presented in Table I.

TABLE I
KERNEL ESTIMATION ERROR ||mHx −m Ĥx||2F FOR ORDER m = 4

AND DIMENSION N = 6

No. samples
No. sv 2,500 5,000 12,500 25,000 50,000
N = 6 0.0162 0.0055 0.4739e−3 0.1842e−3 0.1166e−3

K = 5 0.0162 0.0055 0.4739e−3 0.1842e−3 0.1166e−3

K = 4 0.0163 0.0055 0.4739e−3 0.1842e−3 0.1166e−3

K = 3 0.0163 0.0055 0.4739e−3 0.1842e−3 0.1166e−3

K = 2 0.0162 0.0055 0.4739e−3 0.1842e−3 0.1166e−3

The number of dropped singular values can have im-
plicit impact on the identification error value. However,
for the assumed Volterra kernel (28) with values around
1 for small indexes i1, i2, i3, i4, and decreasing quickly
(polynomially of degree 4) toward zero value along with
the indexes increase, with only one significant singular
value (σ = [6.3897, 9.8102e−16, 1.7700e−16, 2.3336e−17,
9.5131e−32, 1.1969e−47]), we observe that the identification
error values are almost the same for different numbers of
singular values. The kernel estimate based on full decom-
position components (for K = N = 6) and the kernel
estimates reconstructed with the truncated matrices U1 to
K = 5, 4, 3 or 2 rows, which corresponds with the number
of singular values, present the same reconstruction quality.
The greatest impact has the number of samples for which
the learning sequence was generated, with the identification
error descending along with the increase of the number of
samples.

VIII. CONCLUSIONS AND FUTURE WORKS

The paper introduces a sequential learning algorithm
for the identification of nonlinear systems represented via
Volterra series. The kernels of the Volterra series system
model are super-symmetric tensors, and using that feature
we modified the standard HOSVD (Algorithm 1) by boosting
the calculation time by m-times for a Volterra kernel of order
m (Algorithm 2).

The HOSVD is a factorization technique designed for
higher order tensors, using the well known Singular Value
Decomposition (SVD) for the unfolded tensor representation
resulting from the chosen dimension. We proposed a method
of identifying Volterra kernels of a system with known (mea-
surable) inputs and outputs. The advantage of the proposed
method, in contrary to other well known methods as cross-
correlation method for Wiener and Volterra systems, is that
we do not assume any particular properties of input signals.



The input signals can be chosen arbitrarily. The presented
method can be easily applied, thanks to its simplicity, to
reduce the dimension of tensors representing Volterra kernels
of higher orders.

The proposed method for a particular kernel, using tensor
decomposition and fast matrix operations, can lead to boost-
ing the learning time for identification of Volterra series. For
Volterra series models of higher orders, there is need for
applying a sequential procedure identifying gradually the
kernels with control over the accompanying error, due to
dropping of some of singular values. The proposed cascade
identification procedure (Algorithm 3) reduces Volterra ker-
nels dimensions for kernels of order m = 3 and higher.
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Fig. 4. Reconstructed kernel 4Ĥx for N = 6, K = 2, T = 5, 000.
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