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Computing Probabilistic Controlled
Invariant Sets
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Abstract—This article investigates stochastic invariance
for control systems through probabilistic controlled in-
variant sets (PCISs). As a natural complement to robust
controlled invariant sets (RCISs), we propose finite-, and
infinite-horizon PCISs, and explore their relation to RICSs.
We design iterative algorithms to compute the PCIS within
a given set. For systems with discrete spaces, the compu-
tations of the finite-, and infinite-horizon PCISs at each iter-
ation are based on linear programming, and mixed integer
linear programming, respectively. The algorithms are com-
putationally tractable, and terminate in a finite number of
steps. For systems with continuous spaces, we show how
to discretize the spaces, and prove the convergence of the
approximation when computing the finite-horizon PCISs. In
addition, it is shown that an infinite-horizon PCIS can be
computed by the stochastic backward reachable set from
the RCIS contained in it. These PCIS algorithms are appli-
cable to practical control systems. Simulations are given
to illustrate the effectiveness of the theoretical results for
motion planning.

Index Terms—Probabilistic controlled invariant set
(PCIS), reachability analysis, stochastic control systems.

I. INTRODUCTION

A. Motivation and Related Work

INVARIANCE is a fundamental concept in systems and
control [1]–[3]. A controlled invariant set captures the region

where the states can be maintained by some admissible control
inputs. Robust controlled invariant sets (RCISs) are defined for
control systems with bounded external disturbances and address
the invariance despite any realization of the disturbances. In the
past decades, there have been lots of research results on RCISs
and their computations [4]–[6]. This article studies probabilistic
controlled invariant sets (PCISs), which is a natural complement
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to RCISs suitable in many applications. A PCIS is a set within
which the controller is able to keep the system state with a
certain probability. Such sets not only alleviate the inherent
conservatism of RCISs by allowing probabilistic violations but
also enlarge the applications of RCISs by being able to address
unbounded disturbances. The study of PCISs is motivated by
safety-critical control [7], stochastic model predictive control
(MPC) [8], [9], reliable control [10], [11], and relevant applica-
tions, e.g., air traffic management systems [12], [13] and motion
planning [14].

A question at the heart of this article is
Given a set Q and a parameter 0 ≤ ε ≤ 1, how to compute a

set Q̃ ⊆ Q that is invariant with probability ε?
To the best of authors’ knowledge, this question has not been

explored up to now. One essential component in iterative ap-
proaches on computing RCISs is to compute the robust backward
reachable set, in which each state can be steered to the current
set by an admissible input for all possible uncertainties [4]–[6].
The PCIS computation in this article follows the same idea, but
the robust backward reachable set is replaced with the stochastic
backward reachable sets which require different mathematical
tools. Some challenges related to such an approach are high-
lighted as follows:

1) how to make it tractable to compute the stochastic back-
ward reachable set, in particular for systems with contin-
uous spaces?

2) how to mitigate the conservatism when characterizing
the stochastic backward reachable set subject to the pre-
scribed probability?

3) how to guarantee convergence of the iterations?
Controlled invariant sets have recently been extended to

stochastic systems. In [18], a target set, which is similar to the
PCIS of this article, is used to define stabilization in probability.
In [10], a reliable control set, another similar notion to a PCIS, is
used to guarantee the reliability of Markov-jump linear systems.
The reliability is further studied for such systems with bounded
disturbances in [11]. A definition of PCIS for nonlinear systems
is provided in [15] by using reachability analysis. It is later
applied to portfolio optimization [19]. Another definition of
probabilistic invariance originates from stochastic MPC [16]
and captures one-step invariance. In [16], an ellipsoidal approx-
imation is given for linear systems with specific uncertainty
structure. Similar invariant sets are used in [20] to construct
a convex lifting function for linear stochastic control systems.
A definition of a probabilistic invariant set is proposed in [17]
and [21] for linear stochastic systems without control inputs.
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TABLE I
COMPARISONS BETWEEN THIS ARTICLE AND OTHER WORK

This definition captures the probabilistic inclusion of the state
at each time instant. A recent work [22] explores the correspon-
dence between probabilistic and robust invariant sets for linear
systems. In [17] and [21], polyhedral probabilistic invariant sets
are approximated by using Chebyshev’s inequality for linear
systems with Gaussian noise. Recursive satisfaction is usu-
ally computationally intractable for general stochastic control
systems.

The results of this article is built on the above-mentioned
work but make significant additions and improvements. Table I
summarizes the comparison between this article and the most
relevant literature.

1) All the abovementioned references focus on some specific
stochastic systems (e.g., linear or one-dimensional affine
nonlinear systems) or on some specific class of stochastic
disturbances (e.g., Gaussian or state-independent noise).
In our model, we consider general Markov controlled
processes, which include general system dynamics and
stochastic disturbances.

2) Different from [17], [21], our invariant sets are defined
based on trajectory inclusion as in [15] and, particularly,
incorporate control inputs constrained by a compact set.
An accompanying question is how to find an admissible
control input when verifying or computing a PCIS.

3) The PCISs in this article are different from the maximal
probabilistic safe sets in [23]. Every trajectory in a PCIS
is required by our definition to admit the same probability
level, which does not hold for the maximal probabilistic
safe set.

4) The stochastic reachability analysis studied in [23] pro-
vides an important tool for maximizing the probability of
staying in a set. Based on this, we compute a PCIS within
a set with a prescribed probability level. This extends the
results of [15], [23], and [24].

B. Main Contributions and Organization

The objective of this article is to provide a novel tool to analyze
invariance in stochastic control systems. The contributions are
summarized as follows.

As the first contribution, we propose two novel definitions
of PCIS: N -step ε-PCIS and infinite-horizon ε-PCIS (see Def-
initions 3 and 4). An N -step ε-PCIS is a set within which the
state can stay for N steps with probability ε under some admis-
sible controller while an infinite-horizon ε-PCIS is a set within

which the state can stay forever with probability ε under some
admissible controller. These invariant sets are different from the
ones proposed in [16] and [17], which address probabilistic set
invariance at each time step. Our definitions are applicable for
general discrete-time stochastic control systems. We provide
fundamental properties of PCISs and explore their relation to
RCISs. Furthermore, we propose conditions for the existence of
infinite-horizon ε-PCIS (see Theorem 3).

The second contribution is that we design iterative algorithms
to compute the largest finite- and infinite-horizon PCIS within a
given set for systems with discrete and continuous spaces. The
PCIS computation is based on the stochastic backward reachable
set. For discrete state and control spaces, it is shown that at each
iteration, the stochastic backward reachable set computation
of an N -step ε-PCIS can be reformulated as a linear program
(LP) (see Theorem 1 and Corollary 1) and an infinite-horizon
ε-PCIS as a computationally tractable mixed-integer linear pro-
gram (MILP) (see Theorem 4). Furthermore, we prove that these
algorithms terminate in a finite number of steps. For continuous
state and control spaces, we present a discretization procedure.
Under weaker assumptions than [25], we prove the convergence
of such approximations for N -step ε-PCISs (see Theorem 2).
The approximations generalize the case in [23], which only
discretizes the state space for a given discrete control space.
Furthermore, in order to compute an infinite-horizon ε-PCIS,
we propose an algorithm based on that an infinite-horizon PCIS
always contains an RCIS.

The remainder of this article is organized as follows. Sec-
tion II provides the system model and some preliminaries. Sec-
tion III presents the definition, properties, and computation al-
gorithms of finite-horizon PCISs. Section IV extends the results
to the infinite-horizon case. Examples in Section V illustrate
the effectiveness of our approach. Section VI concludes this
article.

Notation: Let N denote the set of nonnegative integers and R
the set of real numbers. For some q, s ∈ N and q < s, let N≥q

and N[q,s] denote the sets {r ∈ N | r ≥ q} and {r ∈ N | q ≤
r ≤ s}, respectively. For two sets X and Y , X \ Y = {x | x ∈
X, x /∈ Y} and X � Y = (X \ Y ) ∪ (Y \ X). When ≤, ≥, <,
and > are applied to vectors, they are interpreted element-wise.
Pr denotes the probability. For a set X, B(X), and P(X) denote
the Borealσ-algebra generated by X and the space of probability
distributions on X, respectively. The indicator function of a set X
is denoted by 1X(x), that is, if x ∈ X, 1X(x) = 1 and otherwise,
1X(x) = 0.
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II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a stochastic control system described by a Markov
controlled process S = (X,U , T ), where

1) X is a state-space endowed with a Borel σ-algebra B(X);
2) U is a compact control space endowed with a Borel σ-

algebra B(U);
3) T : B(X)× X × U → R is a Borel-measurable stochas-

tic kernel given X × U , which assigns to each x ∈ X
and u ∈ U a probability measure on the Borel space
(X,B(X)): T (·|x, u).

Let us denote by Ux the set of the admissible control actions
for each x ∈ X. Assume that Ux is nonempty for each x ∈ X.

Consider a finite horizon N ∈ N. A policy is said to be a
Markov policy if the control inputs are only dependent on the
current state, i.e., uk = μk(xk).

Definition 1 (Markov Policy): A Markov policy µ for system
S is a sequence µ = (μ0, μ1, . . . , μN−1) of universally measur-
able maps

μk : X → U ∀k ∈ N[0,N−1].

Remark 1: Given a space Y , a subset A in this space is
universally measurable if it is measurable with respect to every
complete probability measure on Y that measures all Borel sets
in B(Y ). A function μ : Y → W is universally measurable if
μ−1(A) is universally measurable in Y for every A ∈ B(W ). As
stated in [23] and [26], the condition of universal measurability is
weaker than the condition of Borel measurability for showing the
existence of a solution to a stochastic optimal problem. Roughly
speaking, this is because the projections of measurable sets are
analytic sets and analytic sets are universally measurable but not
always Borel measurable [26], [27].

Remark 2: For a large class of stochastic optimal control
problems, Markov policies are sufficient to characterize the
optimal policy [26]. Furthermore, since a randomized Markov
policy does not increase the largest probability that the states
remain in a set, we focus on deterministic Markov policies in
the following.

We denote the set of Markov policies as M. Con-
sider a set Q ∈ B(X). Given an initial state x0 ∈ X and a
Markov policy µ ∈ M, an execution is a sequence of states
(x0, x1, . . . , xN ). Introduce the probability with which the state
xk will remain within Q for all k ∈ N[0,N ]

pµN,Q(x0) = Pr{∀k ∈ N[0,N ], xk ∈ Q}.
Let p∗N,Q(x) = supµ∈M pµN,Q(x), ∀x ∈ Q. We call p∗N,Q(x)

the N -step invariance probability at x in the set Q. Following
the dynamic program (DP) in [23], define the value function
V ∗
k,Q : X → [0, 1], k = 0, 1, . . . , N , by the backward recursion

V ∗
k,Q(x) = sup

u∈U
1Q(x)

∫
Q
V ∗
k+1,Q(y)T (dy|x, u), x ∈ X (1)

with initialization V ∗
N,Q(x) = 1, x ∈ Q.

Assumption 1: The set

Uk(x, λ) =

{
u ∈ U |

∫
X
V ∗
k+1,Q(y)T (dy|x, u) ≥ λ

}

is compact for all x ∈ Q, λ ∈ R, and k ∈ N[0,N−1].
Lemma 1 (see [23]): For all x ∈ Q, p∗N,Q(x) = V ∗

0,Q(x).
If Assumption 1 holds, the optimal Markov policy µ∗

Q =
(μ∗

0,Q, μ
∗
1,Q, . . . , μ

∗
N−1,Q) exists and is given by

μ∗
k,Q(x) = arg sup

u∈U
1Q(x)

∫
Q
V ∗
k+1,Q(y)T (dy|x, u)

x ∈ Q, k ∈ N[0,N−1].

Extending the finite horizon to infinite horizon, we need to
introduce stationary Markov policies.

Definition 2 (Stationary Markov Policy): A Markov policy
µ ∈ M is said to be stationary if µ = (μ̄, μ̄, . . .) with μ̄ : X →
U universally measurable.

Given an initial state x0 ∈ X and a stationary Markov pol-
icy µ ∈ M, an execution is denoted by a sequence of states
(x0, x1, . . .). We introduce the probability with which the state
xk will remain within Q for all k ∈ N≥0

pµ∞,Q(x0) = Pr{∀k ∈ N, xk ∈ Q}.
Denote p∗∞,Q(x0) = supµ∈M pµ∞,Q(x0). We call p∗∞,Q(x) the

infinite-horizon invariance probability at x in the set Q. Define
the value functionG∗

k,Q : X → [0, 1], k ∈ N≥0, through the for-
ward recursion

G∗
k+1,Q(x) = sup

u∈U
1Q(x)

∫
Q
G∗

k,Q(y)T (dy|x, u), x ∈ X (2)

initialized with G∗
0,Q(x) = 1, x ∈ Q.

Assumption 2: There exists a k̄ ≥ 0 such that the set

Uk(x, λ) =

{
u ∈ U |

∫
X
G∗

k,Q(y)T (dy|x, u) ≥ λ

}

is compact for all x ∈ Q, λ ∈ R, and k ∈ N≥k̄.
Lemma 2 (see [23]): Suppose that Assumption 2 holds. Then,

for all x ∈ Q, the limit G∗
∞,Q(x) exists and satisfies

G∗
∞,Q(x) = sup

u∈U
1Q(x)

∫
Q
G∗

∞,Q(y)T (dy|x, u) (3)

and p∗∞,Q(x) = G∗
∞,Q(x). Furthermore, an optimal stationary

Markov policy µ∗
Q = (μ̄∗

Q, μ̄
∗
Q, . . .) exists and is given by

μ̄∗
Q(x) = arg sup

u∈U
1Q(x)

∫
Q
G∗

∞,Q(y)T (dy|x, u), x ∈ Q.

In the following two sections, we explore finite- and infinite-
horizon PCISs and how to compute them.

III. FINITE-HORIZON ε-PCIS

In this section, we first define finite-horizon ε-PCIS for the
systemS and provide the properties of this set. Then, we explore
how to compute the finite-horizon ε-PCIS within a given set.

Definition 3 (N -step ε-PCIS): Consider a stochastic control
system S = (X,U , T ). Given a confidence level 0 ≤ ε ≤ 1, a
set Q ∈ B(X) is anN -step ε-PCIS for S if for any x ∈ Q, there
exists at least one Markov policyµ ∈ M such that pµN,Q(x) ≥ ε.

We define the stochastic backward reachable set S∗
ε,N (Q) by

collecting all the states x ∈ Q at which the N -step invariance
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probability p∗N,Q(x) ≥ ε, i.e.,

S∗
ε,N (Q) = {x ∈ Q | ∃µ ∈ M, pµN,Q(x) ≥ ε}

= {x ∈ Q | sup
µ∈M

pµN,Q(x) ≥ ε}

= {x ∈ Q | V ∗
0,Q(x) ≥ ε}.

If S∗
ε,N (Q) = Q, it yields from Q ∈ B(X) that S∗

ε,N (Q) is
also Borel-measurable. If S∗

ε,N (Q) ⊂ Q, the following lemma
addresses the measurability of the set S∗

ε,N (Q).
Lemma 3: For any Q ∈ B(X), the set S∗

ε,N (Q) ⊆ Q is uni-
versally measurable.

Proof: See Appendix A. �
Let us denote by P(X) the set of all probability measures

on X. The following proposition shows that despite of the
universal measurability of S∗

ε,N (Q), one can find another Borel-

measurable set S̃∗
ε,N (Q)) for which the difference to S∗

ε,N (Q)
is measure-zero for any probability measure on X.

Proposition 1: For any Q ∈ B(X), there exists a set
S̃∗
ε,N (Q) ∈ B(X) with S̃∗

ε,N (Q) ⊆ Q such that p(S̃∗
ε,N (Q)�

S∗
ε,N (Q)) = 0 for any p ∈ P(X).
Proof: It follows from the universal measurability of

S∗
ε,N (Q) as shown in Lemma 3, the Borel measurability of Q,

S∗
ε,N (Q) ⊆ Q, and [26, Lemma 7.26]. �
From Lemma 1 and the definition of S∗

ε,N (Q), we can verify
whether a set Q ∈ B(X) is anN -step ε-PCIS or not by checking
if either S∗

ε,N (Q) = Q, orV ∗
0,Q(x) ≥ ε,∀x ∈ Q, whereV ∗

0,Q(x)
is defined in (1).

Remark 3: The stochastic backward reachable set S∗
ε,N (Q)

is called the maximal probabilistic safe set in [23]. The N -step
ε-PCIS Q in Definition 3 refines the maximal probabilistic safe
set by requiring that for any initial state x0 ∈ Q, the N -step
invariance probability p∗∞,Q(x0) is no less than ε.

In the following, we show that finite-horizon PCISs are closed
under union.

Proposition 2: Consider a collection of sets Qi ∈ B(X), i =
1, . . . , r. If each Qi is an Ni-step εi-PCIS for the same system
S, then the union

⋃r
i=1 Qi is an N -step ε-PCIS, where N =

miniNi and ε = mini εi.
Proof: The result follows from the following two facts:

(i) for any Q,P ∈ B(X) with Q ⊆ P , supµ∈M pµN,Q(x) ≤
supµ∈M pµN,P (x), ∀N ∈ N and ∀x ∈ Q; (ii) for any N,N ′ ∈
N withN ≤ N ′, supµ∈M pµN,′Q(x) ≤ supµ∈M pµN,Q(x), ∀Q ∈
B(X) and ∀x ∈ Q. �

A. Finite-Horizon ε-PCIS Computation

This section will address the following problem.
Problem 1: Given a set Q ∈ B(X) and a prescribed proba-

bility 0 ≤ ε ≤ 1, compute an N -step ε-PCIS Q̃ ⊆ Q.
To handle this problem, our basic idea is to iteratively compute

stochastic backward reachable sets until convergence. A general
procedure is presented in the following algorithm.

In Algorithm 1, we compute the stochastic backward reach-
able set S∗

ε,N (Pi) within Pi and update Pi+1 to be the corre-

sponding Borel-measurable set S̃∗
ε,N (Pi). The following theo-

rem shows convergence of Pi. The terminal condition guarantees

Algorithm 1: N -Step ε-PCIS.
1: Initialize i = 0 and Pi = Q.
2: Compute V ∗

0,Pi
(x), ∀x ∈ Pi.

3: Compute S∗
ε,N (Pi) and Pi+1 = S̃∗

ε,N (Pi), where

S̃∗
ε,N (·) is defined in Proposition 1.

4: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

that the resulting set by this algorithm is an N -step ε-PCIS
Q̃ ⊆ Q.

Theorem 1: Let Assumption 1 hold. For any Q ∈ B(X),
Algorithm 1 converges, i.e., limi→∞ Pi exists. If limi→∞ Pi �= ∅,
it is the largest N -step ε-PCIS within Q.

Proof: From Algorithm 1 and Lemma 1, we have that if the
termination condition does not hold, Pi+1 ⊂ Pi. It follows that
the sequence {Pi}i∈N is nonincreasing. Then

lim inf
i→∞

Pi =
⋃
i≥1

⋂
j≥i

Pj =
⋂
j≥1

Pj =
⋂
i≥1

⋃
j≥i

Pj = lim sup
i→∞

Pi

which suggests the existence of limi→∞ Pi. Furthermore, if
limi→∞ Pi is nonempty, we conclude that it is the largestN -step
PCIS within Q based on the fixed-point theory. �

To facilitate the practical implementation of Algorithm 1, we
need to address two important properties: the computational
tractability ofV ∗

0,Pi
(x),∀x ∈ Pi, and the finite-step convergence

of Algorithm 1. In the following, we will derive these two proper-
ties for discrete and continuous spaces, respectively. It is shown
that if the spaces are discrete, the properties are guaranteed and
in particular at each iteration we only need to solve an LP to
compute the exact value of V ∗

0,Pi
. If the spaces are continuous,

we will design a discretization algorithm with convergence
guarantee, which enables us to preserve the abovementioned
two properties.

1) Discrete State and Control Spaces: If the state and
control spaces are discrete, i.e., they are finite sets, the stochastic
kernel T (y|x, u) denotes the transition probability from state
x ∈ X to state y ∈ X under control action u ∈ Ux, which satis-
fies that

∑
y∈X T (y|x, u) = 1, ∀x ∈ X and u ∈ Ux.

In this case, according to [28, Th. 1], we can exactly compute
V ∗
0,Pi

(x) via an LP. Moreover, the existence of the optimal
Markov policy can be always guaranteed.

Lemma 4: Given any set Pi ⊂ X, the value functions V ∗
k,Pi

in (1) can be obtained by solving an LP

min

N∑
k=0

∑
x∈Pi

vk(x) (4a)

subject to ∀x ∈ Pi

vk(x) ≥
∑
y∈Pi

vk+1(y)T (y|x, u)

∀u ∈ Ux ∀k ∈ N[0,N−1] (4b)

vN (x) ≥ 1 (4c)
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which gives V ∗
k,Pi

(x) = v∗k(x), ∀x ∈ Pi, and ∀k ∈ N[0,N ],
where v∗k is the optimal solution of (4). The optimal Markov pol-
icyµ∗

Pi
= (μ∗

0,Pi
, μ∗

1,Pi
, . . . , μ∗

N−1,Pi
) is given byμ∗

k,Pi
(x) = u

where u ∈ Ux is such that

v∗k(x) =
∑
y∈Pi

v∗k+1(y)T (y|x, u). (5)

Proof: See [28, Th. 1] for the proof. �
Corollary 1: For discrete state and control spaces, Algo-

rithm 1 converges in a finite number of iterations. Furthermore,
at each iteration, the N -step invariance probability V ∗

0,Pi
(x),

∀x ∈ Pi, can be computed via the LP (4) and the corresponding
optimal policy is determined by (5).

Proof: The finite-step convergence of Algorithm 1 follows
from Theorem 1 and the finite cardinality of Q. The remaining
part follows from Lemma 4. �

Remark 4: When implementing Algorithm 1 to a system with
discrete spaces, the maximal number of iterations is |Q|. At each
iteration, an LP is solved to compute the value of V ∗

0,Pi
(x),

∀x ∈ Pi. The number of the decision values in the LP is at
most |Q|(N + 1) and the number of constraints is at most
|Q|(N |U |+ 1). It follows from [29] that Algorithm 1 can be
implemented in O(|Q|2(N |U |+ 1)) time.

2) Continous State and Control Action Spaces: In or-
der to preserve the computational tractability of V ∗

0,Pi
and the

finite-step convergence of Algorithm 1, if the state and control
spaces are both continuous, we first discretize the spaces with
convergence guarantee. Then, we adapt Algorithm 1 to compute
an approximate N -step ε-PCIS within a given set.

Assume that X ⊆ Rnx and U ⊆ Rnu for some nx, nu ∈ N.
For simplicity, we use Euclidean metric for the spaces X and U .
For any Q ∈ B(X), we define φ(Q) = Leb(Q) where Leb(·)
denotes the Lebesgue measure of sets. We suppose that the
stochastic kernel T (·|x, u) admits a density t(y|x, u), which
represents the probability density of y given the current state
x and the control action u.

Now we consider Problem 1, where we assume that the
given set Q ∈ B(X) is compact, which implies that φ(Q) is
bounded. We further suppose that the density function satisfies
the following assumption.

Assumption 3: For any x, x,′ y, y′ ∈ Q, and u, u′ ∈ U , there
exists a constantL such that |t(y|x, u)− t(y′|x,′ u′)| ≤ L(‖y −
y′‖+ ‖x− x′‖+ ‖u− u′‖).

Discretization: We discretize the compact set Q ⊂ X into
mx pair-wise disjoint nonempty Borel sets Qi, i ∈ N[1,mx], i.e.,
Q = ∪mx

i=1Qi. We pick a representative state from each set Qi,
denoted by qi. Let Q̂ = {qi, i ∈ N[1,mx]}, di = supx,y∈Qi

‖x−
y‖, and Dx = maxi∈N[1,mx]

di.
Similarly, the compact control space U is divided into mu

pair-wise disjoint nonempty Borel sets Ci, i ∈ N[1,mu], i.e.,
U = ∪mu

i=1Ci. We pick a representative element from the set Ci,
denoted by ûi. Let Û = {ûi, i ∈ N[1,mu]}, li = supx,y∈Ci

‖x−
y‖, and Du = maxi∈N[1,mu]

li.
Let the grid size be a constant δ ≥ max{Dx, Du}. For each

x ∈ Q, define the set of admissible discrete control actions as

Ûx = {û ∈ Û | ‖u− û‖ ≤ δ for some u ∈ Usx} (6)

where sx is the representative state of Qi to which x belongs,
i.e., sx = qi if x ∈ Qi. Following [25], the following lemma
shows that each x ∈ Q has a nonempty admissible discretized
control set.

Lemma 5: For each qi ∈ Q̂, the set Ûqi is nonempty and
Ûx = Ûqi , ∀x ∈ Qi.

Proof: Since the admissible control set Usx is nonempty,
∀x ∈ Q, there exists û ∈ Û such that ‖u− û‖ ≤ δ, ∀u ∈ Usx .
Hence, by the definition of sx, we have that the set Ûqi is
nonempty for each qi ∈ Q̂. Furthermore, from (6), it is easy
to obtain that Ûx = Ûqi , ∀x ∈ Qi. �

As in [25], let us define the function t̂ : Q × Q × Û → R

t̂(y|x, û) =
{

t(sy |sx,û)∫
Q t(sz |sx,û)dz , if

∫
Q t(sz|sx, û)dz ≥ 1

t(sy|sx, û), otherwise.
(7)

From (7), we observe that all states y ∈ Qi enjoy the same
stochastic kernel. An approximate stochastic control system is
given by a triple ŜQ = (Q̂, Û , T̂ ). Here, the transition proba-
bility T̂ (qj |qi, û) is defined by T̂ (qj |qi, û) =

∫
Qj
t̂(y|qi, û)dy,

where qi, qj ∈ Q̂ with qi ∈ Qi and qj ∈ Qj , and û ∈ Û .
Approximation of PCISs. For the approximate system ŜQ, the
discretized version of the DP (1) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V̂ ∗
N,Q(qi) = 1

V̂ ∗
k,Q(qi) = max

û∈Û

(
mx∑
j=1

V̂ ∗
k+1,Q(qj)T̂ (qj |qi, û)

)

∀k ∈ N[0,N−1].

For each x ∈ Qi, V̂ ∗
k,Q(x) = V̂ ∗

k,Q(qi), ∀k ∈ N[0,N ]. We
define the discretized optimal Markov policy µ̂∗

Q =
(μ̂∗

0,Q, . . . , μ̂
∗
N−1,Q) as

μ̂∗
k,Q(qi) = argmax

û∈Û

∫
Q
V̂ ∗
k+1,Q(y)t̂(y|qi, û)dy

= argmax
û∈Û

⎛
⎝mx∑

j=1

V̂ ∗
k+1,Q(qj)T̂ (qj |qi, û)

⎞
⎠ .

For each x ∈ Qi, μ̂∗
k,Q(x) = μ̂∗

k,Q(qi), ∀k ∈ N[0,N−1].
Remark 5: Since the state and control action spaces of the

approximated system Ŝ are finite, the value of V̂ ∗
k,Q can be

computed via the LP (4) and the corresponding optimal policy
can be determined by (5). In addition, all the states in each Qi

share the same approximate N -step invariance probability and
optimal policy as the representative state qi ∈ Qi.

Lemma 6: Under Assumptions 1 and 3, the functionsV ∗
k,Q(x)

and V̂ ∗
k,Q(x) satisfy that ∀x ∈ Q

|V ∗
k,Q(x)− V̂ ∗

k,Q(x)| ≤ τk(Q)δ (8)

where{
τN (Q) = 0

τk(Q) = 4φ(Q)L+ τk+1(Q) ∀k ∈ N[0,N−1].
(9)

Proof: See Appendix B. �
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Algorithm 2: Approximate N -Step ε-PCIS.

1: Choose grid size 0 < δ < 1−ε
τ0(Q) , discretize the sets Q

and U , construct an approximate system
ŜQ = (Q̂, Û , T̂ ).

2: Initialize i = 0, Pi = Q, and P̂i = Q̂.
3: Compute V̂ ∗

0,Pi
(qj), ∀qj ∈ P̂i.

4: Compute τ0(Pi) by (9) and ε̂ = ε+ τ0(Pi)δ.
5: Compute the set P̂i+1 = S∗

ε̂,N (P̂i) for ŜQ and
Pi = ∪

qj∈P̂i
Qj

6: If P̂i+1 = P̂i, stop. Else, set i = i+ 1 and go to step 3.

Remark 6: Lemma 6 guarantees convergence as the grid size
tends to zero and generalizes the case considered in [23], which
only discretizes the state space for a given finite control space. To
prove Lemma 6, we need to show that (i) the value functions in
(1) are Lipschitz continuous (Lemma 8), which is similar to [23,
Th. 8], and (ii) the difference between the approximate density
function and the original density function is bounded (Lemma
9), which is different from that in [23].

Theorem 2: Let Assumptions 1 and 3 hold. Consider a com-
pact set Q ∈ B(X) and a corresponding discretized set Q̂ of
Q. If Q̂ is an N -step ε̂-PCIS for the approximate system ŜQ =

(Q̂, Û , T̂ ), and ε̂ ≥ τ0(Q)δ, the set Q is an N -step ε-PCIS for
the system S , where ε = ε̂− τ0(Q)δ.

Proof: According to the construction of the discretized sys-
tem ŜQ, we have that ∀k ∈ N[0,N ], ∀i ∈ N[1,mx], and ∀x ∈ Qi,

V̂ ∗
k,Q(x) = V̂ ∗

k,Q(qi). Since Q̂ is an N -step ε̂-PCIS, it follows

that ∀x ∈ Q, V̂ ∗
0,Q(x) ≥ ε̂. By Lemma 6 and triangular inequal-

ity, we have

V ∗
0,Q(x) ≥ V̂ ∗

0,Q(x)− τ0(Q)δ ≥ ε̂− τ0(Q)δ ∀x ∈ Q.

Then, when ε̂ ≥ τ0(Q)δ, we conclude that the set Q is anN -step
ε-PCIS where 0 ≤ ε = ε̂− τ0(Q)δ. �

Remark 7: From Theorem 2, if 0 ≤ ε < 1, by choosing a
suitable grid size 0 < δ ≤ 1−ε

τ0(Q) , the problem of computing an
N -step ε-PCIS within Q for S can be transformed into that
of computing an approximate N -step ε̂-PCIS with probability
ε̂ ≥ ε+ τ0(Q)δ for ŜQ.

Computation algorithm: Assume that a probability level 0 ≤
ε < 1 is given. After discretizing the set Q and the control space
U , we modify Algorithm 1 to compute an N -step ε-PCIS Q̃ ⊆
Q, as shown in the following.

In Algorithm 2, we first construct an approximate system
ŜQ = (Q̂, Û , T̂ ) with grid size 0 < δ < 1−ε

τ0(Q) . Then, following
similar steps as in Algorithm 1, we compute the stochastic back-
ward reachable set iteratively for the system ŜQ. At each itera-
tion, an LP is solved to obtain theN -step invariance probability.
One difference is that the stochastic backward reachable set is
computed with respect to ε̂ = ε+ τ0(Pi)δ and the updated set
for the system S is the union of the subsets of Q corresponding
to the stochastic backward reachable set. By Theorem 2, the
resulting set by Algorithm 2 is an N -step ε-PCIS.

Corollary 2: Let Assumptions 1 and 3 hold. For continuous
state and control spaces, Algorithm 2 converges in a finite num-
ber of iterations and generates an N -step ε-PCIS. Furthermore,
at each iteration, the N -step invariance probability V̂ ∗

0,Pi
(qj),

∀qj ∈ P̂i, can be computed via the LP (4) and the corresponding
optimal policy is determined by (5).

Proof: By Theorem 2 and the Borel measurability of the
subsets Qi, ∀i ∈ N[1,mx], it follows that the set generated by
Algorithm 2 is an N -step ε-PCIS. The remaining part is similar
to the proof of Corollary 1. �

Remark 8: When implementing Algorithm 2 to a system with
continuous spaces, it follows from [29] that Algorithm 2 can be
implemented in O(m2

x(Nmu + 1)) time, cf. Remark 4.

IV. EXTENSION TO INFINITE-HORIZON ε-PCIS

Now let us extend finite-horizon ε-PCISs to infinite-horizon
ε-PCISs. In this section, we define the infinite-horizon ε-PCIS
and explore the conditions of its existence. Furthermore, we
provide algorithms to compute an infinite-horizon ε-PCIS within
a given set.

Definition 4 (Infinite-horizon PCIS): Consider a stochastic
control system S = (X,U , T ). Given a confidence level 0 ≤
ε ≤ 1, a set Q ∈ B(X) is an infinite-horizon ε-PCIS for S if for
any x ∈ Q, there exists at least one stationary Markov policy
µ ∈ M such that pµ∞,Q(x) ≥ ε.

We define the stochastic backward reachable set S∗
ε,∞(Q)

by collecting all the states x ∈ Q at which the infinite-horizon
invariance probability p∗∞,Q(x) ≥ ε, i.e.,

S∗
ε,∞(Q) = {x ∈ Q | ∃µ ∈ M, pµ∞,Q(x) ≥ ε}

= {x ∈ Q | sup
µ∈M

pµ∞,Q(x) ≥ ε}

= {x ∈ Q | G∗
∞,Q(x) ≥ ε}.

For the infinite-horizon case, Lemma 3 and Proposition 1 still
hold. That is, the set S∗

ε,∞(Q) is universally measurable and

there exists another Borel-measurable set S̃∗
ε,∞(Q) ⊆ Q such

that p(S̃∗
ε,∞(Q)� S∗

ε,∞(Q)) = 0 for any p ∈ P(X).
Under Assumption 2, by Lemma 2 and the definition of

S∗
ε,∞(Q), we can verify whether a set Q ∈ B(X) is an infinite-

horizon ε-PCIS or not by checking if either S∗
ε,∞(Q) = Q, or

G∗
∞,Q(x) ≥ ε, ∀x ∈ Q, where G∗

∞,Q(x) is defined by (2) and
(3).

Definition 5: Consider a stochastic control system S =
(X,U , T ). An RCIS Q ∈ B(X) for S is anN -step ε-PCIS with
N = 1 and ε = 1.

Remark 9: Another interpretation of RCIS in Definition 5 is
that a set Q ∈ B(X) is an RCIS if for any x ∈ Q, there exists
at least one control input u ∈ U such that T (Q|x, u) = 1. It is
easy to verify that an RCIS is also an infinite-horizon ε-PCIS
with ε = 1. It is called an absorbing set in [30] where there is
no control input. In the following, we show that the RCIS plays
an important role in the existence of infinite-horizon PCIS and
provide how to design an algorithm to compute such PCIS based
on RCIS.
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Remark 10: Note that infinite-horizon ε-PCISs are also closed
under union, as shown in Proposition 2 whenN is replaced by∞.

A. Existence of Infinite-Horizon PCIS

Intuitively, the monotone decrease of G∗
∞,Q(x) may imply

that the value ofG∗
∞,Q(x) is one or zero. However, it is possible

to get 0 < G∗
∞,Q(x) < 1 in some cases (see Examples 1 and

2 in Section V). The following theorem provides necessary
conditions and sufficient conditions for the existence of infinite-
horizon ε-PCIS with ε > 0.

Theorem 3: Suppose that Assumption 2 holds and let 0 <
ε ≤ 1 be fixed. Given a nonempty set Q, let ux be the control
input such that (3) holds for each x ∈ Q. The set Q is an infinite-
horizon ε-PCIS

i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈
Q \ Qf

T (Qf |x, ux) +
∫

Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2

1− ρ
≥ ε (10)

where ρ = supx∈Q\Qf

∫
Q\Qf

T (dy|x, ux);
ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \ Qf

T (Qf |x, ux) +
∫

Q\Qf

T (Qf |y, uy)T (dy|x, ux) ≥ ε.

(11)

Proof: See Appendix C. �
Remark 11: The value of ρ is the largest probability that the

next state y remains outside the RCIS Qf from any x ∈ Q \ Qf

under the optimal stationary Markov policy in Lemma 2. Note
that ρ2

1−ρ is the gap between the necessary condition and the
sufficient condition. In addition, the second item in (10) and (11)
denotes the probability that the state is steered into the RCIS Qf

by two transitions from x ∈ Q \ Qf with an intermediate state
y outside Qf .

Corollary 3: Suppose that Assumption 2 holds and let 0 <
ε ≤ 1 be fixed. A nonempty set Q is an infinite-horizon ε-PCIS

i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈
Q \ Qf , T (Q|x, u) ≥ ε for some u ∈ U ;

ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \ Qf ,
T (Qf |x, u) + εT (Q \ Qf |x, u) ≥ ε for some u ∈ U .

Proof: See Appendix D. �
Remark 12: A nonempty set Q is an infinite-horizon ε-

PCIS if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \ Qf ,
T (Qf |x, u) ≥ ε for someu ∈ U . This implication will facilitate
the design of an algorithm for an infinite-horizon ε-PCIS, see
Algorithm 4.

Remark 13: Considering the similarity between the reliability
defined in [11] and the infinite-horizon invariance probability in
this article, we can extend the results on infinite-horizon PICSs,
including the existence condition above and the computational
algorithms in the following, to the reliable control set in [10] to
general stochastic systems.

B. Infinite-Horizon ε-PCIS Computation

This section will address the following problem.
Problem 2: Given a set Q ∈ B(X) and a prescribed proba-

bility 0 ≤ ε ≤ 1, compute an infinite-horizon ε-PCIS Q̃ ⊆ Q.
To handle this problem, the key point is to compute

the infinite-horizon invariance probability G∗
∞,Q. For discrete

spaces, it is shown that computationally tractable MILP can
be used to compute the exact value of G∗

∞,Q. In this case, we
can compute the largest infinite-horizon ε-PCIS by computing
iteratively the stochastic backward reachable sets until conver-
gence. For continuous spaces, it is in general computationally
intractable to computeG∗

∞,Q and the discretization method fails
to work since the approximation error in (8) increases with the
horizon. In this case, we design another computational algorithm
based on the sufficient conditions in Remark 12.

1) Discrete State and Control Spaces: If the state and
control spaces are discrete, we adopt the same assumptions as
in Section III-A1. We will first show how to compute the exact
value of G∗

∞,Q in (2) and (3) through an MILP. Then, we will
adapt Algorithm 1 to compute the largest infinite-horizon ε-PCIS
within a given set.

MILP reformulation: Since 0 is a trivial solution of (3), we
cannot directly reformulate (2) and (3) as an LP, which is the
traditional way to deal with infinite-horizon stochastic optimal
control problems [31].

The following lemma provides a computationally tractable
MILP reformulation when computing G∗

∞,Q.
Lemma 7: Given any set Q ⊆ X, the value of G∗

∞,Q in (3)
can be obtained by solving the MILP

max
g(x),κ(x,u)

∑
x∈Q

g(x) (12a)

subject to ∀x ∈ Q

g(x) ≥
∑
y∈Q

g(y)T (y|x, u) ∀u ∈ Ux (12b)

g(x) ≤
∑
y∈Q

g(y)T (y|x, u) + (1− κ(x, u))Δ ∀u ∈ Ux

(12c)∑
u∈Ux

κ(x, u) ≥ 1 (12d)

0 ≤ g(x) ≤ 1, κ(x, u) ∈ {0, 1} ∀u ∈ Ux (12e)

where Δ is a constant greater than one. That is, G∗
∞,Q(x) =

g∗(x), ∀x ∈ Q, where g∗ is the optimal solution of the MILP
(12). The optimal stationary Markov policy is μ̄∗

Q(x) = uwhere
u ∈ Ux such that κ∗(x, u) = 1 and κ∗ is the optimal solution of
the MILP (12).

Proof: See Appendix E. �
Computational algorithm: As an adaption of Algorithm 1,

the following algorithm provides a way to compute the largest
infinite-horizon ε-PCIS within Q.

The difference between Algorithms 1 and 3 is that the value
ofG∗

∞,Pi
(x), instead of V ∗

0,Pi
(x), ∀x ∈ Pi, is computed by (12)
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Algorithm 3: Infinite-Horizon ε-PCIS.
1: Initialize i = 0 and Pi = Q.
2: Compute G∗

∞,Pi
(x) for all x ∈ Pi.

3: Compute the set Pi+1 = S∗
ε,∞(Pi).

4: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

Algorithm 4: Infinite-Horizon ε-PCIS.
1: Compute the RCIS within Q, denoted by Qf .
2: Compute the stochastic backward reachable set from

Qf , i.e.,
Q̃ = {x ∈ Q | ∃u ∈ U ,

∫
Qf

T (dy|x, u) ≥ ε}.

(replacing Q with Pi). Furthermore, the updated set Pi+1 =
S∗
ε,∞(Pi), which is a stochastic backward reachable set within

Pi with respect to infinite horizon and a probability level ε. The
following theorem provides the convergence of Pi and shows
that the resulting set Q̃ by this algorithm is an infinite-horizon
ε-PCIS.

Theorem 4: For discrete state and control spaces, Algorithm 3
converges in a finite number of iterations and generates the
largest infinite-horizon ε-PCIS within Q. Furthermore, at each
iteration, the infinite-horizon invariance probability G∗

∞,Pi
(x),

∀x ∈ Pi, can be computed via the MILP (12).
Proof: The finite-step convergence of Algorithm 3 follows

from the finite cardinality of the set Q. Similar to Theorem 1,
the generated infinite-horizon ε-PCIS is the largest one within
Q. The MILP reformulation refers to Lemma 7. �

Remark 14: When implementing Algorithm 3 to a system
with discrete spaces, the maximal iteration number is |Q|. An
MILP is used to compute the value ofG∗

∞,Pi
(x),∀x ∈ Pi, at each

iteration. The number of real-valued decision values is at most
|Q|, the number of binary decision values is at most |Q||U |, and
the number of constraints is at most |Q|(2|U |+ 3). In general,
MILPs are NP-hard and can be solved by cutting plane algorithm
or branch-and-bound algorithm [32]. Some advanced softwares
have been developed to solve large MILPs efficiently [33], [34].

2) Continuous State and Control Spaces: If the state and
control spaces are continuous, it is computationally intractable to
compute the exact value of infinite-horizon invarinace probabil-
ityG∗

∞,Q(x). Based on Remark 12, this section provides another
way to compute an infinite-horizon ε-PCIS within a given set Q.

Different from Algorithm 3, which computes iteratively the
stochastic backward reachable sets, the following algorithm
generates an infinite-horizon ε-PCIS by computing a backward
stochastic reachable set from the RCIS Qf contained in Q.

The first step in Algorithm 4 is the computation of RCIS
within a given set, which is a well-studied topic in the litera-
ture [4]–[6]. Then, based on RCIS Qf within Q, the stochastic
backward reachable set

Q̃ =

{
x ∈ Q | ∃u ∈ U ,

∫
Qf

T (dy|x, u) ≥ ε

}

Fig. 1. Computations of the largest RCIS (blue) and an infinite-horizon
ε-PCIS with ε = 0.80 (gray) by Algorithm 4 for Example 1.

is an infinite-horizon ε-PCIS within Q. In comparison with
Algorithms 1–3, the iteration is avoided in Algorithm 4, which
only needs two steps.

Remark 15: Note that the resulting set from Algorithm 4 is in
general not the largest infinite-horizon ε-PCIS within the given
set Q. It is possible to obtain a larger infinite-horizon ε-PCIS if
we can reformulate the existence conditions in Theorem 3 and
Corollary 3 in a recursive form and thereby modify Algorithm
4 to be a recursive algorithm.

Remark 16: The complexity of Algorithm 4 depends on the
computation of the RCIS [3]–[6], and the computation of the
backward stochastic reachable set. The later can be reformu-
lated as a chance-constrained problem and then approximately
solved. Some results on computation of the backward stochastic
reachable set have been reported in [35]. The first example in
Section V will show how to compute the backward stochastic
reachable set.

V. EXAMPLES

In this section, two examples are provided to illustrate the
effectiveness of the proposed theoretical results. The first one is
concerned with comparison between PCIS and RCIS. Then, we
consider an application to motion planning of a mobile robot in
a partitioned space with obstacles.

A. Example 1: Comparison Between PCIS and RCIS

Consider the following example from [36]:

xk+1 = Axk +Buk + wk

where A = [
1.6 1.1
−0.7 1.2

] and B = [
1
1
]. The control input is con-

strained by |uk| ≤ 0.25. We consider wk to be either non-
stochastic or stochastic when computing RCIS and PCIS, re-
spectively. The region of interest is Q = {x ∈ R2 | ‖x‖∞ ≤
0.5}. We will compare the largest RCIS and PCIS within Q.

To derive an RCIS for this system, we assume the disturbance
belongs to the compact set W = {w ∈ R2 | ‖w‖∞ ≤ 0.05}. By
using the methods in [1] and [6], we obtain the largest RCIS,
which is the blue region shown in Fig. 1. The gray region is an
infinite-horizon ε-PCIS described in the end of this example.

When computing a finite-horzion PCIS, assume that elements
of wk are independent identically distributed (i.i.d.) Gaussian
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Fig. 2. Computation of N -step ε-PCIS with N = 5 and ε = 0.80 for Example 1. (a) Sets Pi and the corresponding N -step invariance probability
in Algorithm 2. (b) N -step ε-PCIS Q̃.

random variables with zero mean and varianceσ2 = 1/302. This
system can be represented as a triple S = {X,U , T}⎧⎪⎨

⎪⎩
X = R2

U = {u ∈ R | |u| ≤ 0.1}
t(xk+1|xk, uk) = ψ(Λ−1(xk+1 −Axk −Buk))

where ψ(·) is the density function of the standard normal dis-
tribution and Λ = diag{σ, σ}. In this case, since the Lipschitz
constant L in Assumption 3 is small, we ignore the approx-
imation error τ0 in (9). We discretize the continuous spaces
and implement Algorithm 2 to compute the N -step ε-PCIS
Q̃. First consider N = 5 and ε = 0.80. Fig. 2(a) shows the
evolution of the set Pi in Algorithm 2. The color indicates
the corresponding N -step invariance probability p∗N,Pi

(x) and
the z-axes the iteration index i. The algorithm converges in 8
steps. Fig. 2(b) shows P8, which corresponds to the N -step
ε-PCIS Q̃ for N = 5 and ε = 0.80.

When computing an infinite-horizon PCIS, we choose the
same bound on the disturbance as for the RCIS. The elements of
wk are truncated i.i.d. Gaussian random variables with zero mean
and variance σ2 = 1/302. Denote the largest RCIS computed
above by Qf = {x ∈ R2 | Hx ≤ h}, where the matrix H and
the vector h are with appropriate dimensions. As stated in
Algorithm 4, the one-step stochastic backward reachable set
from the RCIS associated with probability 0.80 is an infinite-
horizon ε-PCIS with ε = 0.80, i.e.,

Q̃ = {x ∈ Q | ∃u ∈ U ,Pr{H(Ax+Bu+ w) ≤ h} ≥ 0.80}.
This set can be represented as

Q̃ = {x ∈ Q | ∃u ∈ U , H(Ax+Bu) + h′ ≤ h}
where h′ is the optimal solution of the chance constrained
program

min
∑
j

h′j

subject to Pr{Hw ≤ h′} = 0.8.

This program can be numerically solved by using the methods
in [37] and [38]. The resulting infinite-horizon ε-PCIS with ε =

Fig. 3. Transition probability under actions for Example 2.

Fig. 4. One simulated state trajectory with indication of the robot ori-
entation starting from (3, 1,N ) and ending at (3, 4,S) in Example 2.

0.80 is the gray region shown in Fig. 1. This region is obviously
a superset of the RCIS in blue.

B. Example 2: Motion Planning

The motion planning example in [39] is adapted to seek
an infinite-horizon PCIS within the workspace for a mobile
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Fig. 5. Sets Pi and the corresponding infinite-horizon invariance probability in Example 2 when computing the largest infinite-horizon ε-PCIS with
ε = 0.90 by Algorithm 3.

robot. The state of the robot is abstracted by its cell coordinate,
i.e., (px, py) ∈ {1, 2, 3, 4}2, and its four possible orientations
{E ,W,S,N}. Due to the actuation noise and drifting, the robot
motion is stochastic. Here, we restrict the action space to be
{FR,BK,TRFR,TLFR}, under which the possible transitions
are shown in Fig. 3. Specifically, action “FR” means driving
forward for 1 unit. As illustrated in the figure, the probability
for that is 0.80. The probability of drifting forward to the left or
the right by 1 unit is 0.10. Action “BK” can be similarly defined.
Action “TRFR” means turning right π/2 and driving forward
for 1 unit, of which the probability is 0.95. The probability of
driving forward for 1 unit without turning right is 0.025 and the
probability of turning right for π and driving forward for 1 unit
is 0.025. Similarly, we can define the action “TLFR.”

Consider the partitioned workspace shown in Fig. 4, where
the shadowed cells are occupied by obstacles and the red cell
is an absorbing region, i.e., when the robot enters in this region
it will stay there forever. We construct an MDP with 64 states
and 4 actions. The transition relation and probability can be
defined based on the abovementioned description. We compute
the largest infinite-horizon ε-PCIS with ε = 0.90 within the safe
state space, i.e., the remaining of the state space by excluding
the states associated with the obstacles.

By implementing Algorithm 3, the computed sets Pi and the
corresponding infinite-horizon invariance probability p∗∞,Pi

(x)
are shown in Fig. 5, of which each subfigure corresponds to
one orientation in {E ,W,S,N}. The first row of Fig. 5 shows
the results after the first iteration, where we can see that the
infinite-horizon invariance probability p∗∞,Pi

(x) at x = (4, 2, E)
and x = (4, 2,W) is less than ε = 0.90. Algorithm 3 converges
in 2 steps and generates the largest infinite-horizon ε-PCIS
Q̃ with ε = 0.90 shown in Fig. 5(e)–(h). This invariant set
provides a region where the admissible action can drive the robot
without colliding with the obstacles with probability 0.90. By
implementing the optimal policy obtained in Lemma 7, we run

a state trajectory starting from (3, 1,N ) as shown in Fig. 4. We
can see that this trajectory is collision-free and finally ends at
the absorbing region (3, 3,S).

VI. CONCLUSION

We investigated the extension of set invariance in a stochastic
sense for control systems. We proposed finite- and infinite-
horizon ε-PCISs, and provided some fundamental properties.
We designed iterative algorithms to compute the PCIS within
a given set. For systems with discrete state and control spaces,
finite- and infinite-horizon ε-PCISs can be computed by solving
an LP and an MILP at each iteration, respectively. We proved
that the iterative algorithms were computationally tractable and
can be terminated in a finite number of steps. For systems with
continuous state and control spaces, we established the approxi-
mation of stochastic control systems and proved its convergence
when computing finite-horizon ε-PCIS. In addition, thanks to the
sufficient conditions for the existence of infinite-horizon ε-PCIS,
we can compute an infinite-horizon ε-PCIS by the stochastic
backward reachable set from the RCIS contained in it. Numerical
examples were given to illustrate the theoretical results.

One future direction is to apply the PCISs to safety-critical
control and stochastic predictive control. In particular, how to
characterize stability using PCISs is an important problem to
consider. Another interesting future extension of PCISs is to
study reliability and mean-time-to-failure for general stochastic
systems.

APPENDIX A
PROOF OF LEMMA 3

Define the functions J∗
k,Q : X → R, k ∈ N[0,N ], as

J∗
k,Q(x) = −V ∗

N−k,Q(x) ∀x ∈ X.
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As shown in [23], the function J∗
N,Q is lower semianalytic for

any Q ∈ B(X). From [26, Definitions 7.20 and 7.21], we have
that the function J∗

N,Q is also analytically measurable and thus
is universally measurable for any Q ∈ B(X). According to the
definition of universal measurability, the set J∗,−1

N,Q(B) = {x ∈
X | J∗

k,Q(x) ∈ B} for B ∈ B(R) is universally measurable.
Recall the definition of the stochastic backward reachable set

S∗
ε,N (Q), we have that

S∗
ε,N (Q) = {x ∈ Q | V ∗

0,Q(x) ≥ ε}
= {x ∈ Q | −1 ≤ J∗

N,Q(x) ≤ −ε}
= J∗,−1

N,Q(B)

where B = [−1,−ε] ∈ B(R). Thus, the set S∗
ε,N (Q) is univer-

sally measurable for any Q ∈ B(X).

APPENDIX B
PROOF OF LEMMA 6

Before proving Lemma 6, we need two auxiliary lemmas.
Lemma 8 shows that the value functions in (1) are Lipschitz
continuous. It is adapted from [23, Th. 8]. Lemma 9 shows that
the difference between the approximate density function and the
original density function is bounded.

Lemma 8: Under Assumptions 1 and 3, for any x, x′ ∈ Q,
the value functions V ∗

k,Q in (1) satisfy

|V ∗
k,Q(x)− V ∗

k,Q(x′)| ≤ φ(Q)L‖x− x′‖ ∀k ∈ N[0,N ].

(13)

Proof: Similar to [23, Th. 8]. �
Lemma 9: Under Assumptions 3, for all y ∈ Q and qi ∈ Q̂∫

Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ 2φ(Q)Lδ ∀û ∈ Û .

Proof: If
∫

Q t(sz|sx, û)dz < 1, it follows from Assumption 3
that ∫

Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ φ(Q)Lδ.

And if
∫

Q t(sz|sx, û)dz ≥ 1, we first have

0 ≤
∫

Q
t(sy|qi, û)dy − 1

≤
∫

Q
t(sy|qi, û)dy −

∫
Q
t(y|qi, û)dy

≤
∫

Q
|t(sy|qi, û)− t(y|qi, û)|dy

≤ φ(Q)Lδ.

Furthermore, we have∫
Q
|t̂(y|qi, û)− t(y|qi, û)|dy

=

∫
Q

|t(sy|qi, û)− t(y|qi, û)
∫

Q t(sz|sx, û)dz|∫
Q t(sz|sx, û)dz dy

≤
∫

Q
|t(sy|qi, û)− t(y|qi, û)

∫
Q
t(sz|sx, û)dz|dy

≤
∫

Q
|t(sy|qi, û)− t(y|qi, û)| dy

+
∣∣∣ ∫

Q
t(sz|sx, û)dz − 1

∣∣∣ ∫
Q
|t(y|qi, û)|dy

≤ 2φ(Q)Lδ.

�
Proof of Lemma 6: First of all, let us prove inequality (8). It is

easy to check it for k = N sinceV ∗
N,Q(x) = V̂ ∗

k,Q(x) = 1, ∀x ∈
Q. By induction, we assume that |V ∗

k+1,Q(x)− V̂ ∗
k+1,Q(x)| ≤

τk+1(Q)δ, x ∈ Q. For any qi ∈ Qi, i ∈ N[1,mx], we de-
fine μ∗

k = arg supu∈U

∫
Q V ∗

k+1,Q(y)t(y|qi, u)dy and μ̂∗
k =

argmax
û∈Û

∫
Q V̂ ∗

k+1,Q(y)t̂(y|qi, û)dy. According to the dis-
cretization procedure of the control space, we can choose some
ν̂k ∈ Û such that ‖μ∗

k − ν̂k‖ ≤ δ. Then, we have that

V ∗
k,Q(qi)− V̂ ∗

k,Q(qi)

=

∫
Q
V ∗
k+1,Q(y)t(y|qi, μ∗

k)dy −
∫

Q
V̂ ∗
k+1,Q(y)t̂(y|qi, μ̂∗

k)dy

≤
∫

Q
V ∗
k+1,Q(y)t(y|qi, μ∗

k)dy −
∫

Q
V̂ ∗
k+1,Q(y)t̂(y|qi, ν̂k)dy

≤ |
∫

Q
V ∗
k+1,Q(y)t(y|qi, μ∗

k)dy −
∫

Q
V ∗
k+1,Q(y)t(y|qi, ν̂k)dy|

+ |
∫

Q
V ∗
k+1,Q(y)t(y|qi, ν̂k)dy −

∫
Q
V ∗
k+1,Q(y)t̂(y|qi, ν̂k)dy|

+ |
∫

Q
V ∗
k+1,Q(y)t̂(y|qi, ν̂k)dy −

∫
Q
V̂ ∗
k+1,Q(y)t̂(y|qi, ν̂k)dy|

≤ φ(Q)Lδ + 2φ(Q)Lδ + τk+1(Q)δ

= (3φ(Q)L+ τk+1(Q))δ

and

V̂ ∗
k,Q(qi)− V ∗

k,Q(qi)

≤
∫

Q
V̂ ∗
k+1,Q(y)t̂(y|qi, μ̂∗

k)dy −
∫

Q
V ∗
k+1,Q(y)t(y|qi, μ̂∗

k)dy

≤ |
∫

Q
V̂ ∗
k+1,Q(y)t̂(y|qi, μ̂∗

k)dy −
∫

Q
V̂ ∗
k+1,Q(y)t(y|qi, μ̂∗

k)dy|

+|
∫

Q
V̂ ∗
k+1,Q(y)t(y|qi, μ̂∗

k)dy −
∫

Q
V ∗
k+1,Q(y)t(y|qi, μ̂∗

k)dy|

≤ (2φ(Q)L+ τk+1(Q))δ.

Thus, we have

|V ∗
k,Q(qi)− V̂ ∗

k,Q(qi)| ≤ (3φ(Q)L+ τk+1(Q))δ.

For any x ∈ Qi, i ∈ N[1,mx], it follows that

|V ∗
k,Q(x)− V̂ ∗

k,Q(x)|
= |V ∗

k,Q(x)− V̂ ∗
k,Q(qi)|
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≤ |V ∗
k,Q(x)− V ∗

k,Q(qi)|+ |V ∗
k,Q(qi)− V̂ ∗

k,Q(qi)|
≤ (4φ(Q)L+ τk+1(Q))δ = τk(Q)δ

which completes the proof of inequality (8).

APPENDIX C
PROOF OF THEOREM 3

Let ux be the control input such that (3) holds for any x ∈ Q.
Only-if-part: Under Assumption 2, the fact that the set

Q ∈ B(X) is an infinite-horizon ε-PCIS is equivalent to
G∗

∞,Q(x) ≥ ε, ∀x ∈ Q. Let θ = supx∈Q G∗
∞,Q(x). Under As-

sumption 2, G∗
∞,Q(x) exists for all x ∈ Q. The set Q̃f = {x ∈

Q | G∗
∞,Q(x) = θ} collects all the states for which the value

of G∗
∞,Q is maximal over the set Q. Extending Lemma 3 to

infinite-horizon case, we have that the set Q̃f is universally
measurable. By [26, Lemma 7.16], we have that there exists a
Borel-measurable set Qf ⊆ Q such that p(Qf � Q̃f ) = 0 for
any p ∈ P(X).

Next we will show that the set Qf is an RCIS. It follows from
Assumption 2 and Lemma 2 that ∀x ∈ Qf

G∗
∞,Q(x)

=

∫
Qf

G∗
∞,Q(y)T (dy|x, ux) +

∫
Q\Qf

G∗
∞,Q(y)T (dy|x, ux)

= G∗
∞,Q(x)

∫
Qf

T (dy|x, ux)

+

∫
Q\Qf

G∗
∞,Q(y)T (dy|x, ux) (14)

≤ G∗
∞,Q(x)T (Qf |x, ux) +G∗

∞,Q(x)T (Q \ Qf |x, ux)
= G∗

∞,Q(x)(T (Qf |x, ux) + T (Q \ Qf |x, ux)) (15)

where (14) follows fromG∗
∞,Q(x) = G∗

∞,Q(y), ∀x, y ∈ Qf and
(15) follows from that G∗

∞,Q(x) > G∗
∞,Q(y), ∀x ∈ Qf , ∀y ∈

Q \ Qf . Furthermore, since G∗
∞,Q(x) ≥ ε > 0, ∀x ∈ Q, and

0 ≤ T (Q|x, ux) ≤ 1, the equality in (15) holds if and only if
T (Qf |x, ux) = 1 and therebyT (Q \ Qf |x, ux)) = 0. Based on
the recursion in (2), we have G∗

∞,Q(x) = 1, ∀x ∈ Qf . Hence,
the set Qf ⊆ Q is an RCIS.

Next let us prove that ∀x ∈ Q \ Qf , (10) holds. That is to
prove that

G∗
∞,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2

1− ρ
. (16)

By [23, Th. 7], the control input ux is also optimal to the
recursion (2). For all k ∈ N, we have ∀x ∈ Qf , G∗

k,Q(x) = 1
and ∀x ∈ Q \ Qf

G∗
k+1,Q(x) = T (Qf |x, ux) +

∫
Q\Qf

G∗
k,Q(y)T (dy|x, ux).

Let ρ = supx∈Q\Qf

∫
Q\Qf

T (dy|x, ux). Note that 0 ≤ ρ < 1.
Then, ∀x ∈ Q \ Qf , we can follow the induction rule to prove

that

G∗
k,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

+
ρ2 − ρk

1− ρ

which by taking limitation yields that (16) holds.
If-part: The proof for the existence of an RCIS Qf ⊆ Q is the

same as that of the only if part. As shown above, the condition
T (Qf |x, ux) = 1 is equivalent to G∗

∞,Q(x) = 1, ∀x ∈ Qf . We
can use induction to prove that ∀x ∈ Q \ Qf

G∗
k,Q(x) ≥ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux)

which further implies that G∗
∞,Q(x) ≥ T (Qf |x, ux) +∫

Q\Qf
T (Qf |y, uy)T (dy|x, ux). One sufficient condition

to guarantee G∗
∞,Q(x) ≥ ε is (11), i.e., T (Qf |x, ux) +∫

Q\Qf
T (Qf |y, uy)T (dy|x, ux) ≥ ε.

APPENDIX D
PROOF OF COROLLARY 3

By Lemma 2 and Theorem 3, the necessary condition in
Corollary 3 can be proven by showing that ∀x ∈ Q \ Qf , there
exists a u ∈ U such that

ε ≤ G∗
∞,Q(x)

=

∫
Qf

G∗
∞,Q(y)T (dy|x, u)

+

∫
Q\Qf

G∗
∞,Q(y)T (dy|x, u)

≤ T (Qf |x, u) + T (Q \ Qf |x, u)
= T (Q|x, u) (17)

where (17) follows from 0 < G∗
∞,Q(x) ≤ 1, ∀x ∈ Q.

The sufficient condition in Corollary 3 can be proven by
showing that ∀x ∈ Q \ Qf , there exists a u ∈ U such that

G∗
∞,Q(x)

=

∫
Qf

G∗
∞,Q(y)T (dy|x, u) +

∫
Q\Qf

G∗
∞,Q(y)T (dy|x, u)

≥ T (Qf |x, u) + εT (Q \ Qf |x, u) (18)

where (18) follows from G∗
∞,Q(x) ≥ ε > 0, ∀x ∈ Q. One suf-

ficient condition to guarantee G∗
∞,Q(x) ≥ ε is T (Qf |x, u) +

εT (Q \ Qf |x, u) ≥ ε.

APPENDIX E
PROOF OF LEMMA 7

Before proving Lemma 7, we need the following two lemmas
to show that G∗

0,Q is the unique maximal fixed point satisfying
(3). As shown in (2) and (3), G∗

∞,Q(x) is the limitation of
G∗

k,Q as k → ∞. For notational convenience, we use G∗
k,Q to
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denote the vector form of G∗
k,Q(x), x ∈ Q. And the optimiza-

tion problems maxu∈Ux

∑
y∈Q G∗

k,Q(y)T (y|x, u), x ∈ Q are
rewritten as maxµ∈M TµG∗

k,Q. The following lemma provides
the uniqueness of G∗

∞,Q.
Lemma 10: The sequence (G∗

0,Q, G
∗
1,Q, . . .) converges to a

unique fixed point satisfying (3).
Proof: By contradiction, assume that the sequence

(G∗
0,Q, G

∗
1,Q, . . .) could converge to two different fixed

points satisfying (3), denoted by G1,∗
∞,Q and G2,∗

∞,Q. Then, from
Lemma 2, we have

0 < ‖G1,∗
∞,Q −G2,∗

∞,Q‖ ≤ ‖max
µ∈M

TµG1,∗
∞,Q −max

µ∈M
TµG2,∗

∞,Q‖

≤ max
µ∈M

‖Tµ(G1,∗
∞,Q −G2,∗

∞,Q)‖

≤ ‖G1,∗
∞,Q −G2,∗

∞,Q‖. (19)

In (19), the equality holds if and only if for each x ∈ Q, there
exists u ∈ Ux such that

∑
y∈Q T (y|x, u) = 1. In this case, it

is easy to check that G∗
∞,Q(x) = G∗

0,Q(x) = 1 for each x ∈ Q
so G∗

∞,Q is unique. For other cases, we have a contradiction.
Hence, the sequence (G∗

0,Q, G
∗
1,Q, . . .) converges to a unique

fixed point satisfying (3). �
Lemma 11: The convergence point G∗

∞,Q of the sequence
(G∗

0,Q, G
∗
1,Q, . . .) is the maximum fixed point satisfying (3).

Proof: The monotone decrease of the sequence
(G∗

0,Q, G
∗
1,Q, . . .) and the unique convergence point imply

that G∗
∞,Q is the maximum fixed point satisfying (3). �

Proof of Lemma 7: From Lemmas 10 and 11, G∗
∞,Q is the

maximum fixed point satisfying (3). Hence, the equivalent form
of G∗

∞,Q can be written as MILP (12), where the constraints
(12b)–(12d) guarantee that there exists u ∈ Ux such that the
equality in (3) holds.
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