Long-term behavior of cross-dimensional linear dynamical systems

Kuize Zhang ${ }^{1,2}$ Karl Henrik Johansson ${ }^{1}$
1. ACCESS Linnaeus Center, School of Electrical Engineering
KTH Royal Institute of Technology, 10044 Stockholm, Sweden
E-mail: \{kuzhan,kallej\}@kth.se
2. College of Automation
Harbin Engineering University, 150001 Harbin, PR China
E-mail: zkz0017@163.com

Abstract

Let \mathcal{M} and \mathcal{V} denote the sets of finite-dimensional matrices and finite-dimensional column vectors, respectively. Based on the semitensor product and the vector addition, \mathcal{M} and \mathcal{V} both form a monoid, where \mathcal{V} is commutative. In addition, based on an equivalence relation \leftrightarrow on \mathcal{V}, the induced quotient space $\mathcal{V} / \leftrightarrow$ forms a vector space. In this paper, we give a basis for the vector space $\mathcal{V} / \leftrightarrow$, showing that $\mathcal{V} / \leftrightarrow$ is of countably infinite dimension. In addition, we give an explicit characterization for how the dimension of a vector in \mathcal{V} changes caused by the repetitive actions of a matrix in \mathcal{M} on the vector, and characterize the generalized inverse behavior of the repetitive actions.

Key Words: Long-term behavior, cross-dimensional vector space, cross-dimensional linear dynamical system, dimension-boundedness, basis, Drazin inverse

1 Introduction and preliminaries

The phenomenon of dimension variation can be found almost everywhere in the nature, e.g., the entrance or departure of a bird in a group of birds, the birth or death of a cell in an organ. This phenomenon can also be found in manufacturing processes, e.g., entering of parts or leaving of an entire product in a production line. Due to the semitensor product for all finitedimensional matrices [5] and the vector addition for all finite-dimensional vectors [3], such a phenomenon can be formulated as so-called cross-dimensional dynamical systems. In this paper, motivated by the new construction in [3], we characterize the basis for a so-called cross-dimensional vector space and the long-term behavior of a cross-dimensional dynamical system in the framework of the semitensor product and the vector addition. Necessary notations are shown as below. Note that throughout this paper, all results hold when extending \mathbb{R} to an arbitrary field.

- \mathbb{R}^{n} : the n-dimensional real column vector space
- $\mathcal{V}: \cup_{n=1}^{\infty} \mathbb{R}^{n}$
- $\mathbb{R}^{m \times n}$: the space of $m \times n$ real matrices
- $\mathcal{M}: \cup_{m, n=1}^{\infty} \mathbb{R}^{m \times n}$
- \mathbb{N} : the set of natural numbers
- \mathbb{Z}_{+}: the set of positive integers
- \emptyset : the empty set
- $\mathbf{1}_{k}$: the k-length column vector with all entries 1
- $\mathbf{0}_{k}$: the k-length column vector with all entries 0
- $\mathbf{0}_{m \times n}$: the $m \times n$ matrix with all entries be 0 (or briefly as $\mathbf{0}$ when dimension is known.)
- I_{n} : the $n \times n$ identity matrix
- $\operatorname{rank}(A)$: the rank of matrix A
- $\operatorname{ker}(A)$: the kernel of matrix A

This work was supported by Knut and Alice Wallenberg Foundation, Swedish Foundation for Strategic Research, and Swedish Research Council.

- $\operatorname{im}(A)$: the image of matrix A
- $\operatorname{dim}(V)$: the dimension of a vector space V
- A^{D} : the Drazin inverse of a square matrix A
- $\operatorname{lcm}(p, q)$: the least common multiple of positive integers p and q
- $\operatorname{gcd}(p, q)$: the greatest common divisor of positive integers p and q
- $p \mid q$: integer p divides integer q
- $p \nmid q$: integer p does not divide integer q

In order to obtain the main results, we will use the well known associative law and the homogeneity of the least common multiple:

Proposition 1.1 Let a, b, c be positive integers. Then

1) $\operatorname{lcm}(a, \operatorname{lcm}(b, c))=\operatorname{lcm}(\operatorname{lcm}(a, b), c)$ (associative law);
2) $a \operatorname{lcm}(b, c)=\operatorname{lcm}(a b, a c)$ (homogeneity).

Let us recall the semitensor product of matrices, which was originally proposed by Daizhan Cheng about twenty years ago [2].

Definition 1.2 [[5]] Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$. The semitensor product of A and B, denoted by $A \ltimes B$, is defined as $A \ltimes B=\left(A \otimes I_{l / n}\right)\left(B \otimes I_{l / p}\right)$, where \otimes means the Kronecker product, $l=\operatorname{lcm}(n, p)$.

It is known that \ltimes preserves the associative law, and is an extension of the conventional matrix product [5]. Hence we can use some notations of the conventional matrix product without any confusion, e.g., for a matrix $A \in \mathcal{M}$, we can use A^{n} to denote $\ltimes_{i=1}^{n} A$.

The index [1] of a matrix $A \in \mathbb{R}^{n \times n}$ is the least natural number i such that $\operatorname{rank}\left(A^{i}\right)=\operatorname{rank}\left(A^{i+1}\right)$, i.e., $\min \left\{i \in \mathbb{N} \mid \operatorname{rank}\left(A^{i}\right)=\operatorname{rank}\left(A^{i+1}\right)\right\}=: \operatorname{ind}(A)$.

For a matrix $A \in \mathbb{R}^{n \times n}$, the matrix $X \in \mathbb{R}^{n \times n}$ is called the Drazin inverse [1] of A, denoted by $X=: A^{D}$, if $A^{\operatorname{ind}(A)+1} X=A^{\operatorname{ind}(A)}, A X=X A$, and $X A X=X$. For each matrix $A \in \mathbb{R}^{n \times n}$, A has a unique Drazin
inverse, and satisfies that $\operatorname{im}\left(A^{0}\right) \supsetneq \operatorname{im}\left(A^{1}\right) \supsetneq \cdots \supsetneq$ $\operatorname{im}\left(A^{\operatorname{ind}(A)}\right)=\operatorname{im}\left(A^{i}\right)$ for all integers $i>\operatorname{ind}(A)$ [1].

The vector addition of vectors in \mathbb{R}^{p} can be extended to the following "vector addition" of vectors in \mathcal{V}.

Definition 1.3 ([3]) Let $x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}$, and $r=$ $\operatorname{lcm}_{\rightarrow}(p, q)$. The vector addition of x and y, denoted by $x \overrightarrow{+} y$, is defined as

$$
\begin{equation*}
x \vec{H} y=x \otimes \mathbf{1}_{r / p}+y \otimes \mathbf{1}_{r / q} . \tag{1}
\end{equation*}
$$

Similarly, the vector subtraction of x and y, denoted by $x \stackrel{\rightharpoonup}{ }$, is defined as

$$
\begin{equation*}
x \stackrel{\vec{\vdash} y}{ }=x \otimes \mathbf{1}_{r / p}-y \otimes \mathbf{1}_{r / q} . \tag{2}
\end{equation*}
$$

It is not difficult to see that \vec{H} preservers the commutative law and the associative law.

Proposition 1.4 Let $x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}$, and $z \in \mathbb{R}^{r}$. Then

```
1) }x\vec{H}y=y\vec{H}x\mathrm{ (the communicative law);
2) }(x\vec{H}y)\vec{H}z=x\vec{+}(y\vec{+}z)\mathrm{ (the associative law).
```

Proof The communicative law holds naturally, we only verify the associative law. Let $\operatorname{lcm}(p, q)=u$, $\operatorname{lcm}(u, r)=v, \operatorname{lcm}(q, r)=w$, and $\operatorname{lcm}(p, w)=s$. Then

$$
\begin{aligned}
& (x \vec{H} y) \vec{H} z \\
= & \left(x \otimes \mathbf{1}_{u / p}+y \otimes \mathbf{1}_{u / q}\right) \vec{H} z \\
= & \left(x \otimes \mathbf{1}_{u / p} \otimes \mathbf{1}_{v / u}+y \otimes \mathbf{1}_{u / q} \otimes \mathbf{1}_{v / u}\right)+z \otimes \mathbf{1}_{v / r} \\
= & x \otimes \mathbf{1}_{v / p}+y \otimes \mathbf{1}_{v / q}+z \otimes \mathbf{1}_{v / r}, \\
& x \vec{H}(y \vec{H} z) \\
= & x \vec{H}\left(y \otimes \mathbf{1}_{w / q}+z \otimes \mathbf{1}_{w / r}\right) \\
= & x \otimes \mathbf{1}_{s / p}+\left(y \otimes \mathbf{1}_{w / q} \otimes \mathbf{1}_{s / w}+z \otimes \mathbf{1}_{w / r} \otimes \mathbf{1}_{s / w}\right) \\
= & x \otimes \mathbf{1}_{s / p}+y \otimes \mathbf{1}_{s / q}+z \otimes \mathbf{1}_{s / r} .
\end{aligned}
$$

By Proposition 1.1 we have $v=\operatorname{lcm}(u, r)=$ $\operatorname{lcm}(\operatorname{lcm}(p, q), r)=\operatorname{lcm}(p, \operatorname{lcm}(q, r))=\operatorname{lcm}(p, w)=s$. Hence the associative law holds.

It it is natural to ask whether $(\mathcal{V}, \vec{H}, \cdot)$ forms a vector space, where $\cdot: \mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$ is the conventional scalar multiplication of a real number and a real vector. To this end, we should first find a zero element. Note that in \mathcal{V}, only the real number 0 satisfies that $0 \vec{H} x=x \overrightarrow{H 0}=$ x for any $x \in \mathcal{V}$. Hence only 0 can be the potential zero element. However, it is easy to see that $(\mathcal{V}, \vec{\not})$ is not an Abelian group when 0 is regarded as the zero element, since only real numbers have inverse elements. As a result, $(\mathcal{V}, \vec{H}, \cdot)$ is not a vector space. Despite of this, (\mathcal{V}, \vec{H}) forms a commutative monoid with 0 the identity element.

2 Long-term behavior of the action of \mathcal{M} on \mathcal{V}

In this section, we characterize the long-term behavior of the repetitive actions of a matrix M in \mathcal{M} on a vector x in \mathcal{V}. One main result is that in such a trajectory, the dimensions of vectors will be either eventually constant or eventually strictly increasing, where for
the former case, the matrix is called dimension-bounded [3]. Actually, compared to these results, coarser results have been given in $[3,4]$. In this paper, we will use different methods to give more refined characterization. In addition, for a dimension-bounded matrix in \mathcal{M}, we characterize the limit set of the system generated by its repetitive actions on a vector in \mathcal{V}, and also the generalized inverse system of the system.

Next we show our results, where necessary known results are also introduced. A vector product of a matrix A in \mathcal{M} and a vector x in \mathcal{V} is defined as follows.

Definition 2.1 [3$]]$ Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{t}$. The vector product of A and x, denoted by $A \vec{\ltimes} x$, is defined as

$$
\begin{equation*}
A \vec{\ltimes} x=\left(A \otimes I_{l / n}\right)\left(x \otimes \mathbf{1}_{l / t}\right), \tag{3}
\end{equation*}
$$

where $l=\operatorname{lcm}(n, t)$.
Note that based on the vector product $\vec{\ltimes}$, a matrix A can be regarded as an operator on \mathcal{V}.

Next we characterize the composition of two matrices as operators on \mathcal{V}. By the following Proposition 2.2, one sees that the composition of two operators A and B on \mathcal{V} is exactly their semitensor product. That is, the semitensor product of matrices and the action of \mathcal{M} on \mathcal{V} are consistent.

Proposition 2.2 [[3]] Let $A, B \in \mathcal{M}$ and $x \in \mathcal{V}$. Then

$$
\begin{equation*}
A \vec{\ltimes}(B \vec{\ltimes} x)=(A \ltimes B) \vec{\ltimes} x . \tag{4}
\end{equation*}
$$

Here we use the associative law and homogeneity of the least common multiple to give a more concise proof than the one in [3].

Proof [of Propostion 2.2] Assume $A \in \mathbb{R}^{m \times n}, B \in$ $\mathbb{R}^{p \times q}$, and $x \in \mathbb{R}^{t}$. Then we have

$$
\begin{align*}
& (A \ltimes B) \vec{\ltimes} x \\
= & \left(\left(A \otimes I_{r / n}\right)\left(B \otimes I_{r / p}\right)\right) \vec{\ltimes} x \\
= & \left(\left(\left(A \otimes I_{r / n}\right)\left(B \otimes I_{r / p}\right)\right) \otimes I_{s p / q r}\right)\left(x \otimes \mathbf{1}_{s / t}\right), \tag{5}\\
= & \left(A \otimes I_{r / n} \otimes I_{s p / q r}\right)\left(B \otimes I_{r / p} \otimes I_{s p / q r}\right)\left(x \otimes \mathbf{1}_{s / t}\right) \\
= & \left(A \otimes I_{s p / q n}\right)\left(B \otimes I_{s / q}\right)\left(x \otimes \mathbf{1}_{s / t}\right), \\
& A \vec{\ltimes}(B \vec{\ltimes} x) \\
= & A \vec{\ltimes}\left(\left(B \otimes I_{u / q}\right)\left(x \otimes \mathbf{1}_{u / t}\right)\right), \\
= & \left(A \otimes I_{v / n}\right)\left(\left(\left(B \otimes I_{u / q}\right)\left(x \otimes \mathbf{1}_{u / t}\right)\right) \otimes \mathbf{1}_{v q / p u}\right) \\
= & \left(A \otimes I_{v / n}\right)\left(B \otimes I_{u / q} \otimes I_{v q / p u}\right)\left(x \otimes \mathbf{1}_{u / t} \otimes \mathbf{1}_{v q / p u}\right) \\
= & \left(A \otimes I_{v / n}\right)\left(B \otimes I_{v / p}\right)\left(x \otimes \mathbf{1}_{v q / p t}\right), \tag{6}
\end{align*}
$$

where $r=\operatorname{lcm}(n, p), s=\operatorname{lcm}(q r / p, t), u=\operatorname{lcm}(q, t)$, $v=\operatorname{lcm}(n, p u / q)$.

By Proposition 1.1, we have

$$
\begin{aligned}
s p & =\operatorname{lcm}(q r / p, t) p=\operatorname{lcm}(q r, t p) \\
& =\operatorname{lcm}(q \operatorname{lcm}(n, p), t p)=\operatorname{lcm}(\operatorname{lcm}(n q, p q), t p), \\
v q & =\operatorname{lcm}(n, p u / q) q=\operatorname{lcm}(n q, p u) \\
& =\operatorname{lcm}(n q, p \operatorname{lcm}(q, t))=\operatorname{lcm}(n q, \operatorname{lcm}(p q, t p)) \\
& =\operatorname{lcm}(\operatorname{lcm}(n q, p q), t p)=s p
\end{aligned}
$$

Then we have $s p / q n=v / n, s / q=v / p$, and $s / t=$ $v q / t p$. By (5) and (6), (4) holds.

By Proposition 2.2, we obtain a dynamical system

$$
\begin{equation*}
x(\tau+1)=A \vec{\ltimes} x(\tau), \tag{7}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, \tau=0,1, \ldots, x(\tau) \in \mathcal{V}$. Note that here we cannot call (7) a linear dynamical system, as \mathcal{V} is not a vector space.

Now we can consider the long-term action of a matrix on \mathcal{V}, e.g., system (7). Note that the action of a matrix on a vector may change the dimension of the vector, next we characterize when the action of a matrix does not change the dimension. Here we use dimension to represent the following result. Actually this result has been given in [3], we give a different proof.
Theorem 2.3 [$[3]]$ Let A be in $\mathbb{R}^{m \times n}$ and t in \mathbb{Z}_{+}. Then

$$
A \vec{\ltimes} \mathbb{R}^{t}:=\left\{A \vec{\ltimes} x \mid x \in \mathbb{R}^{t}\right\} \subset \mathbb{R}^{t}
$$

if and only if

$$
m|n, m| t, \text { and } \operatorname{gcd}(n / m, t / m)=1
$$

Proof Denote $\operatorname{lcm}(n, t)=r$. Then for each $x \in \mathbb{R}^{t}$, $A \vec{\ltimes} x \in \mathbb{R}^{m r / n}$.
"if":
By assumption we can denote $n=m k_{1}$ and $t=$ $m k_{2}$, where $k_{1}, k_{2} \in \mathbb{Z}_{+}$. Then $\operatorname{gcd}(n / m, t / m)=$ $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1, r=\operatorname{lcm}(n, t)=\operatorname{lcm}\left(m k_{1}, m k_{2}\right)=$ $m \operatorname{lcm}\left(k_{1}, k_{2}\right)=m k_{1} k_{2}, m r / n=m m k_{1} k_{2} / n=$ $m m k_{1} k_{2} / m k_{1}=m k_{2}=t$.
"only if":
By assumption we have $m r / n=t$. Denote $r=$ $n l_{1}=t l_{2}$, where $l_{1}, l_{2} \in \mathbb{Z}_{+}$. Then $n t=m r=$ $m n l_{1}=m t l_{2}, t=m l_{1}, n=m l_{2}, m|t, m| n$, $r=\operatorname{lcm}(t, n)=l c m\left(m l_{1}, m l_{2}\right)=m \operatorname{lcm}\left(l_{1}, l_{2}\right)=$ $n l_{1}=m l_{2} l_{1}, \operatorname{lcm}\left(l_{1}, l_{2}\right)=l_{1} l_{2}$, hence $\operatorname{gcd}\left(l_{1}, l_{2}\right)=$ $\operatorname{gcd}(t / m, n / m)=1 . \square$

The following result directly follows from Theorem 2.3 .

Corollary 2.4 [[3]] Let A be in $\mathbb{R}^{m \times n}$ and t in \mathbb{Z}_{+}. If $A \vec{\ltimes} \mathbb{R}^{t} \subset \mathbb{R}^{t}$ then A has the representation $A_{\mathcal{L}}=(A \otimes$ $\left.I_{r / n}\right)\left(I_{t} \otimes \mathbf{1}_{r / t}\right)$, where $r=\operatorname{lcm}(n, t)$. That is, $A \vec{\ltimes} x=$ $A_{\mathcal{L}} x$ for each $x \in \mathbb{R}^{t}$. (Note that $A_{\mathcal{L}} \in \mathbb{R}^{t \times t}$.)

More generally, we next characterize when the action of a matrix eventually does not change the dimension of vectors.

Definition 2.5 [[3]] Let $A \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{Z}_{+}$. A is called dimension-bounded with respect to t if there exist $i_{0}, t^{\prime} \in \mathbb{Z}_{+}$both depending on t such that for each $x_{0} \in \mathbb{R}^{t}, A^{i} \vec{\ltimes} x_{0} \in \mathbb{R}^{t^{\prime}}$ for all integers $i \geq i_{0}$.

Although the next result has been given in [3], here we give a different proof which yields a more refined result, i.e., Theorem 2.7, as our first main result.

Theorem 2.6 [[3]] Let $A \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{Z}_{+}$. Matrix A is dimension-bounded with respect to t if and only if $m \mid n$.

Proof Arbitrarily chosen $x_{0} \in \mathbb{R}^{t}$, we have

$$
A \vec{\ltimes} x_{0} \in \mathbb{R}^{m \operatorname{lcm}(n, t) / n},
$$

where $m \operatorname{lcm}(n, t) / n=: f_{1}$;

$$
A^{2} \vec{\ltimes} x_{0}=A \vec{\ltimes}\left(A \vec{\ltimes} x_{0}\right) \in \mathbb{R}^{m \operatorname{lcm}\left(n, f_{1}\right) / n},
$$

where

$$
\begin{aligned}
& m \operatorname{lcm}\left(n, f_{1}\right) / n \\
= & m \operatorname{lcm}(n, m \operatorname{lcm}(n, t) / n) / n \\
= & \operatorname{lcm}\left(m n^{2}, m^{2} \operatorname{lcm}(n, t)\right) / n^{2} \\
= & \operatorname{lcm}\left(m n^{2}, \operatorname{lcm}\left(m^{2} n, m^{2} t\right)\right) / n^{2}=: f_{2} ;
\end{aligned}
$$

by induction we can obtain that $A^{i} \vec{\ltimes} x_{0} \in \mathbb{R}^{f_{i}}$ for each $i \in \mathbb{Z}_{+}$, where

$$
\begin{equation*}
f_{i}=\operatorname{lcm}\left(\operatorname{lcm}_{k=1}^{i} m^{k} n^{i+1-k}, m^{i} t\right) / n^{i} . \tag{8}
\end{equation*}
$$

"if":
By $m \mid n$ we next prove that

$$
\begin{equation*}
\operatorname{lcm}\left(m n^{r+1}, m^{r} n t\right)=\operatorname{lcm}\left(m n^{r+1}, m^{r+1} t\right) \tag{9}
\end{equation*}
$$

for all sufficiently large integers r.
Denote $n=m k$, where $k \in \mathbb{Z}_{+}$. We have

$$
\begin{aligned}
\operatorname{lcm}\left(m n^{r+1}, m^{r} n t\right) & =m^{r+1} \operatorname{lcm}\left(m k^{r+1}, k t\right), \\
\operatorname{lcm}\left(m n^{r+1}, m^{r+1} t\right) & =m^{r+1} \operatorname{lcm}\left(m k^{r+1}, t\right)
\end{aligned}
$$

If $k=1$ or all prime factors of t are also factors of k, then (9) obviously holds for all sufficiently large r. Next we assume that $k>1$ and t has a prime factor that is not a factor of k. Based on this assumption, we have

$$
\begin{aligned}
k & =k_{1}^{\alpha_{1}} \cdots k_{p}^{\alpha_{p}}, \\
t & =k_{1}^{\gamma_{1}} \cdots k_{p}^{\gamma_{p}} t_{1}^{\delta_{1}} \cdots t_{q}^{\delta_{q}}, \\
m k^{r+1} & =k_{1}^{\alpha_{1}(r+1)+\epsilon_{1}} \cdots k_{p}^{\alpha_{p}(r+1)+\epsilon_{p}} t_{1}^{\mu_{1}} \cdots t_{q}^{\mu_{q}} m_{1}^{\nu_{1}} \cdots m_{s}^{\nu_{s}},
\end{aligned}
$$

where $k_{1}, \ldots, k_{p}, t_{1}, \ldots, t_{q}, m_{1}, \ldots, m_{s}$ are pairwise different prime numbers; $\alpha_{1}, \ldots, \alpha_{p} \in \mathbb{Z}_{+} ; \gamma_{1}, \ldots, \gamma_{p} \in$ $\mathbb{N} ; \delta_{1}, \ldots, \delta_{q} \in \mathbb{Z}_{+} ; \epsilon_{1}, . ., \epsilon_{p} \in \mathbb{N} ; \mu_{1}, \ldots, \mu_{q} \in \mathbb{N} ;$ $\nu_{1}, \ldots, \nu_{s} \in \mathbb{N}$.

When r is sufficiently large, we have

$$
\begin{aligned}
& \operatorname{lcm}\left(m k^{r+1}, k t\right) \\
= & k_{1}^{\alpha_{1}(r+1)+\epsilon_{1}} \cdots k_{p}^{\alpha_{p}(r+1)+\epsilon_{p}} t_{1}^{\max \left\{\delta_{1}, \mu_{1}\right\}} \ldots \\
& t_{q}^{\max \left\{\delta_{q}, \mu_{q}\right\}} m_{1}^{\nu_{1}} \cdots m_{s}^{\nu_{s}} \\
= & \operatorname{lcm}\left(m k^{r+1}, t\right) .
\end{aligned}
$$

Hence (9) holds for all sufficiently large r.
By $m \mid n$ we have

$$
\begin{equation*}
f_{i}=\operatorname{lcm}\left(m n^{i}, m^{i} t\right) / n^{i} \tag{10}
\end{equation*}
$$

for each $i \in \mathbb{Z}_{+}$. Then by the above analysis, for sufficiently large r, we have

$$
\begin{aligned}
f_{r} & =\operatorname{lcm}\left(m n^{r}, m^{r} t\right) / n^{r}=\operatorname{lcm}\left(m n^{r+1}, m^{r} n t\right) / n^{r+1} \\
& =\operatorname{lcm}\left(m n^{r+1}, m^{r+1} t\right) / n^{r+1}=f_{r+1},
\end{aligned}
$$

which completes the "if" part
Actually, from the above analysis, we also have if $m \mid n$, then for each $s \in \mathbb{Z}_{+}$, the corresponding f_{i} satisfies $f_{r}=f_{r+1}$ for all sufficiently large integers r. We also have that for all sufficiently large $r \in \mathbb{Z}_{+}$, $f_{r+1} / m=t_{1}^{\max \left\{\mu_{1}, \delta_{1}\right\}-\mu_{1}} \cdots t_{q}^{\max \left\{\mu_{q}, \delta_{q}\right\}-\mu_{q}}$, hence $m \mid$ f_{r+1} and $\operatorname{gcd}\left(n / m, f_{r+1} / m\right)=1$, which is consistent with Theorem 2.3.
"only if":
By assumption we have $f_{r}=f_{r+1}$ for all sufficiently large integer r. Denote

$$
A_{r}:=\operatorname{lcm}\left(\operatorname{lcm}_{k=1}^{r} m^{k} n^{r+1-k}, m^{r} t\right)
$$

then $f_{r+1}=m \operatorname{lcm}\left(n^{r+1}, A_{r}\right) / n^{r+1}$. By $f_{r}=f_{r+1}$, we have $n A_{r}=m \operatorname{lcm}\left(n^{r+1}, A_{r}\right)$, hence $m \mid n$, which completes the proof.

From the above analysis, we see for each $t \in \mathbb{Z}_{+}$, $f_{r}=f_{r+1}$ for some r implies $m \mid n$. In addition, we can prove one more result as below, i.e., for each $t \in \mathbb{Z}_{+}$, $f_{r}=f_{r+1}$ for some r implies $f_{r}=f_{s}$ for all $s \geq r$. To this end, we only need to prove $f_{r}=f_{r+1}$ implies $f_{r+1}=f_{r+2}$ for any r.

Next we fix t and r. By $f_{r}=f_{r+1}$ we have $m \mid n$. Then $f_{l}=\operatorname{lcm}\left(m n^{l}, m^{l} t\right) / n^{l}$ for any $l \in \mathbb{Z}_{+}$. Using $m k=n$, we have $f_{l}=\operatorname{lcm}\left(m k^{l}, t\right) / k^{l}$ for any l. Then $f_{r}=f_{r+1}$ implies $\operatorname{lcm}\left(m k^{r+1}, k t\right)=\operatorname{lcm}\left(m k^{r+1}, t\right)$. We then have $\operatorname{lcm}\left(m k^{r+2}, \operatorname{lcm}\left(m k^{r+1}, k t\right)\right)=$ $\operatorname{lcm}\left(m k^{r+2}, \operatorname{lcm}\left(m k^{r+1}, t\right)\right)$, i.e., $\quad \operatorname{lcm}\left(m k^{r+2}, k t\right)=$ $\operatorname{lcm}\left(m k^{r+2}, t\right)$, then $f_{r+1}=\operatorname{lcm}\left(m k^{r+2}, k t\right) / k^{r+2}=$ $\operatorname{lcm}\left(m k^{r+2}, t\right) / k^{r+2}=f_{r+2}$.

Besides, by $m \mid n$ we have $f_{l}=\operatorname{lcm}\left(m k^{l}, t\right) / k^{l}$ for any $l \in \mathbb{Z}_{+}$, then

$$
\begin{aligned}
& \operatorname{lcm}\left(f_{l}, f_{l+1}\right) \\
= & \operatorname{lcm}\left(\operatorname{lcm}\left(m k^{l}, t\right) / k^{l}, \operatorname{lcm}\left(m k^{l+1}, t\right) / k^{l+1}\right) \\
= & \operatorname{lcm}\left(\operatorname{lcm}\left(m k^{l+1}, k t\right) / k^{l+1}, \operatorname{lcm}\left(m k^{l+1}, t\right) / k^{l+1}\right) \\
= & \operatorname{lcm}\left(\operatorname{lcm}\left(m k^{l+1}, k t\right), \operatorname{lcm}\left(m k^{l+1}, t\right)\right) / k^{l+1} \\
= & \operatorname{lcm}\left(m k^{l+1}, k t\right) / k^{l+1} \\
= & \operatorname{lcm}\left(m k^{l}, t\right) / k^{l} \\
= & f_{l} .
\end{aligned}
$$

Hence $f_{l+1} \mid f_{l}$ for each $l \in \mathbb{Z}_{+}$.
Based the above analysis and Theorem 2.6, we obtain our first main result.

Theorem 2.7 Let $A \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{Z}_{+}$. Let f_{i} be as in (8).

1) If matrix A is dimension-bounded with respect to some $u \in \mathbb{Z}_{+}$, then it is dimension-bounded with respect to any $v \in \mathbb{Z}_{+}$.
2) If $m \mid n$ then function f_{i} is strictly decreasing on $\left\{1, \ldots, i_{0}\right\}$ for some $i_{0} \in \mathbb{Z}_{+}$depending on t, constant on $\left\{i_{0}, i_{0}+1, \ldots\right\}$, and satisfies $f_{l+1} \mid f_{l}$ for any $l \in \mathbb{Z}_{+}$.
By Theorem 2.7, Definition 2.5 can be equivalently rewritten as follows.

Definition 2.8 Let $A \in \mathbb{R}^{m \times n}$. A is called dimensionbounded if for each $t \in \mathbb{Z}_{+}$, there exist $i_{0}, t^{\prime} \in \mathbb{Z}_{+}$both depending on t such that for each $x_{0} \in \mathbb{R}^{t}, A^{i} \vec{\ltimes} x_{0} \in \mathbb{R}^{t^{\prime}}$ for all integers $i \geq i_{0}$. Here the minimal such i_{0} is called the index of m, n, t, and denoted by $\operatorname{ind}(m, n, t)$.

Then similar to Theorem 2.6, we have the following result.

Theorem $2.9[[3]]$ Let $A \in \mathbb{R}^{m \times n}$. Matrix A is dimension-bounded if and only if $m \mid n$.

Remark 2.1 One sees that whether a matrix is dimension-bounded only depends on its dimension, but does not depend its entries.

Next we characterize the matrices that are not dimension-bounded.

Corollary 2.10 Let $A \in \mathbb{R}^{m \times n}$ be such that $m \nmid n$.

1) For each $t \in \mathbb{Z}_{+}$, the corresponding function f_{i} as in (8) satisfies that $f_{r} \neq f_{r+1}$ for all $r \in \mathbb{Z}_{+}$.
2) If $n \mid m$ and $m \neq n$ then for each $t \in \mathbb{Z}_{+}$, the corresponding f_{i} is strictly increasing and satisfies $m f_{l}=n f_{l+1}$ for any $l \in \mathbb{Z}_{+}$.

Proof 1) This conclusion directly follows from Theorems 2.7 and 2.9.
2) By $n \mid m$ we have $f_{i}=k^{i} \operatorname{lcm}(n, t)$, where $k=$ m / n. The conclusion follows.

Furthermore, we give a complete characterization for the matrices that are not dimension-bounded, i.e., Theorem 2.11, as our second main result. Specifically, the next result shows that for each matrix $A \in \mathcal{M}$ that is not dimension-bounded and each positive integer t, the corresponding function f_{i} as in (8) is injective and eventually strictly increasing. In [4], it was shown that $\lim _{i \rightarrow \infty} f_{i}=\infty$. Hence our result is more refined.

Theorem 2.11 Let $A \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{Z}_{+}$. Let f_{i} be as in (8). Assume that M is not dimension-bounded, i.e., $m \nmid n$.

1) Function f_{i} is injective.
2) Function f_{i} is strictly increasing on $\left\{i_{0}, i_{0}+1, \ldots\right\}$ for some $i_{0} \in \mathbb{Z}_{+}$depending on m, n, t; and $f_{r+1} / f_{r}=m / \operatorname{gcd}(m, n)$ for all integers $r \geq i_{0}$.
(Here we also call the minimal such i_{0} the index of m, n, t.)

Proof If $n \mid m$ then 2) of Corollary 2.10 implies 1) and 2) of this theorem. Next we assume that $n \nmid m$. We have

$$
\begin{aligned}
m & =s_{1}^{\alpha_{1}} \cdots s_{p}^{\alpha_{p}} m_{1}^{\beta_{1}} \cdots m_{q}^{\beta_{q}}, \\
n & =s_{1}^{\alpha_{1}} \cdots s_{p}^{\alpha_{p}} n_{1}^{\gamma_{1}} \cdots n_{u}^{\gamma_{u}}, \\
t & =s_{1}^{\delta_{1}} \cdots s_{p}^{\delta_{p}} m_{1}^{\epsilon_{1}} \cdots m_{q}^{\epsilon_{q}} n_{1}^{\mu_{1}} \cdots n_{u}^{\mu_{u}} t_{1}^{\nu_{1}} \cdots t_{v}^{\nu_{v}},
\end{aligned}
$$

where $s_{1}, \ldots, s_{p}, m_{1}, \ldots, m_{q}, n_{1}, \ldots, n_{u}, t_{1}, \ldots, t_{v}$ are pairwise different prime numbers; $\alpha_{1}, \ldots, \alpha_{p} \in \mathbb{N}$; $\beta_{1}, \ldots, \beta_{q} \in \mathbb{Z}_{+} ; \gamma_{1}, \ldots, \gamma_{u} \in \mathbb{Z}_{+} ; \delta_{1}, \ldots, \delta_{p} \in \mathbb{N}$; $\epsilon_{1}, \ldots, \epsilon_{q} \in \mathbb{N} ; \mu_{1}, \ldots, \mu_{u} \in \mathbb{N} ; \nu_{1}, \ldots, \nu_{v} \in \mathbb{N} ;$ $s_{1}^{\alpha_{1}} \cdots s_{p}^{\alpha_{p}}=\operatorname{lcm}(m, n)$.

By a direct computation, we have

$$
\begin{aligned}
f_{i}= & s_{1}^{\max \left\{\alpha_{1}, \delta_{1}\right\}} \cdots s_{p}^{\max \left\{\alpha_{p}, \delta_{p}\right\}} m_{1}^{i \beta_{1}+\epsilon_{1}} \cdots m_{q}^{i \beta_{q}+\epsilon_{q}} \\
& n_{1}^{\max \left\{i \gamma_{1}, \mu_{1}\right\}-i \gamma_{1}} \cdots n_{u}^{\max \left\{i \gamma_{u}, \mu_{u}\right\}-i \gamma_{u}} \\
& t_{1}^{\nu_{1}} \cdots t_{v}^{\nu_{v}} .
\end{aligned}
$$

Then for all positive integers $j, k, f_{j}=f_{j+k}$ implies that $j \beta_{1}+\epsilon_{1}=(j+k) \beta_{1}+\epsilon_{1}, \ldots, j \beta_{q}+\epsilon_{q}=(j+$ $k) \beta_{q}+\epsilon_{q}$, hence $\beta_{1}=\cdots=\beta_{q}=0$, i.e., $m \mid n$, which is a contradiction. That is, 1) holds.

On the other hand, for each sufficiently large $r \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
f_{r+1} / f_{r}= & m_{1}^{\beta_{1}} \cdots m_{q}^{\beta_{q}} \\
& n_{1}^{\max \left\{(r+1) \gamma_{1}, \mu_{1}\right\}-\max \left\{r \gamma_{1}, \mu_{1}\right\}-\gamma_{1}} \cdots \\
& n_{u}^{\max \left\{(r+1) \gamma_{u}, \mu_{u}\right\}-\max \left\{r \gamma_{u}, \mu_{u}\right\}-\gamma_{u}} \\
= & m_{1}^{\beta_{1}} \cdots m_{q}^{\beta_{q}}=m / \operatorname{gcd}(m, n)
\end{aligned}
$$

i.e., 2) holds, which completes the proof.

Remark 2.2 It is easy to obtain that for $m=2, n=3$, $t=9$, the corresponding f_{i} satisfies that $f_{1}=6, f_{i}=2^{i}$, where $1<i \in \mathbb{Z}_{+}$. That is, when $m \nmid n$, f_{i} is not alway strictly increasing.

We next characterize the long-term behavior of system (7) as our third main result.
Definition 2.12 A system (7) is called dimensionbounded if $m \mid n$. Consider a dimension-bounded system (7) and a positive integer t, denote the index of m, n, t by $i_{0}=\operatorname{ind}(m, n, t)$ and the representation of A by $A_{\mathcal{L}}=\left(A \otimes I_{r / n}\right)\left(I_{f_{i_{0}}} \otimes \mathbf{1}_{r / f_{i_{0}}}\right) \in \mathbb{R}^{f_{i_{0}} \times f_{i_{0}}}$, where $f_{i_{0}}$ is as in (10), $r=\operatorname{lcm}\left(n, f_{i_{0}}\right)$. The limit set of a dimension-bounded system (7) with respect to t is defined as $\Omega_{A}:=\cap_{s=i_{0}}^{\infty} A^{s} \vec{\ltimes} \mathbb{R}^{t}$. The generalized inverse system of a dimension-bounded system with respect to t is defined as the system

$$
\begin{equation*}
x(\tau+1)=\left(A_{\mathcal{L}}\right)^{D} \vec{\ltimes} x(\tau), \tag{11}
\end{equation*}
$$

where $\tau=0,1, \ldots, x(\tau) \in \mathcal{V}$.
For a matrix $A \in \mathbb{R}^{m \times n}$ satisfying $m \mid n$, i.e., A is dimension-bounded, and a positive integer t, denote the index of m, n, t by i_{0}, we have $\left.A^{i_{0}} \in \mathbb{R}^{m \times\left(n^{i} 0\right.} / m^{i_{0}-1}\right)$. Hence

$$
\begin{align*}
A^{i_{0}} \vec{\ltimes} \mathbb{R}^{t} & =\left(A^{i_{0}} \otimes I_{f_{i_{0}} / m}\right)\left(I_{t} \otimes \mathbf{1}_{\left(n^{i 0} f_{i_{0}}\right) /\left(m^{i} 0\right.}\right) \\
& =: A_{\mathcal{L}_{0}} \mathbb{R}^{t}, \tag{12}
\end{align*}
$$

which is a subspace of $\mathbb{R}^{f_{i_{0}}}$, where $f_{i_{0}}$ is as in (10), $A_{\mathcal{L}_{0}} \in \mathbb{R}^{f_{i_{0}} \times t}$. Hence $\Omega_{A}=\cap_{i=0}^{\infty}\left(A_{\mathcal{L}}\right)^{i} A_{\mathcal{L}_{0}} \mathbb{R}^{t}$, where $A_{\mathcal{L}} \in \mathbb{R}^{f_{i_{0}} \times f_{i_{0}}}$ is as in Definition 2.12. Based on these analysis, the long-term behavior of the dimensionbounded matrix A on \mathbb{R}^{t} is as shown in (13).

By Theorem 2.11, for a matrix $A \in \mathbb{R}^{m \times n}$ satisfying $m \nmid n$, i.e, A is not dimension-bounded, and a positive integer t, denote the index of m, n, t by i_{0}, we have that function f_{i} as in (8) is injective and satisfies $f_{i_{0}}<f_{i_{0}+1}<\cdots$. The long-term behavior of the
non-dimension-bounded matrix A on \mathbb{R}^{t} is as shown in (14).

Since for each $i \in \mathbb{N},\left(A_{\mathcal{L}}\right)^{i} A_{\mathcal{L}_{0}} \mathbb{R}^{t}$ is a subspace of $\mathbb{R}^{f_{i_{0}}}, \cap_{k=0}^{i}\left(A_{\mathcal{L}}\right)^{k}\left(A_{\mathcal{L}_{0}} \mathbb{R}^{t}\right)=: \mathcal{A}_{i}$ is also a subspace of $\mathbb{R}^{f_{i 0}}$, and $\mathcal{A}_{i+1} \subset \mathcal{A}_{i}$, we have $\Omega_{A}=\cap_{k=0}^{\infty} \mathcal{A}_{k}=\mathcal{A}_{l}=\mathcal{A}_{l+l^{\prime}}$ for some $l \in \mathbb{Z}_{+}$ and all $l^{\prime} \in \mathbb{Z}_{+}$. On the other hand, we have $\Omega_{A}=\cap_{i=0}^{\infty}\left(A_{\mathcal{L}}\right)^{i} A_{\mathcal{L}_{0}} \mathbb{R}^{t}=\cap_{i=0}^{\infty}\left(A_{\mathcal{L}}\right)^{i} \operatorname{im}\left(A_{\mathcal{L}_{0}}\right) \subset$ $\cap_{i=0}^{\infty}\left(A_{\mathcal{L}}\right)^{i} \mathbb{R}^{i=0} f_{i_{0}}=\operatorname{im}\left(\left(A_{\mathcal{L}}\right)^{\operatorname{ind}\left(A_{\mathcal{L}}\right)}\right)$. That is, the following theorem holds.

Theorem 2.13 For a dimension-bounded system (7) with respect to $t \in \mathbb{Z}_{+}$, its limit set Ω_{A} is a subspace of $\mathbb{R}^{f_{i_{0}}}$, satisfies $\Omega_{A} \subset \operatorname{im}\left(\left(A_{\mathcal{L}}\right)^{\operatorname{ind}\left(A_{\mathcal{L}}\right)}\right)$, where $i_{0}=\operatorname{ind}(m, n, t), f_{i_{0}}$ is as in (10), $A_{\mathcal{L}}$ is as in Definition 2.12.

Remark 2.3 For a dimension-bounded system (7) with $m=n$ with respect to m (i.e., a standard discrete-time linear dynamical system), it is obvious that its limit set Ω_{A} equals $\operatorname{im}\left(A^{\operatorname{ind}(A)}\right)$. Particularly if A is invertible, then the generalized inverse system is

$$
\begin{equation*}
x(\tau+1)=A^{-1} x(\tau) \tag{15}
\end{equation*}
$$

where $\tau=0,1, \ldots$.
Next we give an algorithm to compute its generalized inverse system. The following proposition which can be seen as an extension of [7, Theorem 4.1] over the real field \mathbb{R}, is the basis for the designed algorithm. Note that the proof for Proposition 2.14 does not hold for a right Ore domain studied in [7].
Proposition 2.14 Consider a matrix $A \in \mathbb{R}^{n \times n}$. Then

$$
\begin{equation*}
A^{D}=A^{\operatorname{ind}(A)} X^{\operatorname{ind}(A)+1} \tag{16}
\end{equation*}
$$

where $X \in \mathbb{R}^{n \times n}$ satisfies that $A^{\operatorname{ind}(A)+1} X=A^{\operatorname{ind}(A)}$ (Note that such X always exists).

Proof By induction on the dimension, it can be proved that for a matrix $A \in \mathbb{R}^{n \times n}$, there exist invertible matrices $P \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{r \times r}$ and nilpotent matrix $N \in \mathbb{R}^{(n-r) \times(n-r)}$ such that

$$
\begin{equation*}
A=P[C \oplus N] P^{-1} \tag{17}
\end{equation*}
$$

Then we have $N^{\operatorname{ind}(A)}=0$. If we choose $X=$ $P\left[\begin{array}{cc}X & Y \\ Z\end{array}\right] P^{-1} \in \mathbb{R}^{n \times n}$ satisfying $A^{\text {ind }(A)+1} X=A^{\text {ind }(A)}$, where $X \in \mathbb{R}^{r \times r}$, then $X=C^{-1}, Y=0$, and $A^{\operatorname{ind}(A)} X^{\operatorname{ind}(A)+1}=P\left[C^{-1} \oplus \mathbf{0}\right] P^{-1}=A^{D} . \square$

Algorithm 2.15 1) Input a matrix $A \in \mathbb{R}^{n \times n}$, find $\operatorname{ind}(A)$ (e.g., by definition).
2) Find a solution to linear equation $A^{\operatorname{ind}(A)+1} X=$ $A^{\operatorname{ind}(A)}$ (e.g., by using the Gaussian elimination).
3) Compute the Drazin inverse of $A: A^{D}=$ $A^{\operatorname{ind}(A)} X^{\operatorname{ind}(A)+1}$.
3 Action of \mathcal{M} / \sim on $\mathcal{V} / \leftrightarrow$
Previously we showed that $(\mathcal{V}, \vec{H}, \cdot)$ does not form a vector space. However, the quotient space of \mathcal{V} under an equivalence relation \leftrightarrow forms a vector space [3].

$$
\begin{align*}
& \mathbb{R}^{t} \quad \xrightarrow{A} A \vec{\ltimes} \mathbb{R}^{t} \quad \xrightarrow{A} \cdots \quad \xrightarrow{A} \quad A^{i_{0}} \vec{\ltimes} \mathbb{R}^{t} \quad \xrightarrow{A} \quad A^{i_{0}+1} \vec{\ltimes} \mathbb{R}^{t} \quad \xrightarrow{A} \quad \cdots \\
& \stackrel{\cap}{\mathbb{R}^{f_{1}}} \\
& \stackrel{\cap}{\mathbb{R}^{f_{i_{0}}}} \quad \mathbb{R}^{f_{i_{0}+1}} \tag{14}
\end{align*}
$$

Definition 3.1 [[3]] For all $x, y \in \mathcal{V}$,

$$
\begin{equation*}
x \leftrightarrow y \text { if and only if } x \otimes \mathbf{1}_{s}=y \otimes \mathbf{1}_{t} \tag{18}
\end{equation*}
$$

for some $s, t \in \mathbb{Z}_{+}$.
Proposition 3.2 ([3]) 1) For all $x, y \in \mathcal{V}$, if $x \leftrightarrow y$ then $x=z \otimes \mathbf{1}_{s}$ and $y=z \otimes \mathbf{1}_{t}$ for some $z \in \mathcal{V}$ and $s, t \in \mathbb{Z}_{+}$.
2) For all $x \in \mathcal{V}$, in the equivalence class $[x]:=\{y \in$ $\mathcal{V} \mid y \leftrightarrow x\}$, there exists a unique vector $x_{0} \in \mathcal{V}$ (called the irreducible element) such that for any $y \leftrightarrow x, y=x_{0} \otimes \mathbf{1}_{k}$ for some $k \in \mathbb{Z}_{+}$. Hence $[x]=$ $\left\{x_{0} \otimes \mathbf{1}_{k} \mid k \in \mathbb{Z}_{+}\right\}$.
3) For all $x, x^{\prime}, y, y^{\prime} \in \mathcal{V}$, if $x \leftrightarrow x^{\prime}$ and $y \leftrightarrow y^{\prime}$ then $x \overrightarrow{+} y \leftrightarrow x^{\prime} \overrightarrow{+} y^{\prime}$ and $x \vec{\vdash} y \leftrightarrow x^{\prime} \vec{\vdash} y^{\prime}$.

By 3) of Proposition 3.2 the vector addition and vector subtraction of equivalence classes can be defined as follows.

Definition 3.3 The vector addition and vector subtraction of equivalence classes induced by the equivalence relation \leftrightarrow as in Definition 3.1 are defined as follow: For all $x, y \in \mathcal{V}$,

$$
\begin{equation*}
[x] \vec{\oplus}[y]:=[x \overrightarrow{+} y], \quad[x] \stackrel{\rightharpoonup}{\digamma}[y]:=[x \vec{\vdash} y] . \tag{19}
\end{equation*}
$$

It is not difficult to verify that $(\mathcal{V} / \leftrightarrow, \vec{H}, \cdot)(\mathcal{V} / \leftrightarrow$ for short) forms a vector space, where $\mathcal{V} / \leftrightarrow:=\{[x] \mid x \in \mathcal{V}\}$ is the quotient space induced by \leftrightarrow; scalar multiplication $\cdot: \mathbb{R} \times \mathcal{V} / \leftrightarrow \rightarrow \mathcal{V} / \leftrightarrow$ is as $\alpha[x]:=[\alpha x]$ for all $\alpha \in \mathbb{R}$ and $x \in \mathcal{V} ;[0]$ is the zero element; for each $[x] \in \mathcal{V} / \leftrightarrow$, its inverse element is $[-x]$.

Now we give a basis for space $\mathcal{V} / \leftrightarrow$, which shows that $\mathcal{V} / \leftrightarrow$ is of countably infinite dimension. Actually, this basis is similar to the one for a matrix quotient space based on the semitensor product and semitensor addition of matrices given in [6].
Theorem 3.4 Consider vector space $\mathcal{V} / \leftrightarrow$. The set

$$
\begin{equation*}
\mathcal{B}_{\mathcal{V}}:=\left\{\left[e_{i}^{j}\right] \mid i, j \in \mathbb{Z}_{+}, i \geq j, \operatorname{gcd}(i, j)=1\right\} \tag{20}
\end{equation*}
$$

is a basis of the space, where e_{i}^{j} is the j-th column of I_{i}.
Proof To prove this result, we only need to verify that 1) each $\left[e_{i}^{j}\right]$ is generated by $\mathcal{B}_{\mathcal{V}}$ and 2) every finite elements of $\mathcal{B}_{\mathcal{V}}$ is linearly independent, where $i, j \in \mathbb{Z}_{+}$, $i \geq j$.

We first verify 1). Given $\left[e_{n}^{m}\right]$, if $\operatorname{gcd}(m, n)=1$ then $\left[e_{n}^{m}\right] \in \mathcal{B}_{\mathcal{V}}$. Next we assume $\operatorname{gcd}(m, n)=k>1$. We have $e_{n / k}^{m / k} \otimes \mathbf{1}_{k}-e_{n}^{m}=\sum_{i=0}^{k-1} e_{n}^{m-i}$ and $\left[e_{n / k}^{m / k}\right] \in \mathcal{B}_{\mathcal{V}}$. For each $0 \leq i \leq k-1$, if $\operatorname{gcd}(m-i, n)=1$ then
$\left[e_{n}^{m-i}\right] \in \mathcal{B}_{\mathcal{V}}$; else, we do the same decomposition for e_{n}^{m-i} as for e_{n}^{m}. Repeat this step again and again, we obtain that $\left[e_{n}^{m}\right]$ is a linear combination of finitely many elements of $\mathcal{B}_{\mathcal{V}}$. Hence $\mathcal{V} / \leftrightarrow$ is generated by $\mathcal{B}_{\mathcal{V}}$.

Second we verify 2). Actually, we only need to verify for each $k \in \mathbb{Z}_{+}$, the vectors $\left[e_{i}^{j}\right], i, j \in\{1, \ldots, k\}, i \geq$ $j, \operatorname{gcd}(i, j)=1$ are linearly independent. Denoting $l:=\operatorname{lcm}(1, \ldots, k)$, we obtain vectors $e_{i}^{j} \otimes \mathbf{1}_{l / i} \in \mathbb{R}^{l}$, $i, j \in\{1, \ldots, k\}, i \geq j, \operatorname{gcd}(i, j)=1$, where for each e_{i}^{j}, the $j l / i$-th entry equals 1 , and any t-th entry with $t>j l / i$ equals 0 . Note that $j l / i$, where $i, j \in$ $\{1, \ldots, k\}, i \geq j, \operatorname{gcd}(i, j)=1$, are pairwise different, hence these vectors are linearly independent, and the vectors $\left[e_{i}^{j}\right], i, j \in\{1, \ldots, k\}, i \geq j, \operatorname{gcd}(i, j)=1$ are also linearly independent, which completes the proof.

4 Conclusion

In this paper, we characterized a so-called crossdimensional vector space and the long-term behavior of cross-dimensional dynamical systems. Specifically, we give a basis for the cross-dimensional vector space, showing that the space is of countably infinite dimension. In addition, we characterized the long-term behavior of repetitive actions of a matrix on a vector. Further results will be followed along this line.

References

[1] A. Ben-Israel and T. N.E. Greville. Generalized Inverses - Theory and Applications. Springer-Verlag New York, 2003.
[2] D. Cheng. Semi-tensor product of matrices and its application to Morgen's problem. Science in China Series : Information Sciences, 44(3):195-212, 2001.
[3] D. Cheng. On equivalence of matrices. Asian Journal of Mathematics, to appear, https://arxiv.org/abs/ 1605.09523v3, 2016.
[4] D. Cheng, Z. Liu, and H. Qi. Cross-dimensional linear systems. https://arxiv.org/abs/1710.03530, 2017.
[5] D. Cheng, H. Qi, and Z. Li. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. Springer-Verlag London, 2011.
[6] K. Zhang. Basis for the linear space of matrices under equivalence. https://arxiv.org/abs/1608.01578, 2016.
[7] K. Zhang and C. Bu. Group inverses of matrices over right Ore domains. Applied Mathematics and Computation, 218(12):6942-6953, 2012.

