
Event-triggered Pulse Control with Model Learning (if Necessary)

Dominik Baumann1,2, Friedrich Solowjow1, Karl Henrik Johansson2, and Sebastian Trimpe1

Abstract— In networked control systems, communication is
a shared and therefore scarce resource. Event-triggered control
(ETC) can achieve high performance control with a significantly
reduced amount of samples compared to classical, periodic
control schemes. However, ETC methods usually rely on the
availability of an accurate dynamics model, which is oftentimes
not readily available. In this paper, we propose a novel event-
triggered pulse control strategy that learns dynamics models if
necessary. In addition to adapting to changing dynamics, the
method also represents a suitable replacement for the integral
part typically used in periodic control.

I. INTRODUCTION

In modern engineering, control systems are often con-
nected over communication networks. Common examples for
these networked control systems (NCS) include automation
industry, where multiple plants have to be controlled often
by a remote controller, building automation, where sensors
and actuators are deployed to regulate the indoor climate, and
coordinated flight of a swarm of drones. Communication then
is a shared and therefore limited resource, thus, traditional,
periodic control approaches are not feasible.

In this paper, we present a new architecture for event-
triggered pulse control that quantifies model accuracy and, if
necessary, automatically identifies system dynamics through
learning. The decision, whether learning is necessary, is taken
by a learning trigger. The proposed framework can cope with
changing dynamics and load disturbances, that way replacing
the integrator from periodic control.

A block diagram of the approach is provided in Fig. 1. We
consider a plant with sensors and actuators, subject to process
noise and disturbances (v and ε), and input saturations umax.
Controller and actuator are connected over a communication
network. Since communication is a scarce resource, periodic
communication is not desirable and, therefore, we employ
an event-triggered design (block ‘State Trigger’). In case
of an event, we apply a pulse with length tinp to reset the
system to its equilibrium state. The pulse length naturally de-
pends on the system dynamics. To obtain an accurate model
of the system dynamics, we leverage system identification
techniques to learn the model from data. As learning may
be expensive, e.g., due to the involved computations, we
only learn a new model if necessary, for instance, in case
of a poor initial model or if the dynamics have changed.

1Intelligent Control Systems Group, Max Planck Institute
for Intelligent Systems, Stuttgart/Tübingen, Germany. Email:
dbaumann@tuebingen.mpg.de, fsolowjow@is.mpg.de, trimpe@is.mpg.de

2Division of Decision and Control Systems, KTH Royal Institute of
Technology, Stockholm, Sweden. Email: kallej@kth.se

This work was supported in part by the German Research Foundation
(DFG) within the priority program SPP 1914 (grant TR 1433/1-1), the Cyber
Valley Initiative, the IMPRS-IS, and the Max Planck Society.

Plant
(A,B,Q)

v, ε

SensorActuator

umax

State
TriggerController

Learning
Trigger

Model
Learning

u x

y

x if γctrl = 1

γctrl

γlearn

(A,B, ε)

tinp

(A,B,Q, ε)

Fig. 1. Block diagram of the proposed control design. Dashed lines
represent connections that are only active in case of an event.

This decision process is made by the ‘Learning Trigger’.
Based on a statistical analysis of the time between events,
the learning trigger decides whether the model of the system
dynamics is accurate enough. If not, learning of a new
model is triggered. We thus have two different triggers: the
state trigger (γctrl), which triggers communication of control
commands if necessary, and a learning trigger (γlearn), which
triggers learning in case of bad performance.

Contributions: We make the following contributions:

• A new architecture for event-triggered pulse control
that automatically learns dynamics model to cope with
changing dynamics;

• Development of a learning trigger for ETC, which
allows to automatically identify system dynamics if
necessary;

• Handling load disturbances by learning and compensat-
ing for them, thus replacing the integrator typically used
in periodic control in a way suitable for ETC.

Related work: Reducing communication is one key aspect
of NCS and has been addressed by introducing event-
triggered methods [1], [2]. While most of these approaches
are based on a dynamical model of the system, the model is
typically assumed to be given and not learned from data as
proposed herein.

The ‘Learning Trigger’ in Fig. 1 is based on a framework
developed in recent work [3]. There, ETL was introduced
to trigger learning experiments in event-triggered state esti-
mation (ETSE). Here, we extend this framework to control.
We look at a straightforward type of ETC, namely event-
triggered pulse control. In contrast to [3], which considered

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 792

a linear system perturbed only by Gaussian noise, we also
consider load disturbances herein.

Using Dirac inputs for ETC, as we do for developing
the learning trigger, has also been investigated in other
works on ETC such as [4]–[6]. However, the approximation
we propose to take into account input saturations has not
been discussed therein. Moreover, none of these references
considers learning approaches to cope with changing system
dynamics or disturbances.

The problem of finding a replacement for continuous or
periodic integral control that is suitable for ETC (e.g., to
deal with load disturbances) has for instance been addressed
in [7], where a disturbance observer is used. Instead of intro-
ducing a disturbance observer, we directly include the load
disturbances in the learning framework. As PID-controllers
are the most common controllers used in industry, event-
triggered PID-control has also been investigated starting
from [8]. A particular problem here is the replacement of
the integral part of the PID-controller [9]. Mostly, a network
between sensor and controller is considered, thus the main
problem for the integral part is the non-constant sampling
time of the event-triggered mechanism. In [10], this is dealt
with by explicitly taking into account the actual sampling
time instead of assuming a nominal, constant sampling time.
A different approach is presented in [11], where the event
detector is connected to the sensor. Instead of looking at the
absolute value of the integrator, the difference between the
current value and the value at the last triggering instant is
used to trigger communication, as a constant value of the
integrator indicates a control error of zero. Replacing the
integrator through model learning has not been proposed yet.

Event-triggered controllers can also be learned from data
without learning a model. Such approaches are proposed,
for example, in [12]–[15]. In contrast to those approaches,
we use a specific control design and use learning to obtain
accurate dynamic models.

Outline: In the following section, we formulate the prob-
lem setting. After that, we introduce the approach for event-
triggered pulse control and discuss the concrete implemen-
tation of the learning trigger in Sec. III. In Sec. IV, we will
present a numerical study and conclude with a discussion in
Sec. V.

II. PROBLEM FORMULATION

We consider linear, time-invariant systems of the form

dx(t) = Ax(t) dt+Bu(t) dt+ εdt+QdW (t), (1)

with the state x(t) ∈ Rn, the control input u(t) ∈ Rm,
the constant load disturbance ε ∈ Rn, and W (t) ∈ Rn a
multidimensional Wiener process representing process noise.
We assume that we can measure the full state, thus, y = x
in Fig. 1.

As depicted in Fig. 1, control commands have to be
transmitted over a communication network. We thus employ
an event-triggered design, with the block ‘State Trigger’
implemented by

γctrl = 1 ⇐⇒ ‖x(t)‖2 ≥ δ, (2)

where δ is a user-defined threshold and is essentially the
deviation from the equilibrium that we are willing to tolerate.
In case of an event, i.e., γctrl = 1, we apply a pulse to reset
the system to its equilibrium,

u(t) =

{
0 if t− tk > tinp ∨ tk = 0

φumax

(
Â, B̂, ε̂, xtk

)
if t− tk ≤ tinp ∧ tk 6= 0,

(3)

where φumax
is the pulse generating policy, (Â, B̂, ε̂) captures

the model of the system dynamics, xtk is the state of the
system at the triggering instant tk, tinp is the pulse length
(see Fig. 1), and umax the maximum input the actuator can
apply. By applying a pulse with appropriate length, we can
reset the system to its equilibrium state. This, however, re-
quires that we have a model that accurately describes the true
system dynamics. We obtain this model, and adapt it in case
the dynamics change, via model learning techniques. Model
learning may be expensive due to the involved computations
or required exploration, therefore, we only want to learn in
case the estimated dynamics (Â, B̂, ε̂) deviate too much from
the true dynamics (A,B, ε). Since the true dynamics are
unknown, the decision needs to be based on some implicit
feature, which will be the communication signal. Developing
such a learning scheme for ETC is the main objective of this
paper.

III. EVENT-TRIGGERED PULSE CONTROL WITH MODEL
LEARNING

In this section, we present the event-triggered control and
learning framework. We start with a derivation of the learning
trigger assuming Dirac impulse control, then show how we
learn the system dynamics, and finally detail practical pulse
control (with bounded pulses) for first-order systems.

A. Event-triggered Learning for Control

The learning trigger is based on the framework presented
in [3] for ETSE. Here, we extend this framework to ETC. For
the theoretical analysis, we assume a control strategy based
on Dirac impulses, i.e., here, we will ignore the assumption
of having an input saturation at the actuator. Using Dirac
impulses, we can, similarly as in ETSE [3], reset the error
to zero at communication times. We then have a control law
of the form

u(t) = Fδtk(t), (4)

where F is the control gain and δtk the Dirac impulse. In
particular, the control input is zero apart from the triggering
times tk, where tk corresponds to γctrl = 1 in (2). To further

793

analyze this scheme, we write (1) in integrated form,

x(tk) =

tk∫
tk−1

eA(tk−t)Bu(t) dt

+

tk∫
tk−1

eA(tk−t)ε dt+

tk∫
tk−1

eA(tk−t)QdW (t)

︸ ︷︷ ︸
:=N(tk)

= eA(tk−tk)BF +N(tk)

= BF +N(tk),

(5)

where we assume that the process starts in x(tk−1) = 0
and N(tk) is the measurement we get before applying
the impulse. By setting (5) to zero we can (assuming B
invertible) show that F = −B−1N(tk) resets the system to
zero. Implementing such a control law then also fulfills the
prior assumption of x(tk−1) = 0, as the system starts in zero
after every triggering instant. In Sec. III-C, we will drop the
assumption of being able to apply Dirac impulses as inputs
and instead apply pulses with the maximum input umax for
a given time.

Considering a control law as proposed in (4), we thus have
a random process that always starts in zero. This is only true,
if the input matrix B is known exactly. In that case, the sole
cause of an error would be propagated noise and the load
disturbance ε. Therefore, in case of no communication, we
obtain

x(t) =

t∫
0

eA(t−s)εds+

t∫
0

eA(t−s)QdW (s). (6)

We can now define a stopping time τ as the first moment
the state crosses the threshold δ, which resets the error to
zero,

τ := inf{t : ‖x(t)‖2 ≥ δ}. (7)

The stopping times defined in (7) coincide with the time
between communication, hence, ‘stopping times’ and ‘inter-
communication times’ will be used synonymously hereafter.
We can now further define the expected value of these
stopping times, E[τ |x(0) = 0], which is the average inter-
communication time of the system. This expected value can
be obtained via Monte Carlo simulations (for a more detailed
discussion, see [3]).

If we had a perfect model of the system dynamics, the
average inter-communication times that we observe in the
system should approach the expected value of the stopping
time. If both values deviate by too much, we have evidence
that the model is inaccurate and can trigger learning of a new
model. Precisely, we define the learning trigger in Fig. 1 as

γlearn = 1 ⇐⇒

∣∣∣∣∣ 1

N

N∑
i=1

τi − E[τ]

∣∣∣∣∣ ≥ κ. (8)

In this equation, γlearn =1 indicates that a new model shall
be learned, E[τ] is approximated using Monte Carlo simula-
tions, i.e., E[τ]≈ 1

M

∑M
i=1 τ

sim
i , and τ1, τ2, . . . , τN define the

last N empirically observed inter-communication times. Due
to the randomness of the process, it can still happen that we
trigger learning despite the model being perfect. Assuming
that the stopping times are bounded by τmax, the confidence
level can be quantified using Hoeffding’s inequality [16] and
influenced through the design parameter η.

Theorem 1: Let the parameters η, N , M > N , and τmax

be given, τ1, . . . , τN and τ sim1 , . . . , τ simM independent and
identically distributed, and assume a perfect model. For

κ = τmax

√
− 2

N
ln
η

4
(9)

we obtain

P

[∣∣∣∣∣ 1

N

N∑
i=1

τi −
1

M

M∑
i=1

τ simi

∣∣∣∣∣ ≥ κ
]
< η. (10)

Proof: We compare stopping times obtained via Monte
Carlo simulations with stopping times observed from the real
process. In both cases, we have a random process that always
starts in zero. This is the same setting as investigated in [3],
thus, the theorem can be proven as shown therein.

Boundedness of the stopping times can easily be ensured
in practice by applying a control input the latest when
τmax is reached. The confidence parameter η then basically
defines the tradeoff between accepting an inaccurate model
or triggering learning despite the model being perfect. Intu-
itively, η defines the probability that the error κ is observed,
while empirical and expected stopping times are drawn from
the same distribution (i.e., we have a perfect model). If
this probability is below a predefined threshold, we trigger
learning of a new model.

B. Model Learning

For the derivation of the stopping times as well as for the
final controller design, we need knowledge of the full system
dynamics (matrices A and B) and the load disturbance ε. To
calculate the stopping times, e.g., via Monte Carlo simula-
tions, we additionally need knowledge of the process noise
variance Q. To estimate the model, we rewrite system (1) in
discrete time,

x(k + 1) = Adx(k) +Bdu(k) + ε+ v(k)

=
(
Ad Bd ε

)x(k)
u(k)

1

+ v(k),
(11)

with Ad, Bd the discrete-time system and input matrix,
respectively, and v(k) the discrete-time process noise. That
way, we can learn the system dynamics with standard least-
squares techniques, as we will demonstrate in Sec. IV.

Having knowledge of the load disturbances, we can in-
corporate them in the control design in Sec. III-C. This
represents a suitable solution to replace the integral part of
standard, periodic controllers.

Remark 1: Another problem that may be considered with
this approach is the knowledge of the zero-level of the
system. We are considering an equilibrium at x(t) = 0, but
the measurements are actually voltage signals from a sensor

794

and what zero means for that system is not clear from the
beginning. We can model this as a sensor bias, i.e., we would
have the following system dynamics

x(k + 1) = Adx(k) +Bdu(k) + v(k) (12a)
y(k) = x(k) + ξ, (12b)

where ξ is the sensor bias. Rewriting this yields

y(k + 1) = x(k + 1) + ξ

= Ad(y(k)− ξ) +Bdu(k) + v(k)

=
(
Ad Bd (I −Ad)ξ

)y(k)
u(k)

1

+ v(k).

(13)

Thus, we can identify the system dynamics and the sensor
bias via least-squares techniques. Estimating both, a sensor
bias and a load disturbance, is, however, not possible, as they
are not distinguishable given the output data.

C. Implementation of Event-triggered Pulse Control with
Input Saturation

If the state of the system exceeds the threshold δ, we want
to quickly reset it to zero. Application of Dirac impulses is
not compatible with our assumption of an input saturation at
the actuator.

Instead of applying Dirac impulses, we propose to apply
the maximum input and vary the duration of the pulse.
This has two main benefits: 1) The input cannot exceed the
saturation and, thus, will drive the system state to its desired
value, as it will not be limited by the saturation; 2) The
system will be driven to zero as fast as possible, that way
coming as close to the idealized Dirac input as possible. This
represents a straightforward approach to lift the idea of ETL
to the ETC setting. For the derivation of the length of the
pulse, we will restrict ourselves to first-order systems (i.e.,
n = 1 in (1) with scalar variables a and b) and later comment
on extensions to higher-order systems.

To derive the length of an impulse, we look at the system
equation in integrated form. If no event is triggered, i.e., if
the system is close to its desired state, we have u(t) = 0. At
triggering times tk we apply the maximum input,

x(t) = eatx(tk) +

t∫
tk

ea(t−s)(bumax + ε) ds. (14)

The input shall be applied for long enough such that the
state becomes zero. We thus set (14) to zero and solve for t
(setting tk = 0),

0
!
= eatx(0) +

t∫
0

ea(t−s)(bumax + ε) ds,

which leads to

tinp =
1

a
ln

(
bumax + ε

ax(0) + bumax + ε

)
. (15)

In (14) and (15), we assumed the noise to be zero during
the application of the pulse. For the Dirac impulse, this

holds, as the time of the application tends to zero. Here,
we explicitly derive how long the input will be applied,
hence, the system will during this time also be excited by
noise and we will not be able to exactly drive it to zero. We
take this into account when computing the stopping times.
Instead of starting at zero, we consider a process that starts
in x(0) ∼ N (0,Σ0), with variance Σ0.

Remark 2: For a system (1) with state dimension n > 1,
a single pulse will generally not be sufficient to drive the
state to zero. Instead, we would have to change between
maximum and minimum input, which leads to a bang-
bang controller [17]. Then, tinp in Fig. 1 would be a
vector containing the switching points. Different algorithms
have been proposed in literature to find these switching
points [18], [19]. This paper is a first approach towards
combining the ideas of ETL with ETC and the extension
to bang-bang type of controllers is beyond the scope of this
work. Generalizations to such or other control structures are,
however, certainly important questions for future work.

IV. NUMERICAL STUDY

For the numerical study, we will consider a collection
of first-order processes. For each system, we assume a
remote controller that is colocated with the sensor, but needs
to transmit its actuation commands over a communication
network, where all controllers share the same network. For
all examples, we assume a threshold of δ = 0.02. As
parameters of the learning trigger, we choose a confidence
level η = 0.05, N = 2000, M = 10 000, and τmax = 1 s.
According to Theorem 1, we then obtain κ ≈ 0.066.

In [20, p. 227], a batch of process models that are
common in process industry is collected. Among others,
typical parameters for first-order systems with time delay
are provided. We will start the numerical investigation of
the proposed framework in Sec. IV-A by looking at these
models, but we neglect the time delay. The models have
stable dynamics as is a common property in process industry.
To showcase the capability of the framework to also deal
with unstable systems, we will consider such examples in
Sec. IV-B. For all investigated systems, we will consider
additional process noise and load disturbances. We model
the load disturbance to enter with the input, similar as for
instance done in [21, p. 54].

As in (1), we assume continuous-time systems

dx(t) = ax(t) dt+ b(u(t) + ε) dt+QdW (t), (16)

which we discretize with a sample time of 1 ms. The sample
time is not equal to the update interval of the communication
system and is only limited by the maximum frequency of the
timers in the processors used for controller and actuator. A
fine discretization is necessary, as we will derive a continuous
pulse length. The finer the discretization is, the more accurate
is the application of the pulse (and the earlier we notice if
the system is outside the tolerable range).

795

0 2,000 4,000 6,000 8,000 10,000 12,000

100

200

300

400

500
change of ε

change of (a, b, ε)

model
learning

Number of stopping times

In
te

r-
co

m
m

un
ic

at
io

n
tim

e
(m

s)

Fig. 2. Average inter-communication times during one simulation for Ex-
ample 1. The solid line shows the empirically observed inter-communication
times computed as a moving average over 2000 stopping times. The moving
average is reset in case learning is triggered and when a new model has
been learned. The dashed line indicates the expected inter-communication
times with confidence interval ±κ highlighted in gray. The dynamics change
after 2000 and after 7000 stopping times. The points in time where new
system matrices are learned are marked with vertical, red, dotted lines. In
both cases, this causes a decrease in the inter-communication time (i.e.,
more communication). The inter-communication time increases again after
learning new matrices.

A. Stable Dynamics

As a proof of concept, we first consider one specific
from [20] (note that the first-order systems provided therein
always lead to a = b):

Example 1: System (16) with a = b = −0.01, process
noise Q = 10−4, load disturbance ε = 5, and maximum input
umax = 100. In case learning is triggered, we always collect
data for 200 s and then use these data points to identify the
system dynamics.

In Fig. 2, the average and expected inter-communication
times are shown. The average inter-communication times
are computed with a moving average over 2000 stopping
times, which we reset in case learning is triggered and
after deriving new system matrices. In the beginning, we
assume that we have an accurate model, hence, the observed
inter-communication times approach the expected ones. After
2000 stopping times, we set the load disturbance to ε=10. As
expected, the inter-communication times decrease and learn-
ing is triggered. After learning (first vertical line in Fig. 2),
the empirical inter-communication times again approach the
expected ones and we reduce communication. In a second
change, after 7000 stopping times, we have ε = 20 and
a = b = −0.05. Similar as before, this leads to a decrease
of the average inter-communication time and learning is
triggered. Having learned new dynamics (second vertical line
in Fig. 2), the empirical inter-communication times again
approach the expected ones, i.e., average communication is
reduced through learning.

We now consider the case where the initial matrices that
we have of the process are wrong. Both, nominal and true
dynamics of the systems are again taken from [20]:

Example 2: Two systems of the form (16) with nominal
dynamics a = b ∈ {−0.1,−1}, load disturbances ε ∈

TABLE I
COMPARISON OF THE AVERAGE INTER-COMMUNICATION TIMES FOR

EXAMPLE 2 BEFORE AND AFTER LEARNING. SYSTEM 1 IS SHOWN IN

THE LEFT COLUMN, SYSTEM 2 IN THE RIGHT.

a, b Before After a, b Before After
−10 1 ms 21 ms −0.25 1 ms 80 ms
−4/3 1 ms 39 ms −0.05 69 ms 132 ms
−0.5 114 ms 215 ms −0.02 85 ms 431 ms
−0.25 111 ms 428 ms −0.01 62 ms 384 ms
−1/6 101 ms 321 ms −0.005 115 ms 850 ms

TABLE II
COMPARISON OF THE AVERAGE INTER-COMMUNICATION TIMES FOR

EXAMPLE 3 BEFORE AND AFTER LEARNING.

System Before After System Before After
1 44 ms 239 ms 6 128 ms 271 ms
2 136 ms 349 ms 7 56 ms 240 ms
3 107 ms 283 ms 8 55 ms 219 ms
4 135 ms 256 ms 9 89 ms 279 ms
5 163 ms 363 ms 10 34 ms 273 ms

{0.1, 1}, Q = 10−4, and umax ∈ {1, 100}. For the true
dynamics, a and b are given in Table I, the noise variance and
load disturbance are sampled from uniform distributions over
the intervals Q ∈ [10−4, 10−3], ε ∈ [0.1, 0.2] (for system 1),
and ε ∈ [1, 5] (for system 2). In case learning is triggered, we
use all data collected so far to identify the system dynamics.

The inter-communication times before and after learning
the dynamics are given in Table I. It can clearly be seen that
learning helps in lowering communication.

B. Unstable Dynamics

For the investigation of systems with unstable dynamics,
we look at the following system:

Example 3: System (16) with nominal dynamics a = 5,
b = 3, ε = 0.01, Q = 10−4, and maximum input umax = 1.
The true dynamics are sampled from random distributions
over the intervals a ∈ [1, 10], b ∈ [1, 2], ε ∈ [0.01, 0.02], and
Q ∈ [10−4, 10−3]. As in Example 2, we use all data we have
collected so far to identify a new model in case learning is
triggered.

In Table II, we compare the average inter-communication
times of all systems before and after deriving new system
matrices. For all of them, we observe a significant increase
in the inter-communication times after learning, i.e., commu-
nication is reduced. This demonstrates that the approach is
also suitable for unstable systems.

In Fig. 3, one specific system from Example 3 is shown
before (Fig. 3a) and after (Fig. 3b) learning new system
matrices. Due to the error in the initial matrices, the system
is not reset to zero with the pulses before learning and, thus,
new control inputs have to be generated very frequently.
After learning, the pulse length is such that the system
is successfully reset, which also results in increased inter-
communication times, and, therefore, less communication.
This is especially emphasized as in Fig. 3a, before learning,
we show only 1 s, while in Fig. 3b we show 2 s and still
observe far less pulses.

796

−0.02

0

0.02
x

0.5 1 1.4
−1

−0.5

0

0.5

1

t (s)

u

(a) Before learning

100 101 102

t (s)

(b) After learning

Fig. 3. Performance of one specific system of Example 3 before (left)
and after (right) learning. It can be seen that before learning, the pulses
are too short and the system is not reset to zero, while after learning the
pulse length is appropriate. Further, communication is significantly reduced
through learning.

The study reveals that the proposed architecture enables
us to increase inter-communication times through learning.
We are able to learn system dynamics and subsequently reset
the state of the system to zero in case it leaves its tolerable
range. Through learning load disturbances, the architecture is
a suitable replacement for integral control in event-triggered
settings.

V. CONCLUSION

In NCS, communication is a scarce and limited resource.
In this work, we presented a framework for event-triggered
pulse control for NCS. Most common event-triggered control
approaches rely on the availability of an accurate dynamics
model. Contrary to that, the proposed framework does not
rely on this assumption, but uses model learning instead. As
learning is expensive (e.g., due to the involved computations),
we only learn if necessary using the ETL framework. By
observing the communication behavior, we quantify the
accuracy of the model and trigger learning of a new model
only in case the accuracy is not sufficient. The presented
control design respects input saturations and can also handle
load disturbances, thus essentially replacing the integral part
of common periodic controllers.

A numerical study demonstrates the applicability of the
approach and the benefit of learning the system dynamics.
After learning, we observe a significant increase in the inter-
communication time. However, the presented examples are
first-order systems. While we have outlined how higher-order
systems could be treated (Remark 2), the actual extension to
such systems is an interesting topic for future work. More-
over, we assumed that we are able to perfectly measure the
full state of the system. Incorporating Gaussian measurement
noise is already possible with the presented approach. How

to extend the ETL framework to partial state measurements
is subject to ongoing research.

In this work, we proposed for the first time to trigger
model learning experiments in ETC to adapt to changes in the
dynamics. The learning trigger compares the expected and
the observed time between communication. While this is an
intuitive approach, in some cases this trigger does not detect
disturbed models. A more robust behavior can be achieved
by triggering on the full distribution, e.g., via a Kolmogorov-
Smirnoff test, which is subject of current research [22].

REFERENCES

[1] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An intro-
duction to event-triggered and self-triggered control,” in 51st IEEE
Conference on Decision and Control, Dec 2012.

[2] M. Miskowicz, Event-Based Control and Signal Processing. CRC
Press, 2016.

[3] F. Solowjow, D. Baumann, J. Garcke, and S. Trimpe, “Event-triggered
learning for resource-efficient networked control,” in American Control
Conference, 2018.

[4] K. J. Åström, “Event based control,” in Analysis and design of
nonlinear control systems. Springer, 2008.

[5] T. Henningsson, E. Johannesson, and A. Cervin, “Sporadic event-based
control of first-order linear stochastic systems,” Automatica, vol. 44,
no. 11, 2008.

[6] X. Meng and T. Chen, “Optimal sampling and performance com-
parison of periodic and event based impulse control,” IEEE Trans.
Automat. Contr., vol. 57, no. 12, 2012.

[7] A. Cervin and K. J. Åström, “On limit cycles in event-based control
systems,” in 46th IEEE Conference on Decision and Control, 2007.

[8] K.-E. Årzén, “A simple event-based PID controller,” IFAC Proceedings
Volumes, vol. 32, no. 2, 1999.

[9] J. Sánchez, A. Visioli, and S. Dormido, “Event-based PID control,” in
PID Control in the Third Millennium. Springer, 2012.

[10] S. Durand and N. Marchand, “Further results on event-based PID
controller,” in European Control Conference, 2009.

[11] M. Rabi and K. H. Johansson, “Event-triggered strategies for industrial
control over wireless networks,” in 4th Annual International Confer-
ence on Wireless Internet, 2008.

[12] K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control
algorithm for continuous-time linear systems with optimal perfor-
mance,” Automatica, vol. 87, 2018.

[13] X. Zhong, Z. Ni, H. He, X. Xu, and D. Zhao, “Event-triggered
reinforcement learning approach for unknown nonlinear continuous-
time system,” in 2014 International Joint Conference on Neural
Networks, July 2014.

[14] X. Yang, H. He, and D. Liu, “Event-triggered optimal neuro-controller
design with reinforcement learning for unknown nonlinear systems,”
IEEE Trans. Syst., Man, Cybern., Syst., 2018.

[15] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforce-
ment learning for event-triggered control,” in 57th IEEE Conference
on Decision and Control, Dec. 2018.

[16] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58,
no. 301, 1963.

[17] R. Bellman, I. Glicksberg, and O. Gross, “On the bang-bang control
problem,” Quarterly of Applied Mathematics, vol. 14, no. 1, 1956.

[18] C. Y. Kaya and J. L. Noakes, “Computations and time-optimal
controls,” Optimal Control Applications and Methods, vol. 17, no. 3,
1996.

[19] J. Wen and A. Desrochers, “An algorithm for obtaining bang-bang
control laws,” Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 109, no. 2, 1987.

[20] K. J. Åström and T. Hägglund, Advanced PID control. ISA-The
Instrumentation, Systems, and Automation Society Research Triangle ,
2006, vol. 461.

[21] ——, PID controllers: theory, design, and tuning. Instrument society
of America Research Triangle Park, NC, 1995, vol. 2.

[22] F. Solowjow and S. Trimpe, “Event-triggered learning,” under review,
available at https://is.mpg.de/publications/solowjowetl19.

797

