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Abstract

Heating, Ventilation and Air Conditioning (HVAC) sys-
tems play a fundamental role in maintaining acceptable ther-
mal comfort and Indoor Air Quality (IAQ) levels, essentials
for occupants well-being. Since performing this task implies
high energy requirements, there is a need for improving the
energetic efficiency of existing buildings. A possible solu-
tion is to develop effective control strategies for HVAC sys-
tems, but this is complicated by the inherent uncertainty of
the to-be-controlled system. To cope with this problem, we
design a stochastic Model Predictive Control (MPC) strategy
that dynamically learns the statistics of the building occu-
pancy and weather conditions and uses them to build proba-
bilistic constraints on the indoor temperature and CO2 con-
centration levels. More specifically, we propose a random-
ization technique that finds suboptimal solutions to the gen-
erally non-convex stochastic MPC problem. The main ad-
vantage of this method is the absence of apriori assumptions
on the distributions of the uncertain variables, and that it can
be applied to any type of building. We investigate the pro-
posed approach by means of numerical simulations and real
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tests on a student laboratory, and show its practical effective-
ness and computational tractability.

1 Introduction
It is well known that Heating, Ventilation and Air Condi-

tioning (HVAC) systems, necessary technologies to guaran-
tee acceptable Indoor Air Quality (IAQ) and thermal comfort
levels, come with high energy requirements. How to reduce
the energy use of HVAC systems, while satisfying occupants
comfort requirements, is a relevant research topic.

An effective controller for HVAC systems should incor-
porate time-dependent energy costs, bounds on the control
actions, targets on the IAQ and thermal conditions, as well
as account for system uncertainties, i.e., weather conditions
and occupancy. By doing so the buildings thermal storage
capacities can be effectively utilized.

A natural scheme that achieves the systematic integration
of all the aforementioned elements is the so-called Stochastic
Model Predictive Control (SMPC) [19]. Since the stochas-
tic laws ruling the occupancy and weather patterns are ge-
ographically and time varying, it is desirable that the con-
troller can learn the statistics of the random variables from
the experience.

Literature review: the literature on Model Predictive
Control (MPC) for indoor climate control is flourishing.
Several studies show that predictive controllers may signif-
icantly decrease energy consumptions when endowed with
real-time measurements, weather conditions, and occupancy
forecasts [7, 16, 24, 10, 9]. This is confirmed by experimen-
tal results on real buildings, where MPCs yield better en-
ergy use and comfort levels performance than current prac-
tices [26, 12].

There is nonetheless still room for improvements: these
controllers consider deterministic forecasts for the distur-
bances, and disregard information on the statistics on the
unavoidable forecasts errors. A common opinion is that ac-
tually this is an issue: as current standards explicitly state,
rooms temperatures should be kept within a comfort range
with a predefined probability [2]. Thus, building climate
control leads naturally to probabilistic constraints.

A stochastic version of MPC including probabilistic con-
straints can address this issue and explicitly account for sys-
tem uncertainties. Several SMPC schemes with probabilis-
tic constraints, generally called chance constraints, have al-
ready been proposed in literature [15, 17, 21, 18]. E.g., [18]



incorporates stochastic occupancy models within the con-
trol loop, while [15, 17] propose stochastic predictive build-
ing temperature regulators where weather and load distur-
bances are modeled as Gaussian processes. The resultant
nonlinear program is then solved with a tailored sequential
quadratic programming which exploits the sparsity of the
quadratic sub-problems. Also [21] integrates weather predic-
tions into an SMPC. Here the control action is computed by
solving a non-convex problem which exploits linearizations
around nominal trajectories, and then by applying a distur-
bance feedback. Remarkably, [21] uses deterministic pre-
dictions of the internal gains; the only prediction for which
uncertainties (assumed Gaussians) are accounted for is the
weather one. Actually this is a common feature of all the
SMPC schemes described in this paragraph: disturbances are
Gaussians and additive processes. Further, generally the pro-
posed SMPC controllers do not explicitly control the indoor
air quality considering the uncertainty in the occupancy.

At the best of our knowledge, only a few proposals depart
from these Gaussian assumptions. One is our [22], where
the controller exploits a scenario-based tractable approxima-
tion of the chance constrained MPC problem, and where the
scenarios are i.i.d. samples extracted from general probabil-
ity distributions. The other one is [28], where the bilinear
building model is iteratively linearized around nominal tra-
jectories and where occupancy scenarios are sampled from
a set of measurement data collected in eight single offices
equipped with motion sensors.

The numerical simulations performed in [28] suggest
that scenarios-based techniques outperform other predictive
methods and that the number of scenarios required to obtain
reliable solutions can be prohibitive for the building case,
while using a small number of scenarios fails in obtaining
effective actuation levels.

Statement of contributions: our aim is to develop ef-
fective control laws that do not require demanding instal-
lation costs. The big vision is to pair advanced control
schemes with learning technologies, and obtain easily de-
ployable HVAC control schemes. Here we move along this
direction, and propose a stochastic MPC for HVAC systems,
which employs a learning module that continuously and dy-
namically infers the statistics of the uncertainties from real
data. The results from the learning module are incorporated
in an MPC problem with probabilistic constraints on the in-
door temperature and CO2 concentration levels.

The control target is to minimize the energy use while
satisfying both thermal comfort and air quality requirements.

Randomized techniques are applied in order to find
suboptimal solutions to the generally non-convex chance-
constrained problem; in the rest of the paper we indicate this
novel scheme with the acronym Randomized Model Predic-
tive Control (RMPC).

With respect to the existing literature we introduce some
major novelties:

• we show that appying a randomized technique to the
chance constrained MPC for HVAC systems can im-
prove the control of these systems;

• we extend the statistics learning scheme by adding

some parametric families as plausible distributions for
the stochastic variables;

• we present results of the implementation of the scheme
on a real testbed located in Stockholm, Sweden.

Organization of the manuscript: in Section 2 we presents
the predictive controller and the related system model. Sec-
tion 3 outlines instead the learning module that dynamically
infers the statistics of the uncertainties from actual data. Sec-
tion 4 provides and discusses the experimental results, and
Section 5 eventually summarizes our conclusions and pro-
poses some future extensions.

2 Implementation of Randomized MPC for
HVAC systems

In this section we first describe the model of the system,
then we outline the structure of the MPC problem.

The inputs of the overall MPC scheme are, at every time
step, weather conditions, occupancy scenarios, and measure-
ments of the current state of the system. The output is in-
stead a heating, cooling and ventilation plan for the next N
hours, where N is the prediction horizon. Conforming with
the MPC paradigm, only the first step of this control plan is
applied to the HVAC system. After that, the whole procedure
is repeated. This introduces feedback into the system, since
the optimal control problem is a function of the current state
and of any disturbance acting on the building at the current
time step. More precisely, the outputs computed at each time
k are a mass air flow rate ṁventing(k), a ventilation system air
temperature Tsa(k), and a radiators mean radiant temperature
Tmr.

The independence of the air quality dynamics from the
thermal ones allow us to decouple the control of the temper-
ature and of the air quality in two separated subproblems: (
i) the IAQ-RMPC, which aims at satisfying the required air
quality at a minimum energy use, and computes the optimal
sequence of the mass air flow rates over a given prediction
horizon; ( ii) the T-RMPC, which handles the indoor tem-
perature. By doing so, the computational tractability of the
overall control problem will be improved.

Since the air quality requirements have priority over the
thermal comfort, the solution computed by the IAQ-RMPC
lower bounds the air flow rate of the T-RMPC.

2.1 Modeling
Since the overall building energy usage is commonly

computed as the sum the energy usages of the single thermal
zones [10], here we focus on the control of a single thermal
zone (or room). As the structure of this subsection suggests,
we employ two different models: one for the thermal evo-
lution of the environment, and one for the dynamics of the
concentration of CO2.

Model for the thermal dynamics: we consider a ther-
mal Resistive-Capacitive (RC) network of first-order sys-
tems, where the nodes are the states representing the room,
the walls, the floor and the ceiling temperatures. Each state
is associated to a heat transfer differential equation. We as-
sume that we can control two different heat flows: Qventing,
representing the contribute due to the ventilation system, and
Qheating, representing the radiators. We consider the outside



temperature, the radiation, the internal gains, the heat flows
due to occupancy, equipments and lightings as disturbances.
See [22] for additional details.

The control inputs are expressed as

Qventing = ṁventingcpa
(
∆Th−∆Tc

)
= cpa(uh−uc), (1)

Qheating = Aradhrad∆Th,rad = Aradhrad
(
Tmr−Troom

)
, (2)

where ṁventing is the ventilation mass flow, cpa is the specific
heat of the dry air, ∆Th =

(
Tsa−Troom

)
and ∆Tc =

(
Troom−

Tsa
)

are respectively the temperature difference through the
heating and cooling coils, Tsa is the temperature of the air
supplied by the ventilation system, Arad is the emission area
of the radiators, and hrad is the heat transfer coefficient of the
radiators and Tmr is the mean radiant temperature of the ra-
diators. Notice that cpauh(k) and cpauc(k) model the portion
of the ventilation heat flow due to respectively heating and
cooling.

We model the room temperature dynamics with the
discrete-time Linear Time Invariant (LTI) system

xT(k+1) = ATxT(k)+BTuT(k)+ETwT(k)
yT(k) =CTxT(k),

(3)

where xT(k) is the state vector containing the room temper-
ature and the inner and outer temperatures of all the walls,
uT(k) :=

(
uh(k),uc(k),∆Th,rad(k)

)
is the input vector, wT(k)

is the vector of random disturbances containing the outside
temperature, the solar radiation and the internal heat gain
at time k, and the matrices AT,BT,ET,CT are of appropriate
sizes. The output yT(k) is the room temperature at time k.

Hence, the mass air flow rate and the supply air tempera-
ture at each k are easily computed from the obtained values
of either uh(k) or uc(k) considering both the requirements on
the air quality and the comfort requirements on the supply
air temperature.

Model for the CO2 concentration dynamics: the model
is derived from a CO2 balance equation accounting for the
fresh air from the ventilation system and the amount of CO2
generated per occupant. The state of the model is the non-
negative difference between the CO2 concentration in the
room and inlet air CO2 concentration (assumed equal to
outdoor CO2 concentration), and is indicated with xCO2 =
∆CO2. We assume that we can control the mass air flow
from the ventilation system, while the number of occupants
is considered a disturbance.

The resulting model is bilinear in the state and in the con-
trol input. To simplify the problem formulation we then de-
rive an equivalent linear model by replacing the bilinear term
ṁventing · xCO2 with uCO2 and by adding the constraint

ṁmin
venting · xCO2(k)≤ uCO2(k)≤ ṁmax

venting · xCO2(k) (4)

on the new input uCO2(k). These constraints guarantee that
the physical bounds on the control input in the original non-
linear model are always satisfied. The original input, at each
k and for xCO2(k)> 0, can eventually be obtained as

ṁventing(k) =
uCO2(k)
xCO2(k)

.

Then, the CO2 concentration dynamics can be described by
the discrete time Linear Time Invariant (LTI) system

xCO2(k+1) = axCO2(k)+buCO2(k)+ ewCO2(k)
yCO2(k) = xCO2(k).

(5)

2.2 Randomized MPC
Here we describe the design of the two controllers, Tem-

perature (T)-RMPC and IAQ-RMPC, which use models (3)
and (5) respectively.

Since both models are LTI and both controllers need to
handle hard constraints on the inputs and probabilistic con-
straints on the outputs, we can uniform the notation and de-
velop both the controllers following similar steps.

We thus indicate both models simultaneously with

x(k+1) = Ax(k)+Bu(k)+Ew(k)
y(k) =Cx(k),

(6)

where x(k)∈R n, u(k)∈R m, w(k)∈R r and y(k)∈R p. The
model in (6) represents either (3) or (5), depending on the
controller under consideration (T-RMPC or IAQ-RMPC).
We notice that the bound on the room temperature are gen-
erally time-varying, since the comfort levels can be relaxed
during no-occupancy periods.

Let thus xt be the current state of system (6). The output
trajectories over the prediction horizon N can then be written
as

y(t + k|t) =CAkxt +
k−1

∑
i=0

CAk−i−1Bu(i)+
k−1

∑
i=0

CAk−i−1Ew(i).

(7)
Given (7), we can then express the output YYY t ∈ RpN over the
whole prediction horizon as a function of the initial state xt
as YYY t = CCC(AAAxt +BBBUUU t +EEEWWW t),where the matrices AAA, BBB, EEE
and CCC are built applying (7) recursively N times, UUU t ∈ RmN

are the control inputs, and WWW T ∈ RrN and the disturbances
over the prediction horizon.

Letting GGGx := [CCCAAA], GGGu := [CCCBBB], GGGw := [CCCEEE], g̃gg :=[
−ymin(k)T · · ·− ymin(k)Tymax(k)T · · ·ymax(k)T

]T, ggg := g̃gg −

GGGxxt , FFF :=
[
−III
III

]
, fff :=

[
−uT

min · · ·−uT
min uT

max · · ·uT
max
]T,

with 000 and III opportunely dimensioned zero and identity ma-
trices, the inputs and outputs constraints over the whole pre-
diction horizon N become

GGGuUUU t +GGGwWWW t ≤ ggg, FFFUUU t ≤ fff .

Problem 1 (Chance Constrained MPC for HVAC Control)
The MPC problem can be formulated as

min
UUU t

cccTUUU t∆k

s.t. P [GGGuUUU t +GGGwWWW t −ggg≤ 0]≥ 1−α, FFFUUU t ≤ fff

where 1−α is the desired probability level for constraint
satisfaction, ∆k is the sampling period, cccTUUU t is the energy
use vector over the whole prediction horizon, ccc ∈ RmN is
the cost vector, containing either only ones for the IAQ-
RMPC case, or the specific heat of the dry air cpa and the



product Aradhrad between the emission area and the heat
transfer coefficient of the radiators for the T-RMPC case.

Chance constrained problems like 1 are generally in-
tractable unless the uncertainties follow specific distribu-
tions, e.g., Gaussian or log-concave; in these cases, it is pos-
sible to obtain equivalent convex –and thus computationally
efficient– reformulations [14].

However, as described later, Gaussian assumptions are
rather restrictive. To overcome this limitation, but still obtain
a solvable MPC problem, we propose to apply randomized
approaches [3], that do not require the specification of par-
ticular probability distributions for the uncertainties but only
the capability of randomly extracting from them.

The approach is as follows: let WWW t,1, . . . ,WWW t,M be a set
of M i.i.d. disturbances samples (called scenarios), WWW t,i :=[
wT

i (t), . . . ,w
T
i (t +N−1)

]T, i = 1, . . .M. Then, the chance
constraints in Problem 1 are replaced with the following set
of deterministic constraints

GGGuUUU t +GGGwWWW t,i−ggg≤ 000, i = 1, . . . ,M.

Since the only constraint that is required to be satisfied is

GGGuUUU t ≤ ggg− max
i=1,...M

GGGwWWW t,i,

where the max applies element-wise to GGGwWWW t,i, most of the
constraints in (8) are redundant.

Letting d = mN be the number of decision variables, to
choose the number of scenarios M to be generated one may
exploit the sufficient condition

M ≥ 2
α

(
ln
(

1
β

)
+d
)
, (8)

that guarantees that solving constraints (8) will lead to a fea-
sible solution for Problem 2 with a confidence level (1−β)∈
(0,1) [3, 4] (with β an user-defined parameter).

Further, to guarantee that the problem with sampled con-
straints is always feasible, we soften the constraints in (8) by
introducing the slack variables s(k) ∈ Rp at each time step
k. The number of possible constraint violations can then be
tuned by introducing a parameter that weights the slack vari-
ables in the objective function. If the optimal solution can be
obtained without violations of the softened constraints, the
slack variables will be set to zero. The designer can thus con-
siderably penalize constraint violations by assigning to the
weighting factor a value that is orders of magnitude greater
than the other coefficients parameters.

Eventually we thus formulate the random convex problem
embedded in the MPC scheme as
Problem 2 (RMPC for HVAC Control)

min
UUU t

cccTUUU t∆k+ρ111Tsss

s.t. GGGuUUU t ≤ ggg+ sss−maxi=1,...M GGGwWWW t,i, FFFUUU t ≤ fff
(9)

where sss is the vector containing all the slack variables, ρ

is the weight on the slack variables, and 111 is a matrix of ones
with appropriate dimensions.

Our experience indicates that (8) may be overly pes-
simistic. E.g., we ran numerical simulations with α = 0.05

and β = 0.001 and computed the empirical probability of
constraint violation over 2400 different i.i.d. instances of the
random convex problem (2). Applying condition (8), we set
M = 3157 and empirically reported a constraints violations
probability of 0.0044. Halving the indication given by (8)
(M = 1579) instead led to an empirical probability of con-
straint violations of 0.042, much closer to the confidence
level required initially.

Further, when compared to an ideal case endowed with
error-free forecasts, used as a theoretical benchmark, our
RMPC yields an almost neglectable amount of violations of
the thermal bound and an increase of only 2.5% in the energy
use.

3 Learning how to generate the scenarios
We now describe the approach used to learn the scenarios

generation rules used by the above RMPC strategy. We start
motivating the technological choice, then briefly introduce
the mathematical concepts and the theory used.
3.1 Motivations

To model the distributions of the disturbances a first ap-
proach is to apply apriori considerations, e.g., physics based,
that do not account for the actual measurements seen in the
field. An alternative paradigm is instead to learn from the
experience. If correctly implemented, the learning-based ap-
proaches give robustness and adaptability to different en-
vironments, necessary qualities if the technology wants to
reach the market.

But how to do this learning step? As reported in the
literature review, a classical approach is to pose Gaussian-
ity assumptions, and then exploit the data to estimate the
means and autocovariances. Unfortunately, Gaussianity in-
duces limitations in the kind of dependencies that can be cap-
tured. I.e., Gaussianity restricts the plausible dependencies
in the tails of the marginal distributions, see Figures 1 and 2
and their captions.

Figure 1. Samples from bidimensional Clayton (left) and
Gaussian (right) copulas with uniform marginal densi-
ties. The Clayton samples (x,y) show strong left-tail de-
pendency (x small induces y small) but weak right-tail de-
pendency (x big does not induce y big). Gaussian samples
instead have the same degree of dependency for both left-
and right-tails.

Another classical approach is to represent the forecast
quantities using Markov chains formalisms, but this requires
some form of discretization processes (e.g., temperatures
that may take values only on multiples of 0.5°C). Our opin-
ion is that it is preferable to do not treat random processes
like temperature or solar radiations as discrete quantities but
rather maintain their natural continuous nature.



Figure 2. Effect of different left- and right-tail depen-
dencies in time series. The Clayton samples x(k) (left)
show small variability when their value is small, and big
variability when their value is big. The Gaussian sam-
ples (right) instead show an uniform variability over the
whole range of values.

We thus consider copulas, mathematical objects famous
specially in finance, hydrology, and wind forecasting, that
naturally capture every kind of dependence, allow far more
flexibility than Gaussian processes assumptions, can manage
both continuous and discrete random processes, and come
with robust, tested and reliable learning algorithms.

The drawbacks are in the major computational require-
ments needed to handle the generation of scenarios w.r.t.
Gaussian cases; nonetheless the feeling is that this is not any-
more a concern, given the technological advancements in the
capabilities of modern processors. Moreover, although theo-
retical foundations of copulas might seem complex, practical
implementations and estimations are relatively straightfor-
ward. For more complete treatments on the subject we send
the interested reader to [13, 20, 27]. For some specialized lit-
erature on copula methods for forecasting multivariate time
series we suggest instead [23].
3.2 Notation and basic definitions

We use P [∗] to indicate the probability of the generic
event ∗. Letting w(k) be a generic random variable of inter-
est, we denote its Cumulative Distribution Function (CDF)
with Fw(k)(ak) := P [w(k)≤ ak], and its quantile with

F−1
w(k)(uk) := inf

ak

{
ak | Fw(k)(ak)≥ uk

}
. (10)

We recall that F−1 is the inverse of F in the sense that
if Fw(k)(ak) is absolutely continuous and strictly mono-
tone then ak = F−1

w(k)

(
Fwk(ak)

)
for all ak. We moreover

recall the so-called probability integral transform, that is
that particular property ensuring every continuous random
variable w(k) ∼ Fw(k)(ak) to be transformable into ωk =
Fw(k)(w(k)) ∼ U [0,1], i.e., an uniform r.v. Letting www :=
[w(1), . . . ,w(K)] be a generic random vector of interest, we
denote its joint CDF with

Fwww(a1, . . . ,aK) = P [w(1)≤ a1, . . . ,w(K)≤ aK ] . (11)

Given (11), we call Fw(k)(ak) the marginal distribution of
w(k).
3.3 Copulas

A copula is simply a function from the unitary hyper-
cube to the unitary segment, i.e., C : [0,1]K 7→ [0,1], that sat-
isfies three conditions: (i) C(1, . . . ,1,uk,1, . . . ,1) = uk for

every k and uk ∈ [0,1]; (ii) if at least one uk is zero then
C(u1, . . . ,uK) = 0; (iii) C is a K-increasing function. In
words, a copula is a K-dimensional joint CDF of a random
vector whose scalar components have all uniform marginals.
I.e., every copula is an opportune CDF

C(u1, . . . ,uK) = P [ω(1)≤ u1, . . . ,ω(K)≤ uK ] (12)

where ω(k) ∼ U [0,1], for each k. Thus every different C
can be considered a different way to impose dependencies
between a set of K random variables ω(k) that, when consid-
ered by themselves, are uniformly distributed in [0,1].

The previous concept can be extended to handle generic
r.v.s: due to the probability integral transform, each ω(k) can
be considered the transformation of an other w(k), i.e., one
can think that ωk =Fw(k)(w(k)). This means that (12) can be
rewritten as follows: choose K generic continuous marginals
Fw(1)(·), . . . ,Fw(K)(·), and let

C(u1, . . . ,uK)=P
[
Fw(1)(w(1))≤ u1, . . . ,Fw(K)(w(K))≤ uK

]
.

(13)
Since Fw(k)(w(k))≤ uk is equivalent to w(k)≤ F−1

w(k)(uk), it
follows that

C(u1, . . . ,uK)=P
[
w(1)≤ F−1

w(1)(u1), . . . ,w(K)≤ F−1
w(K)(uK)

]
.

(14)
Let then ak = F

−1
w(k)(uk). This implies uk = Fw(k)(ak), and

thus

Fwww(a1, . . . ,aK) = P [w(1)≤ a1, . . . ,w(K)≤ aK ]

= C
(
Fw(1)(a1), . . . ,Fw(K)(aK)

)
.

(15)

Thus if the random variables are continuous 1 one
can always decompose the joint probability distribution
Fwww(·, . . . , ·) in two distinct terms: the set of marginals
Fw(1)(·), . . . ,Fw(K)(·), that describe the statistical behav-
ior of the random variables w(k) when considered inde-
pendently, and the copula C, that captures the statistical
dependency between the various w(k). To summarize in
words, copulas allow the researchers to specify separately
the marginal distributions and the dependence structure,
without losing any flexibility in the model, as instead Gaus-
sian processes do.

3.4 Learning copulas
Assume to have measured N K-dimensional vectors wwwn =

[wn(1), . . . ,wn(K)] from some past observations (e.g., exter-
nal temperatures for several days). One may thus use the N
samples www1, . . . ,wwwN to learn the joint CDF Fwww(a1, . . . ,aK),
and then use this estimated CDF to generate the scenarios
needed by the RMPC. As said before, our approach is to
learnFwww(a1, . . . ,aK) by exploiting the copula - marginals de-
composition.

1Incidentally, we recall that Sklar’s representation theorem [25] ensures
that if the w(k)’s are continuous random variables then the C in (15) exists
unique. If the random variables are mixed then the uniqueness is not en-
sured anymore, while the existence is preserved. This means that removing
the continuity assumptions leads to complications when proving theoretical
results, but does not affect the effectivity of practical and empirical estima-
tion schemes.



The learning step can now be performed constructing
empirical copulas and marginals directly from the data, as
in [22]. The empirical method nonetheless suffers whenever
the wn(k) are not i.i.d. In this case it is preferable to let the
various distributions (both marginals and the copula) belong
to some parametric family, and make this dependence ex-
plicit by writing the joint CDF for www = [w(1), . . . ,w(K)] as

C
(
Fw(1)(a1 ; βββ1), . . . ,Fw(K)(aK ; βββK) ; θθθ

)
. (16)

(16) specifies that the marginals Fw(k) and the copula C de-
pend respectively on the parameters βββk and θθθ. For a through
list of possibilities see, e.g., [20].

Specifying probability distributions in parametric forms
like (16) induces two questions, addressed in the next sub-
sections:

1. given one specific parametric family for the Fw(k)’s and
one specific family for C, how should one estimate βββk
and θθθ from the data?

2. given various different parametric families for the
Fw(k)’s and for C, how should one choose which is the
best family from the data?

3.4.1 Learning the parameters from the data
Delegating to the specific literature for more detailed de-

scriptions, we notice that this task is usually solved using
Maximum Likelihood (ML) approaches. I.e., denoting the
likelihood of the dataset of the measurements www1, . . . ,wwwN as
a function of some unknown parameters

L (www1, . . . ,wwwN ; βββ1, . . . ,βββK ,θθθ) (17)

then one aims to find that particular vector of βββ
∗
1, . . . ,βββ

∗
K ,θθθ

∗

that maximizes L . We notice that, thanks to the separation
between marginals and dependence introduced by the cop-
ulas formalism, it is often numerically convenient to adopt
inference functions for margins approaches [13], i.e., esti-
mate the βββ

∗
k’s (the marginals) separately by maximizing the

marginal likelihood

N

∑
n=1

(
∂Fw(k)(ak ; βββk)

∂ak

∣∣∣∣
wn(k)

)
(18)

with respect to βββk, then insert these βββ
∗
k in (17), and then even-

tually find the best θθθ.
We notice that these maximization steps are usually per-

formed numerically by means of Newton or quasi-Newton
methods, and that they can be performed online, i.e., incre-
mentally as soon as new data arrive [11].
3.4.2 Selecting the proper copula family

Every particular choice for C induces a particular sta-
tistical dependency among the various w(k): since there is
no always-valid solution, each to-be-modeled quantity needs
tailored considerations. Sending back the interest reader
to [8, 5, 27, 1], we report that given a dataset www1, . . . ,wwwN
and two parametric copulas C1 (· ; θθθ1), C2 (· ; θθθ2) as plausi-
ble hypotheses, then an approach for deciding which one to
choose is to: (i) start computing an empirical copula Ĉ from
the data; (ii) compute the optimal (given the data) parame-
ters θθθ

∗
1, θθθ

∗
2 for respectively C1 and C2; (iii) choose between

C1 and C2 that C j, j = 1,2, that is closer to Ĉ in terms of an
opportune metric, e.g., the quadratic residuals

N

∑
n=1

(
Ĉ(wn(1), . . . ,wn(K))−C j

(
wn(1), . . . ,wn(K) ; θθθ

∗
j
))2

.

3.5 Extraction of samples from copulas
To extract a i.i.d. sample from a copula C corre-

sponds to extract a scenario for the considered process.
This can be done exploiting the general scheme: let-
ting Ck (u1, . . . ,uk) := C(u1, . . . ,uk,1, . . . ,1) denote the k-
dimensional margin for C and Ck (uk | u1, . . . ,uk−1) the cor-
responding conditional distribution, then

• extract Ω1 ∼U [0,1];

• extract ν2 ∼U [0,1], and then compute that Ω2 that sat-
isfies ν2 = C2 (Ω2 ; Ω1);

• . . .

• extract νK ∼ U [0,1], and then compute that ΩK that
satisfies νK = CK (ΩK ; ΩT−1, . . . ,Ω1).

The equations νk = Ck (Ωk ; Ωk−1, . . . ,Ω1) are generally
solved with numerical root-finding procedures. But if C be-
longs to some particular parametric family (e.g., Gaussian, T,
Archimedean) then opportune closed forms lead to fast and
reliable extraction procedures [6, Chap. 6].

4 Experimental Results

Figure 3. Scheme of the HVAC system of the testbed.

Description of the experimental setup: the testbed is
comprised in a 7-storey office building situated in the KTH
Royal Institute of Technology campus in Stockholm. The
results shown in this paper are relative to a laboratory room
with approximately 80 m2 ground area, located in the ground
floor of the building. The room has a concrete, heavyweight
structure with limited glass surface and one external wall,
facing South-East, which is partially shaded by a parking lot;
hence, for the purposes of this paper, the effects of the solar
radiation have been neglected. The testbed HVAC system
is composed of two parts, see also Figure 3: the ventilation
system, supplying fresh air, and the heating system, provid-
ing hot water to the radiators. The first pre-conditions fresh



air from outside, canalizing it into a ventilation duct at a tem-
perature of about 21°C. Part of this air is pushed directly into
the room, part may be cooled by a chiller circuit. The ex-
haust air is ejected by an additional duct. The actuators are
dampers for both the inflow / outflow ducts and the chiller
circuit valve. The heating system is composed by radiators;
the hot water flowing inside is regulated by means of a valve
and is provided by a central system.

Figures 4 and 5 validate models (3) and (5) against data
collected during the end of July 2013. We notice that the
models capture the main dynamics, even if with a general-
ized smoothing effect. We believe that this error is induced
by the map “damper opening percentage 7→ mass air flow
ṁventing”, provided for the test, which was not sufficiently
accurate.
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Figure 4. Validation of the thermal model using the mea-
sured temperatures collected from the testbed.
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Figure 5. Validation of the CO2 concentration model
using the measured concentrations collected from the
testbed.

Definition of the performance indexes: out indexes are
the total energy usage and the level of violations of the com-
fort bounds, calculated respectively as

Etot = cpa

N−1

∑
k=0

ṁventing(k)
(
Tsa(k)−Troom(k)

)
∆k [kWh] ,

Ch = ∑
k s.t. Troom(k)>TUB

(
Troom(k)−TUB

)
∆k [°C h] .

TUB in the equations above is the upper bound temperature of
the comfort level, while ∆k is the time between two samples.

Summary of the results: we compare two controllers:
the current practice, a simple control logic with distinct PI
control loops and switching logic, indicated by the acronym
“AHC” (from Akademiska Hus, the company managing the

building of the testbed), and our RMPC scheme. The con-
trollers are tested respectively on August 5 and 6, 2013, both
from 9:00 to 14:00, under similar occupancy patterns and
with equivalent external weather conditions (sunny Swedish
summer days). The sampling time for the RMPC was 10
minutes, while the predictions horizon for the weather, oc-
cupancy and solar radiance processes was 8 hours.
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ṁvent

19
20
21
22

[°
C

]

Tsa

Figure 6. Comparison of the actuation levels computed
by the AHC and the RMPC controller. Numerically, for
the RMPC Etot = 1.275kWh while for the AHC Etot =
1.392kWh, approximatively 8.4% higher. At the same
time, for the RMPC Ch = 0, while for the AHC Ch =
0.2662 °C h.

The results shown in Figure 6 clearly indicate that our
RMPC controller outperforms the current practice in terms
of both energy use and violations of the thermal comfort
range (21−23 °C).

Namely, in Figure 6, it can be seen that the RMPC
controller does not yield violations of the thermal comfort
band, while the Proportional Integrative (PI) controller from
Akademiska Hus has violations of the upper bound on the
temperature . Moreover, the temperature variations are much
smaller with RMPC, which is a more favorable behavior in
terms of comfort.

The improvements can be explained by the control in-
put profiles depicted in Figure 6, where it is shown the pre-
cooling effect. The ventilation system was scheduled to op-
erate during the period with the lowest temperature (roughly
from 9:00 to 11:00) so that the variations of the temperature
profile of the inlet air, Tsa, are maintained as small as possible
and less cooling energy could be used in the next hours.

5 Conclusions
We proposed a Stochastic Model Predictive Control

(SMPC) controller for Heating, Ventilation and Air Condi-



tioning (HVAC) systems, aiming to diminish the energy re-
quired to maintain indoor thermal comfort and good air qual-
ity levels. The mechanism to account for the probabilistic
nature of the disturbances affecting the comfort indicators
is a scenario-based one: the controller starts by sampling
from the probability distributions of the disturbances, and
then constructs from those samples some constraints on the
evolution of the state of the system.

For robustness purposes, we endowed the algorithm with
a learning module that infers the statistics of the disturbances
from the data. This choice follows the trend of developing
general control schemes, that can be installed without high
or time-consuming deployment phases. Again for the sake
of generality, we choose not to exploit Gaussian assumptions
for the statistics of the disturbances, and opted for using cop-
ulas, a more computationally demanding but very flexible
formalism that can handle every form of stochastic depen-
dency among the various disturbances.

The strategy has then been implemented and tested on
a real office, showing simultaneously that: (i) the compu-
tational burden of the Randomized Model Predictive Con-
trol (RMPC) plus the learning scheme can be managed by
off-the-shelf devices; (ii) the actuation laws computed in this
way are more effective than the current practice.

The good results achieved in real experimentations moti-
vate efforts to improve the method. Probably the most im-
portant direction is towards the generalization of the control
scheme to the case of whole buildings, which leads to in-
creased complexity for both the models and the costs. An-
other very important achievement is to extend the learning
capabilities of the scheme to arrive to a fully self-tunable and
adaptable controller.

We eventually notice that there is still the need of measur-
ing precisely and extensively the amount of energy savings /
comfort maintaining performance of the strategy, to correctly
evaluate, also monetarily, the degree of the improvements
brought to the current practice.
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