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Abstract— This paper presents a trajectory generation mech-
anism based on machine learning for a network of unmanned
aerial vehicles (UAVs). For delay compensation, we apply an
online regression technique to learn a pattern of network-
induced effects on UAV maneuvers. Due to online learning, the
control system not only adapts to changes to the environment,
but also maintains a fixed amount of training data. The
proposed algorithm is evaluated on a collaborative trajectory
tracking task for two UAVs. Improved tracking is achieved in
comparison to a conventional linear compensation algorithm.

I. INTRODUCTION

Time-delay compensation is important problem for net-
worked control systems because varying delays induced by
the network are known to degrade control performance. This
paper considers trajectory generation for networked unmanned
aerial vehicles (UAVs) such systems are highly delay sensitive
in that they could be easily damaged if sensor information
or control actuations are delayed.

There is a vast literature on time-delay control system. In
[1], [2], predictive control approaches are proposed to provide
a local plant with a sequence of future control inputs, where
dynamic model of plants are known so that compensation is
done easily by sending time-stamps on communication packet.
However, such models and time-invariant delay assumption
are seldom available in practice, such as the UAV scenario
considered in this paper. In [3], [4], adaptive control schemes
have been also suggested, where the assumption of constant
delay or known delay function is required. In [5]–[7], they
focus on designing low-level controllers to achieve maximum
allowable delay and to hold stability, which have different
goal to our path planning problem.

The main contribution of this paper is to apply a machine
learning technique for multi-robot system with time-varying
delay. It does not only require to put restrictions on the time-
delay such as a known upper bound or being constant, but also
need a known dynamic model. Therefore, in this paper, the
role of the machine learning supports the lack of the dynamic
model information and compensates for time-varying delays.

Many works have reported enhancement of control systems
by applying machine learning techniques [8]–[10]. However,
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they focused on application of batch learning where the model
learnt in the training phase does not adapt to changes to the
environment. For the multi-UAV case with time-varying delay,
those batch learning methods are not suitable.

In this paper, the application of an online machine learning
is suggested, which updates a learning model efficiently
whenever new training data is available without training
all data from a scratch. It maintains a fixed amount of
training data, which lessens computational load. We employ
online square support vector regression (online LS-SVR) [11].
This algorithm has a beneficial characteristics of sparsity
in which only a few training points called support vectors
represent the learned model, while most of the other training
samples become meaningless after training. The support
vectors are exploited to extend a batch LS-SVR to an onliner
version. Online LS-SVR has been employed in many practical
applications such as robotics and sensor networks [12], [13].

As a robotic platform for which the suggested algorithm is
applied, we consider one centralized trajectory planning for
distributed UAVs that are networked in far distance. There
are uplink and downlink channels between them. The uplink
delay is dealt with model predictive control (MPC) method
that provides a trajectory sequence including predictive future
trajectories. The UAVs choose a proper input among them
corresponding to uplink network condition. The downlink
delay is compensated by the online learning that estimates
UAV’s state given delayed observation.

The proposed algorithm is evaluated to collaborative
trajectory tracking of two UAVs. Simulations are performed
for variable delays and tracking scenarios. Improved tracking
results of the learning-based compensation are achieved in
comparison to a conventional linear compensation method.
Also, we report adaptive tracking performances against
randomly varying time-delay.

The rest of this paper is organized as follows. Section II
overviews the networked multi-UAV system and compensa-
tion methods for delays on uplink and downlink channels.
Section III introduces a model predictive control (MPC),
and Sections IV and V describe an online learning and its
application to delay compensation, respectively. Sections VI
and VII present simulation results and concluding remarks.

II. SYSTEM OVERVIEW

UAVs are time-sensitive in that they could be easily
damaged if communication delay lasts over a tolerable period.
For delay compensation of the uplink channel, we apply
model predictive control (MPC) to provide control input
sequence with the UAVs to maintain persistent control inputs.



The delay compensation of the downlink channel can be seen
as an estimation problem. Given delayed observation, it aims
to predict UAV state at current time step. This paper suggests
a machine learning based estimation.

In this section, we first describe problem formulation about
trajectory planning for networked UAVs in Section II-A. Then,
Sections II-B and II-C overview the delay compensation
methods on each of the uplink and the downlink channels.

A. Trajectory generation for networked UAVs

This paper considers a quadrotor UAV system. Let us
define a state x̄ = [x, y, z, φ, θ, ψ]T , where [x, y, z] is position
of UAV in the inertial frame, and [φ, θ, ψ] is roll, pitch, and
yaw angles in the body frame. Many existing works such as
[14], [15] have developed successful controller for quadrotors.
Given a nonlinear dynamic model

¨̄x = f(x̄, ū), (1)

they derive control inputs such that ‖[x, y, z]T −x∗(k)‖ → 0,
where x∗(k) is a dynamic trajectory reference.

Our objective is to design a trajectory generator for x∗(k)
at the central side. Existence of random time-delay is the
challenge to this problem. We assume that
• Local UAVs have individual position and attitude con-

trollers, to track a dynamic trajectory reference provided
by an central server.

• A trajectory planner does not know the dynamic models
and the controllers of the local UAVs.

• The trajectory generation focuses on x-y position.
By the assumptions, we define symbol of state x to include
2-D position only, so we can define x(k) = [x(k), y(k)]T .
Taking the assumptions into account, we consider a trajectory
generation model:

x(k + 1) = Ax(k) +Bu(k), (2)

and the goal is to derive control input u∗k such that ‖x(k)−
r(k)‖ → 0, where r(k) is a given reference. As a result,
resultant u∗k becomes a dynamic trajectory reference input to
the local UAVs.

Note that we do not know A and B. Instead, this paper
simplifies the model such that

A = I2×2 and B = vI2×2 (3)

with the identity matrix I2×2 and a constant v.

B. Uplink delay compensation

Suppose that the trajectory generator sends a sequence of
control inputs u(k + j − 1|k) for j = 1, . . . , Nu to an UAV
at time step k. The received packet is stored in a buffer at
the UAV. To compensate for the uplink delay, control input
(bfl · τu,ke+1) from the latest control sequence is selected,
where fl is the control frequency, τu,k is the uplink delay,
and b·e denotes the nearest integer. The buffer compares time-
stamps of a newly arrived packet and the existing packet, and
then it keeps the sequence having the latest time-stamp.

C. Downlink delay compensation

Let y(k|k − τd,k) be the full-state observation sent from
an UAV, where τd,k is the downlink delay. Given the delayed
observation, we can predict the state of an UAV at time step
k, by the following equation:

x̂(k) = y(k|k − τd,k) +

bfl·τd,ke−1∑
j=0

AjBu(k − 1− j). (4)

As long as we know the matrices A and B, (4) accurately
compensates for the downlink time-delay. However, it is
difficult to know A and B exactly in case of the UAV system
due to its nonlinearity. For disturbance compensation, machine
learning supports lack of the dynamic model information.
Detail of the learning-based compensation is shown in Section
V.

III. MPC FOR NETWORKED UAV CONTROL

MPC is a control strategy that calculates predictions of
current and future control inputs by solving a constrained
optimal control problem over a finite time horizon.

Suppose that xq ∈ Rn be a state of the q-th UAV among
N UAVs, and x =

[
xT1 , . . . , x

T
N

]T
be the concatenated

state. Similarly, we define r ∈ RnN and u ∈ RmN as
the reference and the control input vectors, respectively.
Taking the downlink time-delay τd,k into account, the MPC
optimization is given by:

min
u(k+j−1|k), j≥1

Jk =

Np∑
i=1

‖x(k + i)− r(k + i)‖2Q

+

Nu∑
j=1

‖∆u(k + j − 1)‖2R,

subject to

x(k + i) = Ax(k + i− 1) +Bu(k + i− 1),

x(k) = [x̂T1 (k), . . . , x̂TN (k)]T ,

x̂q(k) = g
(
yq(k|k − τ qd,k)

)
for q = 1, . . . , N, (5)

xmin ≤ x(k + i− 1) ≤ xmax,

∆umin ≤ ∆u(k + j − 1) ≤ ∆umax,

umin ≤ u(k + j − 1) ≤ umax,

i = 1, . . . , Np,

j = 1, . . . , Nu,

where Np and Nu are lengths of prediction and control
horizons, respectively. The matrices Q and R are constant
weighting matrices, and the vectors ∆umin, ∆umax, umin,
umax, xmin, and xmax are constant constraint vectors.

The optimization results in the control inputs u∗(k+j−1|k)
over the control horizon j = 1, . . . , Nu. The q-th control input
u∗q(k + j − 1|k) is sent to the q-th UAV through the uplink
channel. The MPC optimization runs once the initial states
over all UAVs arrive at the central controller. The initial state
x̂q in (5) is estimated by a function based on the delayed
observation yq , which is sent through the downlink channel.



Because the time delay τd,k may substantially degrade control
performances, this paper focuses on modelling the function
g(·). In order to obtain a more accurate model than a
deterministic compensation such as (4), the following section
introduces a machine learning method.

IV. ONLINE LS-SVR

In this section, we first present the batch LS-SVR, and
then the extension to the online version in Section IV-A.

The basic idea of LS-SVR is to map the data x ∈ RM to
a higher dimensional feature space H (reproducing kernel
Hilbert space) using a nonlinear mapping φ(x) : RM →
H ∈ Rh, and then find the relationship between scalar target
variable y and explanatory variable x (i.e., linear regression)
in the kernel space. In other words, given a training set of
l training samples {(xi, yi)}li=1 where yi ∈ R are labels of
the training data, it maps the training samples to a new data
set {(φ(xi), yi)}li=1 with the nonlinear mapping φ(·).

Consider the linear regression model:

f(x) = 〈w, φ(x)〉+ b, w ∈ Rh, b ∈ R,

where w and b are the coefficients, which are estimated by
the following optimization problem:

min
w,b,ξ

1

2
‖w‖2 + c

1

2

l∑
i=1

ξ2i ,

s.t. ξi = yi − f(xi),

where the constant c > 0 is weight parameter.
We have a Lagrangian to solve the optimization given by:

L(w, b, ξ;α) =
1

2
wTw +

1

2
c

l∑
i=1

ξ2i

−
l∑
i=1

αi
{
yi −

(
wTφ(xi) + b

)
− ξi

}
,

where αi ∈ R are the Lagrange multipliers. The optimization
conditions are as follows:

∂L

∂w
= 0→ w =

l∑
i=1

αiφ(xi),

∂L

∂b
= 0→

l∑
i=1

αi = 0,

∂L

∂ξi
= 0→ αi = cξi,

∂L

∂αi
= 0→ yi −

(
wTφ(xi) + b

)
− ξi.

After elimination of the variables w and e, the solution is
given by the set of linear equation:

Alαl = yl, (6)

with

Al =


0 1 · · · 1

1 k(x1,x1) +
1

c
· · · k(x1,x1)

...
...

. . .
...

1 k(xl,x1) +
1

c
· · · k(xl,xl) +

1

c

 ,

αl =


b
α1

...
αl

 , yl =
[
0 y1 · · · yl

]T
, (7)

where k(xi,xj) = φ(xi)
Tφ(xj) for i, j = 1, . . . , l is a kernel

function. Finally, by Mercer’s theorem, the fitting function
as the output of LS-SVR is given by:

f(x) =

l∑
i=1

αik(x,xi) + b,

where αi and b are obtained from solution of linear equation
in (7).

In this paper, the kernel function is defined by radial basis
function (RBF):

k(xi,xj) = exp (c1 · ‖xi − xj‖/c2) ,

where c1 and c2 are weight parameters to control strength and
smoothness of the kernel function. Therefore, the learning
output is rewritten as

f(x) =

l∑
i=1

αi exp (c1 · ‖xi − x‖/c2) + b. (8)

A. Online LS-SVR based on incremental and decremental
algorithms

As a new data point arrives, the online algorithm using
incremental update should improve the previous model with
a smaller effort than the batch implementation. Also, the
decremental algorithm safely removes worthless or less
important data in order to limit the data size. In this section,
we extend the batch LS-SVR from (6) to the online version
by following incremental and decremental algorithms.

1) Incremental Algorithm: The incremental algorithm up-
dates the pre-trained LS-SVR when a new sample (xl+1, yl+1)
is added to the existing training set {(xi, yi)}li=1. From (6),
the incremental relationship between the current model and
the new model is as follows:

Al+1αl+1 = yl+1, (9)

with

Al+1 =

[
Al al
aTl Cl

]
, αl+1 =

[
αl
αl+1

]
,

yl+1 =

[
yl
yl+1

]
,

and

al = [1, k(x1,xl+1), . . . , k(xl,xl+1)]T ,

Cl = 1/c+ k(xl+1,xl+1).



The online incremental training algorithm aims to efficiently
update A−1l+1 whenever a new sample arrives, without com-
putation of the matrix inverse. By the block matrix inversion
lemma, A−1l+1 can be given by:

A−1l+1 =

[
A−1l + dlA

−1
l ala

T
l A
−1
l dl −A−1l al

−aTl A
−1
l dl

]
,

with dl = (c− aTl A
−1
l al)

−1.
2) Decremental algorithm: The purpose of the decremental

algorithm is to remove the existing i-th sample (xi, yi) from
training set when a sample is not important or amount of
samples exceeds a limitation. The concept of the support
vectors offers a natural criterion for the choice of the samples
to be removed. Less important points have small ‖α‖, because
the small α barely affects the learning output (8).

To avoid computing the matrix inverse, A−1l should be
updated from A−1l+1. Here, A−1l is the matrix without the
k-th row and k-th column. Then, when the k-th sample is
pruned from the l + 1 pairs of the data set, the update is
given by [16]:

aij ← aij − a−1kk aikakj , (10)

where aij stands for the item at the i-th row and j-th column
of A−1l+1 for i, j = 1, . . . , l; i, j 6= k, and k stands for the
k-th training to be removed.

V. DELAY COMPENSATION BASED ON LEARNING

In our strategy, the learning input is defined as a set of
delayed observations and the linear compensation in (4). It
compensates for the difference between the true state and
the summation of the delayed observation and the linear
compensation. Thus the estimate is given by:

x̂(k) = g (y(k|k − τd,k)) (11)
= y(k|k − τd,k) + γk + f({y(k|k − τd,k), γk}),

where γk is the linear compensation term from (4):

γk =

bfl·τd,ke−1∑
j=0

AjBu(k − 1− j),

and f({y(k|k− τd,k), γk}) is the output of the learning from
(8). The training set D = {(xi, zi)}li=1 is defined as:

xi = {yi, γi},
zi = xi − (yi + γi),

where training input xi is a set of the delayed observation
and the linear compensation term. The training output is the
residual between the true state xi and the summation of the
delayed observations and the deterministic compensation term.
We note that, in the training phase, xi(k|k) are collected by
the UAVs, while yi(k|k − τd,k) and γi are recorded in the
central controller. The training is performed in the controller
side after the data are gathered in the controller.

We emphasize that the combination of the linear compen-
sation and the data-driven model via the machine learning is
complementary in the compensation model in (11). At the
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Fig. 1: Compensation for uplink delay τu that follows
Gaussian distribution with fixed variance and variable mean:
τu ∼ N(µ(τu), 0.2).

early training phase when only a few training data points
exist, it might produce an inaccurate learning model. This
may generate improper control input. The combination of
the linear compensation and the learning model prevents this
situation because the linear compensation term γk is based on
the deterministic model which is independent of the training
data.

VI. SIMULATION RESULTS

For the simulation study, we consider two nonlinear
UAVs with different tracking performances, using the Matlab
robotics toolbox developed by [17], which provides nonlinear
UAV model simulink. We fix position and attitude controllers
of the UAVs in advance, and add MPC trajectory genera-
tion with time-delay configuration in order to evaluate the
suggested algorithm.

For MPC setup described in Section III, the constraints of
the state and input are given by |x|, |y| < 10 and |u1|, |u2| <
1, and v = 0.05 in (3). The running cost function and terminal
cost function are given by Q = 2I2×2 and R = 10I2×2. The
prediction horizon is set to N = 20 steps and time sampling
interval is set to 0.1 sec.

Simulation purpose is to let the UAVs track the same
reference trajectory at the same time. Because there are
random communication delays, the simultaneous tracking
performance depends on how accurate the delay compensation
is.

The result of the uplink delay compensation described
in Section II-B is shown in Fig. 1, where we command
the reference position (2,-2) to the two UAVs whose initial
positions are (0,0). In this simulation, there is no downlink
delay. As the uplink delay increases from 0 to 1.5 sec, the
settling time and the overshoot response get larger. In all
the following simulations, the uplink delay is fixed to have
Gaussian distribution with mean 0.7 and variance 0.2. From
now, simulations about downlink delay compensation will be
examined.

Fig. 2 compares the linear compensation and the (batch)
learning based compensation for downlink delay that has a
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Fig. 2: Tracking results between the linear compensation
and the batch learning based compensation, given waypoint
reference.

Gaussian distribution with 2.5 mean and 0.2 variance, where
the UAVs track waypoint reference in a finite time. Figs. 2(a)
and 2(b) show tracking results of the linear and the learning
compensations, respectively. From the results, we can see the
better control performance of the suggested learning-based
compensation. From Figs. 2(c) and 2(d), we can see the
chattering control input of the compared algorithm, while the
suggested algorithm yields more smooth control actions.

In order to evaluate a training performance in training
phase, we define training error as:

Training error =
1

m

n∑
k=1

m∑
j=1

(‖xj(k)− r(k)‖) ,

where n is the number of iterations, m is the number of
UAVs, xj is the x-y state of the j-th UAV, and r is reference.
Fig. 3 compares the batch learning and the online learning,
where the step reference (2,-2) is given to the UAVs. Fig. 3(a)
shows each training error of the batch learning and the online
learning, and Fig. 3(b) draws the number of traning samples
used for the learning at every iteration. In case of the online
learning, 3000 training data is fixed after 10-th iteration step
while the batch learning uses linearly increasing amount of
training data. After training whose data, the online learning
has 0.3982 m tracking error result in Fig. 3(c), and the batch
learning has 0.3975 m tracking error, in test phase. From this
result, we confirm that, in spite of amount of training data
much smaller than data used for the batch learning, the online
learning method provides tracking performance as accurate
as the result of the batch LS-SVR.

Finally, in order to evaluate adaptability of the online
learning, we change distribution of the delay disturbance from
τd ∼ N(1.5, 0.2) to τd ∼ N(2.5, 0.2) after 10-th training step
as shown in Fig. 4(a). Since the training error had some spikes
of the training error between 10∼13 iterations, it has been
kept stable under 0.4 m training error. That is, by 3 iterations,
the online learning trains a new environmental data. After
the training phase, we test two different situations whose
results are shown in Figs. 4(b) and 4(c). Fig. 4(b) is the result
when downlink delay is 1.5 sec and Fig. 4(c) is with 2.5 sec.
From both results, we can see that the learning model can
compensate for two different delay distributions, and that the
results have performance as accurate as the result when the
disturbance does not change as shown in Fig. 3(c).

VII. CONCLUSIONS

We considered a networked control for collaborative multi-
UAV application, with compensation for random commu-
nication time-delays. The online learning based machine
learning method was used to learn network-induced effects
on UAV maneuvers, with adaptive compensation for variable
time-delay. From simulation results, we found that the
tracking results are improved in comparison to a deterministic
compensation method and the batch learning due to the
accurate and efficient online learning.
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