
Automatica 144 (2022) 110486

Y
T
a

F
b

c

(
t
c
t
n
b
c
s
w

(
T

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Identification of linear systemswithmultiplicative noise from
multiple trajectory data✩

u Xing a,∗,1, Benjamin Gravell b,1, Xingkang He c, Karl Henrik Johansson a,
yler H. Summers b

Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, and Digital
utures, Stockholm, Sweden
Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA
Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA

a r t i c l e i n f o

Article history:
Received 2 July 2021
Received in revised form 12 January 2022
Accepted 13 May 2022
Available online 12 July 2022

Keywords:
Linear system identification
Multiplicative noise
Multiple trajectories
Non-asymptotic analysis

a b s t r a c t

The paper studies identification of linear systems with multiplicative noise from multiple-trajectory
data. An algorithm based on the least-squares method and multiple-trajectory data is proposed for
joint estimation of the nominal system matrices and the covariance matrix of the multiplicative noise.
The algorithm does not need prior knowledge of the noise or stability of the system, but requires
only independent inputs with pre-designed first and second moments and relatively small trajectory
length. The study of identifiability of the noise covariance matrix shows that there exists an equivalent
class of matrices that generate the same second-moment dynamic of system states. It is demonstrated
how to obtain the equivalent class based on estimates of the noise covariance. Asymptotic consistency
of the algorithm is verified under sufficiently exciting inputs and system controllability conditions.
Non-asymptotic performance of the algorithm is also analyzed under the assumption that the system
is bounded. The analysis provides high-probability bounds vanishing as the number of trajectories
grows to infinity. The results are illustrated by numerical simulations.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The study of stochastic systems with multiplicative noise
i.e., system states and inputs multiplied by noise) has a long his-
ory in control theory (Wonham, 1967), and is re-emerging in the
ontext of complex networked systems and learning-based con-
rol. In contrast to the additive-noise setting, the multiplicative-
oise modeling framework has the ability to capture coupling
etween noise and system states. This situation occurs in modern
ontrol systems as diverse as robotics with distance-dependent
ensor errors (Du Toit & Burdick, 2011), networked systems
ith noisy communication channels (Antsaklis & Baillieul, 2007;
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Hespanha et al., 2007), modern power networks with high pen-
etration of intermittent renewables (Guo & Summers, 2019),
turbulent fluid flow (Lumley, 2007), and neuronal brain net-
works (Breakspear, 2017). Linear systems with multiplicative
noise are particularly attractive as a stochastic modeling frame-
work because they remain simple enough to admit closed-form
expressions for stabilization (Boyd et al., 1994) and optimal
control (Gravell et al., 2021; Kleinman, 1969; Wonham, 1967).

It is important to study identification of linear systems with
multiplicative noise, because, when solving problems such as
control design of multiplicative-noise linear quadratic regulator
(LQR), system parameters including the nominal system matrices
and the noise covariance matrix, especially the latter, generally
need be known (Gravell et al., 2021). In contrast, for the design
problem of additive-noise LQR, the covariance matrix of additive
noise needs not be known (Dean et al., 2019). Moreover, the iden-
tification problem requires further investigation; for instance, it
is unclear how to formally quantify identifiability issues resulting
from coupling between system states and multiplicative noise,
and how to design identification algorithms to efficiently tackle
the influence of multiplicative noise.

Another issue that must be addressed is how to perform
system identification based on multiple-trajectory data, rather
than on single-trajectory data. Multiple-trajectory data arises in
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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wo broad situations: (1) episodic tasks where a system is reset
o an initial state after a finite run time, as encountered in
terative learning control and reinforcement learning (Matni et al.,
019); and (2) data collected from multiple identical systems
n parallel, for example, robotic-grasping dataset collected by
oogle running several robot arms concurrently (Gu et al., 2017;
evine et al., 2018). For multiple-trajectory data, the length of
ach trajectory may be small, but the number of trajectories
an be large. However, the classic literature of system identi-
ication mainly focuses on studying online estimation over a
ingle trajectory, so there is a need to study how to identify
ystems based on multiple-trajectory data. In addition, system
dentification based on multiple trajectories can be a pre-step
f conducting other tasks such as control design of LQR (Dean
t al., 2019). Thus, studying the performance of identification al-
orithms based on multiple trajectories is necessary for obtaining
erformance guarantees of later tasks.

.1. Related work

For identification of a nominal linear system, recursive algo-
ithms, such as the recursive least-squares algorithm, have been
eveloped in the control literature (Chen & Guo, 2012; Lai &
ei, 1982; Ljung, 1986). These algorithms can be applied to

dentification of linear systems with multiplicative noise, pro-
ided that certain conditions of system stability and noise hold.
on-asymptotic performance analysis of identification methods
an be found in Campi and Weyer (2002, 2005) and Weyer and
ampi (2002). It has once again attracted attention from differ-
nt domains and been investigated more extensively, because of
ecent development of random matrix theories, self-normalized
artingales, and so on (see Dean et al. (2019), Matni and Tu

2019) and Zheng and Li (2020) and references therein).
For estimation of noise covariance, both recursive and batch

ethods have been proposed over the last few decades (Duník
t al., 2017), but most of these methods focus on the additive-
oise case. In order to estimate multiplicative noise covariance,
chön et al. (2011) introduces a maximum-likelihood approach,
nd Kantas et al. (2015), Kitagawa (1998) utilize Bayesian frame-
orks. These methods, however, require prior assumptions on
he noise distributions, whose incorrectness may worsen algo-
ithm performance. Coppens and Patrinos (2020) and Coppens
t al. (2020) study stochastic LQR design for a special case of
inear systems with multiplicative noise. It is assumed that the
ultiplicative noise is observed directly such that a concentration

nequality can be obtained for estimates of the noise covariance.
he most relevant work to our paper is Di and Lamperski (2021),
hich studies simultaneously estimating the nominal system pa-
ameters and noise covariance matrix based on single-trajectory
ata. In that paper, a self-normalizing (ellipsoidal) bound and a
uclidean (box) bound are provided for least-squares estimates,
ut it is not clear whether the bounds converge to zero under the
etting of linear systems with multiplicative noise.
There is a growing interest in system identification based on

ultiple-trajectory data, along with their applications in data-
riven control (Dean et al., 2019; Matni & Tu, 2019), due to
he powerful and convenient estimator schemes facilitated by
esetting the system. This framework can be applied to both
table and unstable systems, because of the finite duration of
ach trajectory. The authors in Tu and Recht (2018) and Sun et al.
2020) introduce the procedure of collecting multiple trajectories,
o identify finite impulse response systems. In Dean et al. (2019),
he authors develop a framework called coarse-ID control to solve
he problem of LQR with unknown linear dynamics. The first step
f this framework is to learn a coarse model of the unknown
inear system, by observing multiple independent trajectories
2

with finite length. However, only the last input-state pairs of the
trajectories are used in the theoretical analysis of the learning
algorithm. The performance of a least-squares algorithm, using all
samples of every trajectory, is studied in Zheng and Li (2020), for
partially observed, possibly open-loop unstable, linear systems.

1.2. Contributions

This paper considers identification of linear systems with mul-
tiplicative noise from multiple-trajectory data. The contributions
are three-fold:

1. An algorithm (Algorithm 1) based on the least-squares
method and multiple-trajectory data is proposed for joint
identification of the nominal system matrices and the mul-
tiplicative noise covariance from multiple-trajectory data.
The algorithm does not need prior knowledge of the noise
or stability of the system, but requires only independent
inputs with pre-designed first and second moments, rela-
tively small length for each trajectory, and the assumption
of independent and identically distributed (i.i.d.) noise with
finite first and second moments. It is theoretically shown
that, under the preceding conditions, the algorithm solves
the identification problem.

2. Identifiability of the noise covariance matrix is investigated
(Propositions 1 and 2). It is shown that there exists an
equivalent class of covariance matrices that generate the
same second-moment dynamic of system states. In addition,
it is studied when such equivalent class has a unique ele-
ment, meaning that the covariance matrix can be uniquely
determined. An explicit expression of the equivalent class is
provided for the recovery of the noise covariance based on
estimates given by the proposed algorithm.

3. Asymptotic consistency of the proposed algorithm is verified
(Theorem 1), under sufficiently exciting inputs and system
controllability conditions. Non-asymptotic estimation per-
formance is also analyzed under the assumption that the
system is bounded. This analysis provides high-probability
error bounds, which vanish as the number of trajectories
grows to infinity (Theorems 2 and 3).

Compared with Di and Lamperski (2021), the current pa-
per provides high-probability error bounds, for the proposed
algorithm, that converge to zero as the number of trajectories in-
creases. In addition, identifiability of the noise covariance matrix
is thoroughly studied, and conditions, under which the covariance
matrix is uniquely determined, are provided. In our problem,
because of the complicated structure of the second-moment dy-
namic of system states, both analysis of the error bounds and
study of the identifiability require more elaborate use of tools
from linear algebra and high-dimensional probability theory. The
differences between this paper and its conference version (Xing
et al., 2020) are as follows. This paper studies identifiability of
the noise covariance matrix in detail, demonstrating a framework
to recover the equivalent class of covariance matrices. Moreover,
sharper bounds for the required length of each trajectory are
obtained. Finally, finite sample analysis of the proposed algorithm
is provided.

1.3. Outline

The remainder of the paper is organized as follows. The prob-
lem is formulated in Section 2. In Section 3 the algorithm is
introduced and theoretical results are given. Numerical simu-
lation results are presented in Section 4. Section 5 concludes
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he paper. Due to page limit, proofs are put into the extended
ersion (Xing et al., 2021).

otation. Denote the n-dimensional Euclidean space by Rn, and
he set of n×m real matrices by Rn×m. Let N stand for the set of
onnegative integers, and N+

:= N \ {0}. Let [k] := {1, 2, . . . , k},
∈ N+. Denote the Euclidean norm of vectors by ∥ · ∥, and

he spectral norm of matrices by ∥ · ∥2. The probability of an
vent E is denoted by P{E}, and the expectation of a random
ector x is represented by E{x}. An event happening almost surely
a.s.) means that it happens with probability one. Let A × B
e the Cartesian product of sets A and B, namely, A × B =

(a, b) : a ∈ A, b ∈ B}. For two sequences of real numbers
k and bk ̸= 0, k ∈ N+, denote ak = O(bk), if there exists a
ositive constant C such that |ak/bk| ≤ C for all k ∈ N+. Let
ij or [A]ij represent the (i, j)th entry of A ∈ Rn×m. Denote the
-dimensional all-one vector and all-zero vector by 1n and 0n,
espectively. The n-dimensional unit vector with ith component
eing one is represented by eni . In is the n-dimensional identity
atrix. For two symmetric matrices A, B ∈ Rn×n, A ⪰ 0 (A ≻

) means that A is positive semidefinite (positive definite), and
⪰ B (A ≻ B) means that A − B ⪰ 0 (A − B ≻ 0). A block

iagonal matrix A with A1, . . . , Ak on its diagonal is denoted by
lockdiag(A1, . . . , Ak). The Kronecker product of two matrices A ∈
m×n and B ∈ RRp×q is represented by A⊗B. The full vectorization
f A = [aij] ∈ Rm×n is found by stacking the columns of A
i.e., vec(A) = [a11 a21 · · · am1 a12 a22 · · · amn]

⊺). The symmetric
ectorization (also called half-vectorization) of a symmetric ma-
rix A ∈ Rn×n is found by stacking the upper triangular part of the
olumns of A (i.e., svec(A) = [a11 a12 a22 · · · a1n a2n · · · ann]⊺).
he inverse operations of vec(·) and svec(·), given p, q ∈ N, are
he full matricization matp×q(x) := (vec(Iq)⊺ ⊗ Ip)(Iq ⊗ x) for a
ector x ∈ Rpq and symmetric matricization smatp(y) for a vector
∈ Rp(p+1)/2, respectively. To generalize the vectorization and
atricization operations to a block matrix

=

⎡⎢⎣B11 B12 · · · B1n
...

...
...

Bm1 Bm2 · · · Bmn

⎤⎥⎦ ∈ R
mp×nq,

here Bij ∈ Rp×q, define the following matrix reshaping operator
: Rmp×nq

→ Rmn×pq,

(B,m, n, p, q) := [vec(B11) vec(B21) · · · vec(Bm1)
vec(B12) vec(B22) · · · vec(Bmn)]⊺.

hen it holds that F (A ⊗ A,m, n,m, n) = vec(A) vec(A)⊺ for
∈ Rm×n, which demonstrates the correspondence between the
ntries of A ⊗ A and those of vec(A) vec(A)⊺. Note that, when
= q = 1, F (·) degenerates to vec(·). Define the inverse reshaping
perator G : Rmn×pq

→ Rmp×nq as

(B,m, n, p, q)

:=

⎡⎢⎢⎣
matp×q(B1) · · · matp×q(B(n−1)m+1)
matp×q(B2) · · · matp×q(B(n−1)m+2)

...
...

matp×q(Bm) · · · matp×q(Bmn)

⎤⎥⎥⎦ ,

here B ∈ Rmn×pq, B⊺
i is the ith row of B. Thus F and G are inverses

f each other in the sense that

(G(A,m, n, p, q),m, n, p, q) = A,

G(F (B,m, n, p, q),m, n, p, q) = B,

for any A ∈ Rmn×pq and B ∈ Rmp×nq. In this way, G(vec(A)
vec(A)⊺,m, n,m, n) = A⊗A for A ∈ Rm×n. Note that both F and G
are linear: F (A + B,m, n, p, q) = F (A,m, n, p, q) + F (B,m, n, p, q)
for A, B ∈ Rmp×nq, and G(A + B,m, n, p, q) = G(A,m, n, p, q) +

G(B,m, n, p, q) for A, B ∈ Rmn×pq.
3

2. Problem formulation

Consider the linear system with multiplicative noise

xt+1 = (A + Āt )xt + (B + B̄t )ut , t ∈ N, (1)

where xt ∈ Rn is the system state, and ut ∈ Rm is the control
input, m ≤ n. The system is described by the nominal dynamic
matrix A ∈ Rn×n and the nominal input matrix B ∈ Rn×m,
and incorporates multiplicative noise terms modeled by i.i.d. and
mutually independent random matrices Āt and B̄t , which have
zero mean and covariance matrices ΣA := E{vec(Āt ) vec(Āt )T } ∈

Rn2×n2 and ΣB := E{vec(B̄t ) vec(B̄t )T } ∈ Rnm×nm, respectively. The
multiplicative noise is assumed to be independent of the inputs.
Note that if Āt and B̄t have non-zero means Ā and B̄, respectively,
then we can consider a system with nominal matrix [A+ Ā B+ B̄],
as well as noise terms Āt − Ā and B̄t − B̄, which satisfies the
preceding zero-mean assumption. The term multiplicative noise
refers to that noise, Āt and B̄t , enters the system as multipliers
of xt and ut , rather than as additions. The independence of Āt
and B̄t is assumed for simplicity, and under this assumption the
covariance matrix of the entire multiplicative noise is a block
diagonal matrix E{vec([Āt B̄t ]) vec([Āt B̄t ])⊺} = blockdiag(ΣA, ΣB).
Throughout the paper, we use (ΣA, ΣB) ∈ Rn2×n2

× Rnm×nm to
represent this matrix. If Āt and B̄t are dependent, there is an extra
but amenable term on their correlations, E{vec(Āt ) vec(B̄t )⊺}.

An example of System (1) is the following system studied in
the optimal control literature (Boyd et al., 1994; Gravell et al.,
2021),

xt+1 =

(
A +

r∑
i=1

Aipi,t
)
xt +

(
B +

s∑
j=1

Bjqj,t
)
ut , (2)

where {pi,t} and {qi,t} are mutually independent scalar random
variables, with E{pi,t} = E{qj,t} = 0, E{p2i,t} = σ 2

i , and E{q2j,t} =

δ2j , ∀i ∈ [r], j ∈ [s], t ∈ N. It can be seen that Āt =
∑r

i=1 Aipi,t
and B̄t =

∑s
j=1 Bjqj,t , where σi and δj are the eigenvalues of

ΣA and ΣB, and Ai and Bj are the reshaped eigenvectors of ΣA
and ΣB. These parameters are necessary for optimal controller
design (Gravell et al., 2021). It is also possible to use System (2)
to model cyber–physical systems in which fault signals appear
as multiplicative noise (Wang et al., 2020). For new systems
with unknown parameters, the key problem is to identify the
parameters in the first place. Another example of System (1) is
interconnected systems, where the nominal part captures rela-
tionships between different subsystems, and multiplicative noise
characterizes randomly varying topologies (Haber & Verhaegen,
2014).

In the rest of the paper, a trajectory sample is referred to
as a rollout. Suppose that multiple rollouts consisting of system
states and inputs (i.e., {[x(k)0 , u(k)

0 , . . . , x(k)ℓ−1, u
(k)
ℓ−1, x

(k)
ℓ ], k ∈ [nr ]})

are available, where [x(k)0 , u(k)
0 , . . . , x(k)ℓ−1, u

(k)
ℓ−1, x

(k)
ℓ ] is the kth tra-

jectory, ℓ is the length (index of the final time-step) of every
rollout, and nr is the number of rollouts. The problem considered
in this paper is as follows.

Problem. Given multiple-trajectory data {[x(k)0 , u(k)
0 , . . . , x(k)ℓ−1,

u(k)
ℓ−1, x

(k)
ℓ ], k ∈ [nr ]}, estimate the nominal system matrix [A B]

and the noise covariance matrix (ΣA, ΣB).

3. Identification algorithm based on least-squares and
multiple-trajectory data

In this section, we propose and study an identification algo-
rithm solving the considered problem. Section 3.1 studies iden-
tifiability of the noise covariance matrix, paving the way to
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lgorithm design. Consistency of the algorithm is given by
heorem 1 in Section 3.2. Finally, sample complexity of the
lgorithm is studied in Section 3.3, and the results are provided
n Theorems 2 and 3.

.1. Moment dynamics and algorithm design

In this subsection, we propose an algorithm based on multiple
rajectories collected independently to estimate system param-
ters. Before algorithm design, the effect of multiplicative noise
n moment dynamics is studied, and identifiability of the noise
ovariance matrix is clarified.
Taking the expectation of both sides of System (1) and denot-

ng µt := E{xt} and νt := E{ut} yield the first-moment dynamic
f system states (i.e., the dynamic of E{xt}) as follows,

t+1 = Aµt + Bνt , t ∈ N. (3)

enote the vectorization of the second-moment matrices of state,
tate-input, and input at time t by Xt := vec(E{xtx

⊺
t }), Wt :=

ec(E{xtu
⊺
t }), W ′

t := vec(E{utx
⊺
t }), and Ut := vec(E{utu

⊺
t }). From

he independence of Āt and B̄t , as well as vectorization, the
econd-moment dynamic of system states is

t+1 = (A ⊗ A)Xt + (B ⊗ A)Wt + (A ⊗ B)W ′

t

+ (B ⊗ B)Ut + E{(Āt ⊗ Āt ) vec(xtx
⊺
t )}

+ E{(B̄t ⊗ B̄t ) vec(utu
⊺
t )}

= (A ⊗ A + Σ ′

A)Xt + (B ⊗ B + Σ ′

B)Ut

+ (B ⊗ A)Wt + (A ⊗ B)W ′

t , t ∈ N, (4)

where Σ ′

A = E{Āt ⊗ Āt} ∈ Rn2×n2 and Σ ′

B = E{B̄t ⊗ B̄t} ∈ Rn2×m2
.

The relation between (ΣA, ΣB) and (Σ ′

A, Σ ′

B) can be illustrated by
F (Σ ′

A, n, n, n, n) = ΣA and F (Σ ′

B, n,m, n,m) = ΣB, where the
reshaping operator F (·) is defined in the notation section.

An intrinsic identifiability issue arises in the second-moment
dynamic (4). Since E{xtx

⊺
t } is symmetric, Xt has n(n − 1)/2 pairs

of identical entries corresponding to the off-diagonal entries of
E{xtx

⊺
t } (i.e., E{xt,ixt,j} = E{xt,jxt,i} for all i, j ∈ [n]). To remove

the redundant terms, introduce binary row- and column-selection
matrices, which are also called elimination and duplication ma-
trices (Magnus & Neudecker, 1980).

To begin, notice that the redundant entries of Xt are associated
with the index set {(j − 1)n + i : i, j ∈ [n], i < j}. Define
matrix T1 ∈ Rn2×n2 by replacing the [(j − 1)n + i]th row of In2
by (en2(i−1)n+j)

⊺ for all i, j ∈ [n] with i < j. Note that E{xt,ixt,j} is the
[(j − 1)n + i]th entry of Xt , so Xt is invariant under T1 (i.e., Xt =

T1Xt ). Furthermore, define a binary elimination matrix P1 that
picks out only the unique entries of Xt , and a complementary
binary duplication matrix Q1 which in turn reconstructs Xt from
the unique representation, by repeating the redundant entries in
the proper order. These matrices are defined explicitly as P1 ∈

R[n(n+1)/2]×n2 by removing the [(j− 1)n+ i]th row of In2 , i, j ∈ [n]
with i < j, and Q1 ∈ Rn2×[n(n+1)/2] by removing the [(j−1)n+ i]th
column of T1, i, j ∈ [n] with i < j. Then one is able to freely
convert between the full vectorization (with redundant entries)
Xt and the symmetric vectorization (without redundant entries)
X̃t := svec(Xt ), by employing the linear transformations defined
by the matrices P1 and Q1:

X̃t = P1Xt , Xt = Q1X̃t .

Now apply the same arguments to the second moment of input
Ut : Ut has m(m − 1)/2 pairs of identical entries corresponding
to the off-diagonal entries of E{utu

⊺
t }, so define T2 ∈ Rm2

×m2
,

P2 ∈ R[m(m+1)/2]×m2
, and Q2 ∈ Rm2

×[m(m+1)/2] by replacing n by
m in the definitions of T , P , and Q , respectively.
1 1 1

4

Applying the symmetric vectorization transformations X̃t =

P1Xt and Ũt = P2Ut yields the second-moment dynamic with
unique entries,

X̃t+1 = P1Xt+1

= P1(A ⊗ A + Σ ′

A)Xt + P1(B ⊗ B + Σ ′

B)Ut

+ P1(B ⊗ A)Wt + P1(A ⊗ B)W ′

t

= P1(A ⊗ A + Σ ′

A)Q1P1Xt + P1(B ⊗ B + Σ ′

B)Q2P2Ut

+ P1(B ⊗ A)Wt + P1(A ⊗ B)W ′

t

= (Ã + Σ̃ ′

A)X̃t + (B̃ + Σ̃ ′

B)Ũt + KBAWt + KABW ′

t , (5)

where the penultimate equation follows from T1 = Q1P1 and T2 =

Q2P2. In the last equation the following notations are introduced:

Ã := P1(A ⊗ A)Q1 ∈ R
[n(n+1)/2]×[n(n+1)/2],

Σ̃ ′

A := P1Σ ′

AQ1 ∈ R
[n(n+1)/2]×[n(n+1)/2],

B̃ := P1(B ⊗ B)Q2 ∈ R
[n(n+1)/2]×[m(m+1)/2],

Σ̃ ′

B := P1Σ ′

BQ2 ∈ R
[n(n+1)/2]×[m(m+1)/2],

KBA := P1(B ⊗ A), KAB := P1(A ⊗ B).

Note that X̃t and Ũt have no redundant entries but are able to
capture the second-moment dynamic of system states. Let [Āt ]ij
(resp. [B̄t ]ip) denote the (i, j)th entry of Āt (resp. (i, p)th entry of
B̄t ). The following proposition demonstrates the correspondences
between the entries of Σ̃ ′

A and Σ̃ ′

B and those of Σ ′

A and Σ ′

B,
respectively.

Proposition 1. Denote the (i, j)th entry of Σ̃ ′

A by [Σ̃ ′

A]ij. It holds
for i, j, k, l ∈ [n] with i < j and k < l that

[Σ̃ ′

A](i−1)(n−i/2)+i,(k−1)(n−k/2)+k = E{[Āt ]ik[Āt ]ik},

[Σ̃ ′

A](i−1)(n−i/2)+i,(k−1)(n−k/2)+l = 2E{[Āt ]ik[Āt ]il},

[Σ̃ ′

A](i−1)(n−i/2)+j,(k−1)(n−k/2)+k = E{[Āt ]ik[Āt ]jk},

[Σ̃ ′

A](i−1)(n−i/2)+j,(k−1)(n−k/2)+l

= E{[Āt ]ik[Āt ]jl} + E{[Āt ]il[Āt ]jk}.

Denote the (i, j)th entry of Σ̃ ′

B by [Σ̃ ′

B]ij. It holds for i, j ∈ [n] with
i < j and p, q ∈ [m] with p < q that

[Σ̃ ′

B](i−1)(n−i/2)+i,(p−1)(m−p/2)+p = E{[B̄t ]ip[B̄t ]ip},

[Σ̃ ′

B](i−1)(n−i/2)+i,(p−1)(m−p/2)+q = 2E{[B̄t ]ip[B̄t ]iq},

[Σ̃ ′

B](i−1)(n−i/2)+j,(p−1)(m−p/2)+p = E{[B̄t ]ip[B̄t ]jp},

[Σ̃ ′

B](i−1)(n−i/2)+j,(p−1)(m−p/2)+q

= E{[B̄t ]ip[B̄t ]jq} + E{[B̄t ]iq[B̄t ]jp}.

Remark 1. The preceding discussion indicates that Xt is de-
termined by [A B] and [Σ̃ ′

A Σ̃ ′

B], and the proposition shows that
there exists a set of equivalent covariance matrices in the sense
that they generate the same second-moment dynamic of system
states, given the nominal matrix [A B]. This fact results from that
the dynamic of Xt = Q1X̃t only depends on [A B] and [Σ̃ ′

A Σ̃ ′

B],
and is the same under all (Σ ′

1, Σ ′

2) satisfying P1Σ ′

1Q1 = Σ̃ ′

A and
P2Σ ′

2Q2 = Σ̃ ′

B.
From an entry-wise point of view, E{[Āt ]ik[Āt ]jl} and

E{[Āt ]il[Āt ]jk}, i ̸= j and k ̸= l, have a coupled effect on
the second-moment dynamic of system states. We may only
estimate the sum of these two entries out of Xt , rather than their
exact values, since realizations of Āt and B̄t are not observed
directly but indirectly through their effect on system states.
Fortunately, some entries of Σ ′

A and Σ ′

B are identifiable, such
as E{[Āt ]ik[Āt ]ik}, the variance of [Āt ]ik, and E{[Āt ]ik[Āt ]jk}, the
covariance between entries in the same column. Similar issues
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lso appear, when estimating covariance matrices, in topics such
s Kalman filtering (Mehra, 1970; Moghe et al., 2019). Critically,
ince these identifiable quantities uniquely generate the second-
oment dynamic of system states, it suffices to estimate Σ̃ ′

A and
˜ ′

B for LQR design. This fact can be verified by expanding the
ellman equation; we omit the details to keep the paper concise.

Given (ΣA, ΣB) with ΣA ⪰ 0 and ΣB ⪰ 0 (then Σ̃ ′

A = P1Σ ′

AQ1
nd Σ̃ ′

B = P2Σ ′

BQ2), the set of equivalent matrices discussed in
emark 1 can be written explicitly as follows, where positive
emidefinite conditions are imposed because ΣA and ΣB are
ovariance matrices,
∗(Σ̃ ′

A) :=

{
ΣA(α) ∈ R

n2×n2
:

ΣA(α) ⪰ 0, α ∈ R
n2(n−1)2/4

}
,

∗(Σ̃ ′

B) :=

{
ΣB(β) ∈ R

nm×nm
:

ΣB(β) ⪰ 0, β ∈ R
nm(n−1)(m−1)/4

}
,

∗

Σ := S∗(Σ̃ ′

A) × S∗(Σ̃ ′

B), (6)

ith ΣA(α) := F (Q1Σ̃
′

AQ
⊺
1Dn + Eα, n, n, n, n) and ΣB(β) :=

(Q1Σ̃
′

BQ
⊺
2Dm + Eβ , n,m, n,m). Here

Eα =

∑
i,j,k,l∈[n]
i<j,k<l

[
αij,kl

(
en

2

(i−1)n+j − en
2

(j−1)n+i

)
(
en

2

(k−1)n+l − en
2

(l−1)n+k

)⊺
]
,

β =

∑
i,j∈[n],i<j

p,q∈[m],p<q

[
βij,pq

(
en

2

(i−1)n+j − en
2

(j−1)n+i

)
(
em

2

(p−1)m+q − em
2

(q−1)m+p

)⊺
]
,

where α = [αij,kl] ∈ Rn2(n−1)2/4, β = [βij,pq] ∈ Rnm(n−1)(m−1)/4,
i, j, k, l ∈ [n], p, q ∈ [m], i < j, k < l, p < q, Q1 and Q2
are given before (5), Dn is an n2-dimensional diagonal matrix
with [(i − 1)n + i]th diagonal entry being 1 and the rest being
1/2, i ∈ [n], and Dm is an m2-dimensional diagonal matrix with
[(p−1)m+p]th diagonal entry being 1 and the rest being 1/2, p ∈

[m]. Note that S∗

Σ is given by two inequalities which respectively
depend on α and β . These two inequalities are linear matrix
inequalities (Boyd et al., 1994), since the reshaping operator F
is linear. Obviously S∗

Σ is not empty, because (ΣA, ΣB) is one of
its elements. The following example provides an intuitive idea of
previous discussions.

Example 1. Consider System (1) with n = 2 and m = 1, where
Xt = [E{xt,1xt,1} E{xt,2xt,1} E{xt,1xt,2} E{xt,2xt,2}]T . So E{Xt,2Xt,1}

and E{Xt,1Xt,2} are identical and have the same dynamic from (4).
Thus,

X̃t =
[
E{xt,1xt,1} E{xt,2xt,1} E{xt,2xt,2}

]T
,

P1 =

[1 0 0 0
0 1 0 0
0 0 0 1

]
, Q1 =

⎡⎢⎣1 0 0
0 1 0
0 1 0
0 0 1

⎤⎥⎦ ,

T1 =

⎡⎢⎣1 0 0 0
0 1 0 0
0 1 0 0

⎤⎥⎦ ,
0 0 0 1
5

P2 = Q2 = T2 = 1.

According to the previously discussed simplification, we have
that

Σ̃ ′

A =

[
σa,11,11 2σa,11,12 σa,12,12
σa,11,21 σa,11,22 + σa,12,21 σa,12,22
σa,21,21 2σa,21,22 σa,22,22

]
,

Σ̃ ′

B =
[
σb,11 σb,12 σb,22

]T
,

where σa,ij,kl = E{[Āt ]ij[Āt ]kl}, σb,ij = E{[B̄t ]i, [B̄t ]j}. In this
example, ΣB is unique, but based on (6) the covariance matrix
ΣA(α), equivalent to ΣA, is given by⎡⎢⎣ σa,11,11 σa,11,21 σa,11,12 σa,11,22 + α

σa,21,11 σa,21,21 σa,21,12 − α σa,21,22
σa,12,11 σa,12,21 − α σa,12,12 σa,12,22

σa,22,11 + α σa,22,21 σa,22,12 σa,22,22

⎤⎥⎦ ,

where α ∈ R is such that ΣA(α) ⪰ 0.

As shown in Example 1, given (ΣA, ΣB) with ΣA ⪰ 0 and
ΣB ⪰ 0, the set S∗

Σ is not empty but may have infinitely many
elements, resulting in unidentifiable entries E{[Āt ]ik[Āt ]jl} and
E{[B̄t ]ip[B̄t ]jq}, i ̸= j, k ̸= l, p ̸= q, i, j, k, l ∈ [n], p, q ∈ [m].
The following proposition gives several conditions under which
the covariance matrix of the multiplicative noise can or cannot
be uniquely determined from [Σ̃ ′

A Σ̃ ′

B].

Proposition 2. Given (ΣA, ΣB) with ΣA ⪰ 0 and ΣB ⪰ 0, Σ̃ ′

A =

P1Σ ′

AQ1 and Σ̃ ′

B = P2Σ ′

BQ2, the following results hold.
(i) If n = m = 1, then S∗

Σ has a unique element. If m = 1, then
S∗(Σ̃ ′

B) has a unique element. If n ≥ 2 and ΣA ≻ 0 (resp. m ≥ 2 and
ΣB ≻ 0), then S∗(Σ̃ ′

A) (resp. S
∗(Σ̃ ′

B)) has infinitely many elements.
As a result, under either condition, S∗

Σ has infinitely many elements.
(ii) If S∗(Σ̃ ′

A) has infinitely many elements, then S∗(Σ̃ ′

A) ∩ TA has a
unique element, where

TA := {Σ ∈ R
n2×n2

: γij,klΣ(k−1)n+i,(l−1)n+j

+ δij,klΣ(l−1)n+i,(k−1)n+j = τij,kl, i < j, k < l,
i, j, k, l ∈ [n]},

with constants γij,kl, δij,kl, τij,kl ∈ R and γij,kl ̸= δij,kl for all i < j,
k < l, i, j, k, l ∈ [n]. The same result holds for S∗(Σ̃ ′

B) by modifying
the definition of TA according to the dimension of ΣB.

Remark 2. The first part of the proposition shows that if ΣA ≻

0 or ΣB ≻ 0 and n ≥ m ≥ 2, then it is impossible to
uniquely determine (ΣA, ΣB) only based on the second-moment
dynamic (5). However the second part indicates that more condi-
tions imposed on the covariance matrix can make all entries of ΣA
and ΣB identifiable. The set TA introduces additional constraints
for E{[Āt ]ik[Āt ]jl}, i ̸= j, k ̸= l. For example, if entries in Āt are
mutually independent, then ΣA is diagonal. In this case, it holds
that E{[Āt ]ik[Āt ]jl}−E{[Āt ]il[Āt ]jk} = 0, i ̸= j, k ̸= l, and hence the
covariance matrix of Āt is uniquely determined.

Now we are ready to propose our estimation algorithm. Fol-
lowing the previous discussion, we introduce an algorithm based
on the first- and second-moment dynamics (3) and (5). Since the
exact moment dynamics are unavailable, we average over mul-
tiple independent rollouts to obtain their estimates. To get per-
sistently exciting inputs, it is necessary to design their first and
second moments in advance, in either a deterministic or a stochas-
tic way. For example, generate the two moments from standard
Gaussian and Wishart distributions (Gupta & Nagar, 2018), re-
spectively, or set them periodically. The initial states of different
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Algorithm 1
Multiple-trajectory averaging least-squares (MALS)

Input: Rollout length ℓ and number of rollouts nr .
Output: [Â B̂], [ ˆ̃

Σ ′

A
ˆ̃
Σ ′

B].
// Control-input design

1: for t from 0 to ℓ − 1 do
2: Generate νt ∈ Rm and Ūt ∈ Rm×m with Ūt ⪰ 0.
3: end for

// Multiple-trajectory collection
4: for k from 1 to nr do
5: Generate x(k)0 independently from the initial

multivariate distribution X0.
6: for t from 0 to ℓ − 1 do
7: Generate u(k)

t independently from a multi-
variate distribution with first moment νt and
second central moment Ūt ,

8: x(k)t+1 = (A + Ā(k)
t )x(k)t + (B + B̄(k)

t )u(k)
t .

9: end for
0: end for

// Least-squares estimation
1: for t from 0 to ℓ do
2: Compute

µ̂t :=
1
nr

nr∑
k=1

x(k)t ,

ˆ̃Xt :=
1
nr

P1 vec

(
nr∑
k=1

x(k)t (x(k)t )⊺
)

,

Ŵt :=
1
nr

vec

(
nr∑
k=1

x(k)t ν
⊺
t

)
= vec(µ̂tν

⊺
t ),

Ŵ ′

t :=
1
nr

vec

(
nr∑
k=1

νtx
(k)
t

⊺

)
= vec(νt µ̂

⊺
t ),

Ũt := P2 vec(Ūt + νtν
⊺
t ).

13: end for
14: [Â B̂] = argmin

[A B]
{
∑ℓ−1

t=0 ∥µ̂t+1 − (Aµ̂t + Bνt )∥2
2},

15: Compute ˆ̃A = P1(Â ⊗ Â)Q1,
ˆ̃B = P1(B̂ ⊗ B̂)Q2, K̂BA = P1(B̂ ⊗ Â),

and K̂AB = P1(Â⊗ B̂), where P1, P2,Q1, and Q2 are given before
(5),

16: [
ˆ̃
Σ ′

A
ˆ̃
Σ ′

B] = argmin
[Σ̃ ′

A Σ̃ ′
B]

{
∑ℓ−1

t=0 ∥
ˆ̃Xt+1 −[Ã ˆ̃Xt+KBAŴt +KABŴ ′

t+B̃Ũt+

Σ̃ ′

A
ˆ̃Xt + Σ̃ ′

BŨt ]∥
2
2}.

rollouts are assumed to be i.i.d. subject to a same distribution
X0 with finite second moment (see Section 3.2.2). The overall
algorithm is shown in Algorithm 1, where the superscript (k)
represents the kth rollout. Note that Algorithm 1 is different
from classic recursive identification algorithms. The recursive
least-squares algorithm (Chen & Guo, 2012; Lai & Wei, 1982),
for example, uses only one trajectory of a system. In contrast,
Algorithm 1 is based on multiple trajectories with finite length.

Based on the estimates ˆ̃
Σ ′

A and ˆ̃
Σ ′

B, it is able to obtain an esti-
ate Ŝ∗

Σ of the equivalent class (6), via replacing Σ̃ ′

A and Σ̃ ′

B in the
efinition (6) by their estimates. If the linear matrix inequalities
re infeasible (i.e., Ŝ∗

Σ = ∅), then project the estimates onto the
positive semidefinite cone. However this situation is unlikely to
happen when nr is large, because of the consistency of Algorithm
1 given in the next section.
 c

6

3.2. Performance of Algorithm 1

This section analyzes performance of Algorithm 1 by investi-
gating the moment dynamics (3) and (5).

3.2.1. Moment dynamics and input design
Provided that µt and X̃t are known, it is possible to recover

he parameters via least-squares as in lines 14− 16 in Algorithm
. Denote

:= [µℓ · · · µ1], Z :=

[
µℓ−1 · · · µ0
νℓ−1 · · · ν0

]
,

C := [Cℓ · · · C1], D :=

[
X̃ℓ−1 · · · X̃0

Ũℓ−1 · · · Ũ0

]
,

(7)

where Ct = X̃t −
(
ÃX̃t−1+KBAWt−1+KABW ′

t−1+ B̃Ũt−1
)
, 1 ≤ t ≤ ℓ.

Then closed-form solutions of the least-squares problems are[
Â B̂
]

= YZ⊺(ZZ⊺)†,
[

ˆ̃
Σ ′

A
ˆ̃
Σ ′

B

]
= CD⊺(DD⊺)†,

here † represents the pseudoinverse. When the inverse matrices
xist, the solutions are identical to true values; that is, [Â B̂] =

[A B] and [
ˆ̃
Σ ′

A
ˆ̃
Σ ′

B] = [Σ̃ ′

A Σ̃ ′

B]. Hence, the first question towards
he consistency of Algorithm 1 is whether the matrices ZZ⊺ and
D⊺ are invertible. As to be shown, designing a proper input
equence ensures this invertibility, if systems (A, B) and (Ã +

˜ ′

A, B̃ + Σ̃ ′

B) are controllable, and the rollout length ℓ is large
nough.

roposition 3. Suppose that ℓ ≥ n + m and (A, B) is controllable.
or fixed µ0 ∈ Rn, the matrix Z has full row rank, and consequently
Z⊺ is invertible, for almost all [ν

⊺
0 · · · ν

⊺
ℓ−1]

⊺
∈ Rmℓ.

emark 3. The proposition shows that for large enough rollout
ength, the full row rankness of Z can be guaranteed for almost
ll [ν

⊺
0 · · · ν

⊺
ℓ−1]

⊺
∈ Rmℓ. The controllability of (A, B) plays a key

ole in the proof, similar to classic results on identification of
inear systems (Chen & Guo, 2012). The condition ℓ ≥ n + m is
ecessary for the invertibility of ZZ⊺. This lower bound is much
maller than that given in Xing et al. (2020). According to the
roposition, ZZ⊺ is invertible with probability one if the first mo-
ents of inputs are generated i.i.d. from a distribution absolutely
ontinuous with respect to Lebesgue measure (e.g., Gaussian dis-
ribution or uniform distribution). This proposition can be seen as
generalization of the single-input case studied in Schmidt et al.
2005).

roposition 4. Suppose that ℓ ≥ [n(n+1)+m(m+1)]/2 and (Ã+

˜ ′

A, B̃+Σ̃ ′

B) is controllable. For fixed µ0 ∈ Rn and X̃0 ∈ Rn(n+1)/2, the
atrix D has full row rank, and consequently DD⊺ is invertible, for
lmost all [ν

⊺
0 · · · ν

⊺
ℓ−1 svec(Ū0)⊺ · · · svec(Ūℓ−1)⊺]⊺ ∈ Rℓm(m+3)/2,

here Ūt is defined in line 2 of Algorithm 1.

emark 4. The controllability condition in Proposition 4 reflects
he nature of the multiplicative noise (i.e., coupling between Āt
nd xt , and that between B̄t and ut ). The result indicates that
controllability condition on (5) may be necessary to ensure

uccessful identification. The lower bound for ℓ is necessary for
he invertibility of DD⊺, and is much smaller than that given
n Xing et al. (2020). As in Algorithm 1, Ũt = svec(Ūt + νtν

⊺
t ),

o random generation of νt and Ūt ensures that DD⊺ is invertible
ith probability one.

We summarize the preceding two results in the following

orollary.
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orollary 1. Suppose that ℓ ≥ [n(n+ 1)+m(m+ 1)]/2, and that
oth (A, B) and (Ã+ Σ̃ ′

A, B̃+ Σ̃ ′

B) are controllable. For fixed µ0 ∈ Rn

nd X̃0 ∈ Rn(n+1)/2, the matrices ZZ⊺ and DD⊺ are invertible, for
lmost all [ν

⊺
0 · · · ν

⊺
ℓ−1 svec(Ū0)⊺ · · · svec(Ūℓ−1)⊺]⊺ ∈ Rℓm(m+3)/2,

where Ūt is defined in line 2 of Algorithm 1.

Remark 5. The corollary implies that the existence of (ZZ⊺)−1

and (DD⊺)−1 can be guaranteed with probability one, as long as
both νt and Ūt are independently generated from distributions
that are absolutely continuous with respect to Lebesgue measure.
For example, the entries of νt are generated i.i.d. from a non-
degenerate Gaussian distribution and then Ūt is generated i.i.d.
from a non-degenerate Wishart distribution, 0 ≤ t ≤ ℓ − 1.

3.2.2. Asymptotic consistency
In this subsection, we assume that the expectations and co-

variance matrices of inputs have been generated as discussed
in the previous section, and that both ZZ⊺ and DD⊺ have been
designed to be invertible. The closed-form estimates generated
by Algorithm 1 are[

Â B̂
]

= ŶẐ⊺(ẐẐ⊺)†, (8)[
ˆ̃
Σ ′

A
ˆ̃
Σ ′

B

]
= ĈD̂⊺(D̂D̂⊺)†, (9)

where

Ŷ :=
[
µ̂ℓ · · · µ̂1

]
, Ẑ :=

[
µ̂ℓ−1 · · · µ̂0
νℓ−1 · · · ν0

]
, (10)

Ĉ :=
[
Ĉℓ · · · Ĉ1

]
, D̂ :=

[
ˆ̃Xℓ−1 · · ·

ˆ̃X0

Ũℓ−1 · · · Ũ0

]
, (11)

and Ĉt =
ˆ̃Xt −

( ˆ̃A ˆ̃Xt−1 + K̂BAŴt−1 + K̂ABŴ ′

t−1 +
ˆ̃BŨt−1

)
, 1 ≤ t ≤ ℓ.

Here ˆ̃A, ˆ̃B, K̂AB, and K̂BA are estimates of Ã, B̃, KAB, and KBA, obtained
from Â and B̂ given by Algorithm 1. The estimates depend on the
number of rollouts nr , which is omitted for convenience. For the
convergence result, we present the following assumptions.

Assumption 1. For all rollouts indexed by k ∈ [nr ], the below
conditions hold.
(i) The rollout length is ℓ ≥ [n(n + 1) + m(m + 1)]/2.
(ii) The initial states x(k)0 , k ∈ [nr ], are i.i.d. subject to the same
distribution X0 with finite second moment, and are independent
of the multiplicative noise and inputs.
(iii) {Ā(k)

t , 0 ≤ t ≤ ℓ, k ∈ [nr ]} and {B̄(k)
t , 0 ≤ t ≤ ℓ, k ∈ [nr ]},

are i.i.d. sequences respectively and are mutually independent,
both with zero mean and finite second moments (i.e., E{Ā(k)

t } and
E{B̄(k)

t } are zero matrices, and ∥ΣA∥2, ∥ΣB∥2 < ∞).
(iv) The parameters of inputs are given by lines 1−3 of Algorithm
1, and the inputs are generated, according to line 7 of Algorithm
1. The inputs and noise are independent.
(v) Both ZZ⊺ and DD⊺ are invertible.

Remark 6. From Corollary 1, the lower bound of the rollout
length in Assumption 1(i) is necessary for estimating the noise
covariance matrix, whereas, from Proposition 3, trajectories with
length ℓ ≥ n + m may be enough for estimating the nominal
system matrix. The initial states of different trajectories need not
start with the same value, but it is required that they have the
same first and second moments (Assumption 1(ii)). The mutual
independence of noise at different time steps in one trajectory
is a standard assumption (Assumption 1(iii)). The results in this
paper still hold, if the noise sequence in the same trajectory
is dependent, but the noise sequences in different trajectories
are mutually independent and the noise has zero mean and the

same second moment. The physical meaning of the independence

7

between the noise and the inputs in Assumption 1(iv) is that the
former is an intrinsic part of the system and cannot be influenced
by inputs. To keep the analysis concise, we separately discuss
the input design (Section 3.2.1) and performance of Algorithm 1.
Assumption 1(v) indicates that the input design yields invertible
ZZ⊺ and DD⊺, but note that this assumption implicitly assumes
the controllability of the first- and second-moment dynamics of
system states.

Under Assumption 1 the rollouts [x(k)0 , . . . , x(k)l ], k ∈ [nr ], are
i.i.d., so the following consistency result can be obtained from the
strong law of large numbers.

Theorem 1 (Consistency). Suppose that Assumption 1 holds, then
the estimators (8)–(9) are asymptotically consistent, namely,[
Â B̂
]

→ [A B] and
[

ˆ̃
Σ ′

A
ˆ̃
Σ ′

B

]
→
[
Σ̃ ′

A Σ̃ ′

B

]
,

with probability one as the number of rollouts nr → ∞.

Remark 7. This theorem indicates that consistency of Algorithm
1 may hold even when the rollout length is relatively small. In Di
and Lamperski (2021), the estimation of the first and second
moments of multiplicative noise is decoupled, whereas here the
estimate of [Σ̃ ′

A Σ̃ ′

B] relies on [Â B̂]. The coupling exists because
here the noise covariance matrix, which from definition depends
on the mean of the noise, is estimated. Note that ℓ is assumed to
be fixed and we do not consider the case where ℓ → ∞, since
an averaging step is used in Algorithm 1. Study of the case with
increasing rollout length is left to future work.

3.3. Finite-sample analysis

This subsection studies finite-sample performance of Algo-
rithm 1, demonstrating its non-asymptotic behavior. The exis-
tence of multiplicative noise complicates the analysis, so the
following assumptions, ensuring that the system is bounded a.s.,
are introduced.

Assumption 2. For all rollouts indexed by k ∈ [nr ], the following
conditions hold.
(i) The initial state is bounded a.s. for all k ∈ [nr ] as

∥x(k)0 ∥ ≤ cX < ∞.

(ii) The inputs are bounded a.s. for all 0 ≤ t ≤ ℓ − 1 and k ∈ [nr ]

as

∥u(k)
t ∥ ≤ cU < ∞.

(iii) The multiplicative noise, Ā(k)
t and B̄(k)

t , is bounded a.s. for all
0 ≤ t ≤ ℓ − 1 and k ∈ [nr ] as

∥Ā(k)
t ∥2 ≤ cĀ < ∞, ∥B̄(k)

t ∥2 ≤ cB̄ < ∞.

Remark 8. The assumption of bounded multiplicative noise
is reasonable for physical systems, which cannot have infinite
variations. For example, in interconnected systems, the noise
represents randomly varying topologies of subsystems, and is
naturally bounded.

The following theorems state finite-sample results for the
estimates of [A B] and [Σ̃ ′

A Σ̃ ′

B].

Theorem 2. Suppose that Assumptions 1 and 2 hold. Fix a failure
probability δ ∈ (0, 1). It holds with probability at least 1 − δ that[Â B̂

]
− [A B]


2 ≤ O

(√
ℓ log(ℓ/δ)

n

)
.

r
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heorem 3. Under the same condition of Theorem 2, with proba-
ility at least 1 − δ, it holds that[

ˆ̃
Σ ′

A
ˆ̃
Σ ′

B

]
−
[
Σ̃ ′

A Σ̃ ′

B

]
2

≤ O

(√
ℓ log(ℓ/δ)

nr

)
.

emark 9. In Theorems 2 and 3, high-probability upper bounds
re given for the estimates of [A B] and [Σ̃ ′

A Σ̃ ′

B]. It can be
bserved that these bounds shrink asO

(
1/

√
nr
)
with the number

f rollouts, and converge to zero as the number of rollouts grows
o infinity, indicating the consistency of the estimators. Note that
he bounds are deterministic, although they depend on the failure
robability δ. The theorems also indicate that the probability
f the estimation error exceeding an arbitrary positive constant
ecays exponentially fast with the number of rollouts, which is
llustrated in Section 4.1.

The O(·) notation hides the coefficients of the error bounds,
nd the polynomial and exponential factors of n and m in the
ogarithm term. Their explicit forms are given in the extended
ersion (Xing et al., 2021). The coefficient of the estimation error
f [A B] increases with ∥Y∥2, ∥Z∥2, and the bound of the system,
ut decreases with the minimum eigenvalue of ZZ⊺. Similarly,
he coefficient of the estimation error of [Σ̃ ′

A Σ̃ ′

B] decreases with
the minimum eigenvalue of DD⊺, but increases with ∥C∥2, ∥D∥2,
and the bound of the system. It also increases with ∥A∥2, ∥B∥2,
nd quantities related to the second-moment dynamic of system
tates, because of the dependence of [

ˆ̃
Σ ′

A
ˆ̃
Σ ′

B] on [Â B̂]. From
efinition, Y, Z, C, and D depend on system parameters and
nputs, so proper input design could reduce the estimation error.
t remains for future study how to design the moments of inputs
o that the coefficients of the bounds can achieve their smallest
alues, and how to obtain data-dependent bounds, because the
ominal system matrix is unknown.
In Di and Lamperski (2021), the authors study identification

f System (1) from single-trajectory data, by developing error
ounds for a least-squares algorithm, but it is unclear under what
onditions of System (1) these error bounds converge to zero. In
ontrast, our analysis provides sufficient conditions under which
he error bounds for estimates given by Algorithm 1 vanish. The
esults show that a relatively small rollout length is enough to
uarantee consistency, but the current bounds imply that longer
ollout length ℓ may lead to worse performance, which seems to
e contrary to the intuition that longer trajectory provides more
nformation. This could result from the averaging step which
liminates some excitation. Future work will consider how to use
he data more efficiently.

ROOF SKETCH. The detailed proofs of Theorems 2 and 3 can
e found in Xing et al. (2021). Most parts are elementary, and
mitted due to space limit. Here a proof sketch is provided. Note
hat the estimation error [Â B̂] − [A B] can be decomposed as

Â B̂
]
− [A B]

= ŶẐ⊺(ẐẐ⊺)† − YZ⊺(ZZ⊺)−1

=
[
ŶẐ⊺

− YZ⊺
]
(ZZ⊺)−1

+ YZ⊺
[
(ẐẐ⊺)† − (ZZ⊺)−1]

+
[
ŶẐ⊺

− YZ⊺
][
(ẐẐ⊺)† − (ZZ⊺)−1].

Because Ŷ − Y and Ẑ − Z are sums of zero-mean indepen-
dent random matrices (by definition), a matrix Bernstein inequal-
ity (Tropp, 2015) gives bounds for the spectral norms of Ŷ − Y
and Ẑ−Z. Given these two bounds, we analyze ∥ŶẐ⊺

−YZ⊺
∥2 and

ẐẐ⊺
− ZZ⊺

∥2.
Next, an ε-net argument provides an upper bound for the

maximum eigenvalue of ẐẐ⊺ and a lower bound for the minimum
8

eigenvalue of ẐẐ⊺. The latter is with high probability close to
the minimum eigenvalue of ZZ⊺. This fact implies that (ẐẐ⊺)−1

exists with high probability, since ZZ⊺ is invertible from Assump-
tion 1(v). Hence, from the inequality,(ẐẐ⊺)−1

− (ZZ⊺)−1

2

≤
(ZZ⊺)−1


2

(ẐẐ⊺)−1

2

ẐẐ⊺
− ZZ⊺


2,

it follows that the spectral norm of (ẐẐ⊺)† − (ZZ⊺)−1 can be upper
bounded by ∥ẐẐ⊺

− ZZ⊺
∥2 with high probability.

Finally, a union bound combining the preceding results yields
the conclusion. The probability bound for the estimate error of
the noise covariance matrix can be obtained in a similar way. □

4. Numerical simulations

In this section we empirically validate the theoretical results
for Algorithm 1, and compare its performance with the recursive
least-squares algorithm based on single-trajectory data (Chen &
Guo, 2012; Lai & Wei, 1982).

4.1. Consistency and finite-sample result

This subsection considers identification of the 2-dimensional
system discussed in Example 1 with parameters

A =

[
1 0.2
0 1

]
, B =

[
0.8
1

]
,

ΣA =
1
40

⎡⎢⎣ 8 −2 0 0
−2 16 2 0
0 2 2 0
0 0 0 8

⎤⎥⎦ , ΣB =
1
40

[
5 −2

−2 20

]
.

According to the reshaping operator G defined in the notation
section and the discussion in Example 1, it holds that

Σ̃ ′

A =
1
40

[ 8 0 2
−2 2 0
16 0 8

]
, Σ̃ ′

B =
1
40

[
5 −2 20

]⊺
. (12)

simulated experiment is conducted with rollout data of length
= 4. For 0 ≤ t ≤ 3, νt is generated independently from

uniform distribution U([0, 1]) and then fixed. Three types of in-
puts are considered: Gaussian, uniform, and deterministic inputs.
An identical sequence of input covariances, independently gen-
erated from 1-dimensional Wishart distribution Wp(0.1, 1) and
then fixed, is used in the former two cases. For the case of deter-
ministic inputs, the covariances are set to be zero (i.e., Ūt = 0). In
this setting DD⊺ can be invertible because the second moment of
the input at time t satisfies that Ut = Ūt+νtν

⊺
t , and the generation

of νt provides randomness. For each case, Algorithm 1 is run for
50 times. The mean of estimation error in each case is shown in
Fig. 1. It can be seen that Algorithm 1 converges with convergence
rate O(1/

√
nr ), and performs similarly under all three types of

nputs. The algorithm fluctuates when the number of rollouts is
mall, which may result from the averaging step.
Fig. 2 provides the relative frequency of the normalized es-

imation errors, ∥[Â B̂] − [A B]∥2/∥[A B]∥2 and ∥[
ˆ̃
Σ ′

A
ˆ̃
Σ ′

B] −

[Σ̃ ′

A Σ̃ ′

B]∥2/ ∥[Σ̃ ′

A Σ̃ ′

B]∥2, exceeding a given constant, under the
uniform-input case. This result shows an exponential decay of
the frequency and validates the finite-sample results. The relative
frequency of nr rollouts is denoted by pnr .

From Remark 1 and (6), it follows that (12) defines an equiva-
lent class of covariance matrices that generates the same second-
moment dynamic of system states. In the current example, Σ is
B
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Fig. 1. Consistency of Algorithm 1.
Fig. 2. Finite-sample results of Algorithm 1.

nique, but the following covariance matrix is equivalent to ΣA,

ΣA(α) =
1
40

⎡⎢⎣ 8 −2 0 1 + α

−2 16 1 − α 0
0 1 − α 2 0

1 + α 0 0 8

⎤⎥⎦ ,

ith α ∈ R such that ΣA(α) ⪰ 0. Fig. 3 illustrates the dynamic (4),
tarting with the same initial condition µ0 = 02 and X0 = 04, and
ith the noise covariance matrix given by (ΣA, ΣB), (ΣA(1), ΣB),
nd estimates from Algorithm 1, respectively. The parameters of
nputs (νt and Ūt ) are the same as the uniform-input case. Note
hat ΣA(−1) = ΣA, and ΣA(1) ≻ 0. It can be observed that the
ynamics defined by (ΣA, ΣB) and (ΣA(1), ΣB) are identical, and
he dynamic defined by the estimates from Algorithm 1 is close
o the former.

It is assumed that there is no additive noise in System (1),
ut Algorithm 1 can also be applied to identifying linear systems
ith both multiplicative and additive noise. If additive noise wt ,

ndependent of the inputs and the multiplicative noise, exists,
hen write the system as

t+1 = (A + Āt )xt +
[
B + B̄t wt

]
[uT

t 1]T . (13)

n other words, wt can be considered as a part of multiplica-
ive noise corresponding to a constant input equal to one. Con-
ider the above 2-dimensional system with Gaussian noise wt ∼

(02, σ
2I2) and previously designed Gaussian inputs. Note that

n this case ℓ = 6 is needed because the dimension of inputs
ncreases by one in (13), compared with the original system.
ig. 4 shows the consistency of Algorithm 1 under the presence
f additive noise.
9

Fig. 3. The second-moment dynamic of system states defined by three noise
covariance matrices.

Fig. 4. Consistency of Algorithm 1 under both multiplicative and additive noise.

4.2. Performance comparison

The recursive form of the ordinary least-squares (OLS), namely,
the recursive least-squares (RLS), is widely used in identification
of dynamic systems (Chen & Guo, 2012; Lai & Wei, 1982). It is
possible to apply RLS to identify System (1) if certain conditions
hold. For detailed implementation, see Xing et al. (2021). To
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Fig. 5. Performance comparison of RLS, RLSp, and Algorithm 1.
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stimate the covariance matrix of the multiplicative noise, Di and
amperski (2021) apply OLS, which is equivalent to RLS. Note
hat, when using OLS or RLS, one estimates the second moments
f A+ Āt and B+ B̄t , rather than their covariance matrices, which
re ΣA and ΣB in our context. The estimation of noise covariance

is still coupled with the estimation of the nominal system, since
Σ ′

A = E{(A+ Āt )⊗ (A+ Āt )} − A⊗ A and Σ ′

B = E{(B+ B̄t )⊗ (B+

¯ t )} − B ⊗ B.
To compare the performance of RLS and Algorithm 1, we con-

ider four systems. In the first case, the nominal system matrices
re

=

[
0.6 0.2
0 0.6

]
, B =

[
0.8
1

]
,

nd both ΣA and ΣB are zero matrices. That is, a linear system
ithout noise and ρ(A) = 0.6, where ρ(A) is the spectral radius
f A. We use this case to show the consistency of RLS. In the other
hree cases, the matrix A is set to be

0.6 0.2
0 0.6

]
,

[
0.8 0.2
0 0.8

]
, and

[
1 0.2
0 1

]
,

espectively. B is the same as the first case, while ΣA and ΣB
n Section 4.1 are adopted to be the covariance matrices. The
mplementation of Algorithm 1 is the same as in Section 4.1. That
s, νt and Ūt are randomly generated, and then fixed in all runs
f the entire numerical experiment. The input ut at time 0 ≤

≤ ℓ − 1 in each rollout is generated from Gaussian distribution
(νt , Ūt ), and ℓ = 4. Since RLS is based on single-trajectory data,

he length of the trajectory is set to be ℓnr , so that the number of
amples that RLS uses is the same as that of Algorithm 1. RLS with
ndependent standard Gaussian inputs is considered as a baseline.
n order to rule out the effect of different input design, we also
un RLS with periodic inputs (RLSp) satisfying that, in each period,
he inputs are generated in the same way as those in a rollout of
lgorithm 1.
For each system, the three algorithms, RLS, RLSp, and Algo-

ithm 1, are run for 50 times, respectively. The mean of estimation
rror in each case is presented in Fig. 5. It can be observed that
LS and RLSp perform similarly in all cases. When multiplicative
oise is absent, they converge slightly faster than Algorithm 1.
hey are also a little better than Algorithm 1, in the case of
(A) = 0.6 with noise, for the estimation of [A B], indicating
LS could be applied to Algorithm 1 as a way to estimate [A B].
owever, Algorithm 1 surpasses RLS and RLSp when identifying
he noise covariance matrix. Moreover, the performance of RLS
10
ets worse as ρ(A) grows. Interestingly, in the case of ρ(A) =

.8, although the nominal system is stable, the second-moment
ynamic of system states is not. This instability leads to de-
raded performance of RLS estimating [A B] and divergence of
LS estimating the covariance matrix. In the marginally stable
ase, namely ρ(A) = 1, RLS and RLSp explode in finite time. In
ontrast, Algorithm 1 behaves almost identically for all cases (the
onsistency of Algorithm 1 in the marginally stable case is shown
n Fig. 1). To sum up, Algorithm 1 can deal with the estimation
f noise covariance matrix better and relies less on the stability
f both the nominal system and the second-moment dynamic of
ystem states.

. Conclusion and future work

In this paper an identification algorithm based on multiple-
rajectory data was proposed for linear systems with multi-
licative noise. With appropriately designed exciting inputs, the
roposed algorithm is able to jointly estimate the nominal sys-
em and the multiplicative noise covariance. The asymptotic
nd non-asymptotic performance of the algorithm was analyzed
heoretically, and illustrated by numerical experiments. Future
ork include studying more efficient algorithms that can be used

n online settings, optimal and adaptive input design, sparsity-
romoting regularization for identification of networked systems,
nd-to-end finite-sample performance guarantees for
dentification-based optimal control, and applications to identi-
ication of cyber–physical systems with coupling between noise
nd inputs.
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