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Abstract—Verifying observability and reconstructibility
of Boolean control networks (BCNs) is NP-hard in the num-
ber of nodes. A BCN is observable (reconstructible) if one
can use an input sequence and the corresponding output
sequence to determine the initial (current) state. In this
article, we study when a node aggregation approach can
be used to overcome the computational complexity in ver-
ifying these properties. We first define a class of node ag-
gregations with subnetworks being BCNs. For acyclic node
aggregations in this class, all corresponding subnetworks
being observable (reconstructible) implies that the whole
BCN is observable (reconstructible), although the converse
is not true. In general, for cyclic node aggregations, the
whole BCN being observable (reconstructible) does not im-
ply that all subnetworks are observable (reconstructible),
or vice versa. We design an algorithm to search for all
acyclic node aggregations in this class, and show that
finding acyclic node aggregations with small subnetworks
can significantly reduce the computational complexity in
verifying observability (reconstructibility). We also define a
second class of node aggregations with subnetworks being
finite-transition systems (more general than BCNs), which
compensates for the drawback of the first class when the
BCN has only a small number of output nodes. Finally, we
use a BCN T-cell receptor kinetics model from the literature
with 37 state nodes and 3 input nodes to illustrate the effi-
ciency of the results derived from the two node aggregation
methods. For this model, we derive the unique minimal set
of 16 state nodes needed to be directly measured to make
the overall BCN observable. We also compute 5 of the 16
state nodes needed to be directly measured to make the
model reconstructible.

Index Terms—Boolean control network, node aggrega-
tion, observability, reconstructibility, verification.

I. INTRODUCTION

BOOLEAN networks (BNs), introduced by Kauffman [13]
to model genetic regulatory networks in 1969, are a class
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of discrete-time and discrete-space dynamical systems. In a BN,
nodes can be in one of two discrete states “1” and “0,” which
represent the gene state “ON” (high concentration of a protein)
and “OFF” (low concentration), respectively. Every node updates
its state according to a Boolean function of the network node
states. When external regulation or perturbation are considered,
BNs are naturally extended to Boolean control networks (BCNs)
[11]. Although BNs or BCNs are simplified models of biolog-
ical systems, they can be used to characterize many important
phenomena, e.g., cell cycles [8], cell apoptosis [24]. Hence the
study of BNs and BCNs has received wide attention [14], [33].

The study of control-theoretic properties of BCNs dates back
to 2007, when the problem of verifying controllability of a BCN
was proved to be NP-hard in the number of nodes [1]. Since then,
many basic properties of BCNs have been characterized, e.g.,
controllability [5], [34], observability [5], [9], [19], [29], [34],
reconstructibility [9], [30], identifiability [7], invertibility [31],
realizability [4], disturbance decoupling [3], Kalman decom-
position [35], and related aspects [10], [17], [18], [20], [21],
[25]. Among the above results, [3]–[5], [7], [9], [10], [17], [18],
[20], [21], [25], [34], [35] are mainly based on the semitensor
product framework originally proposed in [5] and [19] is based
on an algebraic method; [29], [30] are mainly based on finite
automata and graph theory; and [31] is mainly based on symbolic
dynamics.

A BCN is observable (resp. reconstructible) if after a suf-
ficiently long time period, the initial (resp. current) state can
be determined by the input sequence and the output sequence.
Observability is stronger than reconstructibility for BCNs (but
this does not hold for more general control systems.). Hence,
more observation information is needed to determine the initial
state than to determine the current state. This property is of
both theoretical and practical importance, and essential for state
estimation, observer design, and controller synthesis. A quan-
titative description of a complex dynamical system is normally
based on its state information, but the practical use is inherently
limited by the ability to estimate the system’s state. The problem
of how to use a subset of nodes (as output nodes) to observe
the whole network’s state has important applications in systems
biology and many other areas, e.g., in [22] it is argued that many
biological networks are large and not all nodes can be directly
measured.

Verifying observability and reconstructibility of a BCN is NP-
hard in the number of nodes [16], [30], hence computationally
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intractable for large networks. Existing verification algo-
rithms [9], [29], and [30] run in exponential time in the number
of nodes, so generally they cannot be used to deal with large net-
works (with more than approximately 30 nodes) in a reasonable
amount of time. It seems unlikely that there exist fast algorithms
for verifying these properties for general BCNs, but an inter-
esting direction is to focus on special network structures. It is
natural to develop node aggregation methods for which observ-
ability and reconstructibility for the overall network follow from
the verification of these properties for the subnetworks of the
aggregated network. An aggregated network consists of super
nodes and directed edges, where each super node corresponds
to a collection of nodes of the original BCN. Node aggregation
methods have been used in pagerank algorithms [12] and social
networks [23], as well as in controllability analysis of BCNs [32]
and fixed-point computation of BNs [33]. The advantage of node
aggregation methods has been illustrated through a BCN T-cell
receptor kinetics model [15] in both [33] and [32]. This model
has 37 state nodes and 3 input nodes,1 i.e., it has 237 states
and 23 possible inputs. Due to the NP-hardness of verifying
controllability of BCNs together with the NP-completeness of
verifying existence of fixed points of BNs [2], generally it is
impossible to use the general methods given in [2] and [6] to
compute attractors or check controllability and stabilizability
in a reasonable amount of time for large networks. However,
applying some special node aggregation methods to the T-cell
model, these two problems have been solved [32], [33]. In [33],
an efficient way to search attractors of BNs is proposed based
on such a method; particularly, for an acyclic node aggregation
(i.e., when the aggregated network is acyclic), all attractors of a
BN are obtained by composing attractors of the corresponding
subnetworks. A similar idea has been used to deal with controlla-
bility and stabilizability of BCNs in [32], where it is proved that
if a BCN is controllable (stabilizable) then all subnetworks are
controllable (stabilizable) for a node aggregation of which each
subnetwork has at least one state node. However, the converse is
not true. It is partially because in order to verify controllability
and stabilizability, external nodes (i.e., input nodes) of BCNs
must be considered. In this article, we show that for observability
and reconstructibility, the whole BCN being observable does not
imply that all subnetworks are observable, and the latter does not
imply the former either. It is because not only input nodes but
also output nodes must be considered. Hence, the previous node
aggregation methods cannot be used to deal with observability
or reconstructibility.

There are five main contributions in this article as follows.
1) We first define a class of node aggregations for BCNs

with all subnetworks being BCNs. It is proven that for
acyclic node aggregations in this class, all subnetworks
being observable (resp. reconstructible) implies that the
whole BCN is observable (resp. reconstructible), but the
converse is not true in general.

1In [33] in order to compute attractors, the 3 input nodes are assumed to have
constant values.

2) For cyclic node aggregations in this class, we prove
that generally the whole BCN being observable (resp.
reconstructible) does not imply that all corresponding
subnetworks are observable (resp. reconstructible), or
vice versa.

3) An efficient algorithm to compute all acyclic node ag-
gregations in this class is developed. It is shown that
finding such acyclic node aggregations with as small sub-
networks as possible (sometimes significantly) reduces
the computational complexity in verifying observability
(resp. reconstructibility).

4) We also define a second class of node aggregations
with subnetworks being finite-transition systems (FTSs),
which compensates for some of the drawbacks of the first
class when BCN has only a small number of output nodes.
We prove similar observability and reconstructibility ver-
ification results for BCNs based on the second class of
node aggregations.

5) Finally, for a BCN T-cell receptor kinetics model with 37
state nodes and 3 input nodes [15], by finding suitable
acyclic node aggregations in the first class, we derive the
unique minimal set of 16 state nodes that need to be di-
rectly measured to make the overall BCN observable. We
then find 5 of the 16 state nodes to be directly measured
for the BCN to be reconstructible. We also use the T-cell
model to illustrate the efficiency of the results derived
from the second class of node aggregations.

The remainder of the article is organized as follows.
In Section II, basic concepts on BCNs, observability, re-
constructibility, and node aggregations are introduced. In
Section III, observability results based on the first class of
node aggregations are proved. In addition, an algorithm for
computing acyclic aggregated graphs is given and its complexity
is discussed. In Section IV, results on reconstructibility based
on the first class of node aggregations are derived. In Section V,
related results based on the second class of node aggregations are
obtained. In Section VI, the BCN T-cell receptor kinetics model
is used to illustrate the efficiency of the main results given in
Sections III–V. Section VII concludes the article.

Compared to its conference version [26], the current version
gives a much more detailed description of the results, and
contains substantial new contributions including Algorithm 1 for
computing acyclic aggregations, the results on reconstructibility,
the results based on the second class of node aggregations, and
detailed observability and reconstructibility analysis of the T-cell
model.

II. PRELIMINARIES

In this section, we formally introduce BCNs and their observ-
ability and reconstructibility, together with the notion of node
aggregation.

A. BCNs

Set D := {0, 1}; [i, j] := {i, i+ 1, . . . , j} with i ≤ j be-
ing integer numbers; Cj

i := i!
j!(i−j)! with i ≥ j being positive
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integers. 2S stands for the power set of a set S. A BCN B is
described as

x1(t+ 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t))

x2(t+ 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t))

...

xn(t+ 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t))

y1(t) = h1(x1(t), . . . , xn(t))

y2(t) = h2(x1(t), . . . , xn(t))

...

yq(t) = hq(x1(t), . . . , xn(t)) (1)

where t = 0, 1, . . . denote discrete time steps, xi(t), uj(t),
yk(t) ∈ D denote the values of the state node xi, input node
uj , output node yk at time step t, respectively, the maps
fi : Dm+n → D and hk : Dn → D are Boolean functions, i ∈
[1, n], j ∈ [1,m], and k ∈ [1, q].B is represented in the compact
stacked form

x(t+ 1) = f(x(t), u(t))

y(t) = h(x(t)) (2)

with straightforward definitions of x, u, y, f , and h.
A BCN B evolves over a unique graph G = (N , E) associ-

ated withB. The vertex setN ofG consists of input nodes, state
nodes, and output nodes of B. The edges (i.e., elements of E)
of G are defined as follows: For every two state nodes xi and
xj and every input node uk, there exists an edge from xj (resp.
uk) to xi, denoted by (xj , xi) ∈ E (resp. (uk, xi) ∈ E), if and
only if at each time step t, the value xi(t+ 1) of xi depends on
the value xj(t) of xj (resp. the value uk(t) of uk), and for every
state node xi and output node yj , there exists an edge from xi to
yj , denoted by (xi, yj) ∈ E, if and only if the value yj(t) of yj
depends on the value xi(t) of xi. A subgraph G′ of G = (N , E)
generated by a subsetN′ ofN is the graph (N ,′ E ∩ (N′ × N ′))
consisting of N′ and all edges of G between vertices of N′. In
graph G, an input node has zero indegree (i.e., the number of
entering edges at the node is zero), an output node has zero
outdegree (i.e., the number of leaving edges at the node is zero),
and state nodes may have both positive indegree and positive
outdegree. In graph G, for each edge (vi, vj), also denoted by
vi → vj , vi (resp. vj) is called a parent (resp. child) of vj (resp.
vi). A path is a finite sequence v1 → v2 → · · · → vn of edges.
In particular, a path v1 → v2 → · · · → vn is called a cycle if
v1 = vn. Two vertices v and v′ are called strongly connected
if they belong to some cycle. Graph G is strongly connected if
every two vertices are strongly connected. A strongly connected
component of G is a subgraph G′ = (N ,′ E ′) of G such that
either N′ contains only one vertex that does not belong to any
cycle of G, or G′ is strongly connected and for every v′ ∈ N ′

and v′′ ∈ N \ N ′, v′ and v′′ are not strongly connected. Let G′′

be obtained from G by adding edge v1 → v2 if (v2, v1) ∈ E,
but (v1, v2) /∈ E for any v1, v2 ∈ N . Hence G and G′′ share

Fig. 1. Graph associated with BCNs (3) and (4).

the same set of vertices. Two vertices v and v′ are called weakly
connected in G if they are strongly connected inG′′. A subgraph
G′ of graph G is called a weakly connected component of G if
the subgraph of G′′ generated by the vertices of G′ is a strongly
connected component of G′′.

A graph can be associated with different BCNs. For example,
the graph shown in Fig. 1 is associated with the BCNs

x1(t+ 1) = x2(t) ∧ u(t)

x2(t+ 1) = ¬x1(t) ∨ u(t)

y(t) = x1(t) (3)

where ∧,∨, and ¬ denote AND, OR, and NOT, respectively, and

x1(t+ 1) = x2(t)∨̄u(t)
x2(t+ 1) = ¬x1(t) ∧ u(t)

y(t) = x1(t) (4)

where ∨̄ denotes XOR.

B. Observability

We are interested in the following notion of observability (first
characterized in [9] and then studied in [29]).

Definition 2.1: A BCN B is called observable if for
all different initial states x(0), x′(0), for each input se-
quence {u(0), u(1), . . . }, the corresponding output sequences
{y(0), y(1), . . . } and {y′(0), y′(1), . . . } are different.

We use a graph-theoretic method proposed in [29] to verify
observability. We simply call the “weighted pair graph” pro-
posed in [29] the “observability graph”.

Definition 2.2 ([29]): A graph Go = (V, E ,W) is called
the observability graph of a BCN B if its vertex set
V is {{x, x′} ∈ Dn ×Dn|h(x) = h(x′)}, its edge set E
is {({x1, x

′
1}, {x2, x

′
2}) ∈ V × V|(∃u ∈ Dm)[(f(x1, u) =

x2 ∧ f(x′
1, u) = x′

2) ∨ (f(x1, u) = x′
2 ∧ f(x′

1, u) = x2)]} ⊂
V × V , and its weight function W : E → 2D

m
assigns to each

edge ({x1, x
′
1}, {x2, x

′
2}) ∈ E a set {u ∈ Dm|(f(x1, u) =

x2 ∧ f(x′
1, u) = x′

2) ∨ (f(x1, u) = x′
2 ∧ f(x′

1, u) = x2)}
of inputs, where we denote {x1, x

′
1} u−→ {x2, x

′
2} if

u ∈ W(({x1, x
′
1}, {x2, x

′
2})).

A vertex {x, x′} is called diagonal if x = x′, and nondiagonal
otherwise. We call the subgraph of Go generated by diagonal
vertices, denoted by �, the diagonal subgraph. Similarly we
call the subgraph of Go generated by nondiagonal vertices the
nondiagonal subgraph.

Proposition 2.1 ([29]): A BCN B is not observable if and
only if its observability graph has a nondiagonal vertex v and a
cycle C, such that there is a path from v to a vertex of C.
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Fig. 2. Observability graph of BCN (3), where � denotes its diagonal
subgraph.

Fig. 3. Observability graph of BCN (4).

The following corollary follows from Proposition 2.1 since
every diagonal subgraph has a cycle.

Corollary 2.2: If in the observability graph of a BCNB there
is a path from a nondiagonal vertex to a diagonal vertex, then B
is not observable.

The computational cost of constructing the observability
graph of a BCN is at most (2n + 2n(2n − 1)/2)2m = 2n+m +
22n+m−1 − 2n+m−1. Hence the computational complexity of
using Proposition 2.1 to check observability is O(22n+m−1).
On the other hand, the size (i.e., the number of vertices and
the number of edges) of the graph associated with a BCN is
at most n+m+ q +mn+ n(n+ q), which is significantly
smaller than the size of the observability graph. However, it
is impossible to design an algorithm to check observability
by using only the graph, because there exists a graph that is
associated with an observable BCN and another unobservable
BCN. Consider BCNs (3) and (4) and the graph in Fig. 1 that is
associated with (3) and (4). It follows from the observability
graph of (3) (shown in Fig. 2) together with Corollary 2.2
that (3) is not observable. Similarly, from the observability
graph of (4) (Fig. 3) and Proposition 2.1, it follows that (4) is
observable.

C. Reconstructibility

We consider the following notion of reconstructibility (cf.
[9], [30]).

Definition 2.3: A BCN B is called reconstructible if there
exists a positive integer T , such that for all initial states
x(0), x′(0), for each input sequence {u(0), u(1), . . . , u(T )}, if
x(T + 1) 
= x′(T + 1) then the corresponding output sequence
{y(0), y(1), . . . , y(T + 1)} and {y′(0), y′(1), . . . , y′(T + 1)}
are different.

Observability is stronger than reconstructibility for BCNs.
If a BCN is observable, then for any sufficiently long input
sequence, one can use the input sequence and the correspond-
ing output sequence to determine the initial state. Hence, all
subsequent states can be determined. Consequently, the BCN is
reconstructible. However, the converse does not hold in general.
We use a graph-theoretic method proposed in [30] to verify
reconstructibility.

Definition 2.4 ([30]): A graph Gr = (V, E ,W) is called the
reconstructibility graph of a BCN B if Gr is the nondiagonal
subgraph of the observability graphGo ofB, i.e.,Gr is generated
by all nondiagonal vertices of Go.

Proposition 2.3 ([30]): A BCN B is not reconstructible if
and only if its reconstructibility graph has a cycle.

The computational cost of constructing the reconstructibil-
ity graph is at most (2n(2n − 1)/2)2m = 22n+m−1 − 2n+m−1.
Hence, the computational complexity of using Proposition 2.3
to check reconstructibility is O(22n+m−1). Similarly to observ-
ability, one cannot only use the graph associated with a BCN to
check its reconstructibility.

D. BCN Node Aggregations

Given a BCN, denote the set of state nodes by X =
{x1, . . . , xn}, the set of input nodes U = {u1, . . . , um}, the
set of output nodes Y = {y1, . . . , yq}, and the set of all nodes
N = X ∪ U ∪ Y .

Definition 2.5: A node aggregation of the graph G =
(N , E) associated with a BCN B is a partition

{N1, . . . ,Ns} (5)

of its set of nodes, where s ∈ [1, n+m+ q], i.e., N = N1 ∪
· · · ∪ Ns, each Ni is a nonempty subset of N , and Ni ∩ Nj = ∅
for all i 
= j, i, j ∈ [1, s]. SuchNi with i ∈ [1, s] denotes a super
node and the graph GA = (NA, EA) is called the aggregated
graph, where NA = {N1, . . . ,Ns}, (Nj ,Nk) ∈ EA if and only
if j 
= k and in G there exists an edge from some vj ∈ Nj

to some vk ∈ Nk. A node aggregation is called acyclic if its
aggregated graph contains no cycle.

For each super node Ni, its indegree (resp. outdegree) is the
sum of edges entering (resp. leaving)Ni in the aggregated graph,
i ∈ [1, s]. An aggregated graph contains no self-loop (i.e., an
edge from a super node to itself). Note that a node aggregation
uniquely defines an aggregated graph and vice versa, we will
not distinguish them. In the sequel we will also write “a node
aggregation GA” sometimes.

Consider a state x(t) = (x1(t), . . . , xn(t)) ∈ Dn at time t of
a BCN B and its node aggregation GA, the component of x(t)
in Ni with i ∈ [1, s] is defined by the set {xj(t)|j ∈ [1, n], xj ∈
Ni}. The set U of input nodes can be empty. In this case, the
first equation of (2) becomes x(t+ 1) = f(x(t)).

The purpose of aggregating network nodes is to verify ob-
servability and reconstructibility by verifying these notions for
subnetworks. A node aggregation can result in a significant
reduction of computational complexity if all subnetworks are
small. To this end, the observability and reconstructibility of
each subnetwork must be well defined, so we make the following
assumption.

Assumption 1: Consider a node aggregation GA of the graph
G = (N , E) associated with a BCN B. Let Gi be the subgraph
of G generated by Ni, i ∈ [1, s]. For each i ∈ [1, s], Ni ∩ Y 
=
∅; for each state node x ∈ Ni ∩ X , there is a path from x to
some output node y ∈ Ni ∩ Y in Gi, such that for all x′ ∈ X if
(x′, y) ∈ E then x′ ∈ Ni.

Definition 2.6: Consider a node aggregationGA of the graph
G = (N , E) associated with a BCN B, where GA satisfies
Assumption 1. For each super node Ni, the BCN correspond-
ing to Ni (or the subgraph Gi of G generated by Ni) is
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Fig. 4. Example of a node aggregation of BCN (6).

called the BCN subnetwork i, and is denoted Bi. In de-
tail, the state node set of Bi is Ni ∩ X , the input node set
is {u ∈ U|(∃x ∈ Ni ∩ X )[(u, x) ∈ E]} ∪ {x ∈ X \ Ni|(∃x′ ∈
Ni ∩ X )[(x, x′) ∈ E]}, and the output node set is {y ∈ Ni ∩
Y|(∃x ∈ Ni ∩ X )[(x, y) ∈ E]}. Such a node aggregation is also
called a BCN node aggregation.

Under Assumption 1, each BCN subnetworkBi is of the form
(1), but with i ∈ [1, s]. Hence Assumption 1 guarantees that the
observability and reconstructibility of each Bi are well defined.
For each Bi, its input nodes may be input nodes of G or state
nodes of G outside Ni, but its state nodes and output nodes
belong to Ni.

Let us give an example to illustrate the above concepts.
Example 2.4: Consider the following BCN (with subnet-

works B1,B2,B3, corresponding to Fig. 4)

B1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1(t+ 1) = x1(t)∨̄(x2(t) ∧ x3(t))

x2(t+ 1) = x2(t)∨̄x3(t)

x3(t+ 1) = ¬x3(t)

y1(t) = x1(t) ∧ (x2(t)∨̄x3(t))

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x4(t+ 1) = x5(t) ∧ u1(t)

x5(t+ 1) = x4(t)∨̄u1(t)∨̄x2(t)

y2(t) = x5(t)

B3 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x6(t+ 1) = x8(t)∨̄x5(t)

x7(t+ 1) = x6(t)∨̄x3(t)

x8(t+ 1) = x7(t)

y3(t) = x8(t).

(6)

In Fig. 4, all sets N1,N2,N3 contain output nodes; N1 and N3

contain no input node; G1 contains edges x1 → y1, x2 → y1,
and x3 → y1; G2 contains path x4 → x5 → y2; G3 contains
path x6 → x7 → x8 → y3. Hence, this node aggregation sat-
isfies Assumption 1. The corresponding aggregated graph is
acyclic and shown in Fig. 5. Subnetworks B1,B2, and B3

correspond to super nodes N1,N2, and N3, respectively. In
addition, x2 is an input node of B2; x3 and x5 are input nodes
of B3.

Fig. 5. Aggregated graph corresponding to Fig. 4.

III. OBSERVABILITY ANALYSIS OF BCNS USING

BCN NODE AGGREGATIONS

A. Observability Verification From BCN Node
Aggregations

In this subsection, we investigate whether one can verify
observability of a BCN B by verifying observability of its BCN
subnetworks Bi, i ∈ [1, s]. That is, we study whether B being
observable implies that all Bi are also observable, or vice versa.
After studying several different types of node aggregations, we
find that for acyclic node aggregations satisfying Assumption 1,
all Bi being observable implies that B is also observable, but
not vice versa. The intuition here is that for acyclic aggregations,
we can arrange all Bi in a cascading order so that we can
determine the initial states of all Bi one by one. However, for
cyclic aggregations, even satisfying Assumption 1, we will show
that neither of the two directional implications holds by means
of counterexamples.

Next we prove our first main result.
Theorem 3.1: Consider a BCN B and one of its acyclic node

aggregations GA. If GA satisfies Assumption 1 and all corre-
sponding BCN subnetworks Bi with i ∈ [1, s] are observable
then so is B.

Proof: Denote the graph associated with B by G = (N , E).
First we consider an acyclic node aggregation GA of G, and
prove there is a reordering (i.e., a bijection) τ : [1, s] → [1, s],
such that

for each i ∈ [1, s],N i :=

i⋃
j=1

Nτ(j) has zero indegree. (7)

Since GA is acyclic, each subgraph of GA has a super node
with indegree 0. Suppose on the contrary that a subgraph G′

A

of GA has all super nodes with positive indegrees. Construct a
new graph G′′

A from G′
A by reversing the directions of all edges

of G′
A. Then G′′

A has a cycle, since G′′
A has finitely many nodes

and each node has a positive outdegree. Then G′
A and hence GA

have a cycle, which is a contradiction.
Make a copy GA of GA with nodes N 1, . . . ,N s. Choose

k1 ∈ [1, s], such thatN k1
has zero indegree inGA, remove N k1

and all edges leaving N k1
from GA, and set τ(1) = k1. Then in

the remaining GA, there is k2 ∈ [1, s] \ {k1}, such that N k2
has

zero indegree. Remove N k2
and all edges leaving N k2

from the
remaining GA, and set τ(2) = k2. Repeat this procedure until
GA becomes empty, we obtain a bijection τ : [1, s] → [1, s] that
satisfies (7).

Second we assume that GA satisfies Assumption 1 and all Bi

are observable, and prove that B is also observable. We choose
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Fig. 6. Observability graph of subnetwork B1 in (6), where � denotes
the diagonal subgraph, numbers in circles are decimal representations
for states of B1, formally, 0∼000, 1∼001, 2∼010, 3∼011, 4∼100, 5∼
101, 6∼110, 7∼111.

an arbitrary input sequence {u(0), u(1), . . . } and two arbitrary
initial states x(0), x(0)′, such that the components of x(0), x(0)′

in Nτ(k) are not equal for some k ∈ [1, s], but the components
of x(0), x(0)′ in Nτ(i) are equal for all i ∈ [1, k − 1]. Then the
corresponding output sequences are always the same in their
Nτ(i) components, where i ∈ [1, k − 1].

Note that

in G, for all i, j ∈ [1, s],

if there exist node v ∈ Nτ(i) and node v′ ∈ Nτ(j)

such that (v, v′) ∈ E then i ≤ j. (8)

Then the dynamics of Bτ(i) does not affect that of Bτ(k) for
any i > k. Hence the corresponding output sequences differ in
their Nτ(k) component since Bτ(k) is observable. That is, B is
observable. �

In [32], a node aggregationGA satisfying (7) is called cascad-
ing; and it is pointed out that each cascading node aggregation
is acyclic, which can also be seen by (8). In the proof of
Theorem 3.1, the existence of the reordering τ satisfying (7)
actually shows that each acyclic aggregation is cascading. Hence
the following proposition follows.

Proposition 3.2: A node aggregation GA is acyclic if and
only if it is cascading.

Example 3.3: Recall Example 2.4. The node aggregation
shown in Fig. 4 is acyclic and satisfies Assumption 1. Next
we show that the BCN subnetworks B1,B2,B3 in (6) are all
observable. Then by Theorem 3.1, the whole BCN (6) is also
observable. The observability graph of B1 has eight diagonal
vertices, and 1 + C2

6 = 16 nondiagonal vertices. The observ-
ability graph of B1 is shown in Fig. 6, where we note that there
exists no path from a nondiagonal vertex to a diagonal vertex, and
there exists no cycle in the subgraph generated by nondiagonal
vertices. By Proposition 2.1, B1 is observable.

For B2, x5(0) = y2(0), x4(0) = x5(1)∨̄u1(0)∨̄x2(0) =
y2(1)∨̄u1(0)∨̄x2(0). y2(0) and y2(1) can be (directly) measured
(since they are output nodes) and u1(0) and x2(0) are known
(since they are input nodes), hence B2 is observable.

For B3, x8(0) = y3(0), x7(0) = x8(1) = y3(1), x6(0) =
x7(1)∨̄x3(0) = x8(2)∨̄x3(0) = y3(2)∨̄x3(0). y3(0), y3(1),
and y3(2) can be measured and x3(0) is known, hence B3 is
also observable.

The whole BCN (6) has 28 = 256 states, 2 inputs, and 23 = 8
outputs. Its observability graph has (((1 + C2

6 ) · 2 + 23)(2 · 2 +
22)((2C2

4 ) · 2 + 23)− 28)/2 = 4992 nondiagonal vertices, and
28 = 256 diagonal vertices. Hence it is much more complex to
directly use Proposition 2.1 to check observability of (6) than
using Theorem 3.1 and Proposition 2.1 as above.

B. Limitation of BCN Node Aggregations

In this subsection we show some cases where the aggre-
gation method cannot be used. We prove that for acyclic
node aggregations satisfying Assumption 1, the whole BCN
B being observable does not imply that all BCN subnetworks
Bi are observable; for cyclic aggregations, even if satisfying
Assumption 1, B being observable does not imply that all Bi

are observable, or vice versa. These results also indicate that
it is more difficult to find aggregations to verify observability
than to find aggregations to verify controllability. The reason
is as follows. In [32], controllability and stabilizability are
considered for a BCN by removing all its output nodes. Under
the assumption that in a node aggregation GA, each subgraph
Gi contains at least one state node, it is proved that the BCN is
controllable only if each subnetwork is controllable, although
the converse is not true. However, observability does not satisfy
such a strong property (see Examples 3.4 and 3.5).

The first counterexample shows that for cyclic node aggrega-
tions satisfying Assumption 1, B being observable does not in
general imply that all Bi are observable.

Example 3.4: Consider the following BCN (with three BCN
subnetworks):

B1 :

{
x1(t+ 1) = u1(t)∨̄x2(t)

y1(t) = x1(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x2(t+ 1) = u2(t)∨̄x1(t)

x3(t+ 1) = u2(t)∨̄x4(t)

y2(t) = x2(t) ∧ x3(t)

B3 :

{
x4(t+ 1) = u3(t)∨̄x3(t)

y3(t) = x4(t).

(9)

It is not difficult to see that the node aggregation {N1 =
{u1, x1, y1},N2 = {u2, x2, x3, y2},N3 = {u3, x4, y3}} satis-
fies Assumption 1 and contains cycles N1 ↔ N2 and N2 ↔
N3, BCN subnetworks B1,B2,B3 in (9) correspond to su-
per nodes N1,N2,N3, respectively. Subnetwork B1 is ob-
servable, because x1(0) = y1(0), and y1(0) can be mea-
sured. Symmetrically, B3 is also observable. In the observ-

ability graph of B2, there is an edge {00, 01} 000−−→ {00, 00}
from nondiagonal vertex {00, 01} to diagonal vertex {00, 00}.
Then by Corollary 2.2, B2 is not observable. Now con-
sider the whole BCN (9). We have x1(0) = y1(0), x2(0) =
x1(1)∨̄u1(0) = y1(1)∨̄u1(0), x3(0) = x4(1)∨̄u3(0) = y3(1)
∨̄u3(0), x4(0) = y3(0), y1(0), y1(1), y3(0), y3(1) can be mea-
sured, u1(0) and u3(0) are known, hence (9) is observable.

The second counterexample shows that for acyclic aggrega-
tions satisfying Assumption 1, in general B being observable
does not imply that all Bi are observable.
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Example 3.5: Consider the following BCN:

B1 :

⎧⎪⎪⎨
⎪⎪⎩
x1(t+ 1) = x2(t) ∧ u1(t)

x2(t+ 1) = x1(t)

y1(t) = x1(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x3(t+ 1) = x2(t)

x4(t+ 1) = x3(t)

y2(t) = x4(t).

(10)

The node aggregation {N1 = {u1, x1, x2, y1},N2 =
{x3, x4, y2}} satisfies Assumption 1, and the corresponding
aggregated graph N1 → N2 contains no cycle. Subnetworks
B1,B2 in (10) correspond to super nodes N1,N2,
respectively. In the observability graph of B1, there is an

edge {10, 11} 0−→ {01, 01} from a nondiagonal vertex {10, 11}
to a diagonal vertex {01, 01}, then by Corollary 2.2, B1

is not observable. Subnetwork B2 is observable because
x4(0) = y2(0), x3(0) = x4(1) = y2(1), y2(0) and y2(1)
can be measured. The whole BCN (10) is observable
because x1(0) = y1(0), x2(0) = x3(1) = x4(2) = y2(2),
x3(0) = x4(1) = y2(1), x4(0) = y2(0), y1(0), y2(0), y2(1),
and y2(2) can be measured.

The third counterexample shows that for cyclic aggregations
satisfying Assumption 1, if all Bi are observable, B is not
necessarily observable.

Example 3.6: Consider the following BCN:

B1 :

⎧⎪⎪⎨
⎪⎪⎩
x1(t+ 1) = u1(t)

x2(t+ 1) = x1(t)∨̄x4(t)

y1(t) = x2(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x3(t+ 1) = ¬(x1(t)∨̄x4(t))

x4(t+ 1) = u2(t)

y2(t) = x3(t).

(11)

The node aggregation {N1 = {u1, x1, x2, y1},N2 = {u2,
x3, x4, y2}} satisfies Assumption 1, and its aggregated graph
is a cycle N1 ↔ N2. For B1, x2(0) = y1(0), x1(0) =
x2(1)∨̄x4(0) = y1(1)∨̄x4(0). Since y1(0) and y1(1) can be
measured and x4(0) is known, B1 is observable. Simi-
larly B2 is also observable. Consider a nondiagonal vertex
{0110, 1111} of the obse-rvability graph of (11), there is an edge
{0110, 1111} u1u2−−−→ {u101u2, u101u2}, where inputs u1, u2 ∈
D, {u101u2, u101u2} is a diagonal vertex of the observability
graph. Hence by Corollary 2.2, (11) is not observable.

C. An Algorithm for Computing Acyclic BCN
Node Aggregations

In this subsection we design Algorithm 1 for computing all
acyclic BCN node aggregations satisfying Assumption 1 for
the graph G associated with a BCN B. Each of such node
aggregations can be easily found in polynomial time in the
number of vertices and edges of G.

Algorithm 1
Input: A BCN B
Output: All acyclic aggregated graphs of the graph G

associated with B satisfying Assumption 1
1: Compute all strongly connected components of G, and

regard each strongly connected component as a super
node. Then an acyclic aggregated graph is obtained.

2: if the aggregated graph satisfies Assumption 1 then
3: output the graph
4: end if
5: while some super node does not satisfy Assumption 1

do
6: arbitrarily choose a super node Ni that does not

satisfy Assumption 1
7: if Ni contains only input nodes then
8: arbitrarily find another super node Nj , such that

there exists an edge Ni → Nj , and combine them
to obtain a new super node

9: end if
10: if in Ni, there exists a state node xj that does not

satisfy Assumption 1 then
11: find an arbitrary path from xj to an output node yk

in G, find all parents of yk, and then combine all
super nodes each of which contains either one
node of the path or one parent of yk

12: end if
13: end while

Let us describe Algorithm 1. First, the algorithm computes
an acyclic aggregated graph of graph G, where the vertices
of the aggregated graph correspond to the strongly connected
components of G. This aggregated graph is the finest acyclic
aggregated graph of G. We say an aggregated graph G′ of G
is coarser than another aggregated graph G′′ of G (or equiv-
alently G′′ is finer than G′) if each vertex of G′′ is a subset
of some vertex of G′. There exist well-known algorithms to
compute all strongly connected components with linear time
complexity in the size of the graph, e.g., a variant of depth-first
search. If the obtained aggregated graph satisfies Assumption 1,
then the algorithm returns the aggregated graph. The rest of
the algorithm (the “while . . . end while” structure) combines
several of the strongly connected components in order to obtain
other acyclic aggregated graphs that satisfy Assumption 1. Given
a node aggregation {N1, . . . ,Ns}, after we combine super
nodes Ni1 , . . . ,Nip , we obtain a new coarser node aggregation
{Ni1 ∪ · · · ∪ Nip ,Nj with j ∈ [1, s] \ {i1, . . . , ip}}. Since the
aggregated graph obtained in line 1 is acyclic, all other obtained
aggregated graphs in the rest of the algorithm are also acyclic.
The algorithm will return all acyclic aggregated graphs that sat-
isfy Assumption 1 after running over all possible combinations
of strongly connected components of G. There always exists
an acyclic aggregated graph satisfying Assumption 1, e.g., the
trival node aggregation consisting of only one super node N .
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After we have obtained an aggregated graph that satisfies
Assumption 1, we can use Theorem 3.1 to check observability
of B. If the obtained aggregated graph satisfies the condition in
Theorem 3.1, then we know that B is observable. Otherwise we
compute another aggregated graph satisfying Assumption 1 by
using Algorithm 1 to do the check. If B is observable, then we
will finally obtain (after repeating the above procedure several
times) an acyclic aggregated graph that satisfies Assumption 1
and the condition in Theorem 3.1, because there always exists an
acyclic aggregated graph satisfying Assumption 1 and the condi-
tion in Theorem 3.1, e.g., the trivial node aggregation containing
only one super node N . However, if B is not observable, then
after repeating the above procedure several times, we will obtain
the trivial node aggregation that does not satisfy the condition
in Theorem 3.1.

Next we analyze the computational complexity of using
Theorem 3.1, Algorithm 1, and Proposition 2.1 to verify observ-
ability. We first find an acyclic node aggregation that satisfies
Assumption 1 by using Algorithm 1, then check observability
of all BCN subnetworks. If all BCN subnetworks are observ-
able then the whole BCN is observable. Assume that we have
obtained an acyclic node aggregation having k super nodes with
almost the same size and satisfying Assumption 1. Then each
super node approximately has n/k state nodes and m/k input
nodes. The computational cost of verifying observability for all
BCN subnetworks is approximately k2(2n+m)/k−1 by Proposi-
tion 2.1. For large BCNs, 2n+m is large. When k < l(2n+m)
for some positive constant l, k2(2n+m)/k−1 decreases as k
increases. Hence roughly speaking, the more super nodes a node
aggregation has and the closer the sizes of these super nodes are,
the less computation it costs to verify observability for all BCN
subnetworks. It is hard to find aggregations whose super nodes
have approximately the same size, but we can find aggregations
having sufficiently many super nodes instead (approximately
equivalent to finding finer node aggregations). Also, since gen-
erally Algorithm 1 returns finer node aggregations earlier, we
conclude that in most cases the method of using Theorem 3.1,
Algorithm 1, and Proposition 2.1 to verify observability of large
BCNs is quite efficient for a class of large BCNs.

IV. RECONSTRUCTIBILITY ANALYSIS OF BCNS USING

BCN NODE AGGREGATIONS

In this section, we study whether the node aggregation method
can be used to deal with reconstructibility of large BCNs. The
focus is on the conceptual difference between observability and
reconstructibility,

A. Reconstructibility Verification From BCN
Node Aggregations

We next prove the second main result. Even if it is similar to
Theorem 3.1, the proof is quite different. See discussion after
the proof for some insight.

Theorem 4.1: Consider a BCNB and one of its acyclic BCN
node aggregations GA. If GA satisfies Assumption 1 and all

BCN subnetworks Bi with i ∈ [1, s] are reconstructible then so
is B.

Proof: By the proof of Theorem 3.1, there is a bijection
τ : [1, s] → [1, s], such that (7) holds. Then without loss of
generality, we assume in GA that for all i, j ∈ [1, s], if there is
an edge Ni → Nj then i < j. Next we assume that GA satisfies
Assumption 1 and all BCN subnetworks Bi with i ∈ [1, s] are
reconstructible, and prove B is also reconstructible.

Assume by contradiction that each Bi is reconstructible but
B is not. Since B is not reconstructible, by Proposition 2.3,
there exist an input sequence {u(0), u(1), . . . } and two different
initial states x(0), x(0)′, such that the corresponding output se-
quences {y(0), y(1), . . . } and {y(0)′, y(1)′, . . . } are the same,
and the corresponding states x(t) and x(t)′ are different at
any time step t = 0, 1, . . . . Hence, at any time step t, there is
it ∈ [1, s], such that the components of x(t) and x(t)′ in Nit are
different. Since B1 is reconstructible and N1 has zero indegree
in GA, there is a positive integer j1, such that the components of
x(k) and x(k)′ inN1 are the same for any time k ≥ j1. SinceB2

is reconstructible, and N1 is the only potential parent of N2 in
GA, there is a positive integer j2 > j1, such that the components
of x(k) and x(k)′ in N2 are the same for any time k ≥ j2.
Similarly we have for any l ∈ [1, s− 1], there is a positive
integer jl > jl−1, such that the components of x(k) and x(k)′ in
Nl are the same for any time k ≥ jl. Hence the components of
x(k) and x(k)′ in Ns are different for any time k > js−1. Due
to the finite cardinality of the state space Dn, there is a cycle
in the reconstructibility graph of Bs. By Proposition 2.3, Bs is
not reconstructible, which is a contradiction, and completes the
proof. �

In order to verify reconstructibility of a large BCN, similarly
to verifying observability, one can first use Algorithm 1 to
find an acyclic node aggregation satisfying Assumption 1, and
then check whether all BCN subnetworks are reconstructible
according to Theorem 4.1.

The proof of Theorem 4.1 is more complex than that of
Theorem 3.1. To see why, consider an acyclic node aggregation
GA satisfying Assumption 1. As in the proofs of Theorems 3.1
and 4.1, we can assume that the super nodes (arranged as
N1, . . . ,Ns) of GA satisfy that there exists no edge from Ni to
Nj for any i > j without loss of generality. To prove that all Bi

being observable implies that B is also observable, we just need
to assume two different initial states, and check the subnetwork
Bj with the smallest index j, such that the components of the
initial states of B in Bj differ. However, to prove that all Bi

being reconstructible implies that B is reconstructible, we have
to check all Bi in the above order one by one.

B. Limitation of BCN Node Aggregations

Similarly to observability, one cannot always use the aggre-
gation method to verify reconstructibility of BCNs. Next we
give counterexamples to show some cases where the aggregation
method cannot be used in general.

The fourth counterexample shows that for acyclic aggrega-
tions satisfying Assumption 1, if B is reconstructible, then
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in general the BCN subnetworks Bi with i ∈ [1, s] are not
necessarily all reconstructible.

Example 4.2: Consider the following BCN (with three BCN
subnetworks):

B1 :

{
x1(t+ 1) = u1(t)∨̄x2(t)

y1(t) = x1(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x2(t+ 1) = x3(t)

x3(t+ 1) = x2(t)

y2(t) = x2(t) ∧ x3(t)

B3 :

{
x4(t+ 1) = u2(t)∨̄x3(t)

y3(t) = x4(t).

(12)

The acyclic node aggregation {N1 = {u1, x1, y1},N2 =
{x2, x3, y2},N3 = {u2, x4, y3}} satisfies Assumption 1.
In the proof of Proposition 3.4, we have shown that
B1 and B3 are both observable, hence they are both
reconstructible. For B2, in its reconstructibility graph,
there is a self-loop on nondiagonal vertex {10, 01}, then by
Proposition 2.3, B2 is not reconstructible. Now consider
the whole BCN (12). We have x1(0) = y1(0), x2(0) =
x1(1)∨̄u1(0) = y1(1)∨̄u1(0), x3(0) = x4(1)∨̄u2(0) =
y3(1)∨̄u2(0), x4(0) = y3(0), y1(0), y1(1), y3(0), y3(1) can be
measured, u1(0) and u2(0) are known, hence (12) is observable,
and then reconstructible.

The fifth counterexample shows that for cyclic aggregations
satisfying Assumption 1, if B is reconstructible, then in general
not all Bi are necessarily reconstructible.

Example 4.3: Consider the following BCN:

B1 :

{
x1(t+ 1) = u1(t)∨̄x2(t)

y1(t) = x1(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x2(t+ 1) = x1(t) ∧ x3(t)

x3(t+ 1) = x4(t) ∧ x2(t)

y2(t) = x2(t) ∧ x3(t)

B3 :

{
x4(t+ 1) = u2(t)∨̄x3(t)

y3(t) = x4(t).

(13)

The cyclic node aggregation {N1 = {u1, x1, y1},N2 =
{x2, x3, y2},N3 = {u2, x4, y3}} satisfies Assumption 1.
In the proof of Proposition 3.4, we have shown that B1

and B3 are observable, hence they are reconstructible.
For B2, in its reconstructibility graph, there is a self-loop

{10, 01} 11−→ {10, 01}, then by Proposition 2.3, B2 is not
reconstructible. Now consider the whole BCN (13). Similarly to
(12), the whole BCN is observable, and hence reconstructible.

The sixth counterexample shows that for cyclic aggregations
satisfying Assumption 1, if all Bi are reconstructible, then in
general B is not necessarily reconstructible.

Example 4.4: Consider the following BCN:

B1 :

⎧⎪⎪⎨
⎪⎪⎩
x1(t+ 1) = u1(t) ∨ x1(t)

x2(t+ 1) = x1(t)∨̄x4(t)

y1(t) = x2(t)

B2 :

⎧⎪⎪⎨
⎪⎪⎩
x3(t+ 1) = x1(t)∨̄x4(t)

x4(t+ 1) = u2(t) ∨ x4(t)

y2(t) = x3(t).

(14)

The cyclic node aggregation {N1 = {u1, x1, x2, y1},N2 =
{u2, x3, x4, y2}} satisfies Assumption 1. One directly sees
that both B1 and B2 are observable, hence they are also
reconstructible. In the reconstructibility graph of BCN (14),

there is a self-loop {1001, 0000} 00−→ {1001, 0000}, then by
Proposition 2.3, (14) is not reconstructible.

V. OBSERVABILITY AND RECONSTRUCTIBILITY ANALYSIS

USING FTS NODE AGGREGATIONS

Previously, we gave a class of node aggregations and studied
when one can efficiently verify observability and reconstructibil-
ity for large BCNs by verifying these two notions for their
subnetworks. Note that in this approach, every BCN subnetwork
must have an output node, which makes the verification not very
efficient when the whole BCN has only a small number of output
nodes. In order to compensate for this drawback, in this section,
we give a new class of node aggregations and a new notion of
subnetwork, such that in a new subnetwork, there may exist no
output node of the whole network. Note that a newly defined
subnetwork is not necessarily an BCN but an FTS (cf. [27],
[28]) that is more general than a BCN. We still adopt the notion
of node aggregation as in Definition 2.5.

An FTS2 is described as

x(t+ 1) ∈ f(x(t), u(t))

y(t) = h(x(t)) (15)

where t = 0, 1, . . . , x(t) ∈ ΔN , u(t) ∈ ΔM , y(t) ∈ ΔQ,
f : ΔN ×ΔM → 2ΔN \ ∅, h : ΔN → ΔQ, finite sets
ΔN ,ΔM ,ΔQ have positive integer cardinality N,M,Q.

Due to the nondeterminism of (15), given an initial state
and an input sequence, more than one output sequence may
be produced. The notions of observability and reconstructibility
for FTSs are as follows (called observability in the arbitrary-
experiment case in [27] and detectability in [28], respectively).
When an FTS reduces to a BCN, Definition 5.1 coincides with
Definition 2.1, Definition 5.2 coincides with Definition 2.3.

Definition 5.1 ([27]): An FTS F is called observable if for
all different initial states x(0), x′(0), for each input sequence
{u(0), u(1), . . . }, any output sequence {y(0), y(1), . . . } gen-
erated by x(0) and {u(0), u(1), . . . } is different from any
output sequence {y′(0), y′(1), . . . } generated by x′(0) and
{u′(0), u′(1), . . . }.

2In this article, we only need to consider total FTSs for which all states can
be initial, see [28] for details. An FTS is called a finite labeled transition system
in [27], and in [28] it is called a nondeterministic FTS.
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Definition 5.2 ([28]): An FTS F is called reconstructible
if there exists a positive integer T , such that for every in-
put sequence {u(0), u(1), . . . }, and every output sequence
{y(0), y(1), . . . }, the state at time k can be uniquely determined
by {u(0), . . . , u(k − 1)} and {y(0), . . . , y(k)} for every time
k > T .

By definition, if an FTS is observable, then for an arbitrary
input sequence {u(0), u(1), . . . } and the corresponding out-
put sequence {y(0), y(1), . . . }, its state at any time can be
uniquely determined. Note that here observability is not nec-
essarily stronger than reconstructibility (see Example 5.2 for
a counterexample). An algorithm3 for verifying observability
of F that runs in polynomial time in the numbers of states,
inputs, and outputs has been given in [27], and an algorithm4

for verifying reconstructibility of F that also runs in polynomial
time in the numbers of states, inputs, and outputs has been given
in [28]. Note that the algorithms in Propositions 2.1 and 2.3 for
verifying observability and reconstructibility of BCNs also run
in polynomial time in the numbers of states, inputs, and outputs.

The new assumption is as follows.
Assumption 2: Consider a node aggregation GA of the graph

G = (N , E) associated with a BCN B. For every i ∈ [1, s] and
every state node x ∈ Ni ∩ X , either

1) in subgraph Gi generated by Ni, there is a path from x to
some output node y ∈ Ni ∩ Y; or

2) there exists i 
= j ∈ [1, s] and x′ ∈ Nj ∩ X , such that
(x, x′) ∈ E and for all x′′ ∈ N if (x′′, x′) ∈ E then x′′ ∈
Ni ∩ X .

One can see that Assumption 2 does not imply Assumption 1,
or vice versa.

With these preliminaries, we give the new notion of subnet-
work.

Definition 5.3: Consider a node aggregation GA of the
graph G = (N , E) associated with a BCN B that satisfies
Assumption 2. For each super node Ni, where i ∈ [1, s],
the FTS corresponding to Ni (or the subgraph Gi of G
generated by Ni) is called the FTS subnetwork i, and denoted
by Fi. In detail, the state node set of Fi is Ni ∩ X , the
input node set of Fi is {u ∈ U|(∃x ∈ Ni ∩ X )[(u, x) ∈
E]} =: Fu

i ,and the output node set of Fi is a subset of
{y ∈ Ni ∩ Y|(∃x ∈ Ni ∩ X )[(x, y) ∈ E]} ∪⋃

j∈[1,s],j 
=i{x ∈
Nj |((∃x′ ∈ Ni ∩ X )[(x′, x) ∈ E]) ∧ ((∀x′′ ∈ N )[(x′′, x) ∈
E ⇒ x′′ ∈ Ni ∩ X ])} =: Fy

i . Such a node aggregation is called
an FTS node aggregation.

In Definition 5.3, for FTS subnetwork Fi, the set of input
nodes is Fu

i , but the set of output nodes is only a subset of Fy
i .

Actually, if a proper subset ofFy
i is enough for the corresponding

Fi to be observable (resp. reconstructible), then we do not need to
impose that all nodes ofFy

i are output nodes. For subnetworkFj ,
since there may exist nodes outside Fj that can affect dynamics
of Fj but are not input nodes of Fj (e.g., in Fig. 7, node x4 is
not an input node of subnetwork F2 but affects dynamics of F2),

3This algorithm reduces to the one shown in Proposition 2.1 when the FTS
reduces to a BCN.

4This algorithm does not reduce to the one shown in Proposition 2.3 when
the FTS reduces to a BCN.

Fig. 7. Example of a node aggregation for Example 5.2.

one has the updating rule of Fj is actually a set-valued function
as described in (15). Hence Fj is itself an FTS.

We next prove the third main result. Differently from
Theorems 3.1 and 4.1, we do not need to impose that the corre-
sponding aggregated graph is acyclic. However, for an acyclic
node aggregation that satisfies Assumption 2, the reordering τ
in Theorem 5.1 always exists.

Theorem 5.1: Consider a BCN B and one of its node aggre-
gations GA satisfying Assumption 2. Assume that there exists a
reordering τ : [1, s] → [1, s], such that for each i ∈ [1, s], no out-
put node of FTS subnetworkFτ(i) belongs toNτ(j) for any j < i.
If all Fi with i ∈ [1, s] are observable (resp. reconstructible),
then so is B.

Proof: Arbitrarily choose an initial state x(0) given but un-
known, an input sequence {u(0), u(1), . . . }, and an arbitrary
produced output sequence {y(0), y(1), . . . }. First, since sub-
network Fτ(s) is observable (resp. reconstructible), and all of its
output nodes belong to Nτ(s), we can determine its initial state
(resp. current state at some time and all subsequent states) by
using the above input sequence and output sequence; second,
for Fτ(s−1), by using the obtained states of Fτ(s) (they may be
values of some output nodes of Fτ(s−1)) and the above input
and output sequences, we can determine the initial state (resp.
current state at some time and all subsequent states) of Fτ(s−1);
...; finally, we can determine the initial state (resp. current state
at some time and all subsequent states) of Fτ(1). Hence B is
observable (resp. reconstructible). �

Example 5.2: Consider the following BCN:

x1(t+ 1) = x1(t)∨̄(x2(t) ∧ x3(t))

x2(t+ 1) = x2(t)∨̄x3(t)

x3(t+ 1) = ¬x3(t)

x4(t+ 1) = x1(t) ∧ (x2(t)∨̄x3(t))

x5(t+ 1) = x4(t)

x6(t+ 1) = x5(t)∨̄x7(t)

x7(t+ 1) = x6(t)

y(t) = x7(t). (16)

Consider the node aggregation shown in Fig. 7. This node aggre-
gation satisfies Assumption 2 but does not satisfy Assumption 1.
The unique node aggregation of (16) satisfying Assumption 1
only contains one super node {x1, . . . , x7, y}, since every BCN
subnetwork must contain an output node and the whole network
only contains one output node. Consider the following two FTS
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TABLE I
UPDATING RULES FOR THE NODES OF THE T-CELL RECEPTOR KINETICS MODEL [15]

subnetworks F1 (a BCN) and F2:

F1 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = x1(t)∨̄(x2(t) ∧ x3(t))

x2(t+ 1) = x2(t)∨̄x3(t)

x3(t+ 1) = ¬x3(t)

x4(t+ 1) = x1(t) ∧ (x2(t)∨̄x3(t))

y1(t) = x5(t+ 1) = x4(t)

F2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x5(t+ 1) ∈ {0, 1}
x6(t+ 1) = x5(t)∨̄x7(t)

x7(t+ 1) = x6(t)

y(t) = x7(t)

(17)

where y1(t) = x5(t+ 1) means that x5 is regarded as an output
node of F1; y is an output node of F2; x4 is not an input node of
F2, but affects the update of node x5 (see x5(t+ 1) ∈ {0, 1}).

Observe that x7(0) = y(0), x6(0) = x7(1), and x5(0) =
x6(1)∨̄x7(0), so F2 is observable. However, F2 is not recon-
structible since starting at initial state 010 (in order x5, x6, x7),
for output sequence (01)ω (i.e., concatenation of infinitely many
copies of 01), 001 and 101 are possible states at time 2k + 1,
000, 010, 100, 110 are possible states at time 2k + 2 for all
natural numbers k. In Example 3.3, we have proved that BCN
subnetworkB1 of (6) is observable, hence F1 (actually the same
as B1) of (16) is also observable. Then by Theorem 5.1, (16) is
observable, and hence reconstructible.

Similarly to Algorithm 1, one can also design an algorithm
for returning all node aggregations of a BCN satisfying
Assumption 2. One can do similar analysis on the limitation
of FTS node aggregations as on BCN node aggregations in the
previous section.

VI. A BIOLOGICAL APPLICATION

In this section, we apply our results in Sections III–V to study
observability and reconstructibility of the BCN T-cell receptor
kinetics model [15], and then compare the obtained results.

A. The Model

T-cells are a type of white blood cells known as lymphocytes.
These white blood cells play a central role in adaptive immu-
nity and enable the immune system to mount specific immune

Fig. 8. Network of the T-cell receptor kinetics model (cf. [15]), where
rectangles denote input nodes, the other nodes denote state nodes, par-
ticularly the nodes with shadows are chosen to be measured. The node
aggregation shown in this figure is acyclic and satisfies Assumption 1.

responses. T-cells have the ability to recognize potentially dan-
gerous agents and subsequently initiate an immune reaction
against them. They do so by using T-cell receptors to detect
foreign antigens bound to major histocompatibility complex
molecules, and then activate, through a signaling cascade, sev-
eral transcription factors. These transcription factors, in turn,
influence the cell’s fate such as proliferation. For the details,
we refer the reader to [15]. The BCN T-cell receptor kinetics
model given in [15] is shown in Table I, its network is shown
in Fig. 8. In Fig. 8, there exist three input nodes and 37 state
nodes. Hence, the model has 23 inputs and 237 states. In order
to do a quantitative analysis for the T-cell model, it would be
better to obtain the state information of the model first. Next we
study how to choose as few state nodes as possible to measure
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to make the model observable or reconstructible. We choose as
few state nodes as possible because usually not all nodes can be
directly measured [22]. It is useful in the biological application
to find a minimal set of state nodes that need to be measured to
make the whole BCN observable. It is almost impossible to use
a PC to deal with such a large BCN directly. We next use the
node aggregation approach instead.

B. Observability Analysis Based on a Particular Acyclic
BCN Node Aggregation

In order to obtain the initial state of the BCN, one must choose
some state nodes to measure, since there exists no output node
in the network. In this sense, one should first choose some state
nodes, and then assign each of these chosen state nodes one
new output node as its child, such that each of these new added
output nodes has only one parent. Then one can obtain the values
of these chosen state nodes by measuring their corresponding
output nodes. The chosen state nodes and their corresponding
output nodes are represented as the nodes with shadows and their
shadows, respectively, in Fig. 8. The main result obtained in this
subsection is that we find the minimal set

{TCRbind, cCbl, PAGCsk,Rlk, TCRphos, SLP76,

Itk,Grb2Sos, PLCg(bind), CRE,AP1, NFkB,

NFAT, Fos, Jun,RasGRP1} (18)

of state nodes that need to be measured to make the whole BCN
observable. That is to say, if all nodes in (18) can be measured
then the BCN is observable, and if any one of them cannot be
measured then the BCN is not observable. In what follows, we
prove this conclusion, and illustrate the process of looking for
these state nodes.

We assume that it is not known which nodes in Fig. 8 are
chosen to be measured, and next illustrate the process of looking
for them. First of all, CRE, AP1, NFkB, and NFAT must
be chosen to be measured, because they have no children, and
if any one of them cannot be measured, the whole BCN is
not observable. By measuring these nodes, the initial values
of CREB, Rsk, ERK, MEK, Raf , Ras, IkB, IKKbeta,
PKCth, DAG, Calcin, Ca, IP3, and PLCg(act) can be
obtained. Taking NFAT for example, by Table I, we have
Calcin(0) = NFAT (1), Ca(0) = Calcin(1) = NFAT (2),
IP3(0) = NFAT (3), and PLCg(act)(0) = NFAT (4), then
one can obtain NFAT (0), Calin(0), Ca(0), IP3(0),
and PLCg(act)(0) by measuring NFAT (0), NFAT (1),
NFAT (2), NFAT (3), and NFAT (4), respectively. Second,
since AP1(t+ 1) = Fos(t) ∧ Jun(t) (cf. Table I) and both
Fos and Jun only affect AP1 (cf. Fig. 8), Fos and Jun must
be chosen to be measured. This is because if any one of Fos and
Jun cannot be measured, say, Fos, then Jun(0) = 0 implies
that AP1(1) = 0 no matter what Fos(0) is and Fos(0) cannot
be obtained, i.e., the whole BCN is not observable. By measuring
Jun, the initial values of JNK and SEK can be obtained.
Third, since Ras(t+ 1) = Grb2Sos(t) ∨RasGRP1(t) (also
cf. Table I) and Ras is the unique child of both Grb2Sos and
RasGRP1 (also cf. Fig. 8), similarly to the case for Fos and

Fig. 9. Aggregated graph corresponding to Fig. 8.

Jun, we have Grb2Sos and RasGRP1 must be chosen to be
measured, or the whole BCN is not observable. By measuring
Grb2Sos, the initial values of LAT and ZAP70 can be ob-
tained. Fourth, we give an acyclic node aggregation for the BCN
as shown in Fig. 8 (also cf. Fig. 9), and set that for each state
node chosen to be measured, its corresponding new added output
node belongs to the same part as the state node. By the above
analysis, the BCN subnetworks B3,B4, and B5 corresponding
to subgraphs N3,N4, and N5 are observable. Next, we look for
the minimal number of state nodes to be measured in subgraphs
N1 and N2 to make the corresponding subnetworks observable
by using Proposition 2.1. Since subgraph N1 has three input
nodes and eight state nodes, and N2 has fewer input nodes
and state nodes, we can use Proposition 2.1 to deal with them.
For N2, if we choose all state nodes to be measured, then
obviously the BCN subnetwork is observable. Since we want
to know which node is necessary for the BCN subnetwork to be
observable, we choose any five of the six state nodes in N2 to be
measured, and verify observability of the BCN subnetworks by
using Proposition 2.1. After verifying observability of these six
subnetworks one by one, we find that SLP76, Itk, Grb2Sos,
andPLCg(bind) are necessary forB2 to be observable, and the
other two nodes are not. Also by Proposition 2.1, we obtain that
if we choose only SLP76, Itk, Grb2Sos, and PLCg(bind)
to be measured, then the BCN subnetwork, denoted by B2, is
observable. Hence the set of these four nodes is the unique mini-
mal set of nodes making the BCN subnetwork observable. Based
on this, we choose SLP76, Itk, Grb2Sos, and PLCg(bind)
to be measured in N2. For N1, using the same method as for
dealing with N2, by Proposition 2.1 we find that TCRbind,
cCbl, PAGCsk, Rlk, and TCRphos are necessary for the
BCN B1 to be observable, and the other 3 nodes are not. We
also obtain that if we choose only TCRbind, cCbl, PAGCsk,
Rlk, and TCRphos to be measured, then the BCN subnetwork,
denoted by B1, is observable. Hence, the set of these five nodes
is the unique minimal set of nodes making the BCN subnetwork
observable.

Until now we have found all the 16 state nodes shown in
(18). Next we prove that if we choose only these 16 nodes to
be measured, then the whole BCN is observable. Note in that
sense, the acyclic node aggregation shown in Fig. 8 satisfies
Assumption 1, and we have proved that all subnetworks Bi are
observable, i ∈ [1, 5], then by Theorem 3.1, the whole BCN is
observable.
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To conclude this part, we show that if any one of these 16
nodes in (18) cannot be measured, then the whole BCN is not
observable. Previously we have shown that CRE, AP1, Jun,
Fos,NFkB,NFAT ,RasGRP1, andGrb2Sos are necessary
for the whole BCN to be observable, so if any one of these
nodes cannot be measured, the whole BCN is not observable.
Now consider Rlk, Itk, and PLCg(bind). By Table I and
Fig. 8, we have PLCg(act)(t+ 1) = PLCg(bind)(t) ∧
SLP76(t) ∧ ZAP70(t) ∧ (Itk(t) ∨Rlk(t)), all of Rlk,
Itk and PLCg(bind) affect only PLCg(act). If Rlk (Itk,
PLCg(bind)) cannot be measured and SLP76(0) = 0,
then PLCg(act)(1) = 0 no matter what Rlk(0) (Itk(0),
PLCg(bind)(0)) is, i.e., Rlk(0) (Itk(0), PLCg(bind)(0))
cannot be obtained, and hence the whole BCN is not
observable. Consider SLP76. We have SLP76 affects only
Itk and PLCg(act), PLCg(act)(t+ 1) = PLCg(bind)(t) ∧
SLP76(t) ∧ ZAP70(t) ∧ (Itk(t) ∨Rlk(t)), and Itk(t+
1) = SLP76(t) ∧ ZAP70(t). If SLP76 cannot be measured,
and ZAP70(0) = 0, then PLCg(act)(1) = Itk(1) = 0 no
matter what SLP76(0) is, i.e., SLP76(0) cannot be obtained,
and the whole BCN is not observable either. For TCRphos, we
have TCRphos affects only ZAP70, and ZAP70(t+ 1) =
(¬cCbl(t)) ∧ Lck(t) ∧ TCRphos(t). For PAGCsk, we
have PAGCsk affects only Lck, and Lck(t+ 1) =
(¬PAGCsk(t)) ∧ CD8(t) ∧ CD45(t). Similarly we have,
if either TCRphos or PAGCsk cannot be measured,
then the whole BCN is not observable. For cCbl, we have
cCbl affects only TCRbind and ZAP70, TCRbind( t+
1 ) = (¬cCbl(t)) ∧ TCRlig(t), and ZAP70( t+ 1 ) =
(¬cCbl(t)) ∧ Lck(t) ∧ TCRphos(t). If cCbl cannot be
measured, and TCRlig(0) = TCRphos(0) = 0, then
TCRbind(1) = ZAP70(1) = 0 no matter what cCbl(0)
is, i.e., cCbl(0) cannot be obtained, and the whole BCN
is not observable either. Finally, consider TCRbind.
TCRbind affects only Fyn, TCRphos, and PAGCsk.
We have Fyn(t+ 1) = CD45(t) ∧ (Lck(t) ∨ TCRbind(t)),
TCRphos(t+ 1) = Fyn(t) ∨ (Lck(t) ∧ TCRbind(t)), and
PAGCsk(t+ 1) = Fyn(t) ∨ (¬TCRbind(t)). If TCRbind
cannot be measured, CD45(0) = 0, and Fyn(0) = 1,
then Fyn(1) = 0, TCRphos(1) = PAGCsk(1) = 1 no
matter what TCRbind(0) is, i.e., TCRbind(0) cannot
be obtained forever, and then the whole BCN is not
observable. This part has been finished. In addition,
note that if Fyn cannot be measured, we cannot obtain
that the whole BCN is not observable by using similar
procedure. This is because Fyn affects only PAGCsk and
TCRphos, PAGCsk(t+ 1) = Fyn(t) ∨ (¬TCRbind(t)),
TCRphos(t+ 1) = Fyn(t) ∨ (Lck(t) ∧ TCRbind(t));
if TCRbind(0) = 0, then no matter what Lck(0) is,
TCRphos(1) = Fyn(0); if TCRbind(0) = 1, then no matter
what Lck(0) is, PAGCsk(1) = Fyn(0). That is, in both cases,
Fyn(0) can be measured. This procedure is not sufficient to
prove that the whole BCN is observable either, so the node
aggregation method and Proposition 2.1 are necessary.

On the other hand, a weaker type of observability (i.e., [29,
Def. 5], not equivalent to the one studied in this article) of BCNs
is characterized in [19] by using an algebraic method, and it

is proved that for the BCN T-cell receptor kinetics model, the
unique minimal set of nodes that need to be measured to make
the whole BCN observable is

{TCRbind,Rlk, TCRphos, SLP76,

Itk,Grb2Sos, PLCg(bind), CRE,AP1, NFkB,

NFAT, Fos, Jun,RasGRP1}, (19)

which is a proper subset of (18).

C. Reconstructibility Analysis Based on a Particular
Acyclic BCN Node Aggregation

In this subsection, we study reconstructibility of the BCN T-
cell receptor kinetics model. Obviously, if we choose the 16 state
nodes shown in (18) to be measured, then the whole BCN is re-
constructible. However, to make the whole BCN reconstructible,
we do not need to measure so many state nodes. In order to use
the node aggregation method to characterize reconstructibility,
we give a new node aggregation for its network consisting of two
super nodes, where N1 is the same as the N1 in Fig. 8, while
N2 is the set of all other nodes. The corresponding aggregated
graph N1 → N2 is also acyclic. For N1, by Proposition 2.3 we
have that for each state node x in N1, if x cannot be measured
and all other state nodes in N1 can be measured, then the BCN
subnetwork B1 is reconstructible. That is, none of state nodes
of N1 is necessary for B1 to be reconstructible.

We next assume that any state node in the set

{TCRbind, cCbl, PAGCsk,Rlk, TCRphos} (20)

can be measured. In order to make this node aggregation satisfy
Assumption 1, we add an output node toN2 satisfying y(t) ≡ 1,
which actually means that none of state nodes in N2 can be
measured.

We have proved that BCN subnetwork B1 is observable,
hence reconstructible. Next we prove that B2 is also recon-
structible. Then by Theorem 4.1, the whole BCN is recon-
structible. Arbitrarily choose an initial state, an input sequence,
and the corresponding output sequence. Since B1 is observable,
we actually know the values of every node in N1 at any time.
For B2, we have LAT (t+ 1) = ZAP70(t), hence we know
the value of LAT since time 1. Furthermore, we successively
know the values of Gads,Grb2Sos, PLCg(bind) since time
2; the value of SLP76 since time 3; the value of Itk since
time 4; the value of PLCg(act) since time 5; the values of
IP3, DAG since time 6; the values ofCa, PKCth since time 7;
the values of Calcin,RasGRP1, SEK, IKKbeta since time
8; the values of NFAT,Ras, JNK, IkB since time 9; the
values of Raf, Jun,NFkB since time 10; the value of MEK
since time 11; the value of ERK since time 12; the values
of Rsk, Fos since time 13; the values of CREB,AP1 since
time 14; and the value of CRE since time 15. That is, B2 is
reconstructible.

Note that compared to measuring at least 16 state nodes to
make the whole BCN observable, we only need to measure five
state nodes to make the whole BCN reconstructible.
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Fig. 10. Cyclic node aggregation of the network of the T-cell receptor
kinetics model (cf. [15]) that satisfies Assumption 2.

Fig. 11. Aggregated graph corresponding to Fig. 10.

D. Observability and Reconstructibility Analysis Based
on a Particular FTS Node Aggregation

We use an FTS node aggregation proposed in Section V
to verify observability for the T-cell model based on the se-
lected output nodes as in (18). We choose a cyclic node
aggregation as in Fig. 10. Its aggregated graph is shown
in Fig. 11. This node aggregation contains 12 FTS subnet-
works, and only one cycle N1 ↔ N2. The sets of output
nodes for the corresponding FTS subnetworks F1, . . . ,F12 are
chosen as {TCRbind, PAGCsk, TCRphos,Rlk}, {cCbl},

{Rlk}, {SLP76}, {Itk}, {NFAT}, {Grb2Sos,RasGRP1,
Raf, SEK}, {PLCg(bind)}, {IP3}, {CRE}, {Jun,AP1,
Fos}, and {NFkB}, respectively. None of these 12
subnetworks is a BCN. One sees that the reordering
F1,F2,F3,F4,F5,F8,F9,F7,F10,F6,F11,F12 satisfies the as-
sumption in Theorem 5.1. One can also verify that
F2, . . . ,F12 are observable. For F1, Lck(0) = Rlk(1),
Fyn(0) = TCRphos(1) if TCRbind(0) = 0, Fyn(0) =
PAGCsk(1) if TCRbind(0) = 1, hence F1 is also observable.
Then by Theorem 5.1, the T-cell model is observable, and hence
reconstructible.

Compared to the node aggregation shown in Fig. 8, the node
aggregation in Fig. 10 contains more (smaller) subnetworks.
Hence, the verification based on the latter node aggregation is
more efficient for the T-cell model.

VII. CONCLUSION

We used a node aggregation method to reduce computational
complexity of verifying observability and reconstructibility for
large BCNs with special structures. We defined a first class
of node aggregations whose subnetworks are BCNs, and then
showed that even for this special class of node aggregations, the
subnetworks being observable (reconstructible) does not imply
the whole BCN being observable (reconstructible), and vice
versa. However, for acyclic node aggregations in this class, we
proved that the subnetworks being observable (reconstructible)
implies that the whole BCN is observable (reconstructible).
We proved that acyclic node aggregations are equivalent to
cascading node aggregations frequently used in the literature.
We showed that finding such node aggregations consisting of
as many subnetworks as possible can reduce the computational
complexity in verifying observability and reconstructibility. We
also designed an efficient algorithm for searching all acyclic
aggregations in this class.

In order to compensate for the drawback of the first class of
node aggregations when the BCN has only a small number of
output nodes, we also defined a second class of node aggrega-
tions with subnetworks being FTSs. We obtained several results
on efficient observability and reconstructibility verification for
large BCNs.

The first class of node aggregations characterized in this arti-
cle can be used to deal with observability and reconstructibility
also for discrete-time linear (special classes of nonlinear) control
systems over Euclidean spaces with special network structures.
Taking discrete-time linear time-invariant control systems, for
example, if an acyclic node aggregation satisfying Assump-
tion 1 has been found, then one can verify observability of the
whole system by verifying observability of each subsystem by
using the well-known observability rank criterion. Since given
the dimensions of input space, state space, and output space,
the set of observable linear time-invariant control systems is
dense in the set of linear time-invariant control systems, the
node aggregation method is feasible. Further discussion is left
for future study. Our results in this article motivate also the study
of observability and reconstructibility of large BCNs based on
different types of node aggregations.
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