
Learning-based Design of Luenberger Observers
for Autonomous Nonlinear Systems

Muhammad Umar B. Niazi∗,† John Cao∗ Xudong Sun∗ Amritam Das∗ Karl Henrik Johansson∗

Abstract—Designing Luenberger observers for nonlinear sys-
tems involves the challenging task of transforming the state to
an alternate coordinate system, possibly of higher dimensions,
where the system is asymptotically stable and linear up to
output injection. The observer then estimates the system’s state
in the original coordinates by inverting the transformation
map. However, finding a suitable injective transformation whose
inverse can be derived remains a primary challenge for general
nonlinear systems. We propose a novel approach that uses
supervised physics-informed neural networks to approximate
both the transformation and its inverse. Our method exhibits
superior generalization capabilities to contemporary methods
and demonstrates robustness to both neural network’s approx-
imation errors and system uncertainties.

Index Terms—Nonlinear observer design, robust estimation,
physics-informed learning, empirical generalization error.

I. INTRODUCTION

Nonlinear Luenberger observers, also known as Kazantzis-
Kravaris/Luenberger (KKL) observers, generalize the theory
of Luenberger observers [1] to nonlinear systems. The main
idea of KKL observers is to find an injective map that satisfies
a certain partial differential equation (PDE) and transforms
a nonlinear system to another coordinate system, possibly
of higher dimensions than the original state space. The
dynamics of the transformed system are required to be stable
and linear up to output injection. Then, the KKL observer is
a copy of the transformed system and estimates the state of
the original system by inverting the transformation map.

Initially proposed by [2] and [3], the theory of KKL
observers was subsequently rediscovered by Kazantzis &
Kravaris [4], who provided local guarantees around an equi-
librium point via Lyapunov’s Auxiliary Theorem. Although
[5] relaxed the restrictive assumptions of [4] to some extent,
the analysis remained local until [6] proposed the first
global result under the assumption of the so-called finite
complexity, which also turned out to be quite restrictive for
general nonlinear systems. In this regard, a complete and
most general treatment of the problem was presented by
Andrieu & Praly [7], who introduced the notion of backward

∗ Division of Decision and Control Systems and Digital Futures, EECS,
KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
† Laboratory for Information and Decision Systems, Massachusetts In-

stitute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139,
USA. Corresponding author’s email: niazi@mit.edu

This work is supported by the Swedish Research Council and the Knut
and Alice Wallenberg Foundation, Sweden. It also received funding from
European Union’s Horizon Research and Innovation Programme under Marie
Skłodowska-Curie grant agreement No. 101062523.

distinguishability ensuring the existence of an injective trans-
formation required by the KKL observers. Later, under some
additional observability conditions, [8] proved that KKL
observers converge exponentially and are also tunable. The
theory is also extended to non-autonomous and controlled
nonlinear systems in [9]–[11].

The main challenge in the design of KKL observers is
to not only find the transformation map but also its left
inverse, and both problems turn out to be very difficult in
practice; see [12] and [13]. To this end, [14]–[16] have
proposed several methods to approximate the transformation
map and its inverse via feedforward neural networks. By
fixing the dynamics of the KKL observer, they propose to
generate synthetic data trajectories by numerically solving
both the system’s model and the KKL observer, where
both are initialized at multiple points in their corresponding
state spaces. Then, using a supervised learning approach, a
neural network is trained to approximate the transformation
map and its left inverse. Moreover, [16] also proposed an
unsupervised learning approach by assuming an autoencoder-
type architecture and adding the PDE associated with the
transformation map as a design constraint. However, both
approaches suffer from overfitting on the training samples
and do not generalize well in practice.

In this paper, we propose a supervised physics-informed
learning approach to approximate the transformation map
and its left inverse. Such an approach incorporates the phys-
ical knowledge described by the PDE constraint, which is
directly integrated with the conventional supervised learning
[17], [18]. Embedding the physical knowledge of systems by
adding the PDE constraint as a physically relevant invariant
improves the accuracy, generalization, and training time of
the learning method. In this way, we improve upon the idea
of [14]–[16] by avoiding overfitting and obtaining better
generalization to the whole state space.

The main contribution of this paper includes a complete
learning method of the KKL observer design via a supervised
physics-informed neural network (PINN). We show that the
KKL observer is robust to not only the neural network’s ap-
proximation error but also to model and sensor uncertainties.
The robustness is quantified in terms of input-to-state stability
[19] of the state estimation error. We define an empirical
metric to quantify the generalization capability of the learned
KKL observer and provide a detailed discussion on why our
method exhibits better generalization capabilities than the
supervised neural network (NN) approach of [14]–[16] and

the unsupervised autoencoder (AE) approach of [16]. Finally,
we demonstrate the dominance of our method over these
approaches through statistically well-designed experiments.

After summarizing a general idea of KKL observers in
Section II, we state the problem addressed in this paper
in Section III. The learning method of KKL observers is
presented in Section IV. Section V evaluates the performance
of the observer under approximation errors and uncertainties,
and defines and discusses an empirical metric to assess the
generalization capability of the learned observer. Finally,
Section VI presents the experimental results and Section VII
ends with concluding remarks and the future outlook.

Notations. For a vector x ∈ Rn, the Euclidean
norm ‖x‖ =

√
xTx and the maximum norm ‖x‖∞ =

maxi |xi|. For a measurable essentially bounded func-
tion w ∈ L∞(R;Rn), the essential supremum norm
‖w‖L∞ = ess supt∈R ‖w(t)‖ .

= inf{c ≥ 0 : ‖w(t)‖∞ ≤
c for almost every t ∈ R}. For a matrix M ∈ Rn×m,
‖M‖ = sup‖x‖=1 ‖Mx‖ denotes the induced norm, which is
equal to the maximum singular value σmax(M). The spec-
trum of M ∈ Rn×n is denoted by eig(M), and λmin(M) =
minλ∈eig(M) |Re(λ)| and λmax(M) = maxλ∈eig(M) |Re(λ)|.
The condition number of M is denoted by cond(M).

II. PRELIMINARIES ON KKL OBSERVERS

In this section, we briefly summarize the theory of KKL
observers. For more details, see [4], [7], [8].

Consider a nonlinear system

ẋ = f(x); y = h(x) (1)

where x(t) ∈ X ⊂ Rnx is the state with x(0) = x0 ∈ X the
initial condition, y(t) ∈ Rny is the measured output, and the
maps f : X → Rnx and h : X → Rny are smooth.

The design method of a KKL observer is as follows:
1) Find an injective1 map T : X → Rnz that transforms

(1) to new coordinates z = T (x), where

ż = Az +Bh(x); z(0) = T (x0) (2)

with A ∈ Rnz×nz a Hurwitz matrix and B ∈ Rnz×ny
such that (A,B) is controllable. From (2), it follows that
T must be a solution to the following PDE:

∂T
∂x

(x)f(x) = AT (x) +Bh(x); T (0) = 0. (3)

2) Since T is injective, its left inverse T ∗ exists, i.e.,
T ∗(T (x)) = x. The KKL observer is then given by

˙̂z = Aẑ +By; ẑ(0) = ẑ0
x̂ = T ∗(ẑ). (4)

There are certain conditions that system (1) needs to satisfy
in order to ensure the existence of a KKL observer (4) in a
sense that limt→∞ ‖x̂(t)−x(t)‖ = 0. Let x(t;x0) denote the
state trajectory of (1) with x(0) = x0. Then, (1) is said to be

1A map T : X → Rnz is said to be injective if for every x1, x2 ∈ X ,
T (x1) = T (x2) implies x1 = x2.

forward complete within X if for every x0 ∈ X , x(t;x0) ∈ X
is well-defined for every t ∈ R≥0.

Assumption 1. There exists a compact set X ⊂ Rnx such
that the system (1) is forward complete within X .

A map T : X → Rnz is said to be uniformly injective
if there exists a class K function2 ρ such that, for every
x1, x2 ∈ X , ‖x1 − x2‖ ≤ ρ(‖T (x1)− T (x2)‖).

For the existence of a KKL observer (4), it is sufficient
that (1) is forward complete and the map T satisfying (3) is
uniformly injective, see [7, Theorem 1]. Since A is a Hurwitz
matrix, ‖ẑ(t) − z(t)‖ = ‖T (x̂(t)) − T (x(t))‖ converges to
zero exponentially. Thus, the uniform injectivity

‖x̂(t)− x(t)‖ ≤ ρ(‖T (x̂(t))− T (x(t))‖) (5)

implies that ‖x̂(t)− x(t)‖ also converges to zero. However,
only asymptotic convergence of the estimation error can be
guaranteed because the inverse T ∗ is a nonlinear map, which
may destroy the exponentiality of the convergence.

Given an open set O ⊃ X , the system (1) is said to be
backward O-distinguishable on X if for every pair of distinct
initial conditions x10, x

2
0 ∈ X , there exists τ < 0 such that

x(t;x10), x(t;x20) ∈ O are well-defined for t ∈ [τ, 0], and

h(x(τ ;x10)) 6= h(x(τ ;x20)).

In other words, this means that there exists a finite negative
time such that the output maps, corresponding to different
trajectories initialized in X , can be distinguished before any
of the trajectories leaves O in backward time.

Assumption 2. There exists an open bounded set O ⊃ X
such that (1) is backward O-distinguishable on X .

It turns out that Assumptions 1 and 2 are sufficient for the
existence of an injective map T satisfying (3). This result is
obtained in [7], [13], [20], which can be restated as follows:

Theorem 1. Let Assumptions 1 and 2 hold. Then, for any
controllable (A,B) ∈ (Rnz×nz ,Rnz×ny)\J such that nz =
ny(2nx + 1), A+ δInz is Hurwitz for some δ > 0, and J ⊂
(Rnz×nz ,Rnz×ny) is a set of zero Lebesgue measure, there
exists a uniformly injective map T : X → Rnz satisfying (3).

By relying on Theorem 1, we propose a learning method
for T and T ∗ under the constraint that T satisfies (3). In
what follows, we choose and fix A ∈ Rnz×nz and B ∈
Rnz×ny such that A is Huwitz and (A,B) is controllable,
where nz = ny(2nx + 1).

III. PROBLEM STATEMENT

We aim to design a KKL observer for (1) that estimates the
state x(t) by using the knowledge of the system’s output y
and its model f(·) and h(·). That is, the observer (4) ensures
limt→∞ ‖x̂(t) − x(t)‖ = 0 when T and T ∗ are known. In

2A function ρ : R≥0 → R≥0 is of class K if it is continuous, zero at
zero, and strictly increasing.

case, T and T ∗ are respectively approximated by T̂ and T̂ ∗,
then the asymptotic estimation error satisfies

lim sup
t→∞

‖x̂(t)− x(t)‖ ≤ ε

where ε > 0 depends on the approximation error.
The problem can be divided into two parts:

1) Learn the map T satisfying the PDE (3) and its left
inverse T ∗.

2) Evaluate the performance of the KKL observer in terms
of its robustness to the approximation error, model
uncertainties, and measurement noise, and its gener-
alization capability when T and T ∗ are learned on a
discrete subset of X .

IV. LEARNING THE TRANSFORMATION MAP AND ITS
LEFT INVERSE

A critical step of KKL observer design is to find the
injective map T : X → Rnz satisfying the PDE (3), so that
(1) admits a linear representation (2), and its left inverse T ∗,
so that a state estimate can be obtained in the original state
space coordinates. This amounts to solving the PDE (3) for
T , whose solution is obtained in [7] as

T (x) =

∫ 0

−∞
exp(Aτ)Bh(x̆(τ ;x))dτ (6)

where x̆(τ ;x) ∈ X is the backward solution initialized at
x ∈ X , for τ ≤ 0, to the modified dynamics ˙̆x(τ) = g(x̆(τ))
with g(x̆(τ)) = f(x̆(τ)) if x̆(τ) ∈ X and g(x̆(τ)) = 0
otherwise. However, there are two issues with this solution:
• It is practically impossible to obtain a backward output

map h(x̆(τ ;x)) for τ < 0 and then compute the integral
(6) for every initial point x ∈ X ; [13].

• Even if T is known in any other form3 than (6), finding
the left inverse T ∗ is very difficult both analytically and
numerically; [12].

To circumvent these challenges, it is reasonable to approx-
imate these maps using neural networks.

Let T̂θ and T̂ ∗η be the parametrized neural networks that
approximate T and T ∗, respectively. Here, θ, η are vectors
containing all the weights and biases of each neural network,
respectively, and can be considered as learning parameters
for the nonlinear regression problem. In the following sub-
sections, we describe our method, illustrated in Figure 1, for
learning T and T ∗ through neural networks T̂θ and T̂ ∗η .

A. Generating Data for Training

Since the system trajectories for arbitrary initial conditions
can be obtained numerically by solving the nonlinear system
(1) for x and the linear system (2) for z, one can pose the
problem of learning θ and η as a nonlinear regression over
the simulated data trajectories on a finite time horizon T > 0.
The steps to generate these trajectories are described below:

3See [11] for some of the examples.

xi(tk)

T̂θ
zi(tk)

T̂ ∗η

∂T̂θ
∂x

(xi(tk))f(x
i(tk)) = AT̂θ(xi(tk)) +Bh(xi(tk))

Fig. 1: Architecture for learning the transformation T and its
inverse T ∗ using neural networks with parameters θ and η.

1) Define a set X train × Ztrain ⊂ X × Z from which the
initial conditions are chosen for training, where Z ⊂
Rnz . For some p ∈ N, choose a set of initial conditions

(x10, z
1
0), . . . , (xp0, z

p
0) ∈ X train ×Ztrain.

2) Simulate (1) and (2) with these initial conditions and
generate sampled trajectories from t0 = 0 to tτ−1 = T

xi(tk)
.
= x(tk;xi0) and zi(tk)

.
= z(tk; zi0)

for k = 0, 1, 2, . . . , τ − 1 and i = 1, . . . , p.
3) Partition the data samples into regression points Pr ⊂
{0, . . . , τ − 1} and physics points Pp ⊂ {0, . . . , τ − 1}
such that Pr ∩ Pp = ∅.

Remark 1. We provide the following guidelines for generat-
ing synthetic data trajectories:

(i) The initial conditions x10, . . . , x
p
0 can be chosen using

the Latin hypercube sampling method; see [14].
(ii) Choosing z10 , . . . , z

p
0 arbitrarily results in large regres-

sion errors for the initial time samples until the effect
of the initial condition vanishes in z(t; zi0) due to A
being Hurwitz. To avoid this, we follow a technique
suggested by [16]: (a) Arbitrarily choose p non-zero
points z1τ , . . . , z

p
τ in Z ⊂ Rnz , where τ < 0 is such

that ‖ exp(A(t− τ))ziτ‖ ≤ ε for some small ε > 0 and
t = 0. Solving this inequality for τ gives

τ ≤ 1

λmin(A)
ln

(
ε

cond(V)z̄τ

)
where z̄τ = maxi ‖ziτ‖ and V is obtained from the
eigendecomposition A = V ΛV −1. (b) Simulate (1)
from x10, . . . , x

p
0 in backward time and obtain output

trajectories h(x(t;xi0)) for t ∈ [τ, 0]. (c) Simulate (2)
from z1τ , . . . , z

p
τ in forward time and obtain z(t; ziτ) for

t ∈ [τ, 0]. (d) Choose zi0 = z(0; ziτ), for i = 1, . . . , p,
which is approximately equal to T (xi0).

(iii) A simple way to partition the data samples into regres-
sion points Pr and physics points Pp is to, for instance,
choose even samples for Pr and odd samples for Pp. �

B. Defining the Empirical Loss Function

The regression problem minimizes a loss function that
accounts for the deviation of the neural network’s output with
respect to the training data generated previously. To this end,
we can exploit both xi(tk) and zi(tk) for learning T and
T ∗ because both trajectories can be generated easily. The
empirical loss function is defined as a mean squared error

Lθ,η(X,Z)
.
=

1

p

p∑
i=1

1

|Pr|
∑
k∈Pr

∥∥zi(tk)− T̂θ(xi(tk))
∥∥2

+ χ
∥∥xi(tk)− T̂ ∗η (T̂θ(xi(tk)))

∥∥2 (7)

where χ > 0 is a hyperparameter that not only weights the
loss function properly but also discounts for different units
of measurement of xi(tk) and zi(tk). Also, X ∈ Rpnx×τ
and Z ∈ Rpnz×τ are defined as

X
.
=

x1(t0) x1(t1) . . . x1(tτ−1)
x2(t0) x2(t1) . . . x2(tτ−1)

...
...

. . .
...

xp(t0) xp(t1) . . . xp(tτ−1)

Z
.
=

z1(t0) z1(t1) . . . z1(tτ−1)
z2(t0) z2(t1) . . . z2(tτ−1)

...
...

. . .
...

zp(t0) zp(t1) . . . zp(tτ−1)

 .
C. Enforcing the PDE Constraint

An additional requirement of the learning problem is that
T̂θ must satisfy the PDE (3) for every sample in X train.
Evaluating (3) for all the physics points Pp, we define the
mean squared residual of the PDE (3) over X train as

Nθ(X)
.
=

1

p

p∑
i=1

1

|Pp|
∑
k∈Pp

∥∥∂T̂θ
∂x

(xi(tk))f(xi(tk))

−AT̂θ(xi(tk))−Bh(xi(tk))
∥∥2 (8)

Enforcing the PDE constraint essentially avoids overfitting
on the training samples and improves generalization by
regularizing the neural network T̂θ.

D. Supervised Physics-Informed Learning Problem

By dedicating one part of the data for minimizing the mean
squared error (7) and the other part for making the mean
squared residual (8) equal to zero, the supervised physics-
informed learning problem is formulated as:

min
θ,η
Lθ,η(X,Z) subject to Nθ(X) = 0. (9)

Note that (9) can be posed as

min
θ,η
Lθ,η(X,Z) + λNθ(X) (10)

for a sufficiently large Lagrange multiplier λ > 0 that
discounts for the constraint Nθ(X) = 0.

E. Testing the Learned Model on a Different Dataset

Once the neural networks T̂θ and T̂ ∗η are trained, we
evaluate the model’s performance on the testing dataset
X test × Ztest ⊂ X × Z . It must be that the testing dataset
is distinct from the training dataset for a fair evaluation
of the performance. Moreover, we select multiple instances
of testing dataset to tune the hyperparameters χ and λ of
the trained neural networks. Among the two, λ is a critical
hyperparameter in (10) that largely impacts the satisfaction
of the PDE constraint and, hence, the quality of the training.

V. EVALUATING THE PERFORMANCE OF THE LEARNED
KKL OBSERVER

The neural networks T̂θ and T̂ ∗η are mere approximations
of T and T ∗, respectively. Thus, the performance of the
observer will be influenced by the approximation error.
Moreover, the model (1) of the state dynamics and sensors
is never perfect in real-world applications, and there are
several underlying uncertainties that could influence the state
estimation. In this section, we provide robustness guarantees
for the estimation error under both the approximation error
and the system uncertainties. We also provide a metric to
assess the generalization capability of the observer beyond
the training data and discuss the specific features of the
proposed learning method that avoid overfitting and enable
better generalization as compared to other techniques.

A. Robustness to the Approximation Error

Given that the activation functions of the neural network
are Lipschitz continuous, it can be shown that T̂ ∗η is also
Lipschitz, i.e., there exists `∗ such that, for every ẑ, z ∈ Rnz ,

‖T̂ ∗η (ẑ(t))− T̂ ∗η (z(t))‖ ≤ `∗‖ẑ(t)− z(t)‖. (11)

Specifically, we remark that ReLU networks are Lipschitz
continuous, which is particularly important because we con-
sider such a network in Section VI. It is important to further
remark that theoretical computation of the Lipschitz constant
turns out to be quite conservative in practice. Although an
NP-hard problem, empirically estimating a minimal Lipschitz
constant of neural networks has been investigated extensively
in the machine learning community [21]–[24].

For any z ∈ Rnz , T ∗(z) can be written as

T ∗(z) = T̂ ∗η (z) + E∗(z) (12)

where E∗(z) is the approximation error of T̂ ∗ at z. Because
the state space X ⊂ Rnx is bounded, h(·) is a smooth map,
and A is Hurwitz, there exists a compact set Z ⊂ Rnz
containing the trajectory z(t; T (x0)) of (2) for every t ≥ 0
and every x0 ∈ X . Thus, as a consequence of (5) and (11),
there exists a finite approximation bound ε∗ > 0 satisfying

ε∗ = sup
z∈Z
‖E∗(z)‖. (13)

There have been several attempts [25]–[28] to estimate ε∗

and to show that it can be reduced by improving the design

and learning technique of the neural network, and also by
increasing the size of the dataset (X,Z) (see [29]).

Using (12), we can write the KKL observer (4) as
˙̂z = Aẑ +By; ẑ(0) = ẑ0
x̂ = T̂ ∗η (ẑ) + E∗(ẑ) (14)

where the approximation error E∗(ẑ) is an unknown signal.

Proposition 2. Subject to Assumptions 1 and 2, there exist
positive constants b, c > 0 such that the estimation error
x̃(t) = x̂(t)− x(t) of (14) satisfies

‖x̃(t)‖ ≤ be−ct + ε∗, ∀t ∈ R≥0 (15)

where ε∗ is given in (13).

Proof. We have

‖x̃(t)‖ = ‖T̂ ∗η (ẑ(t))− T ∗(z(t))‖
= ‖T̂ ∗η (ẑ(t))− T̂ ∗η (z(t))− E∗(z(t))‖
≤ ‖T̂ ∗η (ẑ(t))− T̂ ∗η (z(t))‖+ ‖E∗(z(t))‖
≤ `∗‖ẑ(t)− z(t)‖+ ε∗ (16)

where the first step is due to (12), the second step is due
to the triangle inequality, and the last step is due to (11)
and (13). Since A is Hurwitz, there exist a, c > 0 such that
‖ẑ(t)− z(t)‖ ≤ ae−ct, which completes the proof.

B. Robustness to Model Uncertainties and Sensor Noise
Consider a nonlinear system

ẋ = f(x) + w; y = h(x) + v (17)

where w(t) ∈ Rnx and v(t) ∈ Rny are unknown but
essentially bounded signals. In (17), the functions f(·) and
h(·) represent the model of the system, and w(t) represent
model uncertainties and v(t) the sensor noise.

We remark that the design method of KKL observers as
presented in Sections II and IV remains the same for (17).
However, to better attenuate the effects of uncertainties and
noise, one can seek an H∞-based design [30] of matrices
A and B in the linear part of the KKL observer under the
constraints that A is Hurwitz and (A,B) is controllable.

Proposition 3. Let Assumptions 1 and 2 hold. Then, if
‖w‖L∞ ≤ w̄ and ‖v‖L∞ ≤ v̄, for every t ∈ R≥0, there exist
positive constants b, c, α1, α2 > 0 such that the estimation
error x̃(t) = x̂(t)− x(t) of (14) satisfies

‖x̃(t)‖ ≤ be−ct + α1w̄ + α2v̄ + ε∗, ∀t ∈ R≥0 (18)

where ε∗ is given in (13).

Proof idea. The proof follows from (16) and the linear
analysis of the error ẑ(t)− z(t).

Given that the model uncertainties and sensor noise are
bounded, the above result shows that the KKL observer is
robust in terms of input-to-state stability of the estimation
error; see [19]. Moreover, it can as well be shown that the
constants b, c, α1, α2 in (18) are computable because of the
linear dynamics of the KKL observer.

C. Assessing the Observer’s Generalization Capability

Another key contribution in this paper is to evaluate the
performance of the learned KKL observer even when the
true initial condition of the system in real-time is far from
the training region X train. To this end, we define a metric
quantifying the generalization capability of the trained model
in Figure 1 for the KKL observer. This metric compares the
estimation errors resulting from the training and the testing
phases, and describes how the error varies as a function of
the distance between the two sets X train and X test.

Let the testing region X test ⊂ X \ X train, and consider
a set of points {ξj0 : j = 1, . . . , q} ∈ X test that, for every
j ∈ {1, . . . , q}, satisfy d(ξj0,X train) = δ, for some δ > 0,
where

d(ξj0,X train)
.
= inf
x0∈X train

‖x0 − ξj0‖.

The empirical generalization error Gemp(δ) is defined as

Gemp(δ)
.
= |Etest(δ)− Etrain| (19)

where

Etest(δ)
.
=

1

q

q∑
j=1

1

τ

τ−1∑
k=0

‖x̂(tk; ξ̂j0)− x(tk; ξj0(δ))‖2

‖x(tk; ξj0(δ))‖2

Etrain
.
=

1

p

p∑
i=1

1

τ

τ−1∑
k=0

‖x̂(tk; x̂i0)− x(tk;xi0)‖2

‖x(tk;xi0)‖2

with ξ̂j0 and x̂i0 chosen sufficiently close to ξj0(δ) and xi0,
respectively, to avoid the errors accumulated in the observer’s
transient. Notice that Etest denotes the normalized mean
estimation error variance of multiple test trajectories initial-
ized at δ-distance from X train, whereas Etrain denotes the
normalized mean estimation error variance of all the training
trajectories.

In short, during the testing phase, we select q initial
points ξj0 that are δ-distant from the training region, where
δ ∈ {δ1, . . . , δm} with 0 < δ1 < · · · < δm. Then, for
each δi, the change in the normalized testing error variance
Etest(δi) provides an empirical quality measure (19) on the
generalization capability of the learned KKL observer.

D. Discussion on the Observer’s Generalization Capability

Since Assumptions 1 and 2 ensure uniform injectivity of
T , and T satisfies the PDE (3), the inverse T ∗ exists and
is unique. Thus, the data samples used in the training are
of the form (x, T (x)) and (z, T ∗(z)), which entails that the
problem (10) is a realizable learning task that is probably
approximately correct (PAC) learnable [31]. Then, one of
the sources for non-zero generalization error is the fact that
the training data (X,Z) induced loss Lθ,η(X,Z) in (7) is an
approximation of the actual loss

L̄θ,η(x, z)
.
=

∫
X

∫ T

0

‖z(t; T (ξ))− T (x(t; ξ))‖

+χ‖x(t; ξ)− T ∗(T (x(t; ξ)))‖dt dµ(ξ)

where µ is a measure on X .

In our formulation, an unlimited amount of synthetic data
can be generated using the method described in Section IV-A,
which enables one to enhance the generalization capability
of the learned KKL observer and improve its performance.
However, it is not practical to utilize arbitrarily large amount
of data for training. Therefore, under the same training
data size, a key feature that makes the supervised PINN to
have better generalization capability than the neural network
architectures of [14]–[16] is the regularization with the PDE
(3), which reduces the search space of the hypothesis and
avoids overfitting on the training data.

In the unsupervised AE architecture of [16], the neural
network is also regularized by the PDE (3). However, unlike
(7), the loss function of [16] doesn’t include additional
regression term that accounts for the deviation between zi(tk)
and T̂θ(xi(tk)). This is very important because without the
explicit supervision to connect the system’s state space X
to the observer’s state space Z , the AE will minimize the
reconstruction loss on a limited number of training samples
xi(tk), which may belong to a larger hypothesis space. Thus,
the unsupervised AE of [16] makes the neural network overfit
upon the partial training data, i.e., only in the x-domain,
and hinders the generalization on the unseen data. In the
extreme case, without the PDE regularization, if the decoder
is complex enough, one could essentially recover the x
sample even from noise, and the learned left inverse T̂ ∗η can
as well be arbitrary [32].

VI. EXPERIMENTATION AND TESTING

Performance of the proposed supervised PINN-based KKL
observer is numerically tested under different scenarios.
First, we test its performance under approximation errors
when the state trajectory is initialized outside the training
region X train. Second, we test its performance under model
uncertainties and sensor noise and demonstrate the robustness
of the proposed observer. Third, we examine the estimation
error trajectories for multiple experiments where the system’s
state is always initialized randomly outside X train. We show
that the proposed supervised PINN-based KKL observer
demonstrates better performance than 1) supervised NN [14]–
[16] and 2) unsupervised AE [16]. Finally, we compare
the empirical generalization error resulting from all these
techniques and demonstrate that our method exhibits better
generalization capabilities.

For the experimentation and testing, we consider the
following nonlinear oscillators:

• Reverse Duffing oscillator

ẋ1 = x32, ẋ2 = −x1; y = x1. (20)

• Rössler attractor

ẋ1 = −x2 − x3, ẋ2 = x1 + ax2
ẋ3 = b+ x3(x1 − c); y = x2

(21)

where the parameters a = 0.2, b = 0.2, and c = 5.7.

A. Experimental Setup for Training and Testing

For both (20) and (21), we follow the data generation
and sampling procedure described in Section IV-A. For
reverse Duffing oscillator, X train = [−1, 1]2. For Rössler
attractor, X train = [−1, 1]3. We generate {x10, ..., x

p
0} using

Latin hypercube sampling method. The initial conditions
{z10 , . . . , z

p
0} are generated using Remark 1(ii). Runge-Kutta-

4 is used as the numerical ODE-solver for (20)-(21) over a
time horizon [0, 50].

The architecture of both neural networks T̂θ and T̂ ∗η in
Figure 1 is chosen to be a multi-layer perceptron with five
hidden layers, where each layer has 50 neurons with ReLU
activation function. We use normalization and denormaliza-
tion layer for data standardization in order to facilitate the
training. Training is further facilitated by a learning rate
scheduler. All models in this section are trained using the
Adam optimization algorithm with a batch size of 32. In
the testing stage, initial conditions are generated outside the
training domain, from which (20) and (21) are then simulated.
For the code and other details, please refer to our repository4.

The matrices of the KKL observer are chosen as follows:

A = −diag(1, 2, . . . , nz), B = 1nz

where nz = ny(2nx + 1), diag() denotes a diagonal matrix,
and 1nz is a vector of ones with dimensions nz × 1. Notice
that ny = 1 for both (20) and (21).

B. Experimental Results

In the following, we present several experimental results
and compare our method supervised PINN with supervised
NN [14]–[16] and unsupervised AE [16].

1) Testing the supervised PINN-based KKL observer out-
side the training region: We train the supervised PINN inside
the training regions for both (20) and (21). We test it outside
the training region. Figure 2a demonstrates the estimation
performance of the learned KKL observer when the true sys-
tem is initialized inside the training region X train and outside
the training region. Despite an expected deterioration of the
state estimation outside the training region, the observer’s
performance is satisfactory as it is able to follow the true
state with a small error.

2) Testing the supervised PINN-based KKL observer un-
der model uncertainties and sensor noise: We randomly ini-
tialize the state trajectories inside the training region X train,
where the initial point is different from the initial points
in the training dataset X . We consider w(t) ∼ N (0, 0.1)
and v(t) ∼ N (0, 0.1) for (20), w(t) ∼ N (0, 1) and
v(t) ∼ N (0, 1) for (21). Figure 2b shows the true and
estimated state trajectories, and demonstrates that the learned
KKL observer is stable under uncertainties and noise as stated
in Proposition 3.

4https://github.com/Mudhdhoo/ACC_KKL_Observer

(a)

0 10 20 30 40 50
-1

0

1

0 10 20 30 40 50
-1

0

1

0 10 20 30 40 50
-10

0
10
20

0 10 20 30 40 50
-10

0
10
20

0 10 20 30 40 50
0

10

20

(b)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

(c)

Fig. 2: (a) Phase portrait of the estimation performance when the system is initialized inside and outside the training region.
(b) Estimation performance in the presence of model uncertainties and sensor noise. (c) Comparison of our method with
others in terms of the range of normalized estimation errors and their averages for 50 state trajectories initialized outside
the training region.

3) Estimation errors for multiple state trajectories initial-
ized outside the training region: We initialize the systems
(20) and (21) at 50 points that are randomly generated outside
the training region. We run the KKL observers that are
learned according to supervised NN, unsupervised AE, and
our method supervised PINN. To show the merits of each
learning scheme, we compare normalized estimation error
trajectories

ei(t) =
‖x̂i(t)− xi(t)‖
‖xi(t)‖

; i = 1, . . . , 50.

Figure 2c demonstrates the error ranges and the average
(
∑50
i=1 ei(t)/50) for each learning scheme. For the reverse

Duffing oscillator, our method yields lowest maximum and
average error for all times. For the Rössler attractor, the
overall performance of our method is better than both the
supervised NN and unsupervised AE. The supervised NN
performs worse in the beginning, which is before the bifur-
cation of the Rössler attractor, because it fails to capture some
trajectories that are initialized outside the training region. On
the other hand, the unsupervised AE performs worse after the
bifurcation because it is not very sensitive to changes in the
z-domain that correspond to the bifurcation in the x-domain.

4) Comparison of the empirical generalization error for
multiple learning schemes: We choose multiple initial points
outside the training region for each δi > 0 in the testing phase
as described in Section V-C. We only consider reverse Duff-
ing oscillator (20) for this experiment. We choose multiple

0 2 4 6 8
0

0.5

1

1.5

2

Fig. 3: Comparison of the empirical generalization error as
the initial state of reverse Duffing oscillator is at a distance
δ from the training region X train.

δi ∈ {0.5, 1, 1.5, . . . , 10}, and, for each δi, we choose 10
initial points in circular formation centered around [−1, 1]2

outside X train. Figure 3 illustrates the comparison of dif-
ferent learning schemes in terms of empirical generalization
error. For all δi, it can be seen that supervised PINN yields
smaller generalization errors.

VII. DISCUSSION AND FUTURE OUTLOOK

We proposed a novel supervised physics-informed learning
method to design Luenberger or KKL observers for au-
tonomous nonlinear systems. The proposed method learns the
nonlinear transformation map required to transform the sys-
tem to the observer’s coordinates and satisfies a certain PDE
constraint. Additionally, the inverse of the transformation
map is learned to obtain the state estimate in the original state
space. To learn both the transformation map and its inverse,
we trained a physics-informed neural network architecture
on synthetic data generated by numerically solving both
the system and the observer. The PDE constraint acts as
a physical invariant that regularizes the neural network,
reducing the hypothesis’s search space. We demonstrated that
the KKL observer designed with our method is robust to
neural network’s approximation error, model uncertainties,
and sensor noise. The proposed method also exhibits better
generalization properties than other methods due to the PDE
regularization and the regression loss in the observer’s coor-
dinates. We validated our results on reverse Duffing oscillator
and Rössler attractor.

While we discussed the generalization capability of the
proposed learning-based observer design method in detail,
theoretical guarantees on its generalizability remain an open
problem. Additionally, designing a KKL observer optimally
to improve its robustness to model uncertainties and sensor
noise is left for future work. We also recognize the potential
of alternative methods such as operator learning [33] to
learn the non-linear transformation map, which is a prospect
to be explored. Furthermore, the proposed method can be
extended beyond KKL observers to obtain the triangular form
of nonlinear systems required in designing high-gain and
backstepping observers. In conclusion, the proposed learning-
based observer design method can be a promising solution to
address the challenging problem of designing observers for
nonlinear systems.

REFERENCES

[1] D. G. Luenberger, “Observing the state of a linear system,” IEEE
Transactions on Military Electronics, vol. 8, no. 2, pp. 74–80, 1964.

[2] A. Shoshitaishvili, “Singularities for projections of integral manifolds
with applications to control and observation problems,” in Theory of
Singularities and its Applications. American Mathematical Society,
1990, pp. 295–333.

[3] ——, “On control branching systems with degenerate linearization,” in
IFAC Symposium on Nonlinear Control Systems, 1992, pp. 495–500.

[4] N. Kazantzis and C. Kravaris, “Nonlinear observer design using
lyapunov’s auxiliary theorem,” Systems & Control Letters, vol. 34,
no. 5, pp. 241–247, 1998.

[5] A. J. Krener and M. Xiao, “Nonlinear observer design in the siegel
domain,” SIAM Journal on Control and Optimization, vol. 41, no. 3,
pp. 932–953, 2002.

[6] G. Kreisselmeier and R. Engel, “Nonlinear observers for autonomous
Lipschitz continuous systems,” IEEE Transactions on Automatic Con-
trol, vol. 48, no. 3, pp. 451–464, 2003.

[7] V. Andrieu and L. Praly, “On the existence of a Kazantzis–
Kravaris/Luenberger observer,” SIAM Journal on Control and Opti-
mization, vol. 45, no. 2, pp. 432–456, 2006.

[8] V. Andrieu, “Convergence speed of nonlinear Luenberger observers,”
SIAM Journal on Control and Optimization, vol. 52, no. 5, pp. 2831–
2856, 2014.

[9] R. Engel, “Nonlinear observers for Lipschitz continuous systems with
inputs,” International Journal of Control, vol. 80, no. 4, pp. 495–508,
2007.

[10] P. Bernard, “Luenberger observers for nonlinear controlled systems,” in
2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, 2017, pp. 3676–3681.

[11] P. Bernard and V. Andrieu, “Luenberger observers for nonautonomous
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 64,
no. 1, pp. 270–281, 2018.

[12] V. Andrieu and P. Bernard, “Remarks about the numerical inversion of
injective nonlinear maps,” in 2021 60th IEEE Conference on Decision
and Control (CDC), 2021, pp. 5428–5434.

[13] P. Bernard, V. Andrieu, and D. Astolfi, “Observer design for
continuous-time dynamical systems,” Annual Reviews in Control, 2022.

[14] L. d. C. Ramos, F. Di Meglio, V. Morgenthaler, L. F. F. da Silva, and
P. Bernard, “Numerical design of Luenberger observers for nonlinear
systems,” in 2020 59th IEEE Conference on Decision and Control
(CDC), 2020, pp. 5435–5442.

[15] J. Peralez and M. Nadri, “Deep learning-based Luenberger observer
design for discrete-time nonlinear systems,” in 2021 60th IEEE Con-
ference on Decision and Control (CDC), 2021, pp. 4370–4375.

[16] M. Buisson-Fenet, L. Bahr, and F. Di Meglio, “Towards gain tuning for
numerical KKL observers,” arXiv preprint arXiv:2204.00318, 2022.

[17] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[18] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang,
and L. Yang, “Physics-informed machine learning,” Nature Reviews
Physics, vol. 3, no. 6, pp. 422–440, 2021.

[19] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state
stability property,” Systems & Control Letters, vol. 24, no. 5, pp. 351–
359, 1995.

[20] L. Brivadis, V. Andrieu, P. Bernard, and U. Serres, “Further remarks
on KKL observers,” HAL preprint HAL-03695863, 2022.

[21] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[22] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: Analysis and efficient estimation,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[23] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas,
“Efficient and accurate estimation of Lipschitz constants for deep
neural networks,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[24] M. Jordan and A. G. Dimakis, “Exactly computing the local Lips-
chitz constant of ReLU networks,” Advances in Neural Information
Processing Systems, vol. 33, pp. 7344–7353, 2020.

[25] J. Sokolić, R. Giryes, G. Sapiro, and M. R. Rodrigues, “Robust
large margin deep neural networks,” IEEE Transactions on Signal
Processing, vol. 65, no. 16, pp. 4265–4280, 2017.

[26] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generalization in deep
learning,” arXiv preprint arXiv:1710.05468, 2017.

[27] D. Jakubovitz, R. Giryes, and M. R. Rodrigues, “Generalization
error in deep learning,” in Compressed sensing and its applications.
Springer, 2019, pp. 153–193.

[28] Y. Cao and Q. Gu, “Generalization bounds of stochastic gradient
descent for wide and deep neural networks,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[29] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Ma-
chine Learning. MIT press, 2018.

[30] A. Zemouche, R. Rajamani, B. Boulkroune, H. Rafaralahy, and M. Za-
sadzinski, “H∞ circle criterion observer design for Lipschitz nonlinear
systems with enhanced LMI conditions,” in 2016 American Control
Conference (ACC), 2016, pp. 131–136.

[31] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[32] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves
et al., “Conditional image generation with PixelCNN decoders,” Ad-
vances in Neural Information Processing Systems, vol. 29, 2016.

[33] G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J. Pappas,
and P. Perdikaris, “Learning operators with coupled attention,” Journal
of Machine Learning Research, vol. 23, no. 215, pp. 1–63, 2022.

