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Abstract: Let M and V denote the sets of finite-dimensional matrices and finite-dimensional column vectors,
respectively. Based on the semitensor product and the vector addition, M and V both form a monoid, where V
is commutative. In addition, based on an equivalence relation ↔ on V, the induced quotient space V/↔ forms a
vector space. In this paper, we give a basis for the vector space V/↔, showing that V/↔ is of countably infinite
dimension. In addition, we give an explicit characterization for how the dimension of a vector in V changes caused
by the repetitive actions of a matrix in M on the vector, and characterize the generalized inverse behavior of the
repetitive actions.
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1 Introduction and preliminaries
The phenomenon of dimension variation can be found

almost everywhere in the nature, e.g., the entrance or
departure of a bird in a group of birds, the birth or
death of a cell in an organ. This phenomenon can al-
so be found in manufacturing processes, e.g., entering
of parts or leaving of an entire product in a produc-
tion line. Due to the semitensor product for all finite-
dimensional matrices [5] and the vector addition for all
finite-dimensional vectors [3], such a phenomenon can
be formulated as so-called cross-dimensional dynami-
cal systems. In this paper, motivated by the new con-
struction in [3], we characterize the basis for a so-called
cross-dimensional vector space and the long-term be-
havior of a cross-dimensional dynamical system in the
framework of the semitensor product and the vector ad-
dition. Necessary notations are shown as below. Note
that throughout this paper, all results hold when ex-
tending R to an arbitrary field.

• Rn: the n-dimensional real column vector space
• V: ∪∞

n=1R
n

• Rm×n: the space of m× n real matrices
• M: ∪∞

m,n=1R
m×n

• N: the set of natural numbers
• Z+: the set of positive integers
• ∅: the empty set
• 1k: the k-length column vector with all entries 1
• 0k: the k-length column vector with all entries 0
• 0m×n: the m × n matrix with all entries be 0 (or
briefly as 0 when dimension is known.)

• In: the n× n identity matrix
• rank(A): the rank of matrix A
• ker(A): the kernel of matrix A

This work was supported by Knut and Alice Wallenberg
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• im(A): the image of matrix A
• dim(V ): the dimension of a vector space V
• AD: the Drazin inverse of a square matrix A
• lcm(p, q): the least common multiple of positive
integers p and q

• gcd(p, q): the greatest common divisor of positive
integers p and q

• p | q: integer p divides integer q
• p � q: integer p does not divide integer q
In order to obtain the main results, we will use the

well known associative law and the homogeneity of the
least common multiple:

Proposition 1.1 Let a, b, c be positive integers. Then
1) lcm(a, lcm(b, c)) = lcm(lcm(a, b), c) (associative

law);
2) a lcm(b, c) = lcm(ab, ac) (homogeneity).

Let us recall the semitensor product of matrices,
which was originally proposed by Daizhan Cheng about
twenty years ago [2].

Definition 1.2 [[5]] Let A ∈ Rm×n and B ∈ Rp×q.
The semitensor product of A and B, denoted by A�B,
is defined as A � B = (A ⊗ Il/n)(B ⊗ Il/p), where ⊗
means the Kronecker product, l = lcm(n, p).

It is known that � preserves the associative law, and
is an extension of the conventional matrix product [5].
Hence we can use some notations of the conventional
matrix product without any confusion, e.g., for a matrix
A ∈M, we can use An to denote �ni=1A.
The index [1] of a matrix A ∈ Rn×n is the least nat-

ural number i such that rank(Ai) = rank(Ai+1), i.e.,
min{i ∈ N| rank(Ai) = rank(Ai+1)} =: ind(A).
For a matrix A ∈ Rn×n, the matrix X ∈ Rn×n is

called the Drazin inverse [1] of A, denoted by X =: AD,
if Aind(A)+1X = Aind(A), AX = XA, and XAX = X.
For each matrix A ∈ Rn×n, A has a unique Drazin
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inverse, and satisfies that im(A0) � im(A1) � · · · �
im(Aind(A)) = im(Ai) for all integers i > ind(A) [1].
The vector addition of vectors in Rp can be extended

to the following “vector addition” of vectors in V.
Definition 1.3 ([3]) Let x ∈ Rp, y ∈ Rq, and r =
lcm(p, q). The vector addition of x and y, denoted by
x�

±

y, is defined as

x�

±

y = x⊗ 1r/p + y ⊗ 1r/q. (1)

Similarly, the vector subtraction of x and y, denoted by
x��y, is defined as

x��y = x⊗ 1r/p − y ⊗ 1r/q. (2)

It is not difficult to see that �± preservers the commu-
tative law and the associative law.

Proposition 1.4 Let x ∈ Rp, y ∈ Rq, and z ∈ Rr.
Then
1) x�± y = y�± x (the communicative law);
2) (x�± y)�± z = x�± (y�± z) (the associative law).
Proof The communicative law holds naturally, we
only verify the associative law. Let lcm(p, q) = u,
lcm(u, r) = v, lcm(q, r) = w, and lcm(p, w) = s. Then

(x�± y)�± z
=(x⊗ 1u/p + y ⊗ 1u/q)�

±

z

=(x⊗ 1u/p ⊗ 1v/u + y ⊗ 1u/q ⊗ 1v/u) + z ⊗ 1v/r
=x⊗ 1v/p + y ⊗ 1v/q + z ⊗ 1v/r,
x�

± (y�± z)
=x�± (y ⊗ 1w/q + z ⊗ 1w/r)
=x⊗ 1s/p + (y ⊗ 1w/q ⊗ 1s/w + z ⊗ 1w/r ⊗ 1s/w)
=x⊗ 1s/p + y ⊗ 1s/q + z ⊗ 1s/r.

By Proposition 1.1 we have v = lcm(u, r) =
lcm(lcm(p, q), r) = lcm(p, lcm(q, r)) = lcm(p, w) = s.
Hence the associative law holds.

It it is natural to ask whether (V, �± , ·) forms a vector
space, where · : R × V → V is the conventional scalar
multiplication of a real number and a real vector. To
this end, we should first find a zero element. Note that
in V, only the real number 0 satisfies that 0�± x = x�± 0 =
x for any x ∈ V. Hence only 0 can be the potential zero
element. However, it is easy to see that (V, �± ) is not an
Abelian group when 0 is regarded as the zero element,
since only real numbers have inverse elements. As a
result, (V, �± , ·) is not a vector space. Despite of this,
(V, �± ) forms a commutative monoid with 0 the identity
element.

2 Long-term behavior of the action ofM on
V

In this section, we characterize the long-term behav-
ior of the repetitive actions of a matrix M in M on a
vector x in V. One main result is that in such a trajec-
tory, the dimensions of vectors will be either eventual-
ly constant or eventually strictly increasing, where for

the former case, the matrix is called dimension-bounded
[3]. Actually, compared to these results, coarser results
have been given in [3, 4]. In this paper, we will use d-
ifferent methods to give more refined characterization.
In addition, for a dimension-bounded matrix inM, we
characterize the limit set of the system generated by its
repetitive actions on a vector in V, and also the gener-
alized inverse system of the system.
Next we show our results, where necessary known re-

sults are also introduced. A vector product of a matrix
A inM and a vector x in V is defined as follows.
Definition 2.1 [[3]] Let A ∈ Rm×n and x ∈ Rt. The
vector product of A and x, denoted by A��x, is defined
as

A��x = (A⊗ Il/n)(x⊗ 1l/t), (3)

where l = lcm(n, t).

Note that based on the vector product ��, a matrix A
can be regarded as an operator on V.
Next we characterize the composition of two matrices

as operators on V. By the following Proposition 2.2,
one sees that the composition of two operators A and
B on V is exactly their semitensor product. That is, the
semitensor product of matrices and the action ofM on
V are consistent.
Proposition 2.2 [[3]] Let A,B ∈M and x ∈ V. Then

A��(B��x) = (A�B)��x. (4)

Here we use the associative law and homogeneity of
the least common multiple to give a more concise proof
than the one in [3].
Proof [of Propostion 2.2] Assume A ∈ Rm×n, B ∈

Rp×q, and x ∈ Rt. Then we have

(A�B)��x
=((A⊗ Ir/n)(B ⊗ Ir/p))��x
=(((A⊗ Ir/n)(B ⊗ Ir/p))⊗ Isp/qr)(x⊗ 1s/t),
=(A⊗ Ir/n ⊗ Isp/qr)(B ⊗ Ir/p ⊗ Isp/qr)(x⊗ 1s/t)
=(A⊗ Isp/qn)(B ⊗ Is/q)(x⊗ 1s/t),

(5)

A��(B��x)
=A��((B ⊗ Iu/q)(x⊗ 1u/t)),
=(A⊗ Iv/n)(((B ⊗ Iu/q)(x⊗ 1u/t))⊗ 1vq/pu)
=(A⊗ Iv/n)(B ⊗ Iu/q ⊗ Ivq/pu)(x⊗ 1u/t ⊗ 1vq/pu)
=(A⊗ Iv/n)(B ⊗ Iv/p)(x⊗ 1vq/pt),

(6)
where r = lcm(n, p), s = lcm(qr/p, t), u = lcm(q, t),
v = lcm(n, pu/q).
By Proposition 1.1, we have

sp = lcm(qr/p, t)p = lcm(qr, tp)
= lcm(q lcm(n, p), tp) = lcm(lcm(nq, pq), tp),

vq = lcm(n, pu/q)q = lcm(nq, pu)
= lcm(nq, p lcm(q, t)) = lcm(nq, lcm(pq, tp))
= lcm(lcm(nq, pq), tp) = sp.
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Then we have sp/qn = v/n, s/q = v/p, and s/t =
vq/tp. By (5) and (6), (4) holds.

By Proposition 2.2, we obtain a dynamical system

x(τ + 1) = A��x(τ), (7)

where A ∈ Rm×n, τ = 0, 1, . . . , x(τ) ∈ V. Note that
here we cannot call (7) a linear dynamical system, as V
is not a vector space.
Now we can consider the long-term action of a matrix

on V, e.g., system (7). Note that the action of a matrix
on a vector may change the dimension of the vector,
next we characterize when the action of a matrix does
not change the dimension. Here we use dimension to
represent the following result. Actually this result has
been given in [3], we give a different proof.

Theorem 2.3 [[3]] Let A be in Rm×n and t in Z+.
Then

A��Rt := {A��x|x ∈ Rt} ⊂ Rt

if and only if

m | n, m | t, and gcd(n/m, t/m) = 1.
Proof Denote lcm(n, t) = r. Then for each x ∈ Rt,

A��x ∈ Rmr/n.
“if”:
By assumption we can denote n = mk1 and t =

mk2, where k1, k2 ∈ Z+. Then gcd(n/m, t/m) =
gcd(k1, k2) = 1, r = lcm(n, t) = lcm(mk1,mk2) =
m lcm(k1, k2) = mk1k2, mr/n = mmk1k2/n =
mmk1k2/mk1 = mk2 = t.
“only if”:
By assumption we have mr/n = t. Denote r =

nl1 = tl2, where l1, l2 ∈ Z+. Then nt = mr =
mnl1 = mtl2, t = ml1, n = ml2, m | t, m | n,
r = lcm(t, n) = lcm(ml1,ml2) = m lcm(l1, l2) =
nl1 = ml2l1, lcm(l1, l2) = l1l2, hence gcd(l1, l2) =
gcd(t/m, n/m) = 1.

The following result directly follows from Theorem
2.3.

Corollary 2.4 [[3]] Let A be in Rm×n and t in Z+. If
A��Rt ⊂ Rt then A has the representation AL = (A ⊗
Ir/n)(It ⊗ 1r/t), where r = lcm(n, t). That is, A��x =
ALx for each x ∈ Rt. (Note that AL ∈ Rt×t.)
More generally, we next characterize when the action

of a matrix eventually does not change the dimension
of vectors.

Definition 2.5 [[3]] Let A ∈ Rm×n and t ∈ Z+. A
is called dimension-bounded with respect to t if there
exist i0, t′ ∈ Z+ both depending on t such that for each
x0 ∈ Rt, Ai��x0 ∈ Rt′ for all integers i ≥ i0.
Although the next result has been given in [3], here

we give a different proof which yields a more refined
result, i.e., Theorem 2.7, as our first main result.

Theorem 2.6 [[3]] Let A ∈ Rm×n and t ∈ Z+. Matrix
A is dimension-bounded with respect to t if and only if
m | n.

Proof Arbitrarily chosen x0 ∈ Rt, we have
A��x0 ∈ Rm lcm(n,t)/n,

where m lcm(n, t)/n =: f1;

A2��x0 = A��(A��x0) ∈ Rm lcm(n,f1)/n,

where

m lcm(n, f1)/n
=m lcm(n,m lcm(n, t)/n)/n
= lcm(mn2,m2 lcm(n, t))/n2

= lcm(mn2, lcm(m2n,m2t))/n2 =: f2;

by induction we can obtain that Ai��x0 ∈ Rfi for each
i ∈ Z+, where

fi = lcm(lcmik=1mkni+1−k,mit)/ni. (8)

“if”:
By m | n we next prove that

lcm(mnr+1,mrnt) = lcm(mnr+1,mr+1t) (9)

for all sufficiently large integers r.
Denote n = mk, where k ∈ Z+. We have

lcm(mnr+1,mrnt) = mr+1 lcm(mkr+1, kt),
lcm(mnr+1,mr+1t) = mr+1 lcm(mkr+1, t).

If k = 1 or all prime factors of t are also factors of k,
then (9) obviously holds for all sufficiently large r. Next
we assume that k > 1 and t has a prime factor that is
not a factor of k. Based on this assumption, we have

k =kα1
1 · · · kαp

p ,

t =kγ1
1 · · · kγpp tδ1

1 · · · tδqq ,
mkr+1 =kα1(r+1)+ε1

1 · · · kαp(r+1)+εp
p tμ1

1 · · · tμqq mν1
1 · · ·mνss ,

where k1, . . . , kp, t1, . . . , tq,m1, . . . ,ms are pairwise dif-
ferent prime numbers; α1, . . . , αp ∈ Z+; γ1, . . . , γp ∈
N; δ1, . . . , δq ∈ Z+; ε1, .., εp ∈ N; μ1, . . . , μq ∈ N;
ν1, . . . , νs ∈ N.
When r is sufficiently large, we have

lcm(mkr+1, kt)

=kα1(r+1)+ε1
1 · · · kαp(r+1)+εp

p t
max{δ1,μ1}
1 · · ·

tmax{δq,μq}q mν1
1 · · ·mνss

= lcm(mkr+1, t).

Hence (9) holds for all sufficiently large r.
By m | n we have

fi = lcm(mni,mit)/ni (10)

for each i ∈ Z+. Then by the above analysis, for suffi-
ciently large r, we have

fr = lcm(mnr,mrt)/nr = lcm(mnr+1,mrnt)/nr+1

= lcm(mnr+1,mr+1t)/nr+1 = fr+1,

160



which completes the “if” part.
Actually, from the above analysis, we also have if

m | n, then for each s ∈ Z+, the corresponding fi
satisfies fr = fr+1 for all sufficiently large integers r.
We also have that for all sufficiently large r ∈ Z+,
fr+1/m = tmax{μ1,δ1}−μ1

1 · · · tmax{μq,δq}−μqq , hence m |
fr+1 and gcd(n/m, fr+1/m) = 1, which is consistent
with Theorem 2.3.
“only if”:
By assumption we have fr = fr+1 for all sufficiently

large integer r. Denote

Ar := lcm(lcmrk=1mknr+1−k,mrt),

then fr+1 = m lcm(nr+1, Ar)/nr+1. By fr = fr+1, we
have nAr = m lcm(nr+1, Ar), hence m | n, which com-
pletes the proof.

From the above analysis, we see for each t ∈ Z+,
fr = fr+1 for some r implies m | n. In addition, we can
prove one more result as below, i.e., for each t ∈ Z+,
fr = fr+1 for some r implies fr = fs for all s ≥ r.
To this end, we only need to prove fr = fr+1 implies
fr+1 = fr+2 for any r.
Next we fix t and r. By fr = fr+1 we have m | n.

Then fl = lcm(mnl,mlt)/nl for any l ∈ Z+. Using
mk = n, we have fl = lcm(mkl, t)/kl for any l. Then
fr = fr+1 implies lcm(mkr+1, kt) = lcm(mkr+1, t).
We then have lcm(mkr+2, lcm(mkr+1, kt)) =
lcm(mkr+2, lcm(mkr+1, t)), i.e., lcm(mkr+2, kt) =
lcm(mkr+2, t), then fr+1 = lcm(mkr+2, kt)/kr+2 =
lcm(mkr+2, t)/kr+2 = fr+2.
Besides, by m | n we have fl = lcm(mkl, t)/kl for any

l ∈ Z+, then

lcm(fl, fl+1)
= lcm(lcm(mkl, t)/kl, lcm(mkl+1, t)/kl+1)
= lcm(lcm(mkl+1, kt)/kl+1, lcm(mkl+1, t)/kl+1)
= lcm(lcm(mkl+1, kt), lcm(mkl+1, t))/kl+1

= lcm(mkl+1, kt)/kl+1

= lcm(mkl, t)/kl

=fl.

Hence fl+1 | fl for each l ∈ Z+.
Based the above analysis and Theorem 2.6, we obtain

our first main result.

Theorem 2.7 Let A ∈ Rm×n and t ∈ Z+. Let fi be as
in (8).
1) If matrix A is dimension-bounded with respect to

some u ∈ Z+, then it is dimension-bounded with
respect to any v ∈ Z+.

2) If m | n then function fi is strictly decreasing on
{1, . . . , i0} for some i0 ∈ Z+ depending on t, con-
stant on {i0, i0 + 1, . . . }, and satisfies fl+1 | fl for
any l ∈ Z+.

By Theorem 2.7, Definition 2.5 can be equivalently
rewritten as follows.

Definition 2.8 Let A ∈ Rm×n. A is called dimension-
bounded if for each t ∈ Z+, there exist i0, t′ ∈ Z+ both
depending on t such that for each x0 ∈ Rt, Ai��x0 ∈ Rt′
for all integers i ≥ i0. Here the minimal such i0 is
called the index of m,n, t, and denoted by ind(m,n, t).

Then similar to Theorem 2.6, we have the following
result.

Theorem 2.9 [[3]] Let A ∈ Rm×n. Matrix A is
dimension-bounded if and only if m | n.
Remark 2.1 One sees that whether a matrix is
dimension-bounded only depends on its dimension, but
does not depend its entries.

Next we characterize the matrices that are not
dimension-bounded.

Corollary 2.10 Let A ∈ Rm×n be such that m � n.
1) For each t ∈ Z+, the corresponding function fi as

in (8) satisfies that fr 
= fr+1 for all r ∈ Z+.
2) If n | m and m 
= n then for each t ∈ Z+, the

corresponding fi is strictly increasing and satisfies
mfl = nfl+1 for any l ∈ Z+.

Proof 1) This conclusion directly follows from The-
orems 2.7 and 2.9.
2) By n | m we have fi = ki lcm(n, t), where k =

m/n. The conclusion follows.

Furthermore, we give a complete characterization for
the matrices that are not dimension-bounded, i.e., The-
orem 2.11, as our second main result. Specifically, the
next result shows that for each matrix A ∈ M that
is not dimension-bounded and each positive integer t,
the corresponding function fi as in (8) is injective and
eventually strictly increasing. In [4], it was shown that
limi→∞ fi =∞. Hence our result is more refined.
Theorem 2.11 Let A ∈ Rm×n and t ∈ Z+. Let fi be
as in (8). Assume that M is not dimension-bounded,
i.e., m � n.
1) Function fi is injective.
2) Function fi is strictly increasing on {i0, i0+1, . . . }

for some i0 ∈ Z+ depending on m,n, t; and
fr+1/fr = m/ gcd(m,n) for all integers r ≥ i0.
(Here we also call the minimal such i0 the index of
m,n, t.)

Proof If n | m then 2) of Corollary 2.10 implies 1)
and 2) of this theorem. Next we assume that n � m. We
have

m =sα1
1 · · · sαp

p m
β1
1 · · ·mβqq ,

n =sα1
1 · · · sαp

p n
γ1
1 · · ·nγuu ,

t =sδ1
1 · · · sδpp mε11 · · ·mεqq nμ1

1 · · ·nμuu tν1
1 · · · tνvv ,

where s1, . . . , sp,m1, . . . ,mq, n1, . . . , nu, t1, . . . , tv are
pairwise different prime numbers; α1, . . . , αp ∈ N;
β1, . . . , βq ∈ Z+; γ1, . . . , γu ∈ Z+; δ1, . . . , δp ∈ N;
ε1, . . . , εq ∈ N; μ1, . . . , μu ∈ N; ν1, . . . , νv ∈ N;
sα1
1 · · · sαp

p = lcm(m,n).
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By a direct computation, we have

fi =smax{α1,δ1}
1 · · · smax{αp,δp}

p miβ1+ε1
1 · · ·miβq+εqq

n
max{iγ1,μ1}−iγ1
1 · · ·nmax{iγu,μu}−iγuu

tν1
1 . . . t

νv
v .

Then for all positive integers j, k, fj = fj+k implies
that jβ1 + ε1 = (j + k)β1 + ε1, . . . , jβq + εq = (j +
k)βq + εq, hence β1 = · · · = βq = 0, i.e., m | n, which is
a contradiction. That is, 1) holds.
On the other hand, for each sufficiently large r ∈ Z+,

we have

fr+1/fr =mβ1
1 · · ·mβqq

n
max{(r+1)γ1,μ1}−max{rγ1,μ1}−γ1
1 · · ·
nmax{(r+1)γu,μu}−max{rγu,μu}−γuu

=mβ1
1 · · ·mβqq = m/ gcd(m,n),

i.e., 2) holds, which completes the proof.

Remark 2.2 It is easy to obtain that for m = 2, n = 3,
t = 9, the corresponding fi satisfies that f1 = 6, fi = 2i,
where 1 < i ∈ Z+. That is, when m � n, fi is not alway
strictly increasing.

We next characterize the long-term behavior of sys-
tem (7) as our third main result.

Definition 2.12 A system (7) is called dimension-
bounded if m | n. Consider a dimension-bounded sys-
tem (7) and a positive integer t, denote the index of
m,n, t by i0 = ind(m,n, t) and the representation of A
by AL = (A ⊗ Ir/n)(Ifi0

⊗ 1r/fi0
) ∈ Rfi0×fi0 , where

fi0 is as in (10), r = lcm(n, fi0). The limit set of a
dimension-bounded system (7) with respect to t is de-
fined as ΩA := ∩∞

s=i0A
s��Rt. The generalized inverse

system of a dimension-bounded system with respect to t
is defined as the system

x(τ + 1) = (AL)D��x(τ), (11)

where τ = 0, 1, . . . , x(τ) ∈ V.
For a matrix A ∈ Rm×n satisfying m | n, i.e., A is

dimension-bounded, and a positive integer t, denote the
index of m,n, t by i0, we have Ai0 ∈ Rm×(ni0/mi0−1).
Hence

Ai0 ��Rt = (Ai0 ⊗ Ifi0/m
)(It ⊗ 1(ni0fi0 )/(mi0 t))Rt,

=: AL0R
t, (12)

which is a subspace of Rfi0 , where fi0 is as in (10),
AL0 ∈ Rfi0×t. Hence ΩA = ∩∞

i=0(AL)iAL0R
t, where

AL ∈ Rfi0×fi0 is as in Definition 2.12. Based on
these analysis, the long-term behavior of the dimension-
bounded matrix A on Rt is as shown in (13).
By Theorem 2.11, for a matrix A ∈ Rm×n satisfying

m � n, i.e, A is not dimension-bounded, and a pos-
itive integer t, denote the index of m,n, t by i0, we
have that function fi as in (8) is injective and satis-
fies fi0 < fi0+1 < · · · . The long-term behavior of the

non-dimension-bounded matrix A on Rt is as shown in
(14).
Since for each i ∈ N, (AL)iAL0R

t is a sub-
space of Rfi0 , ∩ik=0(AL)k(AL0R

t) =: Ai is also
a subspace of Rfi0 , and Ai+1 ⊂ Ai, we have
ΩA = ∩∞

k=0Ak = Al = Al+l′ for some l ∈ Z+
and all l′ ∈ Z+. On the other hand, we have
ΩA = ∩∞

i=0(AL)iAL0R
t = ∩∞

i=0(AL)i im(AL0) ⊂
∩∞
i=0(AL)iRfi0 = im((AL)ind(AL)). That is, the follow-
ing theorem holds.

Theorem 2.13 For a dimension-bounded system (7)
with respect to t ∈ Z+, its limit set ΩA is a sub-
space of Rfi0 , satisfies ΩA ⊂ im((AL)ind(AL)), where
i0 = ind(m,n, t), fi0 is as in (10), AL is as in Defini-
tion 2.12.

Remark 2.3 For a dimension-bounded system (7) with
m = n with respect to m (i.e., a standard discrete-time
linear dynamical system), it is obvious that its limit set
ΩA equals im(Aind(A)). Particularly if A is invertible,
then the generalized inverse system is

x(τ + 1) = A−1x(τ), (15)

where τ = 0, 1, . . . .

Next we give an algorithm to compute its generalized
inverse system. The following proposition which can be
seen as an extension of [7, Theorem 4.1] over the real
field R, is the basis for the designed algorithm. Note
that the proof for Proposition 2.14 does not hold for a
right Ore domain studied in [7].

Proposition 2.14 Consider a matrix A ∈ Rn×n.
Then

AD = Aind(A)X ind(A)+1, (16)

where X ∈ Rn×n satisfies that Aind(A)+1X = Aind(A)
(Note that such X always exists).

Proof By induction on the dimension, it can be proved
that for a matrix A ∈ Rn×n, there exist invertible ma-
trices P ∈ Rn×n and C ∈ Rr×r and nilpotent matrix
N ∈ R(n−r)×(n−r) such that

A = P
[
C ⊕N]

P−1. (17)

Then we have N ind(A) = 0. If we choose X =
P [X Y

Z W ]P−1 ∈ Rn×n satisfying Aind(A)+1X = Aind(A),
where X ∈ Rr×r, then X = C−1, Y = 0, and
Aind(A)X ind(A)+1 = P

[
C−1 ⊕ 0

]
P−1 = AD.

Algorithm 2.15 1) Input a matrix A ∈ Rn×n, find
ind(A) (e.g., by definition).

2) Find a solution to linear equation Aind(A)+1X =
Aind(A) (e.g., by using the Gaussian elimination).

3) Compute the Drazin inverse of A: AD =
Aind(A)X ind(A)+1.

3 Action of M/∼ on V/↔
Previously we showed that (V, �± , ·) does not form a

vector space. However, the quotient space of V under
an equivalence relation ↔ forms a vector space [3].
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Rt
Ai0−−→ AL0R

t A−→ ALAL0R
t A−→ (AL)2AL0R

t A−→ · · ·
∩ ∩ ∩
Rfi0 Rfi0 Rfi0

(13)

Rt
A−→ A��Rt

A−→ · · · A−→ Ai0 ��Rt
A−→ Ai0+1��Rt

A−→ · · ·
∩ ∩ ∩
Rf1 Rfi0 Rfi0+1

(14)

Definition 3.1 [[3]] For all x, y ∈ V,
x↔ y if and only if x⊗ 1s = y ⊗ 1t (18)

for some s, t ∈ Z+.
Proposition 3.2 ([3]) 1) For all x, y ∈ V, if x ↔ y

then x = z⊗1s and y = z⊗1t for some z ∈ V and
s, t ∈ Z+.

2) For all x ∈ V, in the equivalence class [x] := {y ∈
V|y ↔ x}, there exists a unique vector x0 ∈ V
(called the irreducible element) such that for any
y↔x, y = x0 ⊗ 1k for some k ∈ Z+. Hence [x] =
{x0 ⊗ 1k|k ∈ Z+}.

3) For all x, x′, y, y′ ∈ V, if x ↔ x′ and y ↔ y′ then
x�

±

y ↔ x′�

±

y′ and x��y ↔ x′��y′.
By 3) of Proposition 3.2 the vector addition and vec-

tor subtraction of equivalence classes can be defined as
follows.

Definition 3.3 The vector addition and vector sub-
traction of equivalence classes induced by the equiva-
lence relation ↔ as in Definition 3.1 are defined as fol-
low: For all x, y ∈ V,

[x]�± [y] := [x�± y], [x]��[y] := [x��y]. (19)

It is not difficult to verify that (V/↔, �± , ·) (V/↔ for
short) forms a vector space, where V/↔ := {[x]|x ∈ V}
is the quotient space induced by ↔; scalar multiplica-
tion · : R×V/↔ → V/↔ is as α[x] := [αx] for all α ∈ R
and x ∈ V; [0] is the zero element; for each [x] ∈ V/↔,
its inverse element is [−x].
Now we give a basis for space V/↔, which shows that

V/↔ is of countably infinite dimension. Actually, this
basis is similar to the one for a matrix quotient space
based on the semitensor product and semitensor addi-
tion of matrices given in [6].

Theorem 3.4 Consider vector space V/↔. The set
BV := {[eji ]|i, j ∈ Z+, i ≥ j, gcd(i, j) = 1} (20)

is a basis of the space, where eji is the j-th column of Ii.

Proof To prove this result, we only need to verify
that 1) each [eji ] is generated by BV and 2) every finite
elements of BV is linearly independent, where i, j ∈ Z+,
i ≥ j.
We first verify 1). Given [emn ], if gcd(m,n) = 1 then

[emn ] ∈ BV . Next we assume gcd(m,n) = k > 1. We
have em/kn/k ⊗ 1k − emn =

∑k−1
i=0 e

m−i
n and [em/kn/k ] ∈ BV .

For each 0 ≤ i ≤ k − 1, if gcd(m − i, n) = 1 then

[em−i
n ] ∈ BV ; else, we do the same decomposition for
em−i
n as for emn . Repeat this step again and again, we
obtain that [emn ] is a linear combination of finitely many
elements of BV . Hence V/↔ is generated by BV .
Second we verify 2). Actually, we only need to verify

for each k ∈ Z+, the vectors [eji ], i, j ∈ {1, . . . , k}, i ≥
j, gcd(i, j) = 1 are linearly independent. Denoting
l := lcm(1, . . . , k), we obtain vectors eji ⊗ 1l/i ∈ Rl,
i, j ∈ {1, . . . , k}, i ≥ j, gcd(i, j) = 1, where for each
eji , the jl/i-th entry equals 1, and any t-th entry
with t > jl/i equals 0. Note that jl/i, where i, j ∈
{1, . . . , k}, i ≥ j, gcd(i, j) = 1, are pairwise different,
hence these vectors are linearly independent, and the
vectors [eji ], i, j ∈ {1, . . . , k}, i ≥ j, gcd(i, j) = 1 are also
linearly independent, which completes the proof.

4 Conclusion
In this paper, we characterized a so-called cross-

dimensional vector space and the long-term behavior
of cross-dimensional dynamical systems. Specifically,
we give a basis for the cross-dimensional vector space,
showing that the space is of countably infinite dimen-
sion. In addition, we characterized the long-term behav-
ior of repetitive actions of a matrix on a vector. Further
results will be followed along this line.
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