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Abstract— Most literature on routing games make the as-
sumption that drivers or vehicles are of the same type and,
hence, experience the same latency or cost when traveling along
the edges of the network. In contrast, in this article, we propose
a heterogeneous routing game in which each driver or vehicle
belongs to a certain type. The type determines the cost of
traveling along an edge as a function of the flow of all types
of drivers or vehicles over that edge. We examine the existence
of a Nash equilibrium in this heterogeneous routing game. We
study the conditions for which the problem of finding a Nash
equilibrium can be posed as a convex optimization problem
and is therefore numerically tractable. Numerical simulations
are presented to validate the results.

I. INTRODUCTION

The problem of determining Nash equilibria in routing
games and bounding their inefficiency has been extensively
studied [1]–[5]. However, most of these studies assume that
drivers or vehicles are of the same type and, hence, they
experience the same latency or cost when using an edge in
the network. This is primarily motivated by transportation
networks for which the drivers only worry about the travel
time (and indeed under the assumption that all the drivers
are equally sensitive to the latency) or packet routing in
communication networks where all the packets that are using
a particular link experience the same delay. However, in
more general traffic networks, this assumption might not
be realistic. For instance, due to fuel consumption, heavy-
duty vehicles and cars might experience different costs for
using the road even if their travel times are equal. In [6], this
phenomenon has been studied in atomic congestion games
in which the heavy-duty vehicles experience an increased
efficiency when a higher number of heavy-duty vehicles are
present on the same road (because of a higher platooning
possibility and, therefore, a higher fuel efficiency) while this
may not be true for cars.

The problem of characterizing Nash equilibria in hetero-
geneous routing games has been studied previously [7]–[12].
For instance, the problem of routing a finite number of
customers with a given supply rate was considered in [7],
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[8]. The authors in [9] studied the case in which the classes
of drivers react differently to the imposed tolls for the road.
In [10], the sensitivity of the agent to the latency was adjusted
by a multiplicative weight depending on the class to which
the driver belongs. However, to our knowledge, these studies
adjust either the sensitivity of the agents to the observed
latencies or the tolls through a multiplicative weight and do
not address more general classes of cost functions.

In this article, we propose a general heterogeneous routing
game in which the drivers or the vehicles might belong to
more than one type. The type of each vehicle determines the
mapping that calculates its cost for using an edge based on
the flow of all types of drivers or vehicles over that edge.
We prove the existence of a Nash equilibrium under mild
conditions for general heterogeneous routing games. To do
so, we prove that the introduced routing game is equivalent
to an abstract game with finite number of players in which
each player corresponds to one of the types. For the case
in which only two types of users are participating in the
game, we characterize necessary and sufficient conditions
for finding a potential function for this abstract game under
which the problem of finding a Nash equilibrium for the
game is equivalent to solving an optimization problem. We
also present a set of tolls that can satisfy these conditions.

The rest of the article is organized as follows. We for-
mulate the heterogeneous routing game in Section II. In
Section III, we prove that a Nash equilibrium may indeed
exist in this routing game. We present a set of necessary and
sufficient conditions to guarantee the existence of a potential
function for this game in Section IV. In Section V, a set of
tolls is presented to satisfy the aforementioned conditions.
Finally, we conclude the article and present directions for
future research in Section VI.

II. A HETEROGENEOUS ROUTING GAME

A. Notation

Let R and Z denote the sets of real and integer numbers,
respectively. Furthermore, define Z≥a = {n ∈ Z |n ≥ a}
and R≥a = {x ∈ R |x ≥ a}. We use the notation JNK
to denote {1, . . . , N}. All the other sets are denoted by
calligraphic letters such as R. Specifically, Ck consists of
all k-times continuously differentiable functions.

Let X ⊆ Rn be a set such that 0 ∈ X . A mapping f :
X → R is called positive definite if f(x) ≥ 0 for all x ∈ X
and f(x) = 0 implies that x = 0.

We use the notation G = (V, E) to denote a directed graph
with vertex set V and edge set E ⊆ V × V . Each entry
(i, j) ∈ E denotes an edge from vertex i ∈ V to vertex j ∈ V .
A directed path of length z from vertex i to vertex j is a
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set of edges {(i0, i1), (i1, i2), . . . , (iz−1, iz)} ⊆ E such that
i0 = i and iz = j.

B. Problem Formulation

Here, we propose an extension of the routing game intro-
duced in [1] to admit more than one type of players1. To be
specific, we assume types θ belong to a finite set Θ.

Let us assume that a directed graph G = (V, E) is given
which models the transportation network. We also have a set
of source–destination pairs {(sk, tk)}Kk=0 for some constant
K ∈ Z≥1. Each pair (sk, tk) is called a commodity. We
use the notation Pk to denote the set of all admissible paths
over the graph G that connect vertex sk ∈ V (i.e., the source
of this commodity) to vertex tk ∈ V (i.e., the destination
of this commodity). Let P = ∪Kk=1Pk. We assume that
each commodity k ∈ JKK needs to transfer a flow equal
to (F θk )θ∈Θ ∈ R|Θ|≥0 .

We use the notation fθp ∈ R≥0 to denote the flow of
players of type θ ∈ Θ that use a given path p ∈ P . We
use the notation f = (fθp )p∈P,θ∈Θ ∈ R|P|·|Θ| to denote the
aggregate vector of flows2. A flow vector f ∈ R|P|·|Θ| is
feasible if

∑
p∈Pk f

θ
p = F θk for all k ∈ JKK and θ ∈ Θ. We

use the notation F to denote the set of all feasible flows. To
ensure that the set of feasible flows is not an empty set, we
assume that Pk 6= ∅ if F θk 6= 0 for any θ ∈ Θ. Notice that the
constraints associated with each type are independent of the
rest. Therefore, the flows of a specific type can be changed
without breaking the feasibility of the flows associated with
the rest of the types.

A driver or vehicle of type θ ∈ Θ that travels along an
edge e ∈ E experiences a cost equal to ˜̀θ

e((φ
θ′

e )θ′∈Θ), where
for any θ ∈ Θ, φθe denotes the total flow of drivers of type θ
that are using this specific edge, i.e., φθe =

∑
p∈P:e∈p f

θ
p .

This cost can for example encompass aggregates of the
latency, fuel consumption, etc. For notational convenience,
we assume that we can change the order with which the
edge flows φθ

′

e can appear as arguments of the cost function
˜̀θ
e((φ

θ′

e )θ′∈Θ). A driver of type θ ∈ Θ from commodity
k ∈ JKK that uses path p ∈ Pk (for connecting sk to tk)
experiences a total cost of `θp(f) =

∑
e∈p

˜̀θ
e((φ

θ′

e )θ′∈Θ).
Here, each player is an infinitesimal part of the flow that

tries to minimize its own cost (i.e., each player is inclined to
choose the path that has the least cost). Now, based on this
fact, we can define the Nash equilibrium.

DEFINITION 2.1: (NASH EQUILIBRIUM IN HETEROGE-
NEOUS ROUTING GAME) A flow vector f = (fθ

′

p′ )p′∈P,θ′∈Θ

is a Nash equilibrium if for all k ∈ JKK and θ ∈ Θ, fθp > 0
for a path p ∈ Pk implies that `θp(f) ≤ `θp′(f) for all p′ ∈ Pk.

This definition implies that for a commodity k ∈ JKK and
type θ ∈ Θ, all paths with a nonzero flow for drivers of

1Throughout this article and in the context of the routing game, we use
the terms players, drivers, users, and vehicles interchangeably to denote an
infinitesimal part of the flow that strategically tries to minimize its own cost
for using the road.

2Note that there is a one-to-one correspondence between the elements of
P ×Θ and the set of integers {1, . . . , |P| · |Θ|}.

type θ have equal costs and the rest (i.e., paths with a zero
flow for drivers of type θ) have larger than or equal costs.

EXAMPLE 1: (ROUTING GAME WITH PLATOONING IN-
CENTIVES) For this example, we fix the set of types as
Θ = {c, t}, where t denotes trucks (or, equivalently, heavy-
duty vehicles) and c denotes cars (or, equivalently, light
vehicles). Let the edge cost functions be characterized as

˜̀c
e(φ

c
e, φ

t
e) = ξe(φ

c
e + φt

e),

˜̀t
e(φ

c
e, φ

t
e) = ξe(φ

c
e + φt

e) + ζe(φ
c
e + φt

e)γe(φ
t
e),

where mappings ξe : R≥0 → R≥0, ζe : R≥0 → R≥0,
and γe : R≥0 → R≥0 denote the latency for using edge
e as a function of the total flow of vehicles over that edge,
the fuel consumption of trucks as a function of the total
flow, and the inverse of the fuel efficiency of the trucks as
a function of the flow of trucks, respectively. These costs
actually imply that cars only observe the latency ξe(φc

e+φt
e)

when using the roads (which is only a function of the total
flow over that edge and not the individual flows of each
type). However, the cost associated with trucks encompasses
an additional term which models their fuel consumption.
Following this interpretation, γe(φt

e) is a decreasing function
since by having a higher flow of trucks over a given road
(i.e., larger φt

e) each truck gets a higher probability for
platooning (and as a result, a higher chance of decreasing
its fuel consumption). /

We make the following standing assumption regarding the
edge latency functions for all the types.

ASSUMPTION 2.1: For all θ ∈ Θ and e ∈ E , the edge
cost function ˜̀θ

e satisfies the following properties:

(i) ˜̀θ
e ∈ C1;

(ii) ˜̀θ
e is positive definite;

(iii)
∫ φθe

0
˜̀θ
e(u, (φ

θ′

e )θ′∈Θ\{θ})du is a convex function in φθe;
Assumption 2.1 (iii) can be replaced with the assumption

that ˜̀θ
e((φ

θ′

e )θ′∈Θ) is an increasing function in φθe (see [2] for
the case in which Θ = 1). We start by proving the existence
of a Nash equilibrium and, then, study the computational
complexity of finding an equilibrium.

III. EXISTENCE OF THE NASH EQUILIBRIUM

To prove the existence of a Nash equilibrium, we first show
that the problem of characterizing a Nash equilibrium of the
heterogeneous routing game is equivalent to characterizing
a pure strategy Nash equilibrium of an abstract game with
finite number of players. For the sake of simplicity of
presentation and without loss of generality (since Θ is finite),
we can assume that Θ = {θ1, . . . , θN} where N = |Θ|. Now,
let us define the abstract game.

DEFINITION 3.1: Consider a game with N players in
which player i ∈ JNK corresponds to type θi ∈ Θ in
the heterogeneous routing game. The action of player i is
denoted by ai = (fθip′ )p′∈P which belongs to the action set

Ai =

{
(fθip′ )p′∈P ∈ R|P|

∣∣∣ ∑
p′∈Pk

fθip′ = F θik

}
.
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Additionally, the utility of player i is defined as

Ui(ai, a−i) =
∑
e∈E

∫ φ
θi
e

0

˜̀θi
e (u, (φθje )θj∈Θ\{θi})du, (1)

where a−i represents the actions of the rest of players
(aj)j∈JNK\{i} and φθie =

∑
p∈P:e∈p f

θi
p for each i ∈ JNK.

Clearly, an action profile a ∈ ×Nj=1Aj is a pure strategy
Nash equilibrium of this abstract game if for all i ∈ JNK,

Ui(ai, a−i) ≤ Ui(āi, a−i), ∀āi ∈ Ai.
The following result establishes an interesting relationship

between the introduced high level game and the underlying
heterogeneous routing game.

LEMMA 3.2: A flow vector (fθ
′

p′ )p′∈P,θ′∈Θ is a Nash
equilibrium of the heterogeneous routing game if and only
if ((fθ1p′ )p′∈P , . . . , (f

θN
p′ )p′∈P) is a pure strategy Nash equi-

librium of the abstract game introduced in Definition 3.1.
Proof: Notice that ((fθ1p′ )p′∈P , . . . , (f

θN
p′ )p′∈P) being

a pure strategy Nash equilibrium of the abstract game is
equivalent to the fact that for all i ∈ JNK, ai = (fθip′ )p′∈P is
the best response of player i to the tuple of actions a−i =

((f
θj
p′ )p′∈P)θj∈Θ\{θi} or, equivalently,

ai ∈ arg min
(f
θi
p′ )p′∈P

∑
e∈E

∫ φ
θi
e

0

˜̀θi
e (u, (φθje )θj∈Θ\{θi})du,

s.t.
∑

p∈P:e∈p
fθip = φθie , ∀e ∈ E ,∑

p∈Pk

fθip = F θik , ∀k ∈ JKK,

fθip ≥ 0, ∀p ∈ P.

where φθje =
∑
p∈P:e∈p f

θj
p for all j ∈ JNK\{i}. Notice that

due to Assumption 2.1 (iii), this problem is indeed a convex
optimization problem. Let us define the Lagrangian as

Li((φ
θi
e′ )e′∈E , (f

θi
p′ )p′∈P)=

∑
e∈E

∫ φ
θi
e

0

˜̀θi
e (u, (φθje )θj∈Θ\{θi})du

+
∑
e∈E

vie

 ∑
p∈P:e∈p

fθip − φθie


−

K∑
k=1

wik

∑
p∈Pk

fθip − F
θi
k


−
∑
p∈P

λipf
θi
p ,

where (vie)e∈E ∈ R|E|, (wik)k∈JKK ∈ RK , and (λip)p∈P ∈
R|P|≥0 are Lagrange multipliers. Now, using Karush–Kuhn–
Tucker theorem [13, p. 244], optimality conditions are

∂

∂φθie
Li((φ

θi
e′ )e′∈E , (f

θi
p′ )p′∈P)

= ˜̀θi
e (φθie , (φ

θj
e )θj∈Θ\{θi})− v

i
e = 0, ∀e ∈ E ,

(2)

and

∂

∂fθip
Li((φ

θi
e′ )e′∈E , (f

θi
p′ )p′∈P)

=

(∑
e∈p

vie

)
− wik − λip = 0, ∀p ∈ Pk,∀k ∈ JKK.

(3)

Additionally, the complimentary slackness conditions (for
inequality constraints) results in λipf

i
p = 0 for all p ∈ P .

Hence, for all k and p ∈ Pk, we have

`θip ((fθ
′

p′ )p′∈P,θ′∈Θ) =
∑
e∈p

˜̀θi
e (φθie , (φ

θj
e )θj∈Θ\{θi})

=
∑
e∈p

vie by (2)

= wik + λip. by (3)

Therefore, for any p1, p2 ∈ Pk, if fθip1 , f
θi
p2 > 0, we have

λθip1 = λθip2 = 0 (because of the complimentary slackness
conditions), which results in

`θip1((fθ
′

p′ )p′∈P,θ′∈Θ) = wik

= `θip2((fθ
′

p′ )p′∈P,θ′∈Θ).

Furthermore, for any p3 ∈ Pk such that fθip3 = 0, we get
λθip3 ≥ 0 (because of dual feasibility, i.e., the Lagrange
multipliers associated with inequality constraints must be
positive), which results in

`θip3((fθ
′

p′ )p′∈P,θ′∈Θ) = wik + λθip3
≥ wik
= `θip1((fθ

′

p′ )p′∈P,θ′∈Θ).

This completes the proof.
THEOREM 3.3: The heterogeneous routing game admits

at least one Nash equilibrium.
Proof: Following the result of Lemma 3.2, proving the

statement of this theorem is equivalent of showing the fact
that the abstract game introduced in Definition 3.1 admits at
least one pure strategy Nash equilibrium. First, notice that
Ai, i ∈ JNK, is a non-empty, convex, and compact subset of
the Euclidean space R|P|. Second, Ui(ai, a−i) is continuous
in all its arguments (because it is defined as an integral
of a real-valued measurable function). Finally, because of
Assumption 2.1 (iii), Ui(ai, a−i) is a convex function in ai.
Now, we can use the celebrated result of [14] for abstract
economies (a generalization of a game) to show that the
abstract game introduced in Definition 3.1 admits at least
one pure strategy Nash equilibrium.

IV. FINDING A NASH EQUILIBRIUM

A family of games that are relatively easy to analyze are
potential games. In this section, we give conditions for when
the introduced abstract game is a potential game.

DEFINITION 4.1: (POTENTIAL GAME [15]) The abstract
game introduced in Definition 3.1 is a potential game and
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admits a potential function V : ×Ni=1Ai → R if for all i ∈
JNK,

V (ai, a−i)− V (āi,a−i) = Ui(ai, a−i)− Ui(āi, a−i),
∀ai, āi ∈ Ai and a−i ∈ ×j∈JNK\{i}Aj .

The next lemma provides a necessary condition for the
existence of a potential function in C2.

LEMMA 4.2: If the abstract game introduced in Defini-
tion 3.1 admits a potential function V ∈ C2, then∑
e∈p1∩p2

[
∂

∂φθie
˜̀θj
e ((φθ

′

e )θ′∈Θ)− ∂

∂φ
θj
e

˜̀θi
e ((φθ

′

e )θ′∈Θ)

]
= 0,

for all i, j ∈ JNK and p1, p2 ∈ P .
Proof: Since V ((fθ1p′ )p′∈P , . . . , (f

θN
p′ )p′∈P) is a poten-

tial function for the abstract game, it satisfies

V ((fθip′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})

− V ((f̄θip′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})

= Ui((f
θi
p′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})

− Ui((f̄θip′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi}),

which results in the identity in (4), presented on top of the
next page, in which δij denotes the Kronecker index (or
delta) defined as δij = 1 if i = j and δij = 0 otherwise.
Hence, we get

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθip1
=

∂

∂fθip1

∑
e∈E

∫ φ
θi
e

0

˜̀θi
e (u,(φθje )θj∈Θ\{θi})du

=
∑
e∈p1

˜̀θi
e ((φθ

′

e )θ′∈Θ).

Now, because of Clairaut-Schwarz theorem [16, p. 1067], we
know that the following equality must hold since V ∈ C2,

∂2V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθip1∂f
θj
p2

=
∂2V ((fθ

′

p′ )p′∈P,θ′∈Θ)

∂f
θj
p2 ∂f

θi
p1

. (5)

Let us calculate

∂2V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθip1∂f
θj
p2

=
∂

∂fθip1

[
∂V ((fθ

′

p′ )p′∈P,θ′∈Θ)

∂f
θj
p2

]

=
∂

∂fθip1

[∑
e∈p2

˜̀θj
e ((φθ

′

e )θ′∈Θ)

]

=
∑

e∈p1∩p2

∂ ˜̀θj
e ((φθ

′

e )θ′∈Θ)

∂φθie
,

(6)

and, similarly,

∂2V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂f
θj
p2 ∂f

θi
p1

=
∑

e∈p1∩p2

∂ ˜̀θi
e ((φθ

′

e )θ′∈Θ)

∂φ
θj
e

. (7)

Substituting (5) and (6) into (7) results in∑
e∈p1∩p2

[
∂

∂φ
θj
e

˜̀θi
e ((φθ

′

e )θ′∈Θ)− ∂

∂φθie
˜̀θj
e ((φθ

′

e )θ′∈Θ)

]
= 0,

for all p1, p2 ∈ P and θi, θj ∈ Θ.

Interestingly, we can prove that this condition is also a
sufficient condition for the existence of a potential func-
tion (that belongs to C2) for the introduced abstract game
whenever only two types of players are participating in the
heterogeneous routing game.

LEMMA 4.3: Assume that |Θ| = 2. If∑
e∈p1∩p2

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , φ

θ2
e )− ∂

∂φθ2e
˜̀θ1
e (φθ1e , φ

θ2
e )

]
= 0,

for all p1, p2 ∈ P , then

V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P) =

∑
e∈E

[ ∫ φθ1e

0

˜̀θ1
e (u1, φ

θ2
e )du1

+

∫ φθ2e

0

˜̀θ2
e (φθ1e , u2)du2

−
∫ φθ2e

0

∫ φθ1e

0

∂

∂u
˜̀θ1
e (t, u)dtdu

]
is a potential function for the abstract game introduced in
Definition 3.1.

Proof: Notice that for all p ∈ P , we get (8) which is
presented on top of the next page. Now, let us define

Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E)

=
∑
e∈p

∫ φθ2e

0

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , u)− ∂

∂u
˜̀θ1
e (φθ1e , u)

]
du.

We have

∂Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E)

∂fθ2p̂

=
∑
e∈p∩p̂

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , φ

θ2
e )− ∂

∂u
˜̀θ1
e (φθ1e , φ

θ2
e )

]
=0,

for all p̂ ∈ P . Noticing that φθ2e =
∑
p̂∈P:e∈p̂ f

θ2
p̂ for all

e ∈ E , we get

∂Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E)

∂φθ2e
=
∑

p̂∈P:e∈p̂

∂Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E)

∂fθ2p̂

= 0, ∀e ∈ E .

Thus, Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E) = Ψ((φθ1e )e∈E , 0) = 0. Setting

Ψ((φθ1e )e∈E , (φ
θ2
e )e∈E) = 0 (see definition above) inside (8)

results in

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθ1p
=
∑
e∈p

˜̀θ1
e (φθ1e , φ

θ2
e )

=
∂U1((fθ1p′ )p′∈P , (f

θ2
p′ )p′∈P)

∂fθ1p
,

(9)

where the partial derivatives of U1 can be computed from its
definition in (1). Let (fθ1p′ )p′∈P and (f̄θ1p′ )p′∈P be arbitrary
points in set of actions Ai. Furthermore, let r : [0, 1]→ Ai
be a continuously differentiable mapping (i.e., r ∈ C1) such
that r(0) = (f̄θ1p′ )p′∈P and r(1) = (fθ1p′ )p′∈P which remains
inside Ai ⊆ R|P| for all t ∈ (0, 1). We define graph(r) as
the collection of all ordered pairs (t, r(t)) for all t ∈ [0, 1],
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∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθip1
= lim
ε→0

V ((fθip′ + εδp1p′)p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})−V ((fθip′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})

ε

= lim
ε→0

Ui((f
θi
p′ + εδp1p′)p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})−Ui((f

θi
p′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})

ε

=
∂Ui((f

θ′

p′ )p′∈P,θ′∈Θ)

∂fθip1
.

(4)

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθ1p
=

∂

∂fθ1p

(∑
e∈E

[ ∫ φθ1e

0

˜̀θ1
e (u1, φ

θ2
e )du1 +

∫ φθ2e

0

˜̀θ2
e (φθ1e , u2)du2 −

∫ φθ2e

0

∫ φθ1e

0

∂

∂u
˜̀θ1
e (t, u)dtdu

])

=
∑
e∈p

[
˜̀θ1
e (φθ1e , φ

θ2
e ) +

∫ φθ2e

0

∂

∂φθ1e
˜̀θ2
e (φθ1e , u2)du2 −

∫ φθ2e

0

∂

∂u
˜̀θ1
e (φθ1e , u)du

]

=
∑
e∈p

˜̀θ1
e (φθ1e , φ

θ2
e ) +

∑
e∈p

∫ φθ2e

0

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , u)− ∂

∂u
˜̀θ1
e (φθ1e , u)

]
du.

(8)

which denotes a continuous path that connects (fθ1p′ )p′∈P
and (f̄θ1p′ )p′∈P . We know at least one such mapping exists
because Ai is a simply connected set for all i ∈ JNK. Hence,
we have∫

graph(r)

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr

=

∫ 1

0

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r(t)

]>
∂r(t)

∂t
dt

=

∫ 1

0

[
d

dt
V (r(t), a2)

]
dt

= V (r(1), a2)− V (r(0), a2)

= V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)− V ((f̄θ1p′ )p′∈P , (f

θ2
p′ )p′∈P),

where the second to last equality is a direct consequence
of the fundamental theorem of calculus [16, p. 1257]. Note
that this equality holds irrespective of the selected path.
Therefore,

V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)− V ((f̄θ1p′ )p′∈P , (f

θ2
p′ )p′∈P)

=

∫
graph(r)

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr

=

∫
graph(r)

[
∂U1(a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr by (9)

= U1((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)− U1((f̄θ1p′ )p′∈P , (f

θ2
p′ )p′∈P),

Similarly, we can also prove (10), presented on top of the
next page, which results in

∂V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)

∂fθ2p
=
∑
e∈p

˜̀θ2
e (φθ1e , φ

θ2
e )

=
∂U2((fθ1p′ )p′∈P , (f

θ2
p′ )p′∈P)

∂fθ2p
,

and, consequently,

V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)− V ((fθ1p′ )p′∈P , (f̄

θ2
p′ )p′∈P)

= U2((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)− U2((fθ1p′ )p′∈P , (f̄

θ2
p′ )p′∈P).

This concludes the proof.
Now, combing the previous two lemmas results in the main

result of this section.
THEOREM 4.4: Assume that |Θ| = 2. The abstract game

admits a potential function V ∈ C2 if and only if∑
e∈p1∩p2

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , φ

θ2
e )− ∂

∂φθ2e
˜̀θ1
e (φθ1e , φ

θ2
e )

]
= 0,

for all p1, p2 ∈ P .
Proof: The proof easily follows from Lemmas 4.2

and 4.3. Note that the potential function presented in
Lemma 4.3 belongs to C2 due to Assumption 2.1 (i).

Following a basic property of potential games, it is easy to
prove the following corollary which shows that the process
of finding a Nash equilibrium of the heterogeneous routing
game is equivalent to solving an optimization problem.

COROLLARY 4.5: Assume that |Θ| = 2. Furthermore, let∑
e∈p1∩p2

[
∂

∂φθ1e
˜̀θ2
e (φθ1e , φ

θ2
e )− ∂

∂φθ2e
˜̀θ1
e (φθ1e , φ

θ2
e )

]
= 0,

for all p1, p2 ∈ P . If f = (fθ
′

p′ )p′∈P,θ′∈Θ is a solution of the
optimization problem

min V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P),

s.t.
∑

p∈P:e∈p
fθ1p = φθ1e and

∑
p∈P:e∈p

fθ2p = φθ2e , ∀e ∈ E ,∑
p∈Pk

fθ1p = F θ1k and
∑
p∈Pk

fθ2p = F θ2k , ∀k ∈ JKK,

fθ1p , f
θ2
p ∈ R≥0, ∀p ∈ P,

where V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P) is defined in Lemma 4.3,

then f = (fθp )p∈P,θ∈Θ is a Nash equilibrium of the hetero-
geneous routing game.
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∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)

∂fθ2p
=

∂

∂fθ2p

(∑
e∈E

[ ∫ φθ1e

0

˜̀θ1
e (u1, φ

θ2
e )du1 +

∫ φθ2e

0

˜̀θ2
e (φθ1e , u2)du2 −

∫ φθ2e

0

∫ φθ1e

0

∂

∂u
˜̀θ1
e (t, u)dtdu

])

=
∑
e∈p

[ ∫ φθ1e

0 ��
���

���:∂

∂φθ2e
˜̀θ1
e (u1, φ

θ2
e )du1 + ˜̀θ2

e (φθ1e , φ
θ2
e )−

∫ φθ1e

0 ��
���

���:∂

∂φθ2e
˜̀θ1
e (t, φθ2e )dt

]
,

(10)

1 2
e2

e3

e1

Fig. 1. An example of graph G = (V, E).

TABLE I
PARAMETERS OF THE HETEROGENEOUS ROUTING GAME.

α
(1)
aa α

(1)
ab α

(1)
bb β

(1)
a β

(1)
b

e1 3.00 1.50 2.50 2.00 4.00
e2 4.00 2.00 3.50 2.00 4.00
e3 3.50 1.75 1.00 4.50 1.50

Proof: The proof is consequence of the fact that a
minimizer of the potential function is a pure strategy Nash
equilibrium of a potential game [15].

EXAMPLE 2: Let us consider a numerical example with
graph G = (V, E) illustrated in Figure 1. Here, we assume
that Θ = {a,b}. We also have three paths pi = {ei} for
i = 1, 2, 3. The edge cost functions are taken to be affine
functions of the form

`aei(φ
a
ei , φ

b
ei) = α(i)

aaφ
a
ei + α

(i)
abφ

b
ei + β(i)

a ,

`bei(φ
a
ei , φ

b
ei) = α

(i)
baφ

a
ei + α

(i)
bbφ

b
ei + β

(i)
b .

If α(i)
ba = α

(i)
ab for all i = 1, 2, 3, the condition of Corol-

lary 4.5 is satisfied. In this case, we can calculate the
potential function as

V ((φa
ei)

3
i=1,(φ

b
ei)

3
i=1)=

3∑
i=1

[
1

2
α(i)

aa (φa
ei)

2+(α
(i)
abφ

b
ei+β

(i)
a )φa

ei

− α(i)
abφ

a
eiφ

b
ei +

1

2
α

(i)
bb(φb

ei)
2 + (α

(i)
baφ

a
ei + β

(i)
b )φb

ei

]
.

Noticing that solving a non-convex quadratic programming
problem might be numerically intractable in general, we
focus on the case in which V ((φa

ei)
3
i=1, (φ

b
ei)

3
i=1) is a convex

function. Following the argument of [13, p. 71], we know that
V ((φa

ei)
3
i=1, (φ

b
ei)

3
i=1) is a convex function if and only if[

α
(i)
aa

1
2α

(i)
ab

1
2α

(i)
ba α

(i)
bb

]
≥ 0, ∀i = 1, 2, 3.

Let us pick the parameters for the routing game according
to Table I. Furthermore, we choose F a

1 = 5 and F b
1 = 1.

After solving the optimization problem in Corollary 4.5,
we get (fa

pi)
3
i=1 = (2.3836, 1.7877, 0.8288), (fb

pi)
3
i=1 =

(0.0, 0.0, 1.0), (`api(f))3
i=1 = (9.1507, 9.1507, 9.1507), and

(`bpi(f))3
i=1 = (7.5753, 7.5753, 3.9503) which hence is a

Nash equilibrium. /
Notice that so far we have proved that a minimizer of the

potential function is a Nash equilibrium but not the other
way round. Now, we are ready to prove this whenever the

potential function is convex. However, this result is proved
at the price of a more conservative condition.

COROLLARY 4.6: Let |Θ| = 2 and
∂

∂φθ1e
˜̀θ2
e (φθ1e , φ

θ2
e ) =

∂

∂φθ2e
˜̀θ1
e (φθ1e , φ

θ2
e ),

for all e ∈ E . Furthermore, assume that the potential function
V ((fθ1p′ )p′∈P , (f

θ2
p′ )p′∈P), defined in Lemma 4.3, is a convex

function. Then f = (fθ
′

p′ )p′∈P,θ′∈Θ is a Nash equilibrium of
the heterogeneous routing game if and only if it is a solution
of the convex optimization problem

min V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P),

s.t.
∑

p∈P:e∈p
fθ1p = φθ1e and

∑
p∈P:e∈p

fθ2p = φθ2e , ∀e ∈ E ,∑
p∈Pk

fθ1p = F θ1k and
∑
p∈Pk

fθ2p = F θ2k , ∀k ∈ JKK,

fθ1p ≥ 0 and fθ2p ≥ 0, ∀p ∈ P.
Proof: Let us define the Lagrangian as

L =V ((fθ1p′ )p′∈P , (f
θ2
p′ )p′∈P)

+

2∑
i=1

∑
e∈E

vie

 ∑
p∈P:e∈p

fθip − φθie


−

2∑
i=1

K∑
k=1

wik

∑
p∈Pk

fθip − F
θi
k

− 2∑
i=1

∑
p∈P

λipf
i
p,

where (v1
e)e∈E ∈ R|E|, (v2

e)e∈E ∈ R|E|, (w1
k)k∈JKK ∈ RK ,

(w2
k)k∈JKK ∈ RK , (λ1

p)p∈P ∈ R|P|≥0 , and (λ2
p)p∈P ∈ R|P|≥0

are Lagrange multipliers. Using Karush–Kuhn–Tucker con-
ditions [13, p. 244], optimality conditions are

∂

∂φθ1e
L = ˜̀θ1

e (φθ1e , φ
θ2
e ) +

∫ φθ2e

0

∂

∂φθ1e
˜̀θ2
e (φθ1e , u2)du2

−
∫ φθ2e

0

∂

∂u
˜̀θ1
e (φθ1e , u)du− v1

e

= ˜̀θ1
e (φθ1e , φ

θ2
e )− v1

e

+

∫ φθ2e

0

(
∂

∂φθ1e
˜̀θ2
e (φθ1e , u)− ∂

∂u
˜̀θ1
e (φθ1e , u)

)
du

= ˜̀θ1
e (φθ1e , φ

θ2
e )− v1

e = 0, ∀e ∈ E ,
(11a)

∂

∂φθ2e
L =

∫ φθ1e

0

∂

∂φθ2e
˜̀θ1
e (u1, φ

θ2
e )du1 + ˜̀θ2

e (φθ1e , φ
θ2
e )

−
∫ φθ1e

0

∂

∂φθ2e
˜̀θ1
e (t, φθ2e )dt− v2

e

= ˜̀θ2
e (φθ1e , φ

θ2
e )− v2

e = 0, ∀e ∈ E ,
(11b)
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and
∂

∂fθ1p
L =

∑
e∈p

v1
e − w1

k − λ1
p = 0, ∀p ∈ P, (12a)

∂

∂fθ2p
L =

∑
e∈p

v2
e − w2

k − λ2
p = 0, ∀p ∈ P. (12b)

In addition, the complimentary slackness conditions for
inequality constraints result in λ1

pf
1
p = 0 and λ2

pf
2
p = 0

for all p ∈ P . Hence, for all k and p ∈ Pk, we have

`θip (f) =
∑
e∈p

˜̀θi
e (φθ1e , φ

θ2
e )

=
∑
e∈p

vie by (11)

= wik + λip. by (12)

Thus, if fθip , f
θi
p′ > 0, using complimentary slackness, we

get λθip = 0 and λθip′ = 0, which results in

`θip (f) = `θip′(f) = wik.

Additionally, for all p′′ ∈ Pk, where fθip′′ = 0, we have
λθip ≥ 0 (because of dual feasibility), which results in

`θip′′(f) = wik + λθip′′ ≥ w
i
k = `θip (f).

This is the definition of a Nash equilibrium.
EXAMPLE 1 (CONT’D): Let us examine the implications

of Corollary 4.6 in studying platooning incentives. We can
easily calculate that

∂ ˜̀c
e(φ

c
e, φ

t
e)

∂φt
e

=
dξe(u)

du

∣∣
u=φc

e+φ
t
e
, (13)

∂ ˜̀t
e(φ

c
e, φ

t
e)

∂φc
e

=
dξe(u)

du

∣∣
u=φc

e+φ
t
e

+
dζe(u)

du

∣∣
u=φc

e+φ
t
e
γe(φ

t
e).

(14)

Assuming that γe(φt
e) 6= 0 (since otherwise both types are

equivalent), for the condition in Corollary 4.6 to hold, we
have dζe(u)/du = 0 for all u or, equivalently, we have
ζe(u) = c for all u. Intuitively, this condition translates to the
fact that the fuel consumption of the trucks is independent
of total flow of vehicles φc

e +φt
e (which might only be valid

in free-flow traffic since the total flow is not dictating the
velocity of the trucks).

/
Noting that if the problem of finding a Nash equilibrium in

the heterogeneous routing game is numerically intractable, it
might be highly unlikely for the drivers to figure out a Nash
equilibrium in finite time (let alone an efficient one) and
utilize it, which might result in wasting parts of the trans-
portation network resources. Therefore, a natural question
that comes to mind is whether it is possible to guarantee the
existence of a potential function for a heterogeneous routing
game by imposing appropriate tolls.

V. IMPOSING TOLLS TO GUARANTEE THE EXISTENCE OF
A POTENTIAL FUNCTION

Let us assume that a driver or vehicle of type θ ∈ Θ must
pay a toll τ̃θe ((φθ

′

e )θ′∈Θ) for using an edge e ∈ E , where (as
stated earlier) φθe =

∑
p∈P:e∈p f

θ
p . Therefore, a driver that

is using path p ∈ Pk endures a total cost of `θp(f) + τθp (f),
where τp(f) is the total amount of money that this driver
must pay for using path p and can be calculated as τθp (f) =∑
e∈p τ̃

θ
e ((φθ

′

e )θ′∈Θ). The definition of a Nash equilibrium
should then be slightly modified to account for the tolls. A
flow vector f = (fθ

′

p′ )p′∈P,θ′∈Θ is a Nash equilibrium for
the routing game with tolls if, for all k ∈ JKK and θ ∈ Θ,
whenever fθp > 0 for some path p ∈ Pk, then `θp(f) +
τθp (f) ≤ `θp′(f) + τθp′(f) for all p′ ∈ Pk.

Before stating the main result of this section, note that we
can have both distinguishable and indistinguishable types.
This characterization is of special interest when considering
the implementation of tolls. For distinguishable types, we
can impose individual tolls for each type. However, for
indistinguishable types, the tolls are independent of the
type. To give an example, if Θ = {cars, trucks}, we can
impose different tolls for each group of vehicles while if
Θ = {patient drivers, impatient drivers}, we cannot. We
treat these two cases separately.

PROPOSITION 5.1: (DISTINGUSHABLE TYPES) Assume
that |Θ| = 2. The abstract game admits the potential function
V ((fθ1p′ )p′∈P , (f

θ2
p′ )p′∈P)

=
∑
e∈E

[ ∫ φθ1e

0

(˜̀θ1
e (u1, φ

θ2
e ) + τ̃θ1e (u1, φ

θ2
e ))du1

+

∫ φθ2e

0

(˜̀θ2
e (φθ1e , u2) + τ̃θ2e (φθ1e , u2))du2

−
∫ φθ2e

0

∫ φθ1e

0

∂

∂u
(˜̀θ1
e (t, u) + τ̃θ1e (t, u))dtdu

]
if
∂τ̃θ1e (φθ1e , φ

θ2
e )

∂φθ2e
− ∂τ̃θ2e (φθ1e , φ

θ2
e )

∂φθ1e

=
∂ ˜̀θ2
e (φθ1e , φ

θ2
e )

∂φθ1e
− ∂ ˜̀θ1

e (φθ1e , φ
θ2
e )

∂φθ2e
,

for all e ∈ E .

Proof: Note that introducing the tolls τ̃θe (φθ1e , φ
θ2
e ) has

the same impact on the routing game as replacing the edge
cost functions in the original heterogeneous routing game
from ˜̀θ

e(φ
θ1
e , φ

θ2
e ) to ˜̀θ

e(φ
θ1
e , φ

θ2
e ) + τ̃θe (φθ1e , φ

θ2
e ). Thanks

to Lemma 4.3, the abstract game based upon this new
heterogeneous routing game admits the potential function V
if
∂(˜̀θ1

e (φθ1e , φ
θ2
e ) + τ̃θ1e (φθ1e , φ

θ2
e ))

∂φθ2e

− ∂(˜̀θ2
e (φθ1e , φ

θ2
e ) + τ̃θ2e (φθ1e , φ

θ2
e ))

∂φθ1e
= 0.

With rearranging the terms in this equality, we can extract
the condition in the statement of the proposition.

PROPOSITION 5.2: (INDISTINGUSHABLE TYPES) As-
sume that |Θ| = 2. The abstract game admits the potential
function V ∈ C2 in Proposition 5.1 with τ̃θ1e (φθ1e , φ

θ2
e ) =
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τ̃θ2e (φθ1e , φ
θ2
e ) = τ̃e(φ

θ1
e , φ

θ2
e ) if

∂τ̃e(φ
θ1
e , φ

θ2
e )

∂φθ2e
− ∂τ̃e(φ

θ1
e , φ

θ2
e )

∂φθ1e

=
∂ ˜̀θ2
e (φθ1e , φ

θ2
e )

∂φθ1e
− ∂ ˜̀θ1

e (φθ1e , φ
θ2
e )

∂φθ2e
,

for all e ∈ E .
Proof: The proof immediately follows from using

Proposition 5.1 with the constraint that the tolls may not
depend on the type, i.e., τ̃θ1e (φθ1e , φ

θ2
e ) = τ̃θ2e (φθ1e , φ

θ2
e ) =

τ̃e(φ
θ1
e , φ

θ2
e ).

EXAMPLE 1 (CONT’D): Let us examine the possibility
of finding a set of tolls that satisfies the conditions of
Propositions 5.1 and 5.2. The first case is the distinguish-
able types. Substituting (13) and (14) into the condition of
Proposition 5.1 results in
∂τ̃ c
e (φc

e, φ
t
e)

∂φt
e

−∂τ̃
t
e(φ

c
e, φ

t
e)

∂φc
e

=
dζe(u)

du

∣∣
u=φc

e+φ
t
e
γe(φ

t
e). (15)

Following simple algebraic calculations, we can check that
the tolls τ̃ c

e (φc
e, φ

t
e) = 0 and τ̃ t

e(φ
c
e, φ

t
e) = γe(φ

t
e)(κ −

ζe(φ
c
e, φ

t
e)), for some appropriately chosen constant κ ∈

R≥0, satisfy (15). Another example of appropriate tolls is
τ̃ t
e(φ

c
e, φ

t
e) = 0 and

τ̃ c
e (φc

e, φ
t
e) =

∫ φt
e

0

dζe(u)

du

∣∣
u=φc

e+q
γe(q)dq.

These two sets of tolls certainly will have different implica-
tions on the behavior of cars and trucks.

The second case that we study is the indistinguishable
types. For that case, we study solve the partial differential
equation
∂τ̃e(φ

c
e, φ

t
e)

∂φt
e

− ∂τ̃e(φ
c
e, φ

t
e)

∂φc
e

=
dζe(u)

du

∣∣
u=φc

e+φ
t
e
γe(φ

t
e).

Noting the resemblance of this partial differential equation
with ones studied in [17, Ch. 4], we can devise the tolls

τ̃e(φ
c
e, φ

t
e) =

dζe(u)

du

∣∣
u=φc

e+φ
t
e

∫ φt
e

0

γe(q)dq.

/
In general, we can prove the following corollary concern-

ing the type-independent tolls.
COROLLARY 5.3: (INDISTINGUSHABLE TYPES) Assume

that |Θ| = 2. The abstract game admits a potential function
V ∈ C2 if the imposed tolls are of the following from

τ̃e(φ
θ1
e , φ

θ2
e ) = ce+

∫ φθ2e

0

fe(q, φ
θ1
e +φθ2e −q)dq+ψe(φθ1e +φθ2e ),

where c ∈ R≥0, ψe ∈ C1, and fe(x, y) = ∂ ˜̀θ2
e (y, x)/∂y −

∂ ˜̀θ1
e (y, x)/∂x for all e ∈ E .

Proof: The proof is an application of the result of [17,
Ch. 4] to Proposition 5.2.

Throughout this subsection, we assumed that all the drivers
portray similar sensitivity to the imposed tolls. This is indeed
a source of conservatism, specially when dealing with routing
games in which the heterogeneity is caused by the fact that
the drivers react differently to the imposed tolls. Certainly,
an avenue for future research is to develop tolls for a more
general setup.

VI. CONCLUSIONS

In this article, we proposed a heterogeneous routing game
in which the players may belong to more than one type. The
type of each player determines the cost of using an edge
as a function of the flow of all types over that edge. We
proved that this heterogeneous routing game admits at least
one Nash equilibrium. Additionally, we gave a necessary and
sufficient condition for the existence of a potential function
for the introduced routing game, which indeed implies that
we can transform the problem of finding a Nash equilibrium
into an optimization problem. Finally, we developed tolls
to guarantee the existence of a potential function. Possible
future research will focus on bounding the efficiency of a
Nash equilibrium.
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