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Abstract—Hybrid automata provide a language for modeling
and analyzing digital and analogue computations in real-time sys-
tems. Hybrid automata are studied here from a dynamical systems
perspective. Necessary and sufficient conditions for existence and
uniqueness of solutions are derived and a class of hybrid automata
whose solutions depend continuously on the initial state is charac-
terized. The results on existence, uniqueness, and continuity serve
as a starting point for stability analysis. Lyapunov’s theorem on
stability via linearization and LaSalle’s invariance principle are
generalized to hybrid automata.

Index Terms—Continuity of solutions, dynamical systems; exis-
tence, LaSalle’s principle, Lyapunov’s indirect method, hybrid sys-
tems, uniqueness.

I. INTRODUCTION

H YBRID systems are dynamical systems that involve the
interaction of continuous and discrete dynamics. Systems

of this type arise naturally in a number of engineering applica-
tions. For example, the hybrid paradigm has been used success-
fully to address problems in air traffic control [1], automotive
control [2], bioengineering [3], process control [4], [5], highway
systems [6], and manufacturing [7]. The needs of these applica-
tions have fuelled the development of theoretical and computa-
tional tools for modeling, simulation, analysis, verification, and
controller synthesis for hybrid systems.

Fundamental properties of hybrid systems, such as existence
and uniqueness of solutions, continuity with respect to initial
conditions, etc., naturally attracted the attention of researchers
fairly early on. The majority of the work in this area concen-
trated on developing conditions for well posedness (existence
and uniqueness of solutions) for special classes of hybrid sys-
tems: variable structure systems [8], piecewise linear systems

Manuscript received March 29, 2002; revised July 8, 2002. Recommended
by Associate Editor A. Bemporad. This work was supported by the Army
Research Office (ARO) under the MURI Grant DAAH04-96-1-0341, by the
Office of Naval Research (ONR) under Grant N00014-97-1-0946, by the
Defense Advanced Research Programs Agency (DARPA) under Contract
F33615-98-C-3614, by the Swedish Foundation for International Cooperation
in Research and Higher Education, by Telefonaktiebolaget LM Ericsson’s
Foundation, by NASA under Grant NAG-2-1039, by the Electric Power
Research Institute (EPRI) under Grant EPRI-35352-6089, and and by the
Engineering and Physical Sciences Research Council (EPSRC), U.K., under
Grant GR/R51575/01.

J. Lygeros is with the Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, U.K. (e-mail: jl290@eng.cam.ac.uk).

K. H. Johansson is with the Department of Signals, Sensors and Sys-
tems, Royal Institute of Technology, 100 44 Stockholm, Sweden (e-mail:
kallej@s3.kth.se).
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[9], [10], complementarity systems [11], [12], mixed logic dy-
namical systems [13], etc. Continuity of the solutions with re-
spect to initial conditions and parameters has been somewhat
less extensively studied. Motivated by questions of simulation,
Tavernini [14] established a class of hybrid systems that have the
property of continuous dependence of solutions for almost every
initial condition. More recently, an approach to the study of con-
tinuous dependence on initial conditions based on the Skorohod
topology was proposed [15]. The Skorohod topology, used in
stochastic processes for the space of cadlag functions [16], is
mathematically appealing, but tends to be very cumbersome to
work with in practice. This fact severely limits the applicability
of the results.

The first contribution of the present paper, presented in Sec-
tion III, is a set of new results on existence, uniqueness and con-
tinuous dependence of executions on initial conditions. The re-
sults are very intuitive, natural and applicable to a wide class of
hybrid systems, but require the computation of bounds on the set
of reachable states and the set of states from which continuous
evolution is impossible. We demonstrate how the computation
of these quantities can be carried out on an example and refer to
our earlier work [17] and [18] for a more general treatment.

Questions of stability of equilibria and invariant sets of hybrid
systems have also attracted considerable attention. Most of the
work in this area has concentrated on extensions of Lyapunov’s
direct method to the hybrid domain [19], [20]. The work of [21]
provided effective computational tools, based on linear matrix
inequalities (LMIs), for applying these results to a class of piece-
wise linear systems. For an overview of the literature in this area
the reader is referred to [22].

Despite all this progress on extensions of Lyapunov’s direct
method, relatively little work has been done on hybrid versions
of other stability analysis results. The second contribution of
this paper, presented in Section IV, is to provide extensions of
two more standard stability analysis tools to the hybrid domain:
LaSalle’s invariance theorem and Lyapunov’s indirect method.
The latter results can be viewed as a generalization of the ap-
proach of [23] and [24], where a direct study of the stability of
piecewise linear systems is developed. The results in Section IV
build on the existence, uniqueness, and continuity concepts pre-
sented in Section III and demonstrate the usefulness of the re-
sults developed there.

The development in Sections III and IV is based on a fairly
standard class of autonomous hybrid systems, which we refer
to ashybrid automata. This class has been studied extensively
in the literature in a number of variations, for a number of pur-
poses, and by a number of authors. Special cases of the class of
systems considered here include switched systems [25], com-
plementarity systems [11], mixed logic dynamic systems [13],
and piecewise linear systems [26] (the autonomous versions of
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these, to be more precise). The hybrid automata considered here
are a special case of the hybrid automata of [27] and the impulse
differential inclusions of [28], both of which allow differential
inclusions to model the continuous dynamics. They are also a
special case of hybrid input–output automata of [29], which in
addition allow infinite-dimensional continuous state. Each one
of the references uses slightly different notation, concepts and
terminology. Our development will roughly follow the conven-
tions introduced in [18]. To avoid any ambiguity, the notation
and some basic concepts will be reviewed in Section II.

II. FRAMEWORK

A. Notation

For a finite collection of variables, let denote the set of
valuations (possible value assignments) of these variables. We
use a lower case letter to denote both a variable and its valu-
ation; the interpretation should be clear from the context. We
refer to variables whose set of valuations is finite or countable
asdiscrete, and to variables whose set of valuations is a subset
of a Euclidean space ascontinuous. For a set of continuous vari-
ables with for some , we assume that is
given the Euclidean metric topology, and use to denote the
Euclidean norm. For a set of discrete variables, we assume
that is given the discrete topology (every set is open), gener-
ated by the metric if and
if . We denote the valuations of the union by

, with the product topology generated by the metric
. The metric notation

is extended to sets by defining
. We assume

that a subset of a topological space is given the induced subset
topology, and we use to denote its closure, its interior,

its boundary, its complement, and its
power set (the set of all subsets of). In logic formulas, we use

and to denote “and” and “or,” respectively.
If is a piecewise smooth submanifold of, we define dis-

tance between two points as the infimum
arc length of all piecewise smooth curvesin that con-
nect and . makes into a metric space. For a map

between two metric spaces and , the
Lipschitz constant of at a point is the real number

We say is globally Lipschitz continuous if is a
bounded function of .

We assume that the reader is familiar with the standard def-
initions of vector fields and flows for smooth manifolds. Here,
we consider vector fields parameterised by discrete variables

, where is a collection of discrete variables,
and is a collection of continuous variables, witha smooth
manifold. As usual, denotes the tangent bundle of and

the tangent space of at . For each , we
use to denote the flow of the vector field . For

a function we use to denote
the Lie derivative of along defined by

(assuming all derivatives are defined). We use to de-
note the linearization of with respect to .

B. Hybrid Automata and Executions

A hybrid automaton is a dynamical system that describes the
evolution in time of the valuations of a set of discrete and con-
tinuous variables.

Definition II.1 (Hybrid Automaton):A hybrid automaton
is a collection , where

finite set of discrete variables;
finite set of continuous variables;
vector field;
set of initial states;
a domain1 ;
set of edges;
guard condition;
reset map.

We refer to as thestateof . We impose the
following standing assumption.

Assumption II.1:The number of discrete states is finite.
, for some . For all , the vector field is

globally Lipschitz continuous. For all , , and for
all , .

Most of the results presented in this paper trivially extend to
hybrid automata where the discrete state is countably infinite
and the continuous state takes values in a smooth manifold. It
can be shown that the last part of the assumption can effectively
be imposed without loss of generality [17].

Definition II.2 (Hybrid Time Trajectory):A hybrid time tra-
jectory is a finite or infinite sequence of intervals ,
such that

• , for all ;
• if , then either , or ;
• for all .

The interpretation is that the are the times at which discrete
transitions take place. Since all hybrid automata discussed here
are time invariant we assume that , without loss of gen-
erality. Each hybrid time trajectory is linearly ordered by the
relation , defined by for and
if or . We say that is a prefix of

and write if either they are identical, or
is finite, , for all , , , and

. For a hybrid time trajectory , we de-
fine as the set if is finite and if

and .
Definition II.3 (Execution): An execution of a hybrid au-

tomaton is a collection , where is a hybrid
time trajectory, is a map, and is
a collection of differentiable maps , such that

• ;

1The domain is sometimes called the invariant set, especially in the hybrid
system literature in computer science.
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• for all , and
;

• for all , ,
, and .

We say that a hybrid automaton acceptsan execution if
fulfils the conditions of Definition II.3. For an execution

, we use to denote the initial
state. We say that an execution, , of is a prefix of
another execution, , of (write ), if
and for all and all , .
We say is a strict prefix of (write ), if and

. An execution of is calledmaximalif it is not a strict
prefix of any other execution of . An execution is calledfi-
nite if is a finite sequence ending with a compact interval, and
infinite if is either an infinite sequence, or if . An
execution is calledZenoif it is infinite but , or, equiv-
alently, if it takes an infinite number of discrete transitions in
a finite amount of time. It is easy to see that, under our defi-
nitions, the transition times of a Zeno execution converge to
some finite accumulation point from the left. In other words,
the definition of an execution precludes the situation where the
transition times have a right accumulation point. A discussion
of this situation can be found in [9] and [30].

We use to denote the set of all executions of
with initial condition , to denote the
set of all maximal executions, to denote the set of all
finite executions, and to denote the set of all infinite
executions. We use to denote the union of over
all .

C. Reachability

The well-posedness and stability results developed in subse-
quent sections involve arguments about the set of states reach-
able by a hybrid automaton and the set of states from which
continuous evolution is impossible. We briefly review these con-
cepts. The set of states reachable by, , is defined as

Clearly, , since we may choose and
. Since states outside will never be visited

by we can effectively restrict our attention only to states in
.

The set of states from which continuous evolution is impos-
sible is given by

For certain classes of hybrid automata the computation of
is straightforward, using geometric control tools [17]. In some
cases, can be computed (or approximated) using induc-
tion arguments along the length of the system executions (see,
for example, [17] and [29]). In general, however, the exact com-
putation of and may be very complicated.

Definition II.3 does not require the state to remain in the do-
main. This assumption often turns out to be implicit in models

of physical systems, where the domains are typically used to en-
code physical constraints that all executions of the system must
satisfy. Let

The following assumption makes the statement of some of the
results somewhat simpler.

Assumption II.2:The sets and are closed. More-
over, .

Assumption II.2 will not be imposed as a standing assump-
tion, an explicit statement will be included whenever it is in-
voked.

D. Invariant Sets and Stability

We recall some standard concepts from dynamical system
theory and their extensions to hybrid automata. For a more thor-
ough discussion the reader is referred to [19], [20], and [22].

Definition II.4 (Invariant Set): A set is called
invariant if for all , all , all

, and all , .
Here, we use to denote the set of all triples

starting at and satisfying the second and third
conditions of Definition II.3, even if . This abuse
of notation will be later resolved under Assumption II.2.

Definition II.5 (Stable Invariant Set):An invariant set
is called stable if for all there exists such

that for all with ,
all , and all , ,

. is called asymptotically stable
if it is stable, and in addition there exists such that
for all with and all

, .
A very common and useful type of invariant set is an equilib-

rium point. For hybrid automata, the following generalization
of the notion of an equilibrium has been used in the literature.

Definition II.6 (Equilibrium): A point is an equilib-
rium of if

1) for some , implies that ;
2) for some , implies that

.

An equilibrium is calledisolatedif it has a neighborhood in
which contains no other equilibria. It is easy to show that if
is an equilibrium, then the set is invariant.
We say that the equilibrium is (asymptotically) stable if the
invariant set is (asymptotically) stable.

The asymptotic behavior of an infinite execution is captured
by its -limit set.

Definition II.7 ( -Limit Set): A point is an
-limit point of an infinite execution , if there

exists a sequence with and such
that as , and . The

-limit set, , of is the set of all -limit
points of .

It is easy to see that, under Assumption II.2, all-limit points
are reachable.
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Fig. 1. Rocking block system.

E. Example: Rocking Block

The rocking block system (Fig. 1) has been studied exten-
sively in the dynamics literature as a model for the rocking
and toppling motion of rigid bodies (nuclear reactors, electrical
transformers, and even tombstones) during earthquakes. In the
presence of periodic excitation, the system turns out to have very
complicated and in some cases chaotic dynamics. The formula-
tion we use here comes from [31]. We assume that the rocking
motion is small enough so that the block does not topple, but
we remove the external excitation term (used in [31] to model
earthquake forces) to make the system autonomous. Under these
assumptions, the rocking block can be in one of two modes,
leaning to the left, or leaning to the right. We assume that the
block does not slip, therefore, when leaning to the left it ro-
tates about pivot and when leaning to the right it rotates
about pivot . The continuous state of the system consists of
the angle that the block makes with the vertical (measured here
as a fraction of the angle made by the diagonal to simplify the
equations) and the angular velocity. We assume that a fraction,
, of the angular velocity is lost every time the flat side hits the

ground and the block switches from one pivot to the other.
It is relatively straightforward to write a hybrid automaton

to model this system. To cap-
ture the two modes, we set with Left Right .
We also let and , where represents
the angle the block makes with the vertical (as a fraction of)
and represents the block’s angular velocity. After normal-
izing some of the constants by rescaling time, the continuous
dynamics simplify to

Left

Right

The domains over which each of these vector fields is valid are

Left

Right

To ensure that the block does not topple (so that the two discrete
state model remains valid), we impose a restriction on the en-

Fig. 2. Directed graph representation of rocking block automaton.

ergy initially present in the system

Left

Right

There are two possible discrete transitions
Left Right Right Left . The transitions can take

place whenever belongs to the guards

Left Right

Right Left

Whenever a transition takes place a fraction of the block’s en-
ergy is lost, according to

Left Right Right Left

with . The rocking block hybrid automaton is shown
in Fig. 2, in the intuitive directed graph notation. An example of
an execution is shown in Fig. 3.

The rocking block automaton possesses a number of inter-
esting properties and will be used repeatedly throughout the
paper to illustrate different points. We conclude this section
by computing some of the quantities previously introduced
( , , etc.) that will be needed in subsequent
derivations.

Clearly, the rocking block automaton satisfies Assumption
II.1. If we let Left and Right , then

. By definition, the set Out does
not intersect the interior of the domain and always contains the
complement of the domain. Therefore

Left

Right

Left

Right
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Fig. 3. Example of an execution,(�; q; x) of the rocking block system with
� = �=4 andr = 0:8. � consists of four intervals; roughlyI = [0; 3],
I = [3; 5:27], I = [5:27;6:85] and I = [6:85;8]. The discrete state
q: f0;1; 2; 3g ! fLeft;Rightg is shown in the upper plot, and the continuous
statex = fx : I ! X: i 2 f0;1; 2; 3gg is shown in the lower plot.

The only question is what happens on the boundary .
Notice that Left and Right .
If Left, and , then and

. A simple Taylor expansion argument reveals
that continuous evolution in the domain is impossible from such
a state. A similar argument for the case Right shows that

contains the set

Left

Right

For the case , we take a second Lie derivative
Left and Right

. If , then ,
and (since the geometry of the

problem requires that ). A Taylor expansion argu-
ment shows that is equal to

Left

Right

A more formal and general discussion of this procedure for com-
puting the set using Lie derivatives can be found in [17].

To compute the set , we show that the set Init is in-
variant. Then, because . Init
can be formally shown to be invariant using induction arguments
similar to those in [17], [29], and [32]; we give a sketch of the
argument as follows.

Discrete transitions do not affect and decrease the magni-
tude of . Therefore, a discrete transition from a state in Init
will always lead to another state in Init. For the continuous ar-
gument we restrict our attention to the case Left (the argu-
ment for Right is similar). We can leave Init along con-
tinuous evolution, if we reach a state where either ,

, or . To reach
, we first need to go through a state where and

. But such a state is in , and therefore fur-
ther continuous evolution is impossible. To reach , we
first need to reach a state where . Since in Init, we have

and thus , it follows
that and . Finally,
differentiating the function along
the vector field Left leads to

The aforementioned argument also shows thatRBsatisfies As-
sumption II.2.

The rocking block automaton has two equilibria, and
(more equilibria would be possible if the block toppled,

but they are not reachable). An argument similar to the one given
previously shows that the set is invariant. However,

is not an equilibrium, since it violates the first condition
of Definition II.6.

III. EXISTENCE, UNIQUENESS ANDCONTINUITY

A. Existence and Uniqueness

Definition III.1 (Nonblocking Hybrid Automaton):A hybrid
automaton is called nonblocking if is nonempty
for all .

Definition III.2 (Deterministic Hybrid Automaton):A hybrid
automaton is called deterministic if contains at
most one element for all .

Intuitively, a hybrid automaton is nonblocking if for all reach-
able states for which continuous evolution is impossible a dis-
crete transition is possible. This fact is stated more formally in
the following lemma.

Lemma III.1: A hybrid automaton is nonblocking if for all
, there exists such that

. A deterministic hybrid automaton is nonblocking
if and only if for all , there exists

such that .
Proof: Consider an initial state and as-

sume, for the sake of contradiction, that there does not exist an
infinite execution starting at . Let denote a
maximal execution starting at , and note that is a finite
sequence.

First, consider the case and let
. Note that, by the defini-

tion of execution and a standard existence argument for con-
tinuous dynamical systems, the limit exists andcan be ex-
tended to with , ,
and . This contradicts the assumption thatis
maximal.

Now, consider the case , and let
. Clearly, . If

, then there exists such that can be extended to
with , by con-

tinuous evolution. If, on the other hand ,
then by assumption there exists such that

, and . There-
fore, can be extended to with ,

, , by a
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discrete transition. In both cases the assumption thatis max-
imal is contradicted.

This argument also establishes the “if” of the second
part. For the “only if,” consider a deterministic hybrid
automaton that violates the conditions, i.e., there exists

such that , but there
is no with and . Since

, there exists and a finite ex-
ecution, such that
and .

We first show that is maximal. Assume first that there exists
with for some

. This would violate the assumption that . Next
assume that there exists with
with . This requires that the execution can be ex-
tended beyond by a discrete transition, i.e., there exists

such that , and
. This would contradict our original assump-

tions. Overall, .
Now assume, for the sake of contradiction, thatis non-

blocking. Then, there exists . It is evident that
. But (as the former is finite and the

latter infinite), therefore, . This contra-
dicts the assumption that is deterministic.

The conditions of the lemma are tight, but not necessary un-
less the automaton is deterministic. If the conditions are vio-
lated, then there exists an execution that blocks. However, unless
the automaton is deterministic, a nonblocking execution may
also exist from the same initial state.

Intuitively, a hybrid automaton may be nondeterministic if
either there is a choice between continuous evolution and a dis-
crete transition, or if a discrete transition can lead to multiple
destinations (under Assumption II.1, continuous evolution is
unique). Lemma III.2 provides a formal statement of this fact.

Lemma III.2: A hybrid automaton is deterministic if and
only if for all

1) if for some then ;
2) if and with , then

;
3) if and , then contains

at most one element.

Proof: For the “if” part, assume, for the sake of contra-
diction, that there exists an initial state and two
maximal executions and starting
at with . Let de-
note the maximal common prefix of and . Such a prefix
exists as the executions start at the same initial state. More-
over, is not infinite, as . As in the proof of Lemma
III.1, can be assumed to be of the form .
Let . Clearly,

. We distinguish the following four cases.

Case 1) and , i.e., is not a time
when a discrete transition takes place in either
or . Then, by the definition of execution and a
standard existence and uniqueness argument for
continuous dynamical systems, there exists

such that the prefixes of and are defined over
and are identical. This

contradicts the fact that is maximal.
Case 2) and , i.e., is a time when

a discrete transition takes place inbut not in .
The fact that a discrete transition takes place from

in indicates that there exists such
that and . The fact that
no discrete transition takes place from in

indicates that there exists such that is de-
fined over . A necessary
condition for this is that . This con-
tradicts condition 1 of the lemma.

Case 3) and , symmetric to Case 2).
Case 4) and , i.e., is a time

when a discrete transition takes place in bothand
. The fact that a discrete transition takes place

from in both and indicates that there
exist and such that ,

, , ,
, and . Note

that by condition 2 of the lemma, , hence,
by condition 3, . Therefore, the prefixes of

and are defined over ,
with , and are identical. This
contradicts the fact that is maximal and concludes
the proof of the “if” part.

For the “only if” part, assume that there exists
such that at least one of the condi-

tions of the lemma is violated. Since ,
there exists and a finite execution,

such that
and . If condition 1 is violated,
then there exist and with ,

, and , , such that
and . If condition 2 is violated, there exist

and with , ,
and , such that , . Fi-
nally, if condition 3 is violated, then there exist and
with , , and

, such that , . In all
three cases, let and denote
maximal executions of which and are prefixes, respectively.
Since , it follows that . Therefore,
contains at least two elements and thusis nondeterministic.

Combining Lemmas III.1 and III.2 leads to the following.
Theorem III.1 (Existence and Uniqueness):If a hybrid au-

tomaton satisfies the conditions of Lemma III.1 and Lemma
III.2, then it accepts a unique infinite execution for all

.
It is worth noting that the set is needed in Lemmas

III.1 and III.2 only to make the conditions necessary. If, as in
Theorem III.1, we are only interested to establish whether a
hybrid automaton has infinite executions and whether they are
unique, it suffices to check the conditions of the lemmas over
any set containing , for example, the entire state space

, or any invariant set containing Init.
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Using Lemmas III.1 and III.2, it is easy to show that the
rocking block automaton accepts a unique infinite execution for
all initial states. Notice that the set is equal
to

Left Left Right

Right Right Left

This shows that RB is nonblocking. It also shows that it satisfies
the first condition of Lemma III.2. Since there is only one tran-
sition defined for each discrete state and the reset relation is a
function, the remaining conditions of Lemma III.2 are trivially
satisfied. Therefore, RB is also deterministic.

Even if a hybrid automaton accepts infinite executions for all
initial states, that does not necessarily mean that it accepts exe-
cutions that extend over infinite time horizons. This may be the
case if for some all executions in
are Zeno. For example, using arguments similar to those in [18],
one can show that this is the case for the rocking block system,
whenever (i.e., some energy gets dissipated at im-
pact). In fact, for certain initial states there may not even be an
execution with . In the rocking block system, this is
the case when . Zeno hybrid automata will not be
studied further in this paper. The reader is referred to [33]–[35]
for a discussion of Zeno systems from a computer science per-
spective and [12], [18], and [36]–[39] for a dynamical systems
treatment.

B. Continuous Dependence on Initial Conditions

In general, the behavior of hybrid automata may change dra-
matically even for small changes in initial conditions. This fact
is unavoidable if one wants to allow hybrid automata that are
powerful enough to model realistic systems. However, discon-
tinuous dependence on initial conditions may cause problems,
both theoretical and practical, when one tries to simulate hy-
brid automata [14], [15], [36]. In this paper, we are interested in
continuity with respect to initial conditions primarily as a tool
in the study of -limit sets and their stability. For simplicity, we
restrict our attention to hybrid automata satisfying Assumption
II.2.

Definition III.3 (Continuous Hybrid Automaton):A hybrid
automaton, , satisfying Assumption II.2 is called continuous
if for all finite executions and all
, there exists such that for all with

and for all maximal executions
there exists a finite prefix of

with that satisfies

1)
2) .

Roughly speaking, is continuous if two executions starting
close to one another remain close to one another. Ifis con-
tinuous, one can always choosesuch that finite executions
starting within of one another go through the same initial se-
quence of discrete states. Arguing directly from the definition,
one can show that the rocking block system is continuous.

The following theorem provides conditions under which a
hybrid automaton is guaranteed to be continuous.

Theorem III.2 (Continuity With Initial Conditions):A hybrid
automaton satisfying Assumption II.2 is continuous if

1) is deterministic;
2) for all , is an open subset of

;
3) for all , is a continuous function;
4) there exists a function , differentiable in its

second argument, such that
for all ;

5) for all with , .
Roughly speaking, conditions 4 and 5 are used to show that if

fromsome initial statewecanflow toastate fromwhichadiscrete
transition is possible, then from all neighboring states we can do
thesame.Thisobservationissummarizedinthefollowinglemma.

Lemma III.3: Consider a hybrid automaton, , satisfying
conditions 4 and 5 of Theorem III.2. Let
be a finite execution of defined over a single interval

with and . Then there exists a
neighborhood of in and a differentiable function

, such that for all

1) ;
2) , for all ;
3) , defined by , is

continuous.
Recall that a neighborhood of in is a set of the form

where is a neighborhood of in .
Proof of Lemma III.3: Since , the state

is reached from along continuous evolution. We drop
the superscript on to simplify the notation.

To show 1), recall that, by the definition of an execution,
for all . Since ,

. The function is differen-
tiable in its first argument and continuous in its second argu-
ment in a neighborhood of in . Moreover

(by condition 5 of Theorem III.2 ). By the implicit function the-
orem for nonsmooth functions (see [40, Th. 3.3.6]), there exists
a neighborhood of and a neighborhood of

, such that for each the equation
has a unique solution . Furthermore, this solution is given
by , where is a continuous mapping from to

and . For part 1), we can choose
.

To show 2) assume, for the sake of contradiction, that for all
neighborhoods of in suchthat , there
exists and such that .
Let be a sequence of suchconverging to and define

Take a Taylor expansion of about
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up to . By definition, for
and for some

arbitrarily small. Therefore, (by con-
tinuity of ) and . The fact that

also implies that , other-
wise the uniqueness of the implicit function theorem would be
contradicted.

Consider a subsequence of (also denoted by for sim-
plicity) such that converges to some . By
continuity of

Therefore, and . To-
gether with condition 5 of Theorem III.2 this implies that

. As before, the Taylor expansion of
about implies that

for small enough. Since , this contradicts
the fact that for all .

To show 3), recall that, since is continuous in
both arguments, for all there exists , such
that for all with and all with

, and
. By the continuity of

there exists some such that for all with
, we have . By setting
, it follows that for all with ,

.
To complete the proof of Theorem III.2, conditions 1, 2,

and 3 are used to piece together the intervals of continuous
evolution.

Proof of Theorem III.2:Consider a finite execution
with and an .

We construct a sequence of sets ,
where is a neighborhood of in and is a
neighborhood of in , such that the continuous
evolution in provides a continuous map from to
and the reset provides continuous map from

to . The notation is illustrated in Fig. 4.
Under the conditions of the theorem, the domain can not con-

tain any isolated points. Indeed, assume there exists
and a neighborhood of in such that .
Then, and for all . There-
fore, attains a local maximum at, and
. This, however, implies that , which is a con-

tradiction.
The construction of , is recursive, starting with
. Define . We

distinguish the following three cases.

Case 1) and . By
Lemma III.3, there exists a neighborhood,

, of and a differen-
tiable function, , such that for all

, and
for all .

As in Lemma III.3, define
by . By the continuity

Fig. 4. Illustration of the proof of Theorem III.2 forN = 1 and Case 1).

of , there exists a neighborhood, ,
of such that . Further-
more, all executions with fulfil

.
Case 2) and . Let

for all . Let be
a neighborhood of such that for all
and , .
Such a neighborhood exists, because for all

,
(cf., proof of Lemma III.3). De-

fine a function by
. By continuous

dependence of the solutions of the differen-
tial equation with respect to initial conditions,
there exists a neighborhood of

such that both and
all executions with satisfy

.
Case 3) . Define by ,

and the identity map. Clearly, .
Next, let us define . Let

and notice that . Since
is continuous, there exists a neighborhood
of such that .
By condition 2 of the theorem, is an
open subset of , so there exists a neighborhood

of such that
. Since is deterministic, it

follows that all executions with and
satisfy .

Next, define and using Lemma III.3,
as for Cases 1) and 3). There exists a neighborhood

of such that
. More-

over, all executions with
satisfy and

. If , some
executions close to may take an instantaneous transition from



10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003

to while others may have
to flow for a while before they follow ’s
transition from to . In the former case
and can be defined as in Case 3), while in the latter they
can be defined as in Case 1).

By induction, we can construct a sequence of sets
and continuous functions

and for . For
, define the function recursively

by and .
For , define the function by

Then, and for the execution
with . The functions and

are continuous by construction. By the continuity of, there
exists such that for all with , we
have , or, in other words,

. By the continuity of there exists
such that for all with ,

. Hence, by the continuity of , there
exists such that for all with ,

. Since ,
we have . The proof is completed by
setting .

It should be stressed that the conditions of Theorem III.2 are
not tight. For example, the rocking block automaton RB is con-
tinuous, but does not satisfy conditions 2 and 5 of the theorem
(the only point where the conditions fail is the origin of the con-
tinuous state space).

IV. STABILITY OF EQUILIBRIA AND INVARIANT SETS

A. Extension of Lasalle’s Principle

One of the most useful extensions of Lyapunov’s stability the-
orems for continuous dynamical systems is LaSalle’s invariance
principle [41]. LaSalle’s invariance principle provides condi-
tions for an invariant set to be attracting. Here, we extend this
result to continuous hybrid automata. The theorem builds on
the following proposition, which establishes some properties of

-limit sets for deterministic, continuous hybrid automata.
Lemma IV.1: Let be a deterministic, continuous hybrid au-

tomaton satisfying Assumption II.2. Consider an infinite execu-
tion and assume that there exists such that
for and all , . The -limit set of
is nonempty, compact and invariant. Furthermore, for all
there exists such that for all

and .
Proof: The proof is inspired by the corresponding proof

for continuous dynamical systems (see, for example, [42]). To
show that is not empty, recall that is a metric space. If

is bounded, is contained in a compact subset of that space.
Therefore, it has a limit point, by the Bolzano–Weierstrass prop-
erty [43]. Hence, .

To show that is compact, it suffices to show that is
closed, since is assumed to be bounded. Consider an arbitrary

Fig. 5. Illustration of the proof of Lemma IV.1.

. Then there exists a neighborhoodof and
an , such that for all and all

. Therefore, and, since is arbitrary,
is open.

To show is invariant, consider an arbitrary , see
Fig. 5. We need to show that for all
with we have . If there is
no execution starting at the property is trivially satisfied.
Otherwise, note that since , there exists a sequence

with , , such that as ,
and .

Since is continuous, for every , there exists
such that for every with ,
every maximal execution starting at has a finite prefix

with satisfying
and .

Since as , for this particular
and for all large enough, .

Therefore, for large enough, there exists a finite exe-
cution
with , satisfying and

. By deter-
minism, since passes through , then it must
also pass through . Therefore, for any

there exists a point in within
of . In other words, is an

accumulation point of and therefore .
For the last claim, assume, for the sake of contradic-

tion, that there exists such that for all ,
for some and . Then,

there exists a sequence with and
such that as , and .
This sequence is bounded, therefore, by the Bolzano–Weier-
strass property it has a limit point . Moreover, .
But, by construction of the sequence, , which
is a contradiction.

Theorem IV.1 (Invariance Principle):Consider a non-
blocking, deterministic and continuous hybrid automaton,,
satisfying Assumption II.2. Let be a compact
invariant set and define and .
Assume there exists a continuous function , such that

1) for all , is continuously differentiable with
respect to and ;
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2) for all , , with ,
.

Define and
with

. Let be the largest
invariant subset of . Then, for all the
execution approaches as .

“Approaches” should be interpreted as

Since the class of invariant sets is closed under arbitrary unions,
, the unique largest invariant set contained in , ex-

ists. Note also that under the assumption thatis nonblocking
and deterministic, for all , there exists a unique

, with and contains a single
element (Lemmas III.1 and III.2).

Proof: Consider an arbitrary state and
let . Since is invariant,

for all and . Since is compact
and is continuous, is bounded from below.
Moreover, is a nonincreasing function of
and (recall that is linearly ordered), therefore, the limit

exists.
Since is bounded, is bounded, and therefore the-limit

set is nonempty by Lemma IV.1. Since is closed,
. By definition, for any , there exists

a sequence with , such that
as , and .
Moreover,

, by continuity of . Since
is invariant (Lemma IV.1 ), it follows that if

, and if
and . Therefore, , which implies
that since is invariant and is maximal. By
Lemma IV.1, as , the execution approaches , and
hence .

We demonstrate the application of Theorem IV.1 on the
rocking block system. Assume that the dissipation constant
satisfies . We have already established that is
a nonblocking, deterministic, continuous hybrid automaton,
and that it satisfies Assumption II.2. The argument used in
Section II to show that Init is invariant reveals that the compact
set

Left

Right

is an invariant subset of for any . Recalling

Fig. 6. Set
 for the application of Theorem IV.1 to the rocking block system.

 is the shaded region and
 thick part of its boundary. The dotted arrows
indicate discrete transitions in the execution. The parameters used in the figure
werer = 0:8, � = �=4, � = 0:9, and(q ; x ) = (Left; (�0:1; �0:6)).

our earlier computation of , we see that

Left

Right

Left

Right

These sets are shown in Fig. 6, together with an execution of the
rocking block hybrid automaton starting in.

As a Lyapunov function, we use

which relates to the the energy of the system. As shown in
Section II, for all . Therefore,

fulfils the first requirement of the theorem. To establish
that does not increase along discrete evolution, consider
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and assume that Left (the argument is
similar if Right). Then,
and Right Left Right Left . Therefore,
satisfies the required conditions, and

Left Right

As discussed in Section II, the set is invariant. Moreover, it
is easy to see that executions starting at points
with or will soon reach a point which is in but
outside of . Therefore, the largest invariant set contained
in is . By Theorem IV.1 all trajectories starting
in converge to .

Since can be chosen arbitrarily in , the interior of the
set Init is in a sense thedomain of attractionof the invariant set

.
The conclusion of this example could also have been derived

using the properties of Zeno executions established in [39]. The
advantage of using LaSalle’s principle is that it does not re-
quire one to integrate the differential equations and argue about
their solutions, which is typically needed, for example, to estab-
lish that the system is Zeno. Recall also that, strictly speaking,

is not an equilibrium of the system, therefore most
of the standard Lyapunov arguments for hybrid systems do not
apply in this case.

B. Extension of Lyapunov’s Indirect Method

In this section, we develop a method for determining stability
of equilibria of hybrid automata using linearization. Roughly
speaking, the procedure involves linearising all the relevant ob-
jects (vector fields, guards, and images of resets) in a neighbor-
hood of the equilibrium, and combining the linearizations to get
a number representing the Lipschitz constant of the “going
around the equilibrium once” map. If , the equilibrium is
locally asymptotically stable. The novelty of our method is that
it does not require integration of nonlinear vector fields and can
deal with nonlinearities in the vector fields, the guards and the
resets. Our approach can be viewed as a generalization of the
work of [23] and [24], where systems with piecewise linear dy-
namics were considered. For simplicity, we focus on automata
satisfying Assumption II.2 throughout.

For an equilibrium , let

We develop stability conditions for the case where the states in
are visited cyclically by all executions of starting close

enough to . We first define some special classes of hybrid
automata appropriate for stability analysis.

Definition IV.1 (Piecewise Smooth H.A.):A hybrid au-
tomaton is called piecewise smooth if its domains and
guards are piecewise smooth manifolds with piecewise
smooth boundary. The former must be of dimension, the
latter of dimension . Furthermore, each guard is a
submanifold of a domain, and for each , the union

is a piecewise smooth
submanifold (with piecewise smooth boundary) of a domain.

The degree of smoothness will be fixed to throughout
this section.

Definition IV.2 (Almost Deterministic H.A.):A hybrid au-
tomaton is called almost deterministic if it satisfies

1) conditions 1 and 2 of Lemma III.2;
2) for all , the reset relation is a

family of piecewise smooth homeomorphisms, i.e., there
exists an index set such that

for all , where is a
piecewise smooth homeomorphism.

Recall that a submersion is a smooth map such that at every
point itsderivative isasurjective linearmap.Foraset and

, let be the set of all vectors such that there
existsa smoothcurve with and .
Roughly speaking, is the set of all directions pointing into

. In particular, if is in the interior of , then ,
whereas if is closed and is a smooth point on its boundary,
then is a half space of . One can show that is a
cone in , i.e., and for all
and . In fact, one can show that is the same as the
contingent (tangent) conediscussed in [40], [44].

For any cone , we say that is -dimensional
if it contains a basis for but does not contain a basis for

. Given a linear map and a -dimensional
cone in , the norm of restricted to , is defined by

. If is an eigenvalue
of with largest absolute value andcontains an eigenvector
corresponding to , then , where
is the ordinary operator norm of . This is always the case
when , or when contains a half-space of . How-
ever, in general, computing may not be that simple; it
may require one to solve a convex optimization problem, for
example. If , the case of interest to us, whereis
a piecewise smooth -dimensional submanifold of ,
then there exist affine maps such that

. In this case, can
be computed using the method of Lagrange multipliers as the
maximum of the function , subject to constraints

. With this notation in
place, we are now in a position to state the main result of this
section.

Theorem IV.2 (Indirect Method):Let be an isolated
equilibrium of a nonblocking, piecewise smooth, and almost
deterministic hybrid automaton, , that satisfies Assump-
tion II.2. Assume that the set can be ordered such that

with , for
and . Assume also that there

exists a neighborhood of in such that for each
, the following hold.

a) , where and
.

b) There exists a submersion such
that on and on ,
for some numbers .

c) There exists numbers such that for all
, .

d) There exists such that ,
where .
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Let , and

and define . If , then is a
locally asymptotically stable.

Remarks:

i) Note that, under Assumption IV.1, and are piece-
wise smooth manifolds of dimension .

ii) Condition b says that and are level sets of
the function , which measures the progress trajectories
of the vector field make toward , starting from ;
their “speed” along is between and , as
follows from c). Observe that is not defined at .

iii) Condition d says that the time- map of the linearization
of the flow at maps to . This
means that is reachable from in a bounded amount
of time by the flow of the linearized system.

iv) Note that no vector fields need to be integrated, in con-
trast to certain extensions of Lyapunov’s direct method.
Only the linearised dynamics at the equilibrium point are
considered, see condition d.

v) Let be thereversehybrid automaton to obtained by
reversing the time in . If the dimension of each is
two, is nonblocking and deterministic, and
, then it is not difficult to see that is unstable.

Theorem IV.2 is a direct consequence of the following two
lemmas. Lemma IV.2 provides conditions to ensure that the
states in are visited cyclically, while Lemma IV.3 gives an
estimate of the “contraction” in the continuous state every time
the discrete state traverses the entire cycle.

Lemma IV.2: Let be a globally Lipschitz, smooth vector
field on with flow , and assume is an isolated equilib-
rium for . Let be a neighborhood of . Suppose and
are closed sets which are piecewise smooth -dimensional
submanifolds (with piecewise smooth boundary) of, and as-
sume the following hold.

a) .
b) There exists a submersion and num-

bers such that on and on .
c) There exists numbers such that on ,

.
d) There exists a number such that

, where .
Then, the following are true.

1) There exists a bounded function
such that and , for all

.
2) The function defined by

is Lipschitz continuous. The Lipschitz con-
stant at is .

Proof: Let us first show that for every , the flow
starting at reaches . Since , we have, for

Since is continuous on , , and
is strictly increasing, there exists a unique

Fig. 7. Limit (1) of the proof of Lemma IV.2.

such that
and , for all . This shows that the
forward -orbit of reaches and that is a bounded function
on . Namely

Next, let us show that , as . Observe that,
by d), and are tangent to each other at. Since

and are not necessarily smooth at, by this, we mean
. Therefore

(1)

as , where denotes the arc length of
the indicated segment of the-orbit of (see Fig. 7). Observe
that , so the angle between and
the level surfaces of is bounded away from zero. In particular,
the angle between and , and and is bounded
away from zero. This implies , as

, so since , for we obtain
which tends

to 0 as . Hence

as . This shows that .
It is a consequence of the implicit function theorem thatand
are smooth functions on . Then, using the chain rule to

differentiate with respect to , we obtain

(2)

for all and . Here denotes the deriva-
tive of as a map from to , and is the differential
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(equivalently: the derivative) of the real valued function. Since
is bounded, it follows that the map is

bounded for . To prove that is Lipschitz, it
remains to show that is bounded at ,
with . In fact, we will show that goes to
zero as .

Let be a submersion defined on some neighbor-
hood of such that is constant on and the number

is strictly positive. (Here
is the differential of at .) Such a function exists if we take

sufficiently small so that is smooth. That is strictly
positive means that has no critical points in which follows
from the fact that is a submersion. Observe thatis the min-
imal amount of “stretching” done by. Also, if and

, then , so .
Now, let be arbitrary. Take a smooth curve

such that and . Let
and . Then, by (2) and d), we have

as . Therefore

as .
It still remains to show that is Lipschitz at and that its

Lipschitz constant there equals .
Let be an arbitrary point close to . Recall that

equals the infimum of the lengths of all curves
which connect and . For every such

curve , we get a unique curve in which con-
nects and . Moreover, and .
Furthermore

Taking the infimum over , we get

Since ,
this yields . To prove the re-
verse inequality, let be a unit vector such that

is realized at , i.e., .
Choose a curve in such that , , and

minimizes length in between any two of its points.

Fig. 8. Illustration of Lemma IV.3.

Then, it can be seen without difficulty that

Lemma IV.3: Let be an isolated equilibrium such
that , for . Suppose that
there exists a neighborhood of in such
that for every , every , and every in-
finite execution the sequence,
of discrete states goes cyclically through the ordered set

.
Let ’s and ’s be as in Theorem IV.2. For each, and for

, define ,
and assume that is a bounded above function for allin some
neighborhood of in . Define the map

by . Let ,
and define . If

, then is locally asymptotically stable.
Proof: Fix a , with , and consider .

Since the system in not necessarily deterministic, there may
exist several executions starting at which return to ;
we analyze each one of them separately in the following way.
For each discrete transition, take from the reset relation
any reset map , with . The first-return map for

is

where . Then
and . Therefore, there

exists a ball around in such that for all ,
. This is clearly true for all

and all as above. Therefore, if we follow any
execution starting at , where , each time it returns
to it is by a factor of closer to than it was the
previous time see Fig. 8). Thus, is locally asymptotically
stable.
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Example (Stable Equilibrium in Three Dimensions):Let
be a positive constant and define a hybrid automatonwith

,

where . Assume the resets are the identity
map. Observe that 0 is a sink for and a source for . It
is lengthy but not difficult to check that , where

. Hence, 0 is asymptotically stable for. Notice
that, even though both vector fields are linear in this case, a
linearization argument is still necessary, because the boundaries
of the guards and the domains are given by nonlinear functions
that need to be linearized at 0.

Example (Theorem IV.2 Inconclusive):Again, let
,

where . The resets are again the identity map. The
trajectories of are spirals around the-axis that increase in
radius and converge to the -plane. The trajectories of are
also spirals around the-axis, but they decrease in radius and
diverge from the -plane. It is not difficult to check that, with
notation from Theorem IV.2, , , so

and the theorem is inconclusive.
It is worth noting that if the flows are decoupled into their-

and -components, one can observe a small amount of contrac-
tion around 0 in the flows of both and : the flow of
restricted to contracts in the direction (and expands
in direction) whereas the flow of on contracts
in the direction (and expands in thedirection). Some anal-
ysis shows that if , then the small contraction turns out
to be sufficient to guarantee asymptotic stability of the equilib-
rium 0. The conditions of Theorem IV.2 are too conservative
however to capture this contraction.

V. CONCLUSION

Hybrid automata were studied from a dynamical systems per-
spective. Basic properties of this class of systems, such as well-
posedness and stability, were discussed. The main results were
conditions for existence and uniqueness of executions, conti-
nuity with respect to initial conditions and stability of equilibria
and invariant sets. We conclude the paper with a brief discussion

of some open problems, which are topics for our ongoing work:
Zeno hybrid systems, composition, and multi-domain modeling.

An execution of a hybrid system may exhibit infinitely many
discrete jumps in finite time. This is a truly hybrid phenomenon,
in the sense that it requires the interaction between continuous
and discrete behavior and can not appear in purely continuous
or discrete systems. A systematic investigation of the dynamical
properties of Zeno hybrid systems has started only recently, e.g.,
[12], [18], and [36]–[39]. This work indicates that there are in-
teresting connections between the Zeno problem and chattering
arising in optimal control and in variable structure systems. For
examples, see the extensive literature on the Fuller phenomenon
in optimal control [45], [46].

The results in this paper deal with autonomous systems. The
introduction of control variables and the formalization of com-
position of hybrid automata are crucial extensions. The issue
of composition is particularly important, since hybrid systems
frequently arise in the modeling of complex and heterogeneous
systems. For such systems one would like to be able to model
the different parts of the system independently, compose the in-
dividual models to form larger entities, and deduce properties
of the composite models from properties of the individual com-
ponents. All these steps have to be performed in a consistent,
formal way if one is to guarantee correctness and safety proper-
ties for the overall system.

This process of modeling complex, heterogeneous systems,
is further complicated by the need to employ a number of dif-
ferent modeling languages, each designed to operate within a
different domain. Developing a proper interface between these
modeling languages is important. In this paper, such an interface
was defined in Section II between continuous systems (specified
as ordinary differential equations) and discrete systems (speci-
fied as a finite state machine). Other constellations of practical
interest are under investigation.
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[37] S. Simić, K. H. Johansson, S. Sastry, and J. Lygeros, “Toward
a geometric theory of hybrid systems,” inHybrid Systems:
Computation and Control, B. Krogh and N. Lynch, Eds. New York:
Springer-Verlag, 2000, vol. 1790, Lecture Notes in Computer and
Control, pp. 421–436.

[38] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry, “Dynamical sys-
tems revisited: Hybrid systems with Zeno executions,” inHybrid Sys-
tems: Computation and Control. New York: Springer-Verlag, 2000,
vol. 1790, LNCS, pp. 451–464.

[39] , “Zeno hybrid systems,”Int. J. Robust Nonlinear Control, vol. 11,
pp. 435–451, 2001.

[40] F. H. Clarke, Y. L. Ledyaev, R. J. Stern, and P. R. Wolenski,Nonsmooth
Analysis and Control Theory. New York: Springer-Verlag, 1998.

[41] J. P. LaSalle, “Stability theory for ordinary differential equations,”J.
Diff. Equat., vol. 4, pp. 57–65, 1968.

[42] S. Sastry,Nonlinear Systems: Analysis, Stability, and Control. New
York: Springer-Verlag, 1999.

[43] J. R. Munkres,Topology: A First Course. Upper Saddle River, NJ:
Prentice-Hall, 1975.

[44] J.-P. Aubin,Viability Theory. Boston, MA: Birkhäuser, 1991.
[45] A. T. Fuller, “Relay control systems optimized for various performance

criteria,” presented at the First World Congr. IFAC, Moscow, Russia,
1960.

[46] M. I. Zelikin and V. F. Borisov,Theory of Chattering Control. New
York: Springer-Verlag, 1994.

John Lygeros received the B.Eng. degree in elec-
trical and electronic engineering and the M.Sc. de-
gree in control and systems, both from Imperial Col-
lege of Science Technology and Medicine, London,
U.K., and the Ph.D. degree from the Electrical Engi-
neering and Computer Sciences Department, the Uni-
versity of California, Berkeley, in 1990, 1991, and
1996, respectively.

Between June 1996 and December 1999, he
held postdoctoral research appointments with the
Electrical Engineering and Computer Sciences De-

partment, University of California, Berkeley, and the Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge. In parallel, he also
held a part-time Research Engineer position at SRI International, Menlo Park,
CA, and a Visiting Professor position at the Mathematics Department of the
Université de Bretagne Occidentale, Brest, France. He is currently a University
Lecturer at the Department of Engineering, University of Cambridge, U.K., and
a Fellow of Churchill College, U.K. His research interests include hierarchical,
hybrid, and nonlinear control theory, and their applications to large scale
systems such as highway systems, air traffic management, and power networks.

Karl Henrik Johansson received the M.S. and
Ph.D. degrees in electrical engineering, both from
Lund University, Lund, Sweden, in 1992 and 1997,
respectively.

He held positions as Assistant Professor at Lund
University (1997–1998) and as Visiting Research
Fellow at the University of California, Berkeley
(1998–2000). Currently, he is an Associate Professor
in the Department of Signals, Sensors, and Systems
at the Royal Institute of Technology, Stockholm,
Sweden. His research interests are in hybrid and

switched systems, distributed embedded control, and performance limitations
in feedback systems.

Dr. Johansson received the Young Author Prize of the IFAC World Congress
in 1996, the Peccei Award from IIASA, Austria, in 1993, and a Young Re-
searcher Award from Scania, Sweden, in 1996.



LYGEROSet al.: DYNAMICAL PROPERTIES OF HYBRID AUTOMATA 17
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