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Abstract— Improving energy efficiency of Heating, Ventila-
tion and Air Conditioning (HVAC) systems is a primary objec-
tive for the society. Model Predictive Control (MPC) techniques
for HVAC systems have recently received particular attention,
since they can naturally account for several factors, such as
weather and occupancy forecasts, comfort ranges and actuation
constraints. Developing effective MPC based control strategies
for HVAC systems is nontrivial, since buildings dynamics are
nonlinear and affected by various uncertainties. Further, the
complexity of the MPC problem and the burden of on-line
computations can lead to difficulties in integrating this scheme
into a building management system.

We propose to address this computational issue by design-
ing a scenario-based explicit MPC strategy, i.e., a controller
that is simultaneously based on explicit representations of
the MPC feedback law and accounts for uncertainties in
the occupancy patterns and weather conditions by using the
scenarios paradigm. The main advantages of this approach are
the absence of a-priori assumptions on the distributions of the
uncertain variables, the applicability to any type of building,
and the limited on-line computational burden, enabling practi-
cal implementations on low-cost hardware platforms.

We illustrate the practical implementation of the proposed
explicit MPC controller on a room of a university building,
showing its effectiveness and computational tractability.

I. INTRODUCTION

Heating, Ventilation and Air Conditioning (HVAC) sys-
tems play a fundamental role in maintaining acceptable
indoor comfort levels; reports indicate that HVAC systems
in developed countries contribute for approximately one fifth
of the total national energy usages [1]. Current practice
shows its limits, with potential energy savings achievable
by using systematic building management being estimated
from 5% to 30% of the total consumptions [2], [3]. An
effective controller for HVAC systems should incorporate
time-dependent energy costs, bounds on the control actions,
comfort requirements, as well as account for system uncer-
tainties, e.g., weather conditions and occupancy. A natural
scheme that achieves the systematic integration of all the
aforementioned elements is the Model Predictive Control
(MPC) [4].

Simulations in [5], [6], as well as the experimental results
on real buildings reported in [7], [8], [9], show that MPC
schemes can yield better comfort levels and energy use
performance than current practices.
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In particular, successful implementations are likely to
be based on stochastic MPC schemes with probabilistic
constraints, i.e., the so called chance constrained MPCs [10].
Indeed, current standards explicitly account for the possibil-
ity of comfort violations, stating that the probability of these
violations should not exceed certain levels [11].

Literature review: there is a vast literature on stochastic
MPC schemes for HVAC control, e.g., [12], [13], [14].
Nonetheless, to simplify the tractability of the MPC problem
the aforementioned works restrict the disturbances to have
Gaussian distributions. Furthermore, these approaches do not
explicitly consider the uncertainty in the occupancy when
controlling the CO2 levels.

These two issues are addressed in [15], [16], where
authors consider scenario-based approximations of a chance
constrained MPC problem that accounts for uncertainty by
extracting the scenarios from general probability distribu-
tions, thus not restricted to be Gaussian [17].

The numerical simulations performed in these works
suggest that scenarios-based techniques outperform other
predictive methods.

However, all these MPC strategies come with computa-
tional demand issues, since they need to run on-line opti-
mization algorithms to solve the MPC optimization problem.
In addition, scenario-based approaches requires to generate a
large number of scenarios on-line. The drawback associated
to this on-line computational burden is that implementation
on cheap hardware platforms (such as in Programmable
Logic Controllers (PLCs)) and integration in Building Au-
tomation Systems (BASs) may become prohibitive. A possi-
ble solution is to determine explicitly, off-line, the solution
of the MPC optimization problem as a function of the current
building state. This leads to explicit solutions of the MPC
problem, which are obtained by solving multiparametric
programs [18], [19], where the state vector is treated as a
vector of parameters. The optimal control profile is available
as a Piecewise Affine (PWA) function of the initial state.

By doing so, the computation associated with MPC re-
duces to a function evaluation problem, which requires
simple software and cheap hardware. Besides these practical
benefits, the explicit control structure also may provide
insights on the structure of the control action. However,
the applicability of these methods is limited to fairly small
problems because of memory requirements and off-line com-
putational times.

The few works that provide explicit MPC control laws for
building temperature control, [20], [21], show, through sim-
ulations, that the explicit MPC can outperform control logics
used in the buildings industry and provide performance
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comparable to a controller assuming perfect knowledge of
future disturbances.

Statement of Contributions: with respect to the state-of-
the-art, we: i) compute the explicit state-feedback solution of
a Scenario-based Model Predictive Control (SMPC) for both
temperature and CO2 levels control;

Outline of the manuscript: Section II present the model
of the building, while Section III describes the novel con-
troller. Section IV provides and discusses experimental re-
sults, while Section V eventually summarizes our conclu-
sions and proposes some future directions.

II. BUILDING MODELING

The following thermal model is tailored for the explicit
MPC paradigm, and trades-off the accuracy of the predictions
with the numerical tractability of the control problem. The
model is required to capture the main room temperature
dynamics while keeping the number of states limited. The
requirement on the size of the state is mandatory, since the
off-line computational time for the computation of the MPC
solution increases dramatically with the problem dimension.

We adopt a two states thermal model of a single thermal
zone (or room) using the quantities defined in Table I.
Extensions to whole building enclosures or to room networks
are conceptually straightforward and motivated by the fact
that the overall building energy use is commonly computed
as the sum the energy usages of the single thermal zones [22].

Awin windows area
C heat emission (per occupant)
CCO2,i CO2 concentration of the air inlet
Cp,a air specific heat capacity
G solar heat gain coefficient
gCO2 CO2 emitted per occupant
I incident solar radiation on the windows
ṁvent ventilation massflow
Np number of room occupants
Rae window thermal resistance between the indoor and the out-

door temperature
Raw thermal resistance between the indoor air and the walls
Rwe thermal resistance between the wall and outdoor air
Tair average temperature of the indoor air
Taver equivalent average temperature (accounts for heat transfer

though the walls and external air temperatures)
Text outdoor temperature
Tmr mean radiant temperature of the radiators
Tsa air inlet temperature
Twall average temperature of the walls
∆Th,rad Tmr − Tair
∆Tvent Tsa − Tair

TABLE I
QUANTITIES INVOLVED IN THE BUILDING MODELS.

A. Thermal and CO2 models
We model a thermal zone as a network of two nodes, one

accounting for the dynamics of the air within the zone, and
the other one accounting for the dynamics of the walls. In
formulas,

CaṪair =
Twall − Tair

Raw
+
Text − Tair

Rae

+ CNp +GAwinI +Qvent +Qheat (1a)

CwṪwall =
Tair − Twall

Raw
+
Taver − Twall

Rwe
(1b)

where
• Qvent = ṁventCpa∆Tvent represents the heat flow due to

the ventilation system;
• Qheat = Aradhrad∆Th,rad is the heating flow due to the

heating system (e.g., radiators);
• Taver is an equivalent temperature accounting for the

different temperatures of the zone walls calculated as

Taver =

∑6
i=1 T

i
w,outA

i∑6
i=1A

i
(2)

i.e., as the average of the temperatures on the external
side of the i-th wall, Tw,out, weighted by the i-th wall
area, Ai;

As for the dynamics of the CO2 concentration in the room,
we consider the model in [23], i.e.,

ĊCO2 =
(
ṁCO2

vent CCO2,i + gCO2Np

)
− ṁventCCO2 (3)

where the inlet air concentration CCO2,i is assumed equal to
outdoor CO2 concentration levels.

B. Control-Oriented Modeling

Nonlinearities in the dynamics (1a) and (3) can lead to in-
tractable multiparametric optimization problems. To address
this issue, we derive linear reformulations of (1a) and (3),
which are then discretized with opportune sampling time
∆T . In the next paragraphs we will describe the obtained
state-space linear models of CO2 concentration and room
temperature levels.

State-space model for the CO2 dynamics: we consider
the discrete-time Linear Time Invariant (LTI) system

xCO2
(k + 1) = axCO2

(k) + buCO2
(k) + ewCO2

(k)

yCO2
(k) = xCO2

(k)
(4)

where:
• xCO2 , i.e., the state, is equal to CCO2 − CCO2,i;
• wCO2

, i.e., the disturbance, is equal to the number of
occupants Np;

• uCO2 , i.e., the control input, is defined as ṁCO2
vent · xCO2 ,

hence it hides the bilinear term in (3). Once uCO2(k)
is computed and xCO2

(k) is known, one derives imme-
diately ṁCO2

vent (k) by a simple inversion. Notice that, to
meet the physical bounds on the original control input
ṁCO2

vent (k), uCO2
(k) must satisfy

ṁmin
vent · xCO2

(k) ≤ uCO2
(k) ≤ ṁmax

vent · xCO2
(k). (5)

State-space model for the thermal dynamics: we con-
sider the discrete-time linear system

xT(k + 1) = ATxT(k) +BT(k)uT(k) + ETwT(k)

yT(k) = CTxT(k)
(6)

where
• xT(k), i.e., the state, is a vector containing the temper-

atures of the indoor air and the walls;
• wT(k), i.e., the disturbance, is a vector containing the

outdoor temperature, the solar radiation and internal
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heat gains are due to occupancy, equipments and light-
ings;

• yT(k), i.e., the output, is the measured indoor tempera-
ture at time k;

• uT(k), i.e., the control input, is defined as[
∆Th(k),∆Tc(k),∆uh(k),∆uc(k),∆Th,rad(k)

]
.

The input matrix BT(k) is time varying since it depends on
ṁCO2

vent (k), as illustrated in the following.
In the thermal model (1), the control inputs are the temper-

ature of the supplied air, Tsa, the mean radiant temperature of
the radiators, Tmr, and the massflow ṁvent. These inputs allow
to control two different heat flows, Qvent = ṁventCpa

(
Tsa −

Tair
)

and Qheat = Aradhrad∆Th,rad. We assume the convention
that Qvent is positive when the system requires heating, and
negative when it requires cooling.

Notice then the presence of the bilinear term ṁvent∆Tvent
in Qvent. Notice moreover that ṁvent must be at least equal to
ṁCO2

vent , the latter representing the minimum massflow needed
to maintain optimal CO2 levels.

To hide the bilinear term above and simultaneously ac-
count for the minimum requirements on the massflow levels
we introduce the nonnegative variables ∆Th, ∆Tc, ∆uh and
∆uc such that

∆Th −∆Tc = Tsa − Tair

∆uh −∆uc = ∆ṁvent∆Tvent,

where ∆ṁvent := ṁvent − ṁCO2
vent represents the additional

massflow required for guaranteeing the thermal comfort.
Summarizing, the controllable inputs for (6) are

uT(k) =
[
∆Th(k) ∆Tc(k) ∆uh(k) ∆uc(k) ∆Th,rad(k)

]
.

With these new variables Qvent can be written as

Qvent = ṁCO2
vent Cpa

(
∆Th −∆Tc

)
+ Cpa

(
∆uh −∆uc

)
.

Consider then that the control objective aims to minimize the
thermal energy use, that may be required for either cooling
or heating the space. Hence, instead of considering Qvent,
that can be either positive or negative, we need to model in
the objective function of the MPC optimization problem its
absolute value

∣∣Qvent
∣∣, that can then be written as∣∣Qvent

∣∣ = ṁCO2
vent Cpa

(
∆Th + ∆Tc

)
+ Cpa

(
∆uh + ∆uc

)
.

Once ṁCO2
vent (k) and uT(k) have been computed, Tsa(k),

Tmr(k) and ṁvent(k) can be easily computed by simple in-
versions. Consider also that the input-to-state matrix BT(k) is
time varying, since it accounts for the time-varying ṁCO2

vent (k).
Eventually we can account for the physical bounds on the

original control inputs at each time step k by accounting for
the bounds

Tmin
sa −Tair(k)≤∆Th(k)−∆Tc(k)≤Tmax

sa −Tair(k)(7a)
∆uh(k) ≤ ∆ṁmax

vent (k)∆Th(k) (7b)
∆uc(k) ≤ ∆ṁmax

vent (k)∆Tc(k) (7c)

where ∆ṁmax
vent (k) := ṁmax

vent − ṁ
CO2
vent (k).

III. SCENARIO-BASED EXPLICIT MPC
FOR HVAC SYSTEMS

We detail the proposed control scheme with Section III-
A, which describes the overall architecture and outlines the
algorithm for the on-line implementation of the explicit state-
feedback control law, and with Section III-B, which then pro-
vides the control objectives and formulate the corresponding
MPC problem.

A. Control Architecture and On-line Implementation

Figure 1 depicts the architecture of the implemented con-
trol system. The indoor temperature and air CO2 levels are
measured and then controlled through the ventilation system
and radiators. These devices are actuated using low-level
Proportional Integrative (PI) controllers, which setpoints are
computed by means of our explicit Explicit Scenario-based
Model Predictive Control (ESMPC) scheme.

Room

Ventilation
Unit

Radiators

Low-Level
PI

Low-Level
PI

CO2

ESMPC
Select

ṁCO2

i,quantized

Ti
ESMPC

%vent

%cooling

%heating

Qvent

Qheating

CO2 level and
temperature measurements

ṁCO2
vent

ṁCO2

i,quantized

ṁvent

Tsa

Trad

Fig. 1. Architecture of the control system implemented on the testbed.

To improve the computational tractability of the overall
control problem, we take advantage of the independence of
the CO2 dynamics from the thermal ones and the priority
of CO2 comfort. This allows us to consider two separated
multiparametric subproblems, discussed in Section III-B: i)
the CO2-ESMPC problem (minimize the energy used to
keep CO2 levels in given comfort bounds); ii) the T-ESMPC
problem (minimize energy use to keep temperature levels
in given comfort bounds while preserving the minimum
massflow computed by the CO2-ESMPC controller).

By solving the CO2-ESMPC and the T-ESMPC problems
we obtain explicit state-feedback laws that are expressed as
PWA function of the state x [18], [19]. Hence, the CO2-
ESMPC and T-ESMPC control laws have respectively the
form

uECO2(x) = QECO2
i x+ qECO2

i if HECO2
i x ≤ KECO2

i

uET (x) = QET
j x+ qET

j if HET
j x ≤ KET

j

where the polyhedral sets XECO2
i :=

{
HECO2

i x ≤ KECO2
i

}
and XET

j :=
{
HET

j x ≤ KET
j

}
, with j = 1 . . . NET are

partitions of the set of states, with i = 1, . . . , NECO2 and
j = 1, . . . , NET .

To guarantee that the overall procedure satisfies the re-
quirements on the minimum massflow needed to maintain
comfortable CO2 levels, we proceed as follows: the set of

5203



admissible values of the massflow is partitioned using stan-
dard algorithms (e.g., Lloyd algorithm [24]) and Q quantized
values are computed, ṁCO2

1,quantized, . . . , ṁ
CO2

Q,quantized. Then, for
each ṁCO2

i,quantized, a corresponding Ti-ESMPC problem that
takes ṁCO2

i,quantized as lower bound on the massflow is solved
[15].

The scenario-based controller can be then implemented
on-line according to Algorithm 1.

Algorithm 1 On-line Implementation
1: for k = 1, 2, . . . do
2: measure xCO2(k) and xT(k)
3: compute uECO2

(
xCO2(k)

)
and derive ṁCO2

vent (k)

4: identify the quantized value ṁCO2

i,quantized(k)

5: compute uET
(
xT(k)

)
by using the solution of

the Ti-ESMPC problem and derive the setpoints(
ṁvent(k), Tsa(k), Tmr(k)

)
6: send the computed setpoints to the low-level PI

controllers
7: end for

B. Control Objective

The proposed control strategy aims at optimizing HVAC
operations so that the thermal energy use is minimized while
indoor temperature and CO2 levels are kept in given comfort
ranges.

As suggested in the section above, we formulate two
problems, the CO2-ESMPC problem and the T-ESMPC
problem. Since both problems consider discrete-time linear
models and consider hard constraints on the inputs and
probabilistic constraints on the outputs (CO2 levels and
temperature respectively), we consider an MPC problem for
the control of discrete-time systems of the form

x(k + 1) = Ax(k) +B(k)u(k) + Ew(k)

y(k) = Cx(k),
(8)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the con-
trol input, w(k) ∈ Rr is the stochastic disturbance and
y(k) ∈ Rp is the output. Indeed (8) represents either (4)
or (6), depending on the controller under consideration (CO2-
ESMPC or T-ESMPC).

At each time step k we consider a prediction horizon N
and define

x :=
[
x(k + 1|k)T, . . . , x(k +N |k)T

]T
,

u :=
[
u(k)T, . . . , u(k +N − 1)T

]T
,

y :=
[
y(k + 1|k)T, . . . , y(k +N |k)T

]T
,

w :=
[
w(k)T, . . . , w(k +N − 1)T

]T
,

where x(k+i+1|k) = Ax(k+i|k)+Bu(k+i)+Ew(k+1)
and y(k+ i|k) = Cx(k+ i|k) are the i-steps-ahead state and
output predictions. The dynamics of the predicted output can
be written in compact form as a function of the initial state
x(k), i.e., as

y = CAx(k) + CBu + CEw (9)

where the prediction dynamics matrices CA,CB ,CE can be
easily derived from (8).

We then assume three types of constraints: i) inputs con-
straints of the form umin ≤ Fu(k) ≤ umax; constraints (7b)
and (7c) can be expressed as input constraints; ii) comfort
constraints on the outputs of the form ymin ≤ y(k) ≤ ymax

1); iii) mixed constraints on outputs and disturbances of the
form Gyy(k) +Guu(k) ≤ g; constraints (5) and (7a) can be
expressed as mixed constraints.

Given the fact that both the constraints and dynamics (9)
are linear, we can compactly write constraints on the inputs,
the outputs and mixed constraints as

Gxkx(k) + Guu + Gww ≤ g

Fu ≤ f ,
(10)

with opportune F ∈ Rq×mN , f ∈ Rq , Gw ∈ Rr×pN ,
Gu ∈ Rr×mN , Gxk ∈ Rr×n and g ∈ Rr.

We then assume the possibility of violating the comfort
bounds on the indoor temperature and CO2 levels with a
predefined probability, i.e., formulate output constraints as
the following chance-constrains

P
[
Gxkx(k) + Guu + Gww ≤ g

]
≥ 1− α

with α ∈ [0, 1] being the violation probability level. In these
formulations α represents a tradeoff between performance
and constraint satisfaction.

As mentioned above, our control strategy aims at minimiz-
ing the thermal energy use. This means that the cost function
in the proposed MPC problem formulations is the energy
use over the whole prediction horizon,e.g.,

∑N−1
k=0

(∣∣Qvent
∣∣+

Qheat
)

in the T-ESMPC problem. Denoting by cTu∆k, c ∈
RmN , the cost vector for both the T-ESMPC and the CO2-
ESMPC and ∆k the sampling period, the general control
problem can be formally stated as

min
u

cTu∆k

s.t. P
[
Gxkx(k) + Guu + Gww ≤ g

]
≥ 1− α

Fu ≤ f .

(11)

Chance constrained problems like (11) are generally in-
tractable unless the uncertainties follow specific distributions,
e.g., Gaussian [10].

Since Gaussian assumptions are rather restrictive, specially
to handle strongly heteroskedastic processes like occupancy
patterns, we propose to overcome this limitation and ob-
tain a solvable MPC problem by applying randomized ap-
proaches [25], [26]. These approaches do not require to spec-
ify the probability distribution of the uncertainties, but just
the possibility to extract i.i.d. samples, also called scenarios,
from their distribution. In [25], [27] the minimum number
of samples guaranteeing that considering constraints (??)
will lead to a feasible solution for Problem (11) with a
given confidence level is provided. Recently the scenario
approach has been applied in an MPC framework [28], where
authors have shown that bounds on the number of scenarios

1We incidentally notice that comfort bounds are usually time-varying.
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can be improved if the problem contains multiple chance
constraints (e.g. MPC problems), or if a chance constraint
belongs to a special class of constraints (e.g. linear or
quadratic constraints). In these cases the conservativeness of
the scenario solution can be reduced. Moreover, the authors
in [29] show that the theory can be extended to the case
where a given number of sampled constraints are discarded
a posteriori, so that the objective value achieved by the
scenario solution can be improved.

Hence, as in [9], we model the uncertainty in occu-
pancy levels, outdoor temperatures, and incident solar radi-
ation as independent stochastic processes and estimate their
probability distributions from historical data. From these
learned distributions, we generate a set of S i.i.d. scenarios,
w1, . . . ,wS , where wi :=

[
wT

i (0), . . . , wT
i (N − 1)

]T
, i =

1, . . . , S. Then the chance-constrained problem (11) can be
approximated with the following deterministic problem

min
u

cTu∆k

s.t. Gxkx(k) + Guu ≤ g − max
i=1,...S

Gwwi

Fu ≤ f ,

(12)

where the max operator is applied element-wise to Gwwi.
Problem (12) can be treated as a multiparametric linear

problem by considering the vector x(k) as a vector of
parameters [18], [19]. Once the multiparametric problem has
been solved off line, assuming that a full measurement of
the state x(k) is available at the current time k, the explicit
solution is available as a piecewise affine function of x(k)

u(k) = Qix(k) + qi if Hix(k) ≤ Ki (13)

where the polyhedral sets Xi := {Hix ≤ Ki}, with i =
1 . . . N are a state space partition.

The parameters of the PWA function in (13), Qi, qi and
the polyhedral sets Xi, can be computing by using the MPT
toolbox [30], where a parametric programming solver is
implemented.

We remark that the constraints in Problem (12) can be soft-
ened to guarantee that the problem with sampled constraints
is always feasible.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We consider a laboratory room of approximatively 80m2

in the ground floor of the Q-building of the Royal Institute
of Technology (KTH) campus in Stockholm. The room has
a concrete heavyweight structure with limited glass surface
and one external wall, facing South-East, which is partially
shaded by a parking lot. As summarized in Figure 2, its
HVAC system is composed of two parts: the ventilation
system, supplying fresh air, and a radiator heating system.

Fresh air is supplied by a central balanced ventilation
system that operates only between 7:00 and 16:00 during
work days. The ventilation system pre-conditions fresh air
from outside and distributes it at a temperature of about 20-
21°C. Part of this generated air flow is then conveyed directly
into the room, while part can be further cooled by a cooling

Fig. 2. Scheme of the HVAC system of the testbed.
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Fig. 3. Validation of the air temperature model (1a) against measured data.

coil. The controllable actuators of the ventilation system are
three: two dampers, that regulate the opening of the inflow
and outflow ducts, and a valve, that regulates the temperature
of the air chilling circuit. When the central fan is on, a
minimum level of the air flow rate is supplied independently
of the occupancy level in the room.

The heating system uses instead radiators as final units.
The hot water circulating in them is provided by a district
heating system and has a temperature that is determined by
the external temperature conditions. The unique controllable
actuator is the valve regulating the flow of the hot water.

Figure 3 validates the thermal model (1a) by comparing
measured and simulated indoor temperature driven by the
same disturbances and the same control inputs for a time
horizon of 9 hours (which is the prediction horizon con-
sidered in the ESMPC problem), starting from the same
measured initial condition. The model appears capable of
capturing the thermal dynamics in the room with an accept-
able accuracy. Indeed, the difference between the measured
and the estimated indoor temperature is always smaller than
1 °C. Moreover seven days have been simulated, resulting
in similar performance and an average Root-Mean-Square
Error of Prediction (RMSEP) equal to 2.19.

The model can be further improved by analyzing the
measured and simulated indoor temperature under different
weather and occupancy profiles.
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B. Evaluation of Experimental Results

We here compare two different controllers i) the current
practice, a simple control logic with PI control loops and
switching logic, indicated by the acronym “AHC” (from
Akademiska Hus, the company managing the building of the
testbed); ii) our ESMPC.

For the latter we consider a prediction horizon of 9
hours and a sampling time of 10 minutes, hence N = 54.
The optimal control laws are computed with Matlab on an
Intel(R) Core(TM)i7-2600 CPU, 3.40 GHz and 8 GB of
RAM. It takes 20 minutes on average to compute a optimal
control law as a PWA function consisting of 800 polyhedra
in the set of admissible initial conditions. After computing
all the required state feedback control laws (according the
control architecture 1), the profiles of the CO2levels, the
indoor temperature and the control inputs are obtained by
applying Algorithm 1.

We aim at testing the performance of our ESMPC in terms
of energy use and comfort as well as the effect of a different
number of scenarios in real experiments. The controllers are
tested on three consecutive days in March 2014, 18-20, for
9 hours each day, from 7:00 to 16:00. The comfort range of
the indoor temperature has been set between 20 °C and 22
°C.

Figure 4 shows then the experimental results. We run the
AHC on the 19th, the ESMPC with 10 scenarios on the 18th
and the ESMPC with 1000 scenarios on the 20th. Then we
compare the AHC with the ESMPC with 10 scenarios in Test
1 and with the ESMPC with 1000 scenarios in Test 2.

Each column of Figure 4 refers to one of the tests
above, while each row depicts the disturbances (i.e., outdoor
temperature and occupancy), the control inputs (i.e., supply
air temperature and massflow) and the controlled indoor
temperature and CO2 levels. The horizontal axis reports the
time period of the experiments, from 7:00 to 16:00. Despite
the cold season, both controllers in both tests require cooling
when there is people in the room. The demand for cooling
during the cold season can be explained by the relatively high
internal gains, due to occupancy and equipment, and by the
limited and moderately insulated external walls surface. This
implies that the thermal indoor dynamics are significantly
affected by the occupancy patterns.

Notice that on the 18th and on the 20th, the days when
the ESMPC was applied, both the outdoor temperature and
the occupancy was higher compared to the day when AHC
was employed. In particular, the occupancy was significantly
higher on the 20th, after lunch time. Despite these more
challenging disturbances, the temperature profiles resulting
from the ESMPC are very similar to the ones obtained by
AHC. The ESMPC is capable to keep the temperature profile
close to the upper bound, although the ESMPC with 10
scenarios violated this bound more often.

Despite the temperature profiles resulting form the two
controllers being indeed close, the ESMPC achieved this
result at a significant lower energy cost. This is a promising
performance, especially considering the higher occupancy

and outdoor temperatures that the ESMPC needed to com-
pensate. This can be clearly seen by looking at the required
massflow in Figure 4: the AHC turns on/off the cooling
system quite often, while the ESMPC uses the cooling
system fewer times, i.e., only when really convenient. E.g.,
consider Test 2 at 14:30, and notice how there is a peak in
the massflow that tries to compensate the increased outdoor
temperature and the upcoming peak in the occupancy (8
people).
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Fig. 4. Disturbances, CO2 levels, indoor temperatures and control inputs
profiles for high- and low-occupancy experimental tests. The shaded areas
represent the comfort bounds.

We consider the total energy usage as performance in-
dex, calculated as Etot = cpa

∑N−1
k=0 ṁvent(k)

∣∣∣Tsa(k) −

Troom(k)
∣∣∣∆k [kWh]. Numerically, for the ESMPC Etot =

0.77kWh on the 20th, and Etot = 0.79kWh on the 18th, while
for the AHC Etot = 1.04kWh, approximatively 31 − 33%
higher.
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V. CONCLUSIONS AND FUTURE STUDIES

In this work we propose an Explicit Scenario-based Model
Predictive Control (ESMPC) controller for Heating, Ven-
tilation and Air Conditioning (HVAC) systems, aiming to
diminish the energy required to maintain indoor thermal
comfort and acceptable CO2 levels.

To account for the probabilistic nature of the disturbances
affecting the building, we endowed the Model Predictive
Control (MPC) scheme with a learning module that infers
the statistics of the disturbances from the data without
requiring any Gaussian assumption for the statistics of the
disturbances. Since implicit MPCs schemes requires solving
on-line optimization problems and dedicated hardware, it can
be prohibitive to integrate them into a building management
system. To cope with these problems we developed explicit
versions of the previously implemented strategies, which lead
to controllers with simpler hardware and software require-
ments.

Our explicit approach is, in our opinion, more advanced
and complete than the explicit MPC controllers for HVAC
schemes currently existing in literature. Indeed, we both
consider dynamics of CO2 and temperature, and (at the same
time) consider a scenario-based approach, that accounts for
the uncertainties on the forecasts of the disturbances.

The strategy has then been implemented and tested on a
real room of a university building, showing that the resulting
actuation laws can be more effective than the current practice.

The promising results achieved in real experimentations
motivate efforts to improve the method, in particular by
applying the procedure and the results illustrated in [29],
[28]

A further important future work is towards the generaliza-
tion of the control scheme to the case of whole buildings,
which leads to increased modeling effort. Another relevant
direction is to investigate how it is possible to adapt the
Piecewise Affine (PWA) control laws when the statistics of
the disturbances are updated.
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