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Abstract

This paper introduces a new method for performing actu-
ator fault detection and diagnostics (FDD) in heating venti-
lation and air conditioning (HVAC) systems. The proposed
actuator FDD strategy, for testing whether an actuator is
stuck in a single position, uses a two-tier approach that in-
cludes a dynamic model-based detector and a fast-deciding
steady-state detector. The model-based detector is formu-
lated to provide detection performance that asymptotically
bounds both the probability of miss and probability of false
alarm. To provide a quick confirmation the actuator is work-
ing, the steady-state detector utilizes a goodness-of-fit de-
tection strategy to decide if the measurements could be de-
scribed by an actuator failure. An architecture is introduced
that requires multiple steady-state detection experiments to
decide that the measurements could be explained by an actu-
ator failure before performing model-based detection. An
experimental test bed using a the KTH Royal Institute of
Technology campus HVAC system is described and used to
evaluate the steady-state and model-based detectors. The ex-
perimental test bed is utilized to identify a building dynam-
ics model, that is employed through monte carlo analysis,
to characterize the detection performance of both the model-
based detector and the steady-state detector.
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1 Introduction

Studies indicate that residential, office and commercial
buildings account for nearly 40% and 47% of the U.S.
and U.K. energy consumption [26, 25], respectively. Heat-
ing, ventilation and cooling (HVAC) are known to be the
largest contributor, accounting for 43% of U.S. residential
energy consumption. The design of energy-efficient HVAC
systems has therefore become a worldwide research pri-
ority. Recently, several researchers have studied how to
improve the control of HVAC system by deploying more
embedded sensors to monitor temperature, humidity, and
CO; levels [15], using information about occupant behav-
ior [16, 9, 2], and improving the modeling and control ap-
proaches [19, 17, 23, 18, 22, 21, 3].

Modern HVAC systems contain an increasing number of
sensors and remotely controlled actuators. While the inclu-
sion of these smart devices enable low-cost and environmen-
tally friendly building energy management, undetected sen-
sor and actuator failures can result in poor air quality man-
agement and result in societal rejection of these normally ef-
ficient systems. Moreover, HVAC Fault Detection and Diag-
nostic (FDD) schemes which result in unpredictable or spo-
radic false alarm rates can deter building managers from in-
vestigating potential failures. For these reasons, technologi-
cal development of FDD schemes tailored for HVAC systems
is paramount and has received much research interest in the
recent years [14, 10, 8, 12].

The importance of FDD in complex technical systems,
such as aircraft or power plants, has resulted in a large
amount of research and development effort with a variety
of solutions. However, its study with application to HVAC
systems has only started in the late 1980s, with a particular
interest in identifying low-cost, timely, and accurate meth-
ods for detecting actuator faults. A thorough review of ap-
proaches to HVAC actuator fault detection, diagnostics, and
prognostics prior to 2006 is provided in [14, 13]. In gen-
eral, approaches to HVAC actuator fault detection can be
classified as either hardware-based or software-based solu-



tions [14]. The hardware-based solutions introduce addi-
tional smart components strictly for the purposes of actuator
fault detection and can provide accurate detection capabili-
ties; however, hardware solutions are far more expensive to
both deploy and maintain than software-based approaches,
and are much more difficult to reconfigure with the intro-
duction of additional smart-actuator devices [13]. Moreover,
the inclusion of additional hardware has the added drawback
of further increasing the complexity of the HVAC system it-
self. Software-based actuator FDD approaches are attractive
in theory, but suffer from either a reliance on unknown (and
difficult to learn) physical models or system-specific detector
design specifications [10, 14, 13, 12].

In this paper, we propose a novel distributed software-
based active actuator FDD for HVAC systems. The primary
difference between the proposed approach, and the other
model-based software approaches described in [14, 13] is the
proposed approach utilizes a distributed two-tiered detection
approach containing a distributed quantitative model-based
approach and a distributed qualitative model-based approach
to provide quick inference when an actuator is working and
provide accurate detection when an actuator has failed. Ad-
ditionally, the quantitative model-based approach (refereed
to henceforth as the model-based approach) does not re-
quire full model knowledge as it only relies on the struc-
ture of a simplified thermodynamic model (and does not
require model parameter knowledge). The introduction of
the model-based detector that utilizes only the system struc-
ture is a significant difference from other model-based ap-
proaches [14]; moreover, the fact that the detector not only
detects, but also isolates individual actuator failures is an
added contribution. The qualitative model-based approach
(refereed to henceforth as the steady-state approach) makes
a qualitative decision whether the actuator is working based
on a steady-state assumption utilizing a logical relation that
when an actuator is working, it will cause a change in the
air temperature. The proposed two-tier approach is evalu-
ated in the fault detection of a cold water flow valve of the
a real HVAC system at the KTH Royal Institute of Technol-
ogy, Stockholm, Sweden using the available HVAC sensor
measurements and actuation capabilities, where it is demon-
strated that fast and accurate detection performance results.

In the following section, modeling of building thermo-
dynamics is discussed and a first-order model is introduced.
Section 3 presents a novel actuator FDD scheme consisting
of a fast inferring steady-state detector and a robust model-
based detector. An experimental test bed is presented in
section 4 and is employed to evaluate the actuator FDD ap-
proach. The concluding section provides discussion and in-
sight into future work.

2 Modeling Building Dynamics

Modeling buildings accurately enables us to implement
advanced control strategies to improve the performance of
building HVAC systems and to ensure that such systems are
operating free of faults. However, detailed models are of-
ten hard to determine due to the inherently complex nature
of building thermodynamics. For example, exact tempera-
ture distribution in a body mass is characterized by complex

partial differential equations that are seldom easy to solve
[4]. This is mainly due to two reasons. First, to solve
them requires a significant amount of information regard-
ing the building construction and insulating materials, loca-
tion, weather forecast, time of year, occupancy, usage, equip-
ment contained in the room, etc. Additionally, as PDEs are
generally solved via numerical solvers one faces the com-
putational problems that inherently arises from using such
solvers. While it is worth noting that there are computer
aided building modeling tools that result in complex mod-
els, e.g. EnergyPlus [6], these tools require a vast amount of
measurements and computation to implement these models,
which are only accurate for the learned building scenarios.

Having the aforementioned arguments in mind, in this pa-
per, and similar to [24, 11, 7, 1], we use the first principle
of the thermal dynamics modeling to obtain a simple, al-
beit nontrivial, model for describing temperature evolution
in buildings.

In principle, the evolution of the temperature in a build-
ing can be described as a combination of the effects of the
adjacent air masses with the thermal generation capabilities
of the room. A generic thermodynamic model of this inter-
action is provided through a spatial discretization of the heat
equation as

mjx;(t) = &(t) + ‘XN‘,_OW(I) (i (1) = xj (1)) + B (1)d; ()

where air masses in a building are modeled by a graph
G(V,E) where j €V is an air mass and (j,i) € E if air masses
J and i are thermally coupled. Additionally, x;(r) € R is the
temperature of the air mass j, m; is the thermal capacitance
of air mass j, o;; € R is the thermal coupling (heat trans-
mission) coefficient between air masses i and j, €;(r) is the
thermal generation present in air mass j (such as humans,
computers, etc.), B;(¢) € R is the thermal coupling between
the air-mass and actuator, and d;(¢) € R is the actuator input.

The difficulty in employing the building thermodynam-
ical model is in the requirement that the building thermal
coefficients be known. These parameters are notorious for
changing with the time of year, the opening and closing of
doors and windows, the humidity, etc. For example, the
value of o;; changes when a window or door is opened or
closed, additionally, it changes with the airflow between ad-
jacent air masses, a breeze between two rooms causes the
temperatures in the respective rooms to converge faster (and
vice versa). Thus making it very difficult to obtain accu-
rate descriptions for their values. Moreover, the complex-
ity involved in modeling the building behavior grows expo-
nentially with the number of parameters which are known to
vary.

While the model does capture the effects that the actua-
tor input has on the temperature of the room, identifying the
parameters necessary requires significant learning and may
not be attractive or tractable for building environments with
volatile changes in occupancy and air movement (such as
academic building environments). In this paper we consider
those methods that do not make an assumption on knowing
the parameters values.



3 Actuator Fault Detection and Diagnostics

Modern building energy management systems require ac-
curate HVAC control to minimize energy usage while main-
taining an acceptable level of comfort for the building occu-
pants. Thus, actuator fault detection is necessary to ensure
proper building operation as HVAC systems are subject to
various aging and operation errors which can lead to hard-
ware malfunction. A common failure in HVAC systems oc-
curs when the actuator “sticks” and no longer changes its set
point, despite controller requests. This type of actuator fail-
ure can occur in any position. For example, a valve can be
stuck fully open, fully shut, or at any intermediate setting.
Additionally, being able to isolate specific actuator failures
is paramount to performing timely maintenance.

In this section, we introduce a distributed HVAC actuator
FDD strategy, tailored for detecting and isolating whether
actuators are stuck in an unknown position. This strategy is
designed as a two-tier approach consisting of a fast-deciding
steady-state detector coupled with a dynamic model-based
detector. The following subsections discuss the model-based
detector, steady-state detector, and FDD system architecture,
respectively.

3.1 Model-Based Detector

A discrete-time model for the room temperature measure-
ments can be generated from the system in (1) using a for-
ward Euler approximation [20] as

X1 j =Xkt Y ki (Vi = ¥kj) +bi jd j + ex j
ieN; 2)
Vk,j = Xk,j + Vi, js

where x; ; is the temperature of air-mass j, yi ; is the k-th
temperature measurement of room j, v € R is a zero-mean
i.i.d. Gaussian measurement noise with variance G, and the
discrete-time lumped-parameters for all i,j € I are scaled
versions of their continuous-time counterparts,

T; T, T,
axij = mfsjaz‘j(kﬂ), bi.j = mfsjﬁj(kn% erj = mfsjﬁj(kTs),
assuming 7y is the discrete-time sampling period.

While it is known that the building model parameters are
time varying, over short periods of time or when the build-
ing is not being utilized, the building parameters tend to re-
main constant. The model-based detector is designed to de-
termine whether the actuator has failed (has become stuck) or
is working properly (not stuck). To isolate the performance
of the j-th actuator, the dynamics of the j-th room tempera-
ture is written as

X1 =Y+ Y, akij (ki — i) +br i+ e+
iENj
3)

where dy ; is the applied actuation input such that di ; = uy ;
when the actuator is operating correctly and dy ; = di_1 ;
when it fails (i.e. the actuator sticks). In (3) n ; is a zero-
mean process noise with covariance,

2
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When 4y ;; = ay;; the discrete dynamics (3) is statistically
equivalent to the discrete-time model in (2). By assuming
the parameters are constant,

ary1,ij = agij and b1 ;= by ;

The discrete-time dynamics for measurement of the j-th
room can be written as

Zir1,j = Aldx,j)zk,j + Wi, j
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and 4y ; and ¥y ; are the vectors of the neighboring measure-
ments, {ye;|i € N;}, and their respective thermal coupling
parameters, {a;;|i € N;}, for the j-th air mass. The mea-
surements have a Gaussian distribution, written as

filw) =
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where
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—1
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are the mean and covariance of z ; and the observer gain.
A test, ¢;(yk) € {Ho,Hi,H_1} is employed to denote the
decision to that actuator j is working properly (¢, (vx) = Ho),
has failed (¢(yx) = H1), or there is not enough information

to make a decision (¢;(yx) = H—1). This decision is made
using the sequential probability ratio test (SPRT) [27], as

Ho  Li(ye) >m
Ojve) =< Hi  Li(m) <Mo 9)
H_; otherwise

where [;(yx) is the log-likelihood ratio,
fiOkldi,; =0)
FiCvuldr.; = u,j)

and Mo and M are the test thresholds chosen using Wald’s
approximation [27] as

Li(ye) = 1j(yx—1) +1n (10)

1—
L N =In Py
— PFA PFA

Mo =In 1D

where prs and pys denote the maximum probably of false
alarm and the maximum probably of miss, respectively.



To identify the actuator input for evaluating the detection
problem, we utilize an information-theoretic approach and
choose the actuator input to maximize the next step Kulbach-
Liebner [5] divergence according to

u = arg max —E{1;(y)] (12)

1
This approach is common in information theory as it results
in the control sequence that maximizes the next step log-
likelihood ratio. Since the log-likelihood is a convex func-
tion of the control sequence, it is maximized at the extreme
points of the range of the control sequence. In an HVAC sys-
tem this equates to either turning the HVAC actuator com-
pletely on or completely off. While this control input is ad-
vantageous for fault detection and diagnostics, it comes at
a trade-off with the performance of the HVAC system since
the control input does not correspond to the optimal building
operation set-point.

1 if Ell;(yi|ur =1 Elli(yilug =0
W:{o ﬁﬁhﬁbﬁqﬂéﬁﬁﬁﬁzﬁ}(”>

Unlike other model-based approaches to actuator FDD,
this approach does not require occupancy data, a priori build-
ing parameter assumptions, or centralized computation since
each room only requires measurements of the adjacent rooms
(or outside air temperature) to test its actuator.

It will be shown in the experimental evaluation section
that the model-based detector requires significant monitor-
ing periods to accurately determine whether an actuator has
failed. Since the model-based strategy requires that the
building dynamics do not change during its monitoring pe-
riod, it is likely that the model-based detector can only be
performed at night. Moreover, fault detection schemes that
require long monitoring periods may not be necessary to
identify a working actuator. The following section intro-
duces a steady-state detector capable of quickly identifying
a working actuator.

3.2 Steady-State Detector

Logic indicates that in the event an actuator is working,
applying a significant change in the actuation input will re-
sult in a change in the measured temperature. Using this
reasoning, this section introduces a steady-state detector that
can confirm an actuator is working based on a change in the
measured temperature.

To mathematically describe the steady-state detector, we
assume that the room (and its surrounding rooms) have
reached a steady state condition,

Xpt1,j = Xk, j (14)

where x;(t) € R is the temperature of room j. The premise
of the steady-state detector is that if an actuator fails, the
temperature in the room is not expected to change since no
change in actuation will be occur. Thus, a goodness-of-fit
test ¢ (yx) € {Ho,—Hp} is employed to determine whether
the measured temperatures are likely to be explained by a
steady state model, which accurately describes several pos-
sible events including, but not limited to, an actuator failure.
Another more common reason, besides an actuator failure,
that the steady-state model may match the measured data is

that the window is open and the outside air mixes quickly
with the room air such that no change in the actuator can
cause a significant change in the room temperature.

For this test, we assume that the control input at the start
of the test is i, and select the new control input, u, at time k
to be

5)

(1 ifa<o05
=30 if a>05

this strategy will yield a control input that maximizes the
change in the actuation, which improves the detector perfor-
mance. For a Gaussian process, the goodness-of-fit detector
makes a decision using a chi-squared test,

o[ Hy Lw)>1

where
L) =10, )+7(y"_"_”"’)2 a7
J\Uk JUk—1 ik,l T Gj
and
i1y = (1— Ky j) e + K jye,
i1y =(1—Kij) Zuy + 05 (18)
Kij =21 (Ze + 61)7l
and the test threshold
LI
pu= [ A 00) (19

is determined such that the integral from O to 1| of the chi-
squared distribution with N degrees of freedom equals the
maximum probability of miss, py;.

The result of this test is a decision to either accept that the
actuator is working properly, or to concede that a decision as
to wether the actuator is working can not be made at this time
since the reason for not accepting the actuator is working
can be described not only by an actuator failure, but also
be the existence of non-steady state building conditions or
a significant influence from an adjacent air mass (such as
opening the windows of a room). For this reason, the steady-
state detector can only infer that the actuator is working.

3.3 FDD Architecture

It is expected that faults are infrequent, thus it is preferred
to have a test that can quickly identify whether the actua-
tor is working, without having the added testing complexity
required to determine if the actuator has failed. Figure 1 il-
lustrates the flow chart for the actuation fault detection and
diagnosis system. The system starts with the steady-state de-
tector and decides either that the detector is working (Hy) or
that no decision can be made about the state of the actua-
tor (—Hp) using the quick steady-state detector. If after N*
attempts of running the steady-state detector a decision can
not be made about the state of the actuator, then the model-
based detector is evaluated until a decision that the actuator
is working (Hp) or that a failure has occurred (H)) results.

The selection of N* can be made based upon how will-
ing the building operator is to run the model-based detec-
tor, which requires significantly longer decision times and
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Figure 1. Fault detection and diagnostic architecture
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Figure 2. KTH Royal Institute of Technology building
SCADA system map

will result in reduced building efficiency. However, exces-
sive testing with the steady-state detector can also result in
reduced building energy management performance. The ac-
tuator fault detection and isolation strategy introduced in this
section is evaluated experimentally in the following section.

4 Experimentation

To evaluate the actuator fault detector, an HVAC test bed
was developed. This section both describes the experimental
platform and presents the results of the actuator FDD evalu-
ation in the following subsections.

4.1 Experimental Platform

The KTH Royal Institute of Technology main campus
in Stockholm, Sweden consists of over 45 buildings which
house roughly 559 laboratories, 2569 office rooms and 87
lecture halls. The campus buildings, as depicted in SCADA
system map in Fig. 2, are equipped with a central SCADA
system which connects all the HVAC units to a centralized
campus monitoring and control site. The SCADA system
provides detailed information on the consumption of energy
for HVAC. Considering the size of the campus and the large

:-Qconference hall
| o _‘_’
"lbz || Bolerroom %‘-_ﬁ,
(A] -
® )  wie =
) L |
0 sutyroom | ® o ©
Storage. Lab3 Ec: Lab1

Figure 3. HVAC system deployment in the second floor
of the Q-building

number of buildings, we have selected the Q-building (de-
noted by the black circle in Fig. 2) to evaluate the actua-
tor FDD strategy. The Q-building is a multi-story building
housing multiple academic departments, lecture rooms, and
laboratories. The Q building is equipped with three sep-
arate ventilation units for fresh air supply and relies on a
district-managed water supply for induction-based heating
and cooling through radiators. The fresh air flow for high
usage rooms, such as laboratories and lecture halls, is regu-
lated on weekdays by demand controlled ventilation (DCV)
from 08 : 00 to 17 : 00.

Interaction with the SCADA system is achieved through
a web portal that links to an OPC client/server interface. The
corresponding secure SCADA web application allows man-
ual actuation of the individual Programmable Logic Con-
trollers (PLCs) and storage of sensory data. As a preliminary
deployment, the second floor has been selected to deploy the
actuation FDD scheme. This floor houses four laboratories,
one conference hall, one storage room and one study room as
depicted in Fig. 3 In the figure, the red circles depict sensor
locations, the green circles illustrate the actuator locations
(which connect to the air conditioning vents) and the blue
circle denote the external temperature sensor. The actuators
in this system are the cooling valves for the air condition-
ing system. The cooling valves can actuate between a value
of 0 and 1, which corresponds to a percentage of how far
open the value is at the current time. The testing environ-
ment described in this subsection is utilized in the following
subsection to evaluate the actuator FDD scheme.

4.2 Experimental Results

To evaluate the model-based detector performance, mul-
tiple experiments were performed utilizing laboratory two
in Fig. 3. We assume that the air mass of laboratory two,
whose temperature is measured by sensor one, interacts with
the outdoor and corridor air masses, whose temperatures are
measured by sensors seven and six, respectively. The actu-
ator corresponding to laboratory two is denoted in Fig. 3 as
actuator one. The temperature measurements are gathered
every five minutes. Laboratory two has two windows which
can be manually opened and closed to change how the air
mass in laboratory two interacts with the outdoor air mass.

During the experiments, we wish to detect an actuator
failure in the air conditioning system, namely whether the
cooling valve is stuck or not. To emulate an actuator failure,
we simply do not apply the calculated control value to the
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Figure 4. Experimental model-based detector results

cooling valve actuator and merely leave it in its current state
(as if it were stuck). During all of the experiments, the door
to laboratory two was shut such that the only changes in the
air mass interactions were caused by the opening and closing
of the windows. Additionally, the actuators in the adjacent
rooms were allowed to operate normally, emulating a normal
testing scenario where we wish to not only detect, but also
isolate. Under these testing conditions, both the steady-state
detector and the model-based detector were evaluated under
four different cases, namely (a) windows closed and actu-
ator working, (b) windows open and actuator working, (c)
windows closed and actuator stuck, (d) windows open and
actuator stuck.

The experimental results for evaluating the model-based
detector are shown in Fig. 4, where in all four subplots
the horizontal axis represents the time since the test began
in minutes and the vertical axis indicates the log-likelihood
statistic value for the tests performed under the respective
testing scenario, as calculated by using (10). The two dashed
lines in each subplot indicate the decision regions of the test,
01(yx), where it is decided that an actuator failure occurs
(01(yx) = Hy) when the statistic is greater than the dashed
line, and conversely, it is decided that the actuator is work-
ing properly (¢1(yx) = Hp) when the log-likelihood statistic
is less than the dashed line. When the statistic is between
the two dashed lines, no decision can be made regarding the
state of the actuator (¢1(yx) = Hp). Each line in the subplots
represents a single experiment, where all the experiments for
each testing condition (fault vs. no fault and window closed
vs. window open, as described earlier in this subsection) are
plotted together to help illustrate trends. The results in Fig.
4 suggest that the model-based detector accurately identifies
whether a fault occurs regardless of the state of the window,
if given enough time. These results indicate that when a fault
does not exist, it takes about 3 times longer to detect the fail-
ure when the window is open as opposed to closed. However,
we observe that when a fault occurs, the performance of the
model-based detector is relatively unaffected by the window
state. From the results in Fig. 4, we observe that testing can
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Figure 5. Experimental steady-state detector results

require significant monitoring periods ranging on the scale
of hours. Since the model-based test is based on the assump-
tion that the room state does not change, it is likely that this
test must be performed at night when it is unlikely that the
windows, doors, and occupancy will change.

The experimental results for the steady-state detector are
shown in Fig. 5, where similar to Fig. 4, the horizontal axis
represents the time since the test began in minutes and the
vertical axis indicates the chi-squared statistic value. The
dashed line in each subplot indicates the decision regions of
the test, where it is decided that an actuator has not failed
(01(yx) = Ho) when the statistic is greater than the dashed
line and conversely no decision is made ((T)l(yk) = —Hy) if
the statistic is less than the dashed line. In contrast to the
model-based detector, we observe that the steady-state detec-
tor makes a much quicker decision, where a decision that the
actuator has not failed is typically made within thirty min-
utes (if it occurs). When no fault occurs and the the windows
are closed, the detector tends to quickly and accurately in-
dicate that the actuator has not failed. However, when the
window is open, the detector is sporadic in deciding that a
fault has not occurred. This behavior motivates our testing
assumption that no decision about the faultiness of the ac-
tuator can be made when the test statistic is less than the
decision threshold because the resulting decision is likely to
have a high probability of false alarm. When an actuator
fault occurs, regardless of the window state, the steady-state
detector tends to not indicate no fault occurs, which exhibits
a low probability of miss.

The parameters of the building system were estimated us-
ing experimentally gathered measurements and the grey box
system identification toolbox in MATLAB. The purpose of
estimating the parameters is two fold. Firstly, it serves to
motivate the usage of only the underlying model structure
in the model-based detector and not to employ a priori pa-
rameter values which may be incorrect. Secondly, it pro-
vides models over which to provide a preliminary statistical
evaluation of the detector, which otherwise would require a
prohibitively large number of experimental tests (each taking



Table 1. Estimated model parameters

window | ap; asy by c1
closed | 0.209 | 0.0310 | -0.299 | 0.130
open 0.006 | 0.0003 | -0.071 | 0.049
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Figure 6. Simulated probability of False Alarm and prob-
ability of miss vs. time

multiple hours). The resulting parameter values are provided
in Table 1 In the table, the top row lists all the model param-
eters of the experiments and the bottom two rows indicate
their values. To calculate the parameter values, we used the
data gathered for the model-based test when there was no
fault when the windows were (a) open and (b) closed. Based
upon these tests, we observe that there is a significant change
in the magnitude of the parameters based upon whether the
windows are open or closed. Additionally, we note that the
parameter value for b is negative since turning the cooling
valve on results in a decrease in temperature, which is con-
sistent with what was expected.

4.3 Simulated Results

To investigate statistical performance of the actuator FDD
scheme, 20,000 monte carlo tests were performed using the
nominal parameters in Table 1. The parameters were utilized
to generate the temperature dynamics assuming the model in
(1). Half the tests (10,000) were performed assuming no
fault, while the other half (10,000 tests) were performed as-
suming the actuator was stuck in a random position. The
resulting false alarm rate and miss rate are provided in Fig.
6. Each subplot in the figure contains multiple lines indi-
cating the rate of miss. The solid black and dashed black
lines represent the rate of error for the model-based approach
when the window is closed and open, respectively. Similarly,
the solid red and dashed red lines represent the rate of error
for the steady-state approach when the window is closed and
open. Additionally, the solid blue and dashed blue lines in-
dicate the rate of indecision for the model-based approach.

We observe that the false alarm rate is effectively zero for
the model-based detector, while the miss rate has a maxi-
mum value of 0.4 when the window is close and 0.21 when
the window is open. The error rates converge to zero as the

testing time is increased. However, for the steady-state test,
the false alarm rate increases slowly with the test time when
the window is closed, and increases quickly to 1 when the
window is open. This indicates that there is a significant
difference in the false alarm rate of the steady-state test de-
pending on whether the window is open or closed, which is
consistent with the experimental results in the previous sub-
section.

The miss rate for the steady-state test has a different per-
formance profile. When the door is closed, the miss rate
of the steady-state test achieves a minimum value of 0.47
when the test time is 30 minutes and the window is closed,
while the miss rate deceases to zero when the window is open
(although this is not preferred since the corresponding false
alarm rate when the window is open approaches 1 as time
increases, indicating poor performance).

The rate of indecision (blue lines) of the model-based test
tend to decrease as the test time increases. This indicates
that extended monitoring periods will be able to make statis-
tically significant decisions; however, this assumes that the
state of the room does not change over the monitoring period.
Thus there is a trade off between the length of monitoring
time and the likelihood that the room does not change state
and the model assumptions are satisfied. From these simu-
lated results we observe that the steady-state detector is only
useful for small monitoring times since extended monitoring
periods yield high probability of false alarm. Conversely,
the model-based test performance improves as the monitor-
ing period is extended, where for small monitoring periods
(under 1 hour), the probability of error is high. These results
are consistent and motivate the proposed actuator fault detec-
tion and diagnostic scheme where the steady-state detector is
used to quickly test if the detector is working. Upon multi-
ple cases where the steady-state detector does not indicate
the actuator is working, the model-based detector is utilized
to determine if an actuator failure has occurred.

5 Discussion and Future Work

The proposed actuator FDD strategy presented in this pa-
per uses a unique two-tier approach that includes a dynamic
model-based detector and a fast-deciding steady-state detec-
tor for testing whether an actuator is stuck in a single po-
sition. The steady-state detector is shown to quickly con-
firm if an actuator is working, while the model-based ap-
proach can accurately decide whether an actuator fault has
occurred regardless of the interaction between the surround
air masses. An experimental test bed using a real HVAC sys-
tem is described and used to evaluate the steady-state and
model-based detectors, as well as to estimate the model pa-
rameters for a monte carlo analysis of the detection perfor-
mance.

Future work includes extensions of the FDD strategy to
include the detection of sensor failure as well as consider
time varying actuator failures (such as detecting whether the
actuator range of motion has decreased). Future experiments
and evaluations are planned utilizing the entire HVAC test
bed across multiple floors and buildings.
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