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Dynamical Properties of Hybrid Automata

John Lygeros, Karl Henrik Johansson, Slobodan N. Sithio Zhang, and S. Shankar Saskgllow, IEEE

Abstract—Hybrid automata provide a language for modeling [9], [10], complementarity systems [11], [12], mixed logic dy-
and analyzing digital and analogue computations in real-time sys- namical systems [13], etc. Continuity of the solutions with re-

tems. Hybrid automata are studied here from a dynamical systems ghact 10 injtial conditions and parameters has been somewhat
perspective. Necessary and sufficient conditions for existence and

uniqueness of solutions are derived and a class of hybrid automata less ex_te.nsively Stuqied' Motivated by q_UEStionS of simulation,
whose solutions depend continuously on the initial state is charac- Tavernini[14] established a class of hybrid systems that have the
terized. The results on existence, uniqueness, and continuity serveproperty of continuous dependence of solutions for almost every
as a starting point for stability analysis. Lyapunov's theorem on  jnitial condition. More recently, an approach to the study of con-
stability via linearization and LaSalle’s invariance principle are  in,0ys dependence on initial conditions based on the Skorohod
generalized to hybrid automata. .
o _ _ ~ topology was proposed [15]. The Skorohod topology, used in
Index Terms—Continuity of solutions, dynamical systems; exis- stochastic processes for the space of cadlag functions [16], is
tence, LaSalle’s principle, Lyapunov's indirect method, hybrid sys-  athematically appealing, but tends to be very cumbersome to
tems, uniqueness. L - . . .. . -
work with in practice. This fact severely limits the applicability
of the results.
I. INTRODUCTION The first contribution of the present paper, presented in Sec-

YBRID systems are dynamical systems that involve tﬁ'éon 11, is a set of new results on existence, uniqueness and con-
H interaction of continuous and discrete dynamics. Systerw‘%uouS depen_derpe of executions on ir_1itia| conditio_ns. The re-
of this type arise naturally in a number of engineering applicgylts are very intuitive, natural and applicable to a wide class of

tions. For example, the hybrid paradigm has been used succ %@-”d shystt)?emst, ?Ut req(;"tf thetco][‘npt)uttatl?n of bohgngs ontt_he set
fully to address problems in air traffic control [1], automotive' reachable stales and he set of states from which continuous

control [2], bioengineering [3], process control [4], [5], highwa)?VOIUtion is impossible. We demonstrate how the computation

systems [6], and manufacturing [7]. The needs of these a Ii(5)<,£:[hese_quantities can be carried out on an example and refer to
y [6] gl7] PP Ir earlier work [17] and [18] for a more general treatment.

tions have fuelled the development of theoretical and c:ompuf}:{J ) o, o . ) .
tional tools for modeling, simulation, analysis, verification, and Questions of stability of equilibria and invariant sets of hybrid
controller synthesis for rylybrid systéms ’ " 'systems have also attracted considerable attention. Most of the

: : ; k in this area has concentrated on extensions of Lyapunov’s
Fundamental properties of hybrid systems, such as emsteﬁﬁ[ . .
and uniqueness of solutions, continuity with respect to initi IIreCt method to the hybrid domain [19], [20]. The work of [21]

conditions, etc., naturally attracted the attention of researchgfgv'de_d_ effective computat_lonal tools, based on linear m_atrlx

fairly early on. The majority of the work in this area concen'—n?qufi“t'es (LMIs), for applying th.ese result§ to aclags ofplece-

trated on developing conditions for well posedness (existen ésellnear _systems. For an overview of the literature in this area
and unigueness of solutions) for special classes of hybrid Y% rea(_jer IS referred to [22]. . 1

tems: variable structure systems [8], piecewise linear system espite all ,th's progress on extensions of Lyapunov S d!rect

method, relatively little work has been done on hybrid versions

of other stability analysis results. The second contribution of

this paper, presented in Section 1V, is to provide extensions of
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these, to be more precise). The hybrid automata considered teefenctions: Q x X — R we useL¢o: Q x X — R to denote
are a special case of the hybrid automata of [27] and the imputke Lie derivative o> along f defined by

differential inclusions of [28], both of which allow differential d 9

inclusions to model the continuous dynamics. They are also a Lio(q,x) = — o(q, 9t q,z)) = —Uf(q,x)
special case of hybrid input—output automata of [29], which in dt|,—g O

addition allow infinite-dimensional continuous state. Each Or@ssuming all derivatives are defined). We i3£(q, ) to de-
of the references uses slightly different notation, concepts afgke the linearization of with respect tor.

terminology. Our development will roughly follow the conven- ’

tions introduced in [18]. To avoid any ambiguity, the notatioB. Hybrid Automata and Executions

and some basic concepts will be reviewed in Section II. A hybrid automaton is a dynamical system that describes the

evolution in time of the valuations of a set of discrete and con-
tinuous variables.

Definition 11.1 (Hybrid Automaton): A hybrid automaton
A. Notation is a collectionH = (Q, X, f,Init, D, E, G, R), where

For a finite collectionV of variables, letV denote the set of @ finite set of discrete variables;

. . . . finite set of continuous variables;
valuations (possible value assignments) of these variables. Wej-f_ QxX—TX vector field:
use a lower case letter to denote both a variable and its valus '

Il. FRAMEWORK

. . . Init C X f initial ;
ation; the interpretation should be clear from the context. We l;l-th_—?];((X) Zeotl(;)mair:? states:
refer to variables whose set of valuations is finite or countable ,’ Co

ECQxQ set of edges;

asdiscrete and to variables whose set of valuations is a subsetG_ E — P(X) guard condition:
of a Euclidean space asntinuousFor a set of continuous vari- R: F x X — P(X) reset map '

aplesX with X = R" for.somen > 0, we assume thaX is We refer to(q, z) € Q x X as thestateof H. We impose the
given the Euclidean metric topology, and yisd| to denote the following standing assumption

Euclidean norm. For a set of discrete variabigswe assume )

thatQ is given the discrete topology (every set is open) gengg Assumption 11.1: The number of discrete states is finide.=
, n > 0. 1 AN
ated by the metridp (. ¢') = 0if g = ¢ anddp(g,¢') = 1 , for somen > 0. For all¢q € Q, the vector fieldf(q, ) is

if ¢ % . We denote the valuations of the unighu X by globally Lipschitz continuous. For alle E, G(e) # 0, and for

. allx € G(e), R(e,z) # 0.
(? x X, V\f'th,the_ZrOdUCt, topology 9er$hratfnd ttr)iy ;h? ?er;mc Most of the results presented in this paper trivially extend to
. ((q’tx)’éqdf ) _tMD]\(/[q/ qc) + ||$X_bx |(|j p € c?]\/([: A?[Ia_o hybrid automata where the discrete state is countably infinite
;i:{);(e(n E) (O,Si,))j ( ’LS SJ\TI (¢ %;,)ee”}:/??} (We’ ass)u;’ne and the continuous state takes values in a smooth manifold. It
thatas(l]jbsé[tfqo;‘a tobo(II(;;;ical sp:acqe}s given the induced subscgn be shown that the last part of the assumption can effectively
B imposed without loss of generality [17].

BOUDOEJ%/, al?od '\;vebuséf dto de?(.)tte s cllosurel,/t' |tsd:nga rlgt)r, Definition I1.2 (Hybrid Time Trajectory):A hybrid time tra-
= U\ its boundary[/* its comp ement, an () its jectory is a finite or infinite sequence of intervals= {I;} ,,
power set (the set of all subsetsléf. In logic formulas, we use such that ’

A andV to denote “and” and “or,” respectively. B " for all i _

If As a piecewise smooth submanifoldif, we define dis- I};J; (7, Ti]’h ora ; <ﬂ N 1 orfa — .
tanced (p, q) between two pointp,q € A as the infimum ) ! g </oi,t enfe|t TI I-N =[tn, 7Nl O IN = [TN, TN );
arc length/(c) of all piecewise smooth curvesin A that con- Ti = 7; = Tippforall e . o
nectp andq. d.4(p, g) makesA into a metric space. For a mapThe interpretation is that the are the times at which discrete

h: A — B between two metric spacéd, ) and(B, dp), the transitions take place. Since all hybrid automata discussed here

Lipschitz constant ok at a pointp € A is the real number are time invariant we assume thagt= 0, without loss of gen-
erality. Each hybrid time trajectory is linearly ordered by the

relation<, defined byt, < ¢, fort, € [r;, /] andt, € [7;,7]]
. B dg(h(a), h(p)) if t1 < to ori < j. We say th_atr_ = {L}N,is a pre_ﬂx of
Lip,(h) = sup e 7 = {Ji}}M, and writer C 7' if either they are identical, or
acA\{p} A\%, P 7 is finite, N < M, I, = J,forali =0,..., N -1, and
. . . . o . Iy C Jy. For a hybrid time trajectory = {I,}~,, we de-
e S8y dhficfi'g;’"’(‘)';y Lipschitz. continuous itip, (h) is & g "2 C the sef0,1,.... N if N is finite and{0. 1, ...} if
* !

We assume that the reader is familiar with the standard d&Y-= °° @ndI7| = > ;e (7; — 7). . .
initions of vector fields and flows for smooth manifolds. Here, Def'”'“or! 1.3 (Exequtlon):An execution of a hybrid ad-
we consider vector fields parameterised by discrete variabl@§'2(On# is a collectiony = (7, ¢, ), whereT is a hybrid
F:Q x X — TX, whereQ is a collection of discrete variables, /M€ trajectoryy: ()~ Qisa map, an: = {a:1 € (r)}is
andX is a collection of continuous variables, wilia smooth 2 collection of differentiable maps:: /; — X, such that
manifold. As usualZ’X denotes the tangent bundle Xfand * ((0),2°(0)) € Init;

1;X the tangent space & atz € X. For ea(_:hq € Q,we 1The domain is sometimes called the invariant set, especially in the hybrid
usey(t, q, z) to denote the flow of the vector fielfl(q, ). For system literature in computer science.
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o forallt € [r;,7]), i'(t) = f(q(i),z'(t)) andz’(t) € of physical systems, where the domains are typically used to en-
D(q(7)); code physical constraints that all executions of the system must
« foralli e (1) \ {N},e=(q(i),q(i + 1)) € E, 2'(r{) € satisfy. Let
G(e), andz ™! (1;11) € R(e,z'(1])).
We say that a hybrid automatdh acceptsan executiory if
x fulfils the conditions of Definition 11.3. For an execution=
(1,q,), we us€(qo, zo) = (q(70),2°(70)) to denote the initial
state. We say that an executians= (7, ¢, «), of H isa prefix of - The following assumption makes the statement of some of the
and for alli € (r) and allt € I, (¢(i),#'(t)) = (d(?),#'(1)).  Assumption I1.2: The setdnit andDom  are closed. More-
We sayy is a strict prefix ofx (write x T x), if x © x and  gyer Reachy = Init C Domy.
X # X- An execution off is calledmaximalif it is not a strict  Assumption 11.2 will not be imposed as a standing assump-

prefix of any other execution off. An execution is calledi- tjon, an explicit statement will be included whenever it is in-
niteif 7 is a finite sequence ending with a compact interval, angked.

infinite if ~ is either an infinite sequence, or|if| = co. An

executio_n_is caIIe(Zen_oif it_ is infinite but |T_| < o0, O, eq_uiv- D. Invariant Sets and Stability

alently, if it takes an infinite number of discrete transitions in

a finite amount of time. It is easy to see that, under our defi- We recall some standard concepts from dynamical system
nitions, the transition times; of a Zeno execution converge totheory and their extensions to hybrid automata. For a more thor-
some finite accumulation point from the left. In other wordQugh discussion the reader is referred to [19], [20], and [22].
the definition of an execution precludes the situation where theDefinition I1.4 (Invariant Set): A setM C Reachy is called
transition times have a right accumulation point. A discussidvariant if for all (qo, z0) € M, all (7, ¢,z) € €u(qo, o), all

of this situation can be found in [9] and [30]. i € (r),and allt € I;, (q(i),2*(t)) € M.

We use€x (qo, 7o) to denote the set of all executions Bf ~ Here, we user(qo, o) to denote the set of all triples
with initial condition (go, o) € Init, £ (g0, zo) to denote the (7> ¢,) starting at(go, o) and satisfying the second and third
set of all maximal executions;; (¢o, zo) to denote the set of all conditions of Definition 11.3, even ifgo, zo) ¢ Init. This abuse
finite executions, ands? (qo, o) to denote the set of all infinite Of notation will be later resolved under Assumption I1.2.
executions. We us&y to denote the union of ;7 (qo, o) over Definition 1.5 (Stable Invariant Set)An invariant set

Dompg = U {¢} x D(q) C Q x X.
9€Q

all (qo, o) € Init. M is called stable if for alk > 0 there exist$y > 0 such
that for all (qo,z0) € Reachy with d((qo,z0), M) < 6,
C. Reachability all (r,q,z) € Eu(qo,wo), and alli € (), t € I,

The well-posedness and stability results developed in sub%&lgt-qi(é)’sf;g?’ 2{121 iﬁ aed' d]iE[{o:lS tﬁglrlsdezgsmztogcsdlé/hs:sg:e

guent sections involve arguments about the set of states regch- : (
able by a hybrid automaton and the set of states from wh?f?mr alllj)(qé’g&)( < /P_{e)éwl}.lH W'thd‘i(((q(?’)"”o}(%)ﬂj) égmd al
continuous evolution is impossible. We briefly review these co e H (90, 70), Allli—|r| GALGL), T ' S

cepts. The set of states reachablefbyReach , is defined as A very common and useful type of invariant set is an equilib-

rium point. For hybrid automata, the following generalization
Reachy = {(4,4) € Q x X:3 ({[ri, 1} X0, q,2) € &, of the_np_tion of an eq_l,!ilit_)rium has b_een used @n the Iite_r:_:lture.
N, o Definition 11.6 (Equilibrium): A pointz, € X is an equilib-
(G(N)vl’ (TN)) = (Q#L’)}- rium of H if

Clearly, Init C Reachy, since we may choos® = 0 and 1) z. € D(q) for someg € Q, implies thatf(q, z.) = 0;
7 = . Since states outsidBeachy will never be visited ~ 2) » € G(e) for somee € E, implies thatR(e, z.) =
by H we can effectively restrict our attention only to states in {wi}.

Reachpy. An equilibrium is calledsolatedif it has a neighborhood iXX
The set of states from which continuous evolution is impogvhich contains no other equilibria. It is easy to show thatif
sible is given by is an equilibrium, then the s€ x {z.} N Reachy is invariant.
We say that the equilibriuma, is (asymptotically) stable if the
Outg = {(¢,2) e Q x X: Ve > 0,3t €0,¢), invariant seQ x {x.} N Reachy is (asymptotically) stable.
O(t,q,z) ¢ D(q)}. The asymptotic behavior of an infinite execution is captured

by its w-limit set.

For certain classes of hybrid automata the computatiénuof; Definition I1.7 (w-Limit Set): A point (¢,2) € Q x X is an
is straightforward, using geometric control tools [17]. In some-limit point of an infinite execution(r, ¢, z) € £, if there
casesReachy can be computed (or approximated) using indu@xists a sequencf,, } 7., with 6,, € I; andi, € (r) such
tion arguments along the length of the system executions (st asn — oo, 8, — |7| and(q(in), v (0,)) — (4,4). The
for example, [17] and [29]). In general, however, the exact com-limit set, S, C Q x X, of x € £ is the set of alt-limit
putation ofReachy andOutyz may be very complicated. points of x.

Definition I1.3 does not require the state to remain in the do- Itis easy to see that, under Assumption Il.2ualimit points
main. This assumption often turns out to be implicit in modekre reachable.
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<1) (cos(a(1 —z1)) + @ <1)
<0) A0 <z <1)

Fig. 2. Directed graph representation of rocking block automaton.

ergy initially present in the system

O,
Fig. 1. Rocking block system. Init :{Left} X {a: € R?%: [_1 <z < 0]

E. Example: Rocking Block

The rocking block system (Fig. 1) has been studied exten-
sively in the dynamics literature as a model for the rocking
and toppling motion of rigid bodies (nuclear reactors, electrical U{Right} x {l, ER%[0< 2y <1

A [cos(a(l—l—a:l)) + (a?)? < 1}}

transformers, and even tombstones) during earthquakes. In the

presence of periodic excitation, the system turns out to have very (a2)?
complicated and in some cases chaotic dynamics. The formula- A [cos(a(l — 1))+ 2 <1 }
tion we use here comes from [31]. We assume that the rocking 2

motion is small enough so that the block does not topple, but i ) .

we remove the external excitation term (used in [31] to modghere are two ) possible d|scre.tg transitions

earthquake forces) to make the system autonomous. Under theésé” {(Left, Right), (Right Left)}. The transitions can take

assumptions, the rocking block can be in one of two modd¥ace whenever belongs to the guards

leaning to the left, or leaning to the right. We assume that the

block does not slip, therefore, when leaning to the left it ro-

tates about pivoD; and when leaning to the right it rotates G(Right, Left) ={z € R*: (1 = 0) A (z2 < 0)}.

about pivotO,. The continuous state of the system consists of

the angle that the block makes with the vertical (measured h&sienever a transition takes place a fraction of the block’s en-

as a fraction of the angle made by the diagonal to simplify tt9y is lost, according to

equations) and the angular velocity. We assume that a fraction,

r, of the angular velocity is lost every time the flat side hits the R(Left,Right z) = R(Right Left,z) = {[ 1 ”

ground and the block switches from one pivot to the other. "2

= el Sagntonerd (o ure s YOr0 ST 1,1, The ocing Hock b automaton s shoun
. . in Fig. 2, in the intuitive directed graph notation. An example of

ture the two modes, we s& = {q} with Q = {Left, Right}. an execution is shown in Eig. 3

We also letX = {z1,z,} andX = R?, wherez; represents g. o

the angle the block makes with the vertical (as a fraction)of S;I;::e rc;gklggi:slogﬁ dawﬁlmbegogsggsrseesjaetse; n;JhT:uerh%fultn iﬁg
and z, represents the block’s angular velocity. After normals>-"9 Prob P y g

izing some of the constants by rescaling time, the continuo@‘%per 10 iII_ustrate different points._ We conqlude this section
dynamics simplify to y computing some of the qugntltles preV|01_Jst introduced

(Reachrp, Outgrp, etc.) that will be needed in subsequent
Zo } derivations.

a~tsin (a(l+ 11)) Clearly, the rocking block automaton satisfies Assumption

G(Left, Right) ={z € R?: (1 = 0) A (z > 0)}

f(Left,z) = [

. - I1.1. If we let o(Left,z) = —z; ando(Right z) = =1, then
f(Right z) = [_a—1 sin (a1 — :171))} D(q) = {z € X:0(q,x) > 0}. By definition, the set Out does
not intersect the interior of the domain and always contains the
The domains over which each of these vector fields is valid atemplement of the domain. Therefore
D(Left) ={z € R*: z; < 0} Outgrp D{Left} x {z € R2: 2, > 0}
D(Right) ={z € R*:a1 > 0}. U{Right} x {z € R*: z1 < 0}
To ensure that the block does not topple (so that the two discrete Outgp C{Left} x {z € R*:21 > 0}

state model remains valid), we impose arestriction on the en- U{Right} x {z € R*:2; < 0}.
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o1 = mo > 0. But such a state is iQutrp, and therefore fur-
Right ther continuous evolution is impossible. To reagh< —1, we
first need to reach a state whare= —1. Since in Init, we have
cos(a(l + x1)) + (az2)?/2 < 1 and thusz, = 0, it follows

Left thati; = o = 0 andiz = o~ 'sin(a(1 + z1)) = 0. Finally,
os , , . , , ‘ , differentiating the functiomos(a(1 + x1)) + (ax2)?/2 along
o ! 2 8 ¢ s s 4 & the vector fieldf(Left, z) leads to

—asin(a(l + z1))ze + asin(a(l + z1))xze = 0.

The aforementioned argument also shows RRsatisfies As-
sumption I1.2.

The rocking block automaton has two equilibiia;1, 0) and
(1,0) (more equilibria would be possible if the block toppled,
but they are not reachable). An argument similar to the one given
previously shows that the s@x {(0, 0)} is invariant. However,

Fig. 3. Example of an executiotr, ¢, x) of the rocking block system with (0, 0) is not an equilibrium, since it violates the first condition
a = w/4 andr = 0.8. 7 consists of four intervals; roughlyy, = [0,3], of Definition I1.6.

I, = [3,5.27], I, = [5.27,6.85] andI; = [6.85,8]. The discrete state

q:{0,1,2,3} — {Left, Right} is shown in the upper plot, and the continuous

Statexr = {17’2 I, - X:1 € {0, 1, 2, 3}} is shown in the lower pIOt ”l EX|STENCE, UN|QUENESS ANDCONT|NU|TY

A. Existence and Uniqueness

Lr;(taicc;nlt)r/];qttzesotlg-r;flts Z\)/hit hflgpznns doLn ;Tglgﬁsr;?ar_y:; Definition 1.1 (Nonblocking Hybrid Automaton)A hybrid

fq — Left fxl _ ) anaxg i 0 thén olg.c) = 0 ar?('j automator is called nonblocking i€ (qo, o) is nonempty
- "N o S for all (g0, o) € Init.

Lso(g,z) < 0. A simple Taylor expansion argument reveals S S . ) :

that continuous evolution in the domain is impossible from such Definition 112 (Deterministic Hybrid Automaton)A hybrid

. A 4
a state. A similar argument for the cage= Right shows that ;u;gm)?glﬁ]eﬁ;ri“feo? ditermlnlsnlc ItEH (g0, o) contains at
Outgp contains the set allp, zo) € Init.

Intuitively, a hybrid automaton is nonblocking if for all reach-

2. o ) able states for which continuous evolution is impossible a dis-
{Left} x {x € R o >20] Vi(ws = 0)A (w2 > O)]} crete transition is possible. This fact is stated more formally in

U{Right} x {z € R*: [z1 < 0]V [(z1 = 0) A (22 < 0)]}.  the following lemma.
) o Lemmalll.1: A hybrid automatorH is nonblocking if for all
2For the case; = ;512 = 0, we take a secgnd L_|e derlvatlve(q,w) € Reachy NOut , there existéq, ¢') € E such that: €

Lf”_(ll-e_ftv"”) = —a sin(a(l + 1)) and Lyo(Right 2) = G(4 ¢/). A deterministic hybrid automatof is nonblocking
—a” sin(a(l = z1)). f 21 = x2 = 0, theno(q,2) = 0, if and only if for all (¢,z) € Reachy N Outy, there exists
Lio(q,z) =0 andL‘;’ca(qJ:) < 0 (since the geometry of the (¢,q') € E such thatr € G(q,¢').

Time

problem requires that € (0, /2)). A Taylor expansion argu- Proof: Consider an initial statég, o) € Init and as-

ment shows thaDutrg is equal to sume, for the sake of contradiction, that there does not exist an
infinite execution starting digo, 20). Letx = (7, ¢, z) denote a

{Left} x {z € R*:[z1 > 0] V [(z1 = 0) A (22 > 0)]} maximal execution starting &io, o), and note that is a finite

U{Right} x {z € R%:[z; < 0]V [(z1 = 0) A (z2 < 0)]}. sequence.
First, consider the case = {[r;,7/]} 5 [7w,74) and let

A more formal and general discussion of this procedure for corfyy, 2n) = limt_,TJ:V(q(N),xN(t)). Note that, by the defini-
puting the seOut using Lie derivatives can be found in [17]. tion of execution and a standard existence argument for con-

To compute the sdteachry, we show that the set Init is in- tinuous dynamical systems, the limit exists apatan be ex-
variant. ThenReachgrp = Init becausénit C Reachgg. Init tended toxy = (7,7,7) with 7 = {[r;, 7/]}X 0, 3(N) = qn,
can be formally shown to be invariant using induction argumerasdz™ (74;) = zx. This contradicts the assumption thats
similar to those in [17], [29], and [32]; we give a sketch of thenaximal.
argument as follows. Now, consider the case= {[r;, ]|}, and let(gn, zn) =

Discrete transitions do not affeet and decrease the magni-(¢(N), z™ (4 )). Clearly,(¢gx, zn) € Reachy. If (gn,zn) &
tude ofz,. Therefore, a discrete transition from a state in IniDut g, then there exists > 0 such thaty can be extended to
will always lead to another state in Init. For the continuous ag = (7,q,7) with 7 = {[r;, 7/]} X [7~, 74 + €), by con-
gument we restrict our attention to the cgse Left (the argu- tinuous evolution. If, on the other harldy,zn) € Outg,
ment forq = Right is similar). We can leave Init along con-then by assumption there exigig, ') € Q x X such that
tinuous evolution, if we reach a state where either > 0, (¢n,¢') € E,zny € G(qn,¢') andz’ € R(qn, ¢’ ,zn). There-
z; < —1, or cos(a(l + x1)) + (axq)?/2 > 1. To reach fore,x canbe extended = (7,7, 7) with7 = {[r;, /]} 41,
x1 > 0, we first need to go through a state where= 0 and 7n41 =7y, = 75, ¢(N +1) = ¢, 2V (7y41) = 2" by a
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discrete transition. In both cases the assumptionythiatmax- such that the prefixes of andx are defined over
imal is contradicted. {7, 715 7w, 7 + €) and are identical. This

This argument also establishes the “if’ of the second contradicts the fact that is maximal.
part. For the “only if,” consider a deterministic hybrid Case?2)7y € {r;j} and7y ¢ {7/}, i.e., 7y is a time when
automaton that violates the conditions, i.e., there exists a discrete transition takes place ynbut not inx.
(¢',2") € Reachy such that(¢’,2’) € Outgy, but there The fact that a discrete transition takes place from
isnog € Qwith (¢,7) € E anda’ € G(¢,q). Since (gn, =) in x indicates that there exisgs € Q such
(¢',2') € Reachy, there existgqo, 79) € Init and a finite ex- that(qn,¢') € Eandzy € G(qn,¢'). The fact that
ecution,x = (1, ¢, =) € Ex(qo, wo) such thatr = {[;, 7/]} X, no discrete transition takes place frdgqw, zy) in
and(q',z") = (q(7x), z(T§))- X indicates that there exists> 0 such thaty is de-

) ’ N 4\ N—-17—- _

We first show thak is maximal. Assume first that there exists fined over{[7;, 7j]};="[Tn, Ty + €). A necessary
%= (7.3.7) with 7 = {[r;, 7]}V 5 [, 74 + ¢) for somee > conqlltlon for 'Fr_us is thatq, zn) &€ Outy. This con-
0. This would violate the assumption that, /) € Outz . Next t_rlad|cts ,Cond't'f’,” 1 ofA}he lemma.
assume that there exis{s= (7,7, %) with 7 = 7y 41, Th 4 1] Case 3)f1,\f ¢ {7 },andTN < {7 S}’,mmet”(z/to Case 2).
with 7x1 = 7%. This requires that the execution can be ex- Ca8s€ )7y € {7/} and7y € {7i}, i.e, 7y is a time
tended beyondq’, =) by a discrete transition, i.e., there exists vAvhen a discrete transition takes place in betand
(7.7') € Q x X such that'¢,§') € E, o' € G(¢,¢) and X- The fact th_at a dlscreteAt_ran_5|t|on takes place
7' € R(¢,7,4"). This would contradict our original assump- from (gn, «n) in both x and indicates that there
tions. Overall,y € EM (o, o). exist (¢',2') and (¢,z’) such that(qn,¢') € E,

(qN/?]\/) € E, TN € G((IN:Q/), TN € G((]N/?I\/),

Now assume, for the sake of contradiction, tliAtis non- b
2’ € R(qn,q',zn), andz’ € R(qn,q,zn). Note

blocking. Then, there existg' € £57(qo, z0). It is evident that . ;T
X' € E¥(qo,m0). Butx # x’ (as the former is finite and the Lhaigz d(i:t(i)(?r?lg(f)'r’] E(ﬁ/tr}e:h:aerr;rénrz, tﬁeq ;ef}ie)z(r;t;e(,)f
latter infinite), therefore€ (qo, w0) D {x,x’}. This contra- y 4° are d ];‘.L q . e e pred
dicts the assumption thaf is deterministic. [ X.?r? ix are define (ive_{,[T“T’?c]j}"":O[Té‘”rltﬁ TNI+'1I']F1'
The conditions of the lemma are tight, but not necessary un- \c,:vtl)ntr;\c;ﬁzlts_thg?;clt tﬁa}rtrjlvs rigxiri;el ;nednclgﬁcéludéss
less the automaton is deterministic. If the conditions are vio- the proof of the “if’ part.
lated, then there exists an execution that blocks. However, unleslgOr the “only if' part, assume that there exists
the autpmaton is determ!n!s_tic, a nonblocking execution m%/,_x,) € Reachy such tr'1at at least one of the condi-
also exist from the same initial state. ... tions of the lemma is violated. Sindg’,z’) € Reachg,
Intuitively, a hybrid automaton may be nondeterministic fhere exists (go,z0) € Init and a finite execution
either there is a choice between continuous evolution and a dis-_ (,q,7) c €1(qo. o) such thatr = {[r, 7]} '
crete transition, or if a discrete transition can lead to multip d (q,.x’,)’ _ (q(N).m&(r’,)). If condition 1 is//vit)lz;t:e((]j,
destinations (under Assumption II.1, continuous evolution |8, “\hare exisg and)é with]% = {lre, 7w, T + €),
unique). Lemma 111.2 p_rovides aforme_ll statemen_t of this fact. > 0, and7 = rlrven o) Tz;+l1 :o o /sé\ch that
Lemma I11.2;: A hybrid automatorH is deterministic if and v C yandy C . If condition 2 is violated, there exist

only if for all (¢, z) € Reachy andy with 7 = 7 = 7[rxi1, Thgqds TN41 = Thos = Ths
1) ifz € G(q,¢') forsome(q,¢') € Ethen(q,z) € Outy; andg(N + 1) # ¢(N), such thaty = x, x C x. Fi-
2) if (¢,¢') € E and(q,q") € E with ¢/ # ¢”, thenz ¢ nally, if condition 3 is violated, then there exig and x

G(q,9') N G(q,q"); with 7 = 7 = 7[rn41, Tha], TN41 = Ty = Ty, and
3) if (¢,¢') € E andz € G(q,¢'), thenR(q, ¢, x) contains TV +!(7y41) # V' (75 41), such thaty = x, x = x. In all
at most one element. three cases, 16t € £¥(qo,70) andy € X (qo, 7o) denote

] e maximal executions of whicg andy are prefixes, respectively.
Proof: For the “if” part, assume, for the sake of contra—Sincey £ 5, it follows thatk # %. Therefore &Y (qo, xo)

d|ct|9n, that ther.e exists an initial Sta(t@’ xo)flnit and t.WO contains at least two elements and tlifiss nondeterministic.
maximal executiong = (7,¢,z) andx = (7,q, ) starting -

2:)'520'2;63)mV\g;ri]rrTaI;écerﬁr;itni r:efigzi?o? ir)wdeA gglg(é% an) rdeeﬁ;( Combining Lemmas I11.1 and I11.2 leads to the following.
P X- P Theorem 1ll.1 (Existence and Uniqueness):a hybrid au-

exists as the executions start at the same initial state. MO{e— o o
. T - ) omatonH satisfies the conditions of Lemma lll.1 and Lemma
over, x is not infinite, asy # X. As in the proof of Lemma

1.1, 7 can be assumed to be of the form— {|7:, 7]} . IIIrll.if,then it accepts a unique infinite execution for@ll, z¢) €
- . N .
Let (qv, @n) = (a(N), 2" (7)) = (@(N), 2V (7y)). Clearly, It is worth noting that the seteachy is needed in Lemmas
(qn,wx) € Reachr. We distinguish the following four cases. |, 4 o'y o only to make the conditions necessary. If, as in
Case )7y ¢ {7/} and7y ¢ {7/}, i.e., Ty is not atime Theorem lIl.1, we are only interested to establish whether a

when a discrete transition takes place in eitlyer hybrid automaton has infinite executions and whether they are
or X. Then, by the definition of execution and aunique, it suffices to check the conditions of the lemmas over
standard existence and uniqueness argument fory set containin@Reachy, for example, the entire state space
continuous dynamical systems, there exists 0 Q x X, or any invariant set containing Init.
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Using Lemmas Ill.1 and IIl.2, it is easy to show that the Theorem IIl.2 (Continuity With Initial Conditions)A hybrid
rocking block automaton accepts a unique infinite execution fautomatond satisfying Assumption 11.2 is continuous if

all initial states. Notice that the sBeachrp N Outgp is equal 1) H is deterministic;
to 2) foralle = (q,¢') € E, G(e) N D(q) is an open subset of
9D(q);
Reachgrp N ({Left} x G(Left, Right) 3) foralle € E, R(e,-) is a continuous function;
U{Right} x G(Right Left)). 4) there exists a function: Q x X — R, differentiable in its

second argument, such thatq) = {z € X|o(q,z) >

This shows that RB is nonblocking. It also shows that it satisfies 0} forall ¢ € Q;
the first condition of Lemma 111.2. Since there is only one tran- 5) forall(¢,z) € Q x X with o(¢,z) = 0, Lyo(q,z) # 0.
sition defined for each discrete state and the reset relation is &oughly speaking, conditions 4 and 5 are used to show that if
function, the remaining conditions of Lemma 111.2 are triviallyffrom some initial state we can flow to a state from which a discrete
satisfied. Therefore, RB is also deterministic. transition is possible, then from all neighboring states we can do

Even if a hybrid automaton accepts infinite executions for dihe same. Thisobservationis summarizedinthe followinglemma.
initial states, that does not necessarily mean that it accepts exd-emma 111.3: Consider a hybrid automatod/, satisfying
cutions that extend over infinite time horizons. This may be tleonditions 4 and 5 of Theorem I11.2. Lét, ¢, z) € £5(qo, z0)
case if for someqo,zo) € Init all executions infse(qo, 7o) be a finite execution of/ defined over a single interval =
are Zeno. For example, using arguments similar to those in [18], 7] with 75 > 0 andz°(r}) € dD(qo). Then there exists a
one can show that this is the case for the rocking block systengighborhoodV of =, in D(qo) and a differentiable function
whenever- € [0,1) (i.e., some energy gets dissipated at iml: W — R*, such that for aly € W
pact). In fact, for certain initial states there may not even be an1) (7'(y), qo,y) € dD(qo);
execution with|7| > 0. In the rocking block system, this is  2) «(,qo,y) € D(q0)°, forallt € (0,T(y));
the case whenr, = (0,0). Zeno hybrid automata will not be  3) U: W — 9D(qq), defined by¥(y) = ¥ (T(y), q0,¥), IS
studied further in this paper. The reader is referred to [33]-[35]  continuous.
for a discussion of Zeno systems from a computer science pRecall that a neighborhood of, in D(q) is a set of the form
spective and [12], [18], and [36]-[39] for a dynamical systems n D(4,) wherel is a neighborhood of, in R".

treatment. Proof of Lemma 111.3: Sincer} > 0, the statéqo, 2°(7)))
is reached fron{qo, 2) along continuous evolution. We drop
B. Continuous Dependence on Initial Conditions the superscript om to simplify the notation.

In general, the behavior of hybrid automata may change dra-To show 1), recall that, by the definition of an execution,
matically even for small changes in initial conditions. This fact(t) € D(qo) for all ¢t € [ro, 7). Sincex(rg) € 9D(qo),
is unavoidable if one wants to allow hybrid automata that af4o; #(75)) = 0. The functiono(go, % (-, qo, ")) is differen-
powerful enough to model realistic systems. However, discofi@ble inits firstargumentt) and continuous in its second argu-
tinuous dependence on initial conditions may cause problerf€Nt(z) in a neighborhood ofrg, zo) in R* x R™. Moreover
both theoretical and practical, when one tries to simulate hy-
brid automata [14], [15], [36]. In this paper, we are interested in aa(qg, »(t, qo, T)) = Lyo(qo.x(7p)) #0
continuity with respect to initial conditions primarily as a tool (t,2)=(7g,0)
in the study ofu-limit sets and their stability. For simplicity, we b
restrict our attention to hybrid automata satisfying Assumpti
1.2.

Definition 111.3 (Continuous Hybrid Automaton)A hybrid
automaton H, satisfying Assumption 11.2 is called continuou

if for all fini_te executions(r, ¢,z) € €3 (qo, o) and alle_> by t — T(y), whereT is a continuous mapping frorti to
0, ttlerNe exist$y > 0 such that for aII(g07x0) € In_1t with Q andz/;(T((y))7q0,y) € 9D(qo). For part 1), we can choose
d((Go, o), (40 0)) < ¢ and for all maximal executiong € 1, _ 17 D(qo).
f%(qo’ @) there exists a finite prefikr, ¢. 7) € € (do, 7o) OF 14 ghow 2) assume, for the sake of contradiction, that for all
X Vil)th| <|T~>| = |<T|> = {0,1,..., N} that satisfies neighborhood® of zoin D(go) suchthatV C UND(qo),there
T =7 | <€ ] existsy € W andt € (0,T(y)) suchthat)(¢, g0, y)) & D(q0)°.
2) d((q(N),jJV(%A,)), (a(N),zN(y))) < e. Letyy, beasequencé of s(uggtzconverging(toco an)d) defin(e :
Roughly speakingH is continuous if two executions starting
close to one another remain close to one anothét. I§ con- tr = sup{t € [0, T(yx)]: V' € [0,1],
tinuous, one can always chooéesuch that finite executions a(qo,¥(t', qo, yx)) > 0}.
starting withiné of one another go through the same initial se-
quence of discrete states. Arguing directly from the definitiofake a Taylor expansion of(qo, ¥ (t, qo, yx)) aboutt = ¢,
one can show that the rocking block system is continuous.
The following theorem provides conditions under which &(40-% (%, 40, yx)) = (a0, ¥ (tk, 90, Yx))
hybrid automaton is guaranteed to be continuous. +Lso(qo, ¥(tk, g0, yx))(t — tx)

y condition 5 of Theorem I11.2'). By the implicit function the-
em for nonsmooth functions (see [40, Th. 3.3.6]), there exists
a neighborhood} C R* of 7/, and a neighborhooti C R" of
xg, such that for each € U the equatiom (qo, ¥ (¢, g0, y)) = 0

as a unique solutione . Furthermore, this solution is given
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up to O((t — t)?). By definition, o(qo, ¥ (, qo, 1)) > 0 for
t —tr < 0ando(qo,¥(t,qo,yx)) < 0 for somet — ¢, > 0
arbitrarily small. Thereforez(qo, ¥(tx, 0, yx)) = 0 (by con-
tinuity of o) and Lo (qo, ¥ (tk, q0.yx)) < 0. The fact that
a(qo, ¥(tr, 90, yx)) = 0 also implies that;, € [0, 7]\ 2, other-
wise the uniqueness of the implicit function theorem would be
contradicted.

Consider a subsequencef (also denoted by, for sim-
plicity) such thatt, converges to som& € [0,7)] \ 2. By
continuity of)

klingo Y(tr, qo, yr) = ¥(to, qo, T0) = x(to).

Therefore,o(qo, z(to)) = 0 and Lyo(qo,z(to)) < 0. To-
gether with condition 5 of Theorem 111.2 this implies that
Lyo(qo,z(to) < 0. As before, the Taylor expansion of
0(907 1,/,(157 (JOJ?O)) aboutt, implies thatg(q(]’ d,(t’ q0, 3;0)) < (0 Fig. 4. lllustration of the proof of Theorem II.2 fa¥ = 1 and Case 1).
for ¢t > to small enough. Sincg € [0, 7] \ €, this contradicts

the fact that:(¢) € D(qo) forall ¢t € [0,7]). of UV, there exists a neighborhoot/¥ C W,
To show 3), recall that, sincé(-, qo,-) iS continuous in of N (ry) such thatt™ (WN) C V. Further-
both arguments, for alk > 0 there exists§; > 0, such more, all executions with &~ (7y) € W fulfi
that for all ¢+ with |t — T'(z)] < 61 and ally € W with #N(7y + TN (@ (7y))) € V.
ly — woll < 81, [[4(, g0, 20) = V(T (x0), g0, o)l < € @and  case2)rt > 7y and 2N(r4) € D(q(N))°. Let
14(T(y), 90, y) — ¥(T(y), g0, x0)|| < €. By the continuity of TN(y) = 4 — 7 forally. LetW C D(q(N)) be
T there exists somé, > 0 such that for ally € W with a neighborhood af-N (1) such that for ally € W
lly — zol| < 62, we have|T(y) — T'(zo)| < 61. By setting andt € (0,74 — 7). 1%(t, q(N),y) € D(q(N))°.
6 = min(é1, 65), itfollowsthatforally € W with [[y—ol| <, Such a neighborhood exists, because for all
[2ly) ~ Lmo)l] =< 2e . toe (0 — ), Wtg(N).aV(my)) €
To complete the proof of Theorem IlIl.2, conditions 1, 2, D(g(N))° (cf., proof of Lemma IIIl.3). De-
and 3 are used to piece together the intervals of continuous fine a function U¥:W —  D(¢(N)) by
evolution. | - | UN(y) = (TN (y),g(N),y). By continuous
Proof of Theorem IIl.2:Consider a finite execution dependence of the solutions of the differen-
(1,q.2) € Ex(go,x0) with 7 = {I;}}Y, and ane > 0. tial equation with respect to initial conditions,
We construct a sequence of set&%, VO ... W~ VN, there exists a neighborhootV™ C W of
whereW" is a neighborhood of’(;) in D(q(i)) andV" is a 2N (7x) such that botht™ (WY) C VN and
neighborhood ofz(7;) in D(q(i)), such that the continuous all executions with#V(7y) € wnN satisfy
evolution in¢(7) provides a continuous map frof* to V* iN(Fx + TN (@ (7y))) € V.
and the reseR(q(i), q(i + 1), -) provides continuous map from  cage 3)7, = 7. DefineT™ by TN (y) = 0, WY = V'V
V*to Wi+l The notation is illustrated in Fig. 4. and¥ the identity map. Clearlyy™ (WN) = V'V,

Under the conditions of the theorem, the domain can not con-Next. |et us defind/N—!. Lete; = (q(i),q(i + 1)) € E
tain any isolated points. Indeed, assume there exigtsD(q) and notice that N~ 1(r_,) € G(en_1). SinceR(en_1,°)
and a neighborhooll of 7 in R" such that/ N D(q) = {Z}. s continuous, there exists a neighborhdod: D(q(N —1))
Then,o(q, T) =0 ando(q, x) <Oforallz e U \ {7}. There- ¢ #N=1(74_,) such thatR(ex_1,V N Glex_1)) € WV,
fore,(_;(q7 ) attains a chal maximum at, andaa/ax_(q,:f) = By condition 2 of the theorenG(ex—1) N D(g(N — 1)) is an
0. This, however, implies that o (¢, ) = 0, which is a con-  gpen subset afD(q(N — 1)), so there exists a neighborhood

tradiction. _ o _ o VN=L C V of 2N ~Y(r4_,) such thatV N~ n 9D (q(N —
The ponst](ructlon oW*, V*is recurswtjev, starting with = 1)) C G(ey_1) N D(q(N — 1)). SinceH is deterministic, it

N. DefineV?™ = {z € D(q(N)):[lz — 2™ (7x)Il < €}. We  follows that all executions witj(N — 1) = ¢(N — 1) and

distinguish the following three cases. N7y ,) € VN=INOD(q(N—1)) satisfyz ™ (7x) € WV,

Casel)th, > 7y and zV(7y) € 0D(q(N)). By Next, define 7%¥-! and ¥¥~! using Lemma I3,
Lemma 1.3, there exists a neighborhoodas for Cases 1) and 3). There exists a neighborhood
W C D(q(N)), of 2V(ry) and a differen- WN=1 C  D(qg(N — 1)) of #N¥N=(rx_1) such that
tiable function,7V:W — R*, such that for all ¥N-Y(WN-1) C VN-! n 9D(¢(N - 1)). More-
y € W, %(TN(y),q(N),y) € 9D(q(N)) and over, all executionsy with #N¥N-1(7y_;) € WN-L
Y(t,q(N),y) € D(g(N))° forallt € (0,7V(y)). satisfy z¥N-3(7,_,) € V-1 n dD(gN - 1)) and
As in Lemma I11.3, defined™: W — 9D(q(N)) Fh_q =Fn_1+TVN 1@V Y Fn_1)) 7y, = 7v_1, SOME
by UV (y) = (TN (y),q(N),y). By the continuity executions close tg may take an instantaneous transition from
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q(N — 1) to g(N) (7x_; = 7n-1) While others may have @),z (7))
to flow for a while (7y,_; > 7n_1) before they followy’s
transition fromg(N — 1) to ¢(N). In the former casg@¥ !
and¥V—1! can be defined as in Case 3), while in the latter they
can be defined as in Case 1).

By induction, we can construct a sequence of sett
{wovoe .. .WN VNL  and  continuous  functions
T:W' — Rt and¥":W?! — Vifori = 0,...,N. For
k =1,...,N, define the functiord*: W° — W* recursively (g(in), 7 (6,))
by @0(5}0) = T and@k(i:o) = R(ek_l,\llk_l(q)k_l(.f?()))).
Fork =0,..., N, define the function/*: W° — R* by

00~ Fig. 5. lllustration of the proof of Lemma IV.1.
T (D%(&0)).-

M=

7" (&) =
=
’ (¢,%) € S5. Then there exists a neighborhobidof (¢, #) and

Then,®*(zo) = &"(7) andy* (i) = 7, —7o forthe execution an N > 0, such tha{q(n), z"(¢)) ¢ U for alln > N and all
X = (7,4, &) with (Go, #0) € gox W". The functionst” andv* ¢ € I,,. Thereforel/ N S, = 0 and, sincdq, ) is arbitrary,S¢
are continuous by construction. By the continuity,df, there s open.
existsé; > 0 such that for alliy with [|Zg — zo|| < 61, We  Toshows, isinvariant, consider an arbitrafy, &) € S, , see
have|y™ (i) — vV (x0)| < e, or, in other words| Y-~ (7 —  Fig. 5. We need to show that for &l = (7,7,7) € Eu(d,#)
7i) — Sio(r! — ;)| < e. By the continuity of N there exists with 7 = {I;}%,, we have(g(N), 2™ (74)) € S,. If there is
2 > 0 such that for ally € W with |ly — 2™ (7x)|| < 2, no execution starting &4, &) the property is trivially satisfied.
[UN (y) =™ (rj)|| < e. Hence, by the continuity @b, there  Otherwise, note that sindg, &) € S, , there exists a sequence
existsés > 0 such that for allty € WO with ||Zo — zo|| < 63, {6, }5>, with 6, € I; , i, € (), such that as, — oo, §,, —
0N (20) — ™ (7w )| < 62. Since¥N (®N(zg)) = ZN(7x), || and(q(in), i (6,)) — (4, ).
we havel|i" (73 ) — & (7 )|| < e. The proof is completed by  Since I is continuous, for every > 0, there exist$ > 0
settingd = min(61, 03). B such that for everyg, #) € Reachy with d((¢,), (4, %)) < 6,

?

It should be stressed that the conditions of Theorem I11.2 ag@ery maximal execution starting éi, #) has a finite prefix
not tight. For example, the rocking block automaton RB is coR- — (7,4,%) € E5(§,#) with 7 = {fi}gio satisfying
tinuous, but does not satisfy conditions 2 and 5 of the theorqp,cl| — |7]| < e andd((g(N), &N (7)), (G(N), ZN (74))) < €.
(the only point where the conditions fail is the origin of the conSince(¢(i,, ), z*~ (6,,)) — (§,%) asn — oo, for this particular

tinuous state space). & and for alln large enoughd((q(i, ), =" (6,)), (¢, 4)) < 6.
Therefore, forn large enough, there exists a finite exe-

IV. STABILITY OF EQUILIBRIA AND INVARIANT SETS cution x(™ = (7 ¢ 20 € Eg(q(in), " (6,))

A. Extension of Lasalle’s Principle with (" = {1} satisfying|[r™| — ||| < ¢ and

n n)N (. r(n) = +N (=1
One of the most useful extensions of Lyapunov’s stability th%i(r;]i;r;(ii)ﬁix) p;;s“e' s)ih(rg(ujggéé )(T;;;Z)()g )<) ihsr)ll i?ﬁ:ﬁ;
orems for continuous dynamical systems is LaSalle’s invariancF ’ h () (\), g (N () T; ’ fore. f
principle [41]. LaSalle’s invariance principle provides condi@s Pass througty!™’ (N), =7 (1" 3\) (ne)re ore, for any
tions for an invariant set to be attracting. Here, we extend ttis> 0 there e])VS'StS a poirty ™ (N), 2N (' )]3 in x within
result to continuous hybrid automata. The theorem builds 6rPf (¢(IV), 7 (7). In other Words'(‘j(N)vf, (i) is an
the following proposition, which establishes some properties 8fcumulation point ok and thereforég(N), 7™ (Tyy)) € Sy
w-limit sets for deterministic, continuous hybrid automata, ~_ For the last claim, assume, for the sake of contradic-

Lemma IV.1: Let H be a deterministic, continuous hybrid aulion, that there exists > 0 such that for allK' > 0,
tomaton satisfying Assumption I1.2. Consider an infinite execd{(4(1), 2"(t)), S) > ¢ for somen > K andt € I,. Then,
tion x = (7, ¢, ) and assume that there exigts> 0 such that there exists a sequengé, };2, with 6, € /;, andi, € (r)
fori € (r)yandallt € I;, ||2*(t)|| < C. Thew-limitsetS, of y Suchthatas — oo, b, — |r[andd(q(i,), z* (6.)),5) > €.
is nonempty, compact and invariant. Furthermore, foe all0  ThiS sequence is bounded, therefore, by the Bolzano-Weier-
there existsk € (r) such thatd((q(t), z"(t)), ) < ¢ for all strass property it _hasal|m|t poif, £). MAorAeover,(qJ:) € SX.
n>Kandt eI, But, by construction of the sequendk(g, ), S, ) > ¢, which

Proof: The proof is inspired by the corresponding prodff & contradiction. _ e _ u

for continuous dynamical systems (see, for example, [42]). ToTheorem V.1 (Invariance Principle)Consider a non-
show thatS, is not empty, recall tha x X is a metric space. If blo_ckm_g, determml_stlc and continuous hybrid automatah,
« is boundedy is contained in a compact subset of that spacglisfying Assumption I1.2. Lef2 C Reachy be a compact
Therefore, it has a limit point, by the Bolzano—Weierstrass profplvariant setand defin@, = Q1 Outyy andQ2; = QN Outy.
erty [43]. Hence S, # 0. Assume there exists a continuous function? — R, such that

To show thatS, is compact, it suffices to show that, is 1) forall(¢,z) € Q4, V is continuously differentiable with

closed, since is assumed to be bounded. Consider an arbitrary  respect tor andL¢V (¢, z) < 0;
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2) for aII( ,z) € Qo,e = (q,¢') € E,withz € G(e), , Left , _Right
V(¢ R(e,x)) < ( ).
X

0.8

Define 51 = {(¢q,z) € Q:LsV(¢,z) = 0} and
Sy = {(g,z) € Qa:Ve = (¢q) € Ewithz € osf
G(e), V(¢,R(e,z)) = V(g,z)}. Let M be the largest oal

invariant subset of5; U S,. Then, for all(go,z9) €  the
execution(t, ¢,z) € £57(qo, To) approacheds ast — |7|.
“Approaches” should be interpreted as Ty of

-0.2f

lim d((a(t), 2" (1)), M) = 0.

t—|7| -04f

]

Since the class of invariant sets is closed under arbitrary union:

M, the unique largest invariant set containedSinu Ss, ex- -08

ists. Note also that under the assumption thas nonblocking Py ; : » ; .

and deterministic, for allq,z) € ., there exists a unique oo ™ o o o2 o

e =(q,q¢') € E,withz € G(e) andR(e, z) contains a single

element (Lemmas 111.1 and |||_2)_ Fig. 6. Sef for the application of Theorem IV.1 to the rocking block system.

Proof: Consider an arbitiary state, #o) € € and {2 he et fegon i, ik pr fls ey Toe toted atove
let x = (1.q,2) € EF(qo,wo). Since Q is invariant, werer = 0.8,a = 7/4,¢ = 0.9, and(go. o) = (Left, (0.1, —0.6)).
(q(@),z*(t)) € Qforalli € (r) andt € I,. Since) is compact
and V is continuous,V (q(i), z'(t)) is bounded from below.
Moreover,V (q(i), z'(t)) is a nonincreasing function ofe ()
andt € I; (recall thatr is linearly ordered), therefore, the limit 0, ={Left}
¢ = limy_ - V(q(4), 2*(t)) exists.

Smce_Q is boundedy is bounded, and thgrefor_e thelimit % {x ER%[z1 <OV (21 =0V 25 < 0)]
set S, is nonempty by Lemma IV.1. Sinc€ is closed,
Sy C Q. By definition, for any(§,#) € Sy, there exists (a2)?
a sequencef,, }>>, with 6, € I, , i, € (r) such that A [—1 < x1 < 0] Acos(a) + 2 < e}}
asn — oo, 0, — |r| and (q(in), 2z (6,)) — (7). 2
Moreover, V(§,2) =  V(limp_oo(q(in),z(0n))= U{Right}
limp, 00 V(q(in), 2" (6,)) = ¢, by continuity of V. SincesS,,
is invariant (Lemma IV.1 ), it follows thaL ;V (¢,4) = 0 if X {a: ER* [z >0V (21 =0V zy >0)]
(¢, &) & Outy,andV (¢, R(é,%)) = V(§, ) if (4,2) € Outy
andé = (¢,4¢’") € E. Therefore,S, C S; U Sy, which implies
that S, C M sinceS, is invariant and}M is maximal. By
Lemma IV.1, as¢ — |r]|, the executiory approaches,, and

henceM . [ | 2
L Oy ={Left} x € R*:, [z1 =0] A >0
We demonstrate the application of Theorem IV.1 on the 2 ={Left} {x 1 I\ w2 2 0]

our earlier computation dbutgp, we see that

A [0 < 1 < 1] A [cos(a) + <‘“;2>2 < e] }

rocking block system. Assume that the dissipation constant 9
satisfiesr € [0,1). We have already established tHaB is A {Cos(a) + (az) < 6]}
a nonblocking, deterministic, continuous hybrid automaton, 2

and that it satisfies Assumption 11.2. The argument used in

Section Il to show that Init is invariant reveals that the compact ~ U{Right} x {:v € R*:[z1 = 0] A [z < 0]
set

O ={Left} x {x €ER%:[-1< 2, 0]

) These sets are shown in Fig. 6, together with an execution of the
] }

A [Cos(a(l +31)) + < rocking block hybrid automaton starting §n
2 As a Lyapunov function, we use
. 2. 2
U{Right} x {w eER*:[0< 1z <1 V(g,7) = cos(a(l — z1])) + (aa;z)
A [cos(a(l — )+ (az2) <e which relates to the the energy of the system. As shown in
2 - Section I, LV (q,z) = 0 for all (¢,z) € €. Therefore,

V fulfils the first requirement of the theorem. To establish
is an invariant subset dteachy for anye € (0,1). Recalling that V' does not increase along discrete evolution, consider
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(¢,z) € 2y and assume thaf = Left (the argument is  Definition IV.2 (Almost Deterministic H.A.)A hybrid au-
similar if ¢ = Right). Then,V(q,z) = cos(a) + (ax3)?/2 tomaton is called almost deterministic if it satisfies
and V(Right R(Left,Right z)) < V/(Left,z). Therefore,VV

satisfies the required conditions, afd = 1) conditions 1 and 2 of Lemma IIl.2;
2) foralle = (q,¢’) € E,theresetrelatiok® = R(e,-)isa
Sy = {Left,Right} x {z € R*: (z; = 0) A (22 = 0)}. family of piecewise smooth homeomorphisms, i.e., there
) ) i o ) exists an index setl(e) such thatR*(z) = {R;(z):a €
As discussed in Section Il, the s& is invariant. Moreover, it Ale)} for all = € G(e), whereR:: G(e) — D(¢) is a

is easy to see that executions starting at pdipts) € S; U Sy
with 2y # 0 orzo # 0 will soon reach a point which is ift; but

outside ofS; U S,. Therefore, the largest invariant set contained Recall that a submersion is a smooth map such th:‘t at every
in S, U Sy is M = S,. By Theorem IV.1 all trajectories starting pointits derivative is asurjective linearmap. Fora4&t R™ and
in © converge taS, = Q x {(0,0)}. x € A, letT4(x) be the set of all vectors € R™ such that there

Sincee can be chosen arbitrarily iV, 1), the interior of the €Xistsasmoothcurve: [0, 1] — Awith¢(0) = » and(0) = v.
set Initis in a sense thomain of attractiorof the invariant set RoUghly speakingl’y (x) is the set of all directions pointing into
Q x {(0,0)}. A. In particular, ifz is in the interior of4, thenT'4 (z) = T, A,

The conclusion of this example could also have been derivd§ereas it is closed and: is a smooth point on its boundary,

using the properties of Zeno executions established in [39]. THEN 4 () is a half space df’, A. One can show that, («) is a
advantage of using LaSalle’s principle is that it does not r2N€inR",i.e.,0 € Ty(z) andAv € Ty(x)forallv € Tu(z)
quire one to integrate the differential equations and argue ab8fiflA > 0. In fact, one can show thdt, (x) is the same as the
their solutions, which is typically needed, for example, to estafontingent (tangent) cortéscussed in [40], [44]. _

lish that the system is Zeno. Recall also that, strictly speaking,For any coneC’ C R"k, we say that’ is k-dimensional
Q x {(0,0)} is not an equilibrium of the system, therefore moé? It contains a basis foR” but does not contain a basis for

of the standard Lyapunov arguments for hybrid systems do bt Given a linear mag': R* - R* and ak-dimensional
apply in this case. coneC in R*, the norm of F restricted toC, is defined by

IF|c|| = sup{||F(v)||:v € C,||v|| = 1}.If Ais an eigenvalue
B. Extension of Lyapunov’s Indirect Method of F' with largest absolute value arddcontains an eigenvector

In this section, we develop a method for determining stabili rrespon_dlng 10\, then||Flcll = [A| . 1]l where|| |
IS the ordinary operator norm df. This is always the case

piecewise smooth homeomorphism.

of equilibria of hybrid automata using linearization. Roughl )
quibrl yhric! au using inearizat U9 henC = R*, or whenC contains a half-space &"*. How-

speaking, the procedure involves linearising all the relevant ob- """ | i t be that simple- it
jects (vector fields, guards, and images of resets) in aneighb%Y—er’ in general, computingf”|c|| may not be that simple; i

hood of the equilibrium, and combining the linearizations to gggay require one to solve a convex_optlmlzanon problem, for
xample. IfC = T4(z), the case of interest to us, whedes

a numbery representing the Lipschitz constant of the “ oing . i : ) :
" Tep d P d piecewise smoottn — 1)-dimensional submanifold d&”,

around the equilibrium once” map.4f< 1, the equilibrium is . N "
locally asymptotically stable. The novelty of our method is thé en there exist affine maps,, ..., L,:R T R such that
= {v:L1(v) > 0,...,L,.(v) > 0}.Inthis case||F|c|| can

it does not require integration of nonlinear vector fields and ¢ . e

deal with nonlinearities in the vector fields, the guards and t 3 c_omputed using the method of Lagrange mult|pl|ers.as the
resets. Our approach can be viewed as a generalization of iEImum of the function - [lF(v)] supject.to constralpts
work of [23] and [24], where systems with piecewise linear d)ﬁl v) 2 0,.. "LT’(.U) = 02 “vH = 1. With thls_notatlon n
namics were considered. For simplicity, we focus on automaﬁ?ce’ we are now in a position to state the main result of this

g ) tion.
satisfying Assumption 1.2 throughout. Sec . i .
For an equilibriumez, € X, let Theorem V.2 (Indirect Method)Let z, be an isolated

equilibrium of a nonblocking, piecewise smooth, and almost

Q. ={q€Q:(q,z.) € Reachy}. deterministic hybrid automatoni, that satisfies Assump-
tion 1.2. Assume that the sef, can be ordered such that
We develop stability conditions for the case where the statesdn = {q,q1,..., ¢} with e; = (gj,q;41) € E, for

Q. are visited cyclically by all executions df starting close 0 < j <1 —1ande; = (q1,90) € E. Assume also that there
enough toz.. We first define some special classes of hybridxists a neighborhoot” of z, in Reachy such that for each
automata appropriate for stability analysis. 0 < j < I, the following hold.

Definition 1V.1 (Piecewise Smooth H.A.A hybrid au-
tomaton is called piecewise smooth if its domains and @) z. € 9A; N JB;, whereA; = image R—* N W and
guards are piecewise smooth manifolds with piecewise B; = G(e;) N W.
smooth boundary. The former must be of dimensignthe b) There exists a submersign: W \ (4; N B;) — R such

latter of dimensionn — 1. Furthermore, each guard is a thatg; = a; onWNA;\B;andg; = b onWNB;\ A4;,

submanifold of a domain, and for eaeh € F, the union for some numbers; < b;.
image R® = Uycq(e)R(e, ) is a piecewise smoottn — 1) ¢) There exists numbem;7mj such that for all: € W'\
submanifold (with piecewise smooth boundary) of a domain. (A; N B;),0 <m; < Ly, ¢i(x) < mjr

The degree of smoothness will be fixed@* throughout  d) Thereexists; > 0suchthat™"i (T4, (z,)) C T, (2+),
this section. whereL; = Df(q;, ).
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Let Wi = “eTij|TAJ. (@)l andsupaeA(ej)Lipm* (sz) = vj

and defineng (z.) = Hé’:l pivi. It np(z.) < 1, thenz, is a
locally asymptotically stable.
Remarks:

i) Note that, under Assumption IV.}4; andB; are piece-
wise smooth manifolds of dimension— 1.

ii) Conditionb saysthati;\ B; andB;\ A; are level sets of
the functiong;, which measures the progress trajectories
of the vector field make toward;, starting fromA;
their “speed” alongf(g;, -) is betweenn; andmj, as
follows from c). Observe thag; is not defined at:...

iif) Condition d says that the time; map of the linearization
of the flow at(q;,z.) mapsla,(z«) to I’g,(xs). This
means thaB; is reachable froml ; in a bounded amount
of time by the flow of the linearized system.

iv) Note that no vector fields need to be integrated, in con-
trast to certain extensions of Lyapunov’s direct methogig 7. imit (1) of the proof of Lemma IV.2.

Only the linearised dynamics at the equilibrium point are
considered, see condition d. [(b— p(x))/my, (b— p(z))/m_] such thatp(y(r(z),x)) = b
v) Let H' be thereversehybrid automaton téf obtained by 5ng d((t,x)) < b, forallt € [0,7(z)). This shows that the

reversing the time it/ . If the dimension of eac(q) is  forward f-orbit of » reaches3 and thatr is a bounded function
two, H' is nonblocking and deterministic, ang (z.) > on A \ B. Namely

1, then it is not difficult to see that, is unstable.
Theorem IV.2 is a direct consequence of the following two b—a < r(2) < b—a
lemmas. Lemma IV.2 provides conditions to ensure that the my 7(#) < m_
states inQ), are visited cyclically, while Lemma IV.3 gives an
estimate of the “contraction” in the continuous state every time Next, let us show that(z) — ., asz — z.. Observe that,
the discrete state traverses the entire cycle. by d), ¥(7«, A) and B are tangent to each otherat. Since
Lemma IV.2: Let f be a globally Lipschitz, smooth vector A and B are not necessarily smooth af, by this, we mean
field onR™ with flow 1, and assume, is an isolated equilib- 7%, a)(7«) = T(z«). Therefore
rium for f. LetU be a neighborhood af,.. Supposed and B

are closed sets which are piecewise smdath 1)-dimensional L (7w, x), (7 (x), x)) 0 0
submanifolds (with piecewise smooth boundary)igfand as- d(Y(1(z), 1), 74)
sume the following hold.
a) z, € AN IB. asxz — x, wherel(y(r, z), (s, z)) denotes the arc length of
b) There exists a submersignl \ (AN B) — R and num- the indicated segment of thiorbit of z (see Fig. 7). Observe
bersa < b such thatp = a on A and¢ = b on B. thatf - V¢ = Ly > m_ > 0, so the angle betweefiand
c) There exists numbers_, m. suchthat o/ \ (An B), thelevelsurfaces af is bounded away from zero. In particular,
0<m_ < Lip<my. the angle betweeyfi andA \ B, andf andB \ A is bounded
d) There exists a number > 0 such thae™ L (T, (z,)) C away from zero. This implie&(y(7., z), ¢ (7 (), z)) — 0, as
Ts(x,), whereL = Df(z,). T — X, SO Sinceh(z) = Y(7(z),z), forx € A\ B we obtain
Then, the following are true. [¢(h(7e, ) = d(h(2))| < myLl(p(e, @), h(x)) which tends

1) There exists a bounded functiend \ B U {z,} — RT to0asy — .. Hence

such that)(7(z),z) € B andy(t,z) ¢ B, forall ¢t <
7(z). m_|T(z) — 7| <
2) The functionh: A\ BU {z.} — B defined byh(z) =
Y(7(x),x) is Lipschitz continuous. The Lipschitz con- =|p((Ts, ) — d(h(x))] — 0
stant atz, is Lip, h = [le™ |7, o) |-
Proof: Letus first show that for every € A\ B, theflow asz — =.. This shows that(z) — ..

[ ) a

x

starting atr reachesB. Since¢(z) = a, we have, fot. > 0 Itis a consequence of the implicit function theorem thahd
, h are smooth functions oA \ B. Then, using the chain rule to
S((t, 7)) =(x) +/ (L; ) (0(s, ) ds differentiateh(z) = (7 (), x) with respect tar, we obtain
0
Ela+ m_t,a+ m4t]. Dh(z)v = dr(v) f(h(x)) + Dy(r(x),z)v 2

Since ¢ is continuous on/ \ (A N B),a < b, andt — forallz € A\ B andv € T4(x.). HereDh denotes the deriva-
#(y(t, x)) is strictly increasing, there exists a uniqugr) € tive of h as a map fromd \ B to B, anddr is the differential
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(equivalently: the derivative) of the real valued functiarsince D(q1)
7 is bounded, it follows that the map — || Dy (7(x),)|| is By
bounded forz € U N A\ B. To prove that: is Lipschitz, it
remains to show that — ||d7(v)f(h(z))| is bounded at.,
with ||v|| = 1. In fact, we will show that|dr f(h(z))|| goes to
Zero asr — .. R
Let g:V — R be a submersion defined on some neighbor- "
hood V' of x, such thatg is constant onB and the number
6 = infeey inf),)=1 |d2g(v)| is strictly positive. (Herel. g
is the differential ofg at z.) Such a function exists if we take
V sufficiently small so thaBB N V' is smooth. Thab is strictly
positive means that has no critical points iV which follows
from the fact thay is a submersion. Observe thais the min-
imal amount of “stretching” done hy. Also, if z € A\ B and
v € Ta(z), thenDh(z) € Ty, B, sodg(Dh(x)v) = 0.
Now, letv € T4(z.) be arbitrary. Take a smooth curve
¢:]0,1] — A such that(0) = z, andé(0) = v. Letzs = ¢(s)  Fig. 8. lllustration of Lemma IV.3.
andvs = ¢(s). Then, by (2) and d), we have

hy

Then, it can be seen without difficulty that
dr(v,)(L19)(h(w.)) = = dg(Dy(r(x,), x.)v.) Lip, (1) > T 2B((E()), b))
. dg(eT*Lv) — s—0+ dA(C*(S)?.T*)
. Jo IDh(ci(t))éx(t)]] dt
ass — 0. Therefore T e+ Jo llew(®)l] dt

= [lemEu .
||

II.f (h(zs))l Lemma IV.3: Let b isol ilibri
dr(v) f(h(z )] =|dr(v)(L h(z, .3: z, be an isolated equilibrium such
ldr (o) (DIl =7 ) L)WMDy, SEETT ot (o ) € Readha, for 0 < o < 1 Suppose that

1 there exists a neighborhoo®V of z. in Reachy such
S|dT(Us)(Lf.q)(h($s))|g —0 that for everyz € W, every0 < j < [, and every in-
finite execution (7,q,z) € £&5(gj,z) the sequencegq
ass — O+ of discrete states goes cyclically through the ordered set
It still remains to show that is Lipschitz atz, and that its {qﬁqﬂlz s 215905 1'71}- ,
Lipschitz constant there equals™~ |, (.., - Let A;’s andB;’s be as in Theorem IV.2. For eaghand for

Letz € A be an arbitrary point close to,. Recall that ¢ € 4j \ Bj, definer;(x) = min{t > 0:9(t,q;,2) € Bj},
dg(h(z), h(z.)) equals the infimum of the lengths of all curvend assume tha is a bounded above function for glin some
~:10,1] — B which connect(z, ) andh(z). For every such N€ighborhood of . in 4;\ B;. Define the ma;: (4;\ B;) U
curver, we get a unique curve = h~! o v in A which con- {z.} — Bj by h(z) = P(7j(2), ¢;, ). Let p; ZILIP.T*(}LJ'),
nectsz, andz. Moreover;(0) € Ts(z) andé(0) € Tia(zy).  SWPaca(e,) Lib,. (Ra') = v; and definen = [T;_; pv;. If
Furthermore n < 1, thenz, is locally asymptotically stable.

Proof: Fix aj, with 0 < j < [, and consider: € A;.
1 Since the system in not necessarily deterministic, there may
Uy) = [|Dh(c(s))é(s)]| ds exist several executions starting(gt, ) which return toA;;
0 we analyze each one of them separately in the following way.
< sup [|Dh(c(8))|r, (e(onll £(c)- For each discrete transitien, take from the reset relatioR®:
any reset magg: , with ay, € A(ey). The first-return map for
Aji
Taking the infimum overy, we get 718
Pj?" :Rijjillohj—lo"'oRi% OhOORff, Ohlo"'ORffj oh;

dp(h(z), h(z,)) < limsup || Dh(z)|1, ()| da(z, z4). wherea = (ag,...,a1) € Aleg) x --- x A(er). Then
Adz—a, P¥(z.) = =, andLip, (Py) < n < 1. Therefore, there
exists a ballV; aroundz. in A; such that for allz € Vj,
Since limsup s, .. [IDM2)|r,ll = lle™ r@lls  I1PF(2) = P (z.)|| < nllz — 2| This is clearly true for all
this yields Lip, (h) < |le™%|r,z.)|l. To prove the re- 0 < j < I and alla as above. Therefore, if we follow any
verse inequality, leb, € Ta4(z.) be a unit vector such that execution starting dig;, x), wherez € V;, each time it returns
le™ |7, o)l isrealized ab,, i.e.,|le™ |7, )|l = [le™Fv,]|.  to A; it is by a factor ofy < 1 closer toz, than it was the
Choose a curve, in A such that,(0) = z,, ¢.(0) = v., and previous time see Fig. 8). Thus, is locally asymptotically
h o ¢, minimizes length inB between any two of its points. stable. ]
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Example (Stable Equilibrium in Three Dimensiond)et ¢
be a positive constant and define a hybrid automdiowith

15

of some open problems, which are topics for our ongoing work:
Zeno hybrid systems, composition, and multi-domain modeling.

Q={np}X=R An execution of a hybrid system may exhibit infinitely many

discrete jumps in finite time. This is a truly hybrid phenomenon,

D(q1) ={(z,y,2):x >0, y > 22, 2 €R} in the sense that it requires the interaction between continuous
U{(z,y,2):2 <0, y > —z(z —¢), z € R} and discrete behavior and can not appear in purely continuous
D(g2) =R% = D(q1) or discrete systems. A systematic investigation of the dynamical
)= n ) properties of Zeno hybrid systems has started only recently, e.g.,
G(q1,q2) ={(z,y,2) € D(q1):y = 27} [12], [18], and [36]—[39]. This work indicates that there are in-
G(q2, 1) ={(z,y,2) € D(q2):y = —z(x — ¢)} teresting connections between the Zeno problem and chattering
Flar,z,y,2) =(— —y, 1 —y, — M\ 2)T arising in optimal control and in variable structure systems. For
F@2, 2,9, 2) =(& — 4, 3 + 9, Apz)" examples, see the extensive literature on the Fuller phenomenon

in optimal control [45], [46].

where0 < A, < 1 < A,. Assume the resets are the identity The results in this paper deal with autonomous systems. The
map. Observe that 0 is a sink fgj, and a source fof,,. It introduction of control variables and the formalization of com-
is lengthy but not difficult to cheéklthatH(O) g .V\?Flere position of_ hybr_|d automata are crucial e_xtensmns_. The issue
+ = arctan ¢. Hence, 0 is asymptotically stable féF. Notice of composition is particularly important, since hybrid systems

that, even though both vector fields are linear in this Casefrgquently arise in the modeling of complex and heterogeneous

linearization argument is still necessary, because the bounda )é,gtems For such systems one would like to be able to model
different parts of the system independently, compose the in-

of the guards and the domains are given by nonlinear functio

d Ividual models to form larger entities, and deduce properties
that need to be linearized at 0.

of the composite models from properties of the individual com-

Example (Theorem IV.2 Inconclusivelgain, let : .
Q = {q pq ) g( — R3 ehg ponents. All these steps have to be performed in a consistent,
Lazp formal way if one is to guarantee correctness and safety proper-
D(q1) =[0, 00) x [0,00) x R ties f_or the overall system.
— This process of modeling complex, heterogeneous systems,
D(gz) =R? = [0,00) x [0,00) x R is further complicated by the need to employ a number of dif-
G(q1,q2) ={(z,y,2) € D(q1):x = 0} ferent modeling languages, each designed to operate within a
G(q2,q1) ={(z,y,2) € D(qz):y = 0} different domain. Developing a proper interface between these
_ ling languages is important. In this paper, such an interface
, = +y,—A2)" mode g fan ; . o
Har@,y.2) =@ —y.x+ 9, =hz) was defined in Section Il between continuous systems (specified
fla2,m,y,2) =(=v — y, 2 — y, Ao2)"

as ordinary differential equations) and discrete systems (speci-

fied as a finite state machine). Other constellations of practical
whereA;, A2 > 0. The resets are again the identity map. Th%

interest are under investigation.
trajectories off,, are spirals around the-axis that increase in
radius and converge to the/-plane. The trajectories ¢f,, are
also spirals around the-axis, but they decrease in radius and ACKNOWLEDGMENT

diverge from thery-plane. Itis not difficult to check that, with  The first author would like to thank A. Murray and S. Swift

notation from Theorem V.21 = ¢™/2, uz = ¢*™2/%, 50 for their help with the simulation of the rocking block system.
nr(0) > 1 and the theorem is inconclusive.

Itis worth noting that if the flows are decoupled into their
andz-components, one can observe a small amount of contrac-
tion around 0 in the flows of botlf,, and f,,: the flow of f,, (1]
restricted to7 (g2, 1) contracts in the direction (and expands
in zy direction) whereas the flow of,, on G(q¢1, ¢2) contracts
in thexy direction (and expands in thedirection). Some anal-
ysis shows thatif\; > 35, then the small contraction turns out
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