
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022 5071

Temporal Logic Trees for Model Checking
and Control Synthesis of Uncertain

Discrete-Time Systems
Yulong Gao , Alessandro Abate , Senior Member, IEEE, Frank J. Jiang , Mirco Giacobbe ,

Lihua Xie , Fellow, IEEE, and Karl Henrik Johansson , Fellow, IEEE

Abstract—We propose algorithms for performing model
checking and control synthesis for discrete-time uncertain
systems under linear temporal logic (LTL) specifications.
We construct temporal logic trees (TLTs) from LTL formulae
via reachability analysis. In contrast to automaton-based
methods, the construction of the TLT is abstraction-free
for infinite systems; that is, we do not construct discrete
abstractions of the infinite systems. Moreover, for a given
transition system and an LTL formula, we prove that there
exist both a universal TLT and an existential TLT via minimal
and maximal reachability analysis, respectively. We show
that the universal TLT is an underapproximation for the LTL
formula and the existential TLT is an overapproximation. We
provide sufficient conditions and necessary conditions to
verify whether a transition system satisfies an LTL formula
by using the TLT approximations. As a major contribution
of this work, for a controlled transition system and an LTL

Manuscript received 2 July 2020; revised 29 April 2021; accepted
17 September 2021. Date of publication 6 October 2021; date of cur-
rent version 27 September 2022. This work was supported in part
by the Knut and Alice Wallenberg Foundation, the Swedish Strategic
Research Foundation, the Swedish Research Council, the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, the HICLASS Project un-
der Grant 113213, a partnership between the Aerospace Technology
Institute (ATI), Department for Business, Energy and Industrial Strategy
(BEIS) and Innovate U.K., and in part by the National Research Founda-
tion, Singapore under its Medium Sized Center for Advanced Robotics
Technology Innovation. Recommended by Associate Editor L. Palopoli.
(Corresponding author: Yulong Gao.)

Yulong Gao is with the Division of Decision and Control Systems,
KTH Royal Institute of Technology, 10044 Stockholm, Sweden, and
also with the School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore (e-mail: yu-
longg@kth.se).

Alessandro Abate is with the Department of Computer Science, Uni-
versity of Oxford, OX13QD Oxford, U.K. (e-mail: aabate@cs.ox.ac.uk).

Frank J. Jiang is with the Division of Decision and Control Systems,
KTH Royal Institute of Technology, 10044 Stockholm, Sweden (e-mail:
frankji@kth.se).

Mirco Giacobbe is with the School of Computer Science, Uni-
versity of Birmingham, B152TT Birmingham, U.K. (e-mail: mirco.
giacobbe@cs.ox.ac.uk).

Lihua Xie is with the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore 639798, Singapore
(e-mail: elhxie@ntu.edu.sg).

Karl Henrik Johansson is with the Division of Decision and Control
Systems, KTH Royal Institute of Technology, 10044 Stockholm, Swe-
den, and also with Digital Futures, 10044 Stockholm, Sweden (e-mail:
kallej@kth.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3118335.

Digital Object Identifier 10.1109/TAC.2021.3118335

formula, we prove that a controlled TLT can be constructed
from the LTL formula via a control-dependent reachability
analysis. Based on the controlled TLT, we design an online
control synthesis algorithm, under which a set of feasible
control inputs can be generated at each time step. We
also prove that this algorithm is recursively feasible. We
illustrate the proposed methods for both finite and infinite
systems and highlight the generality and online scalability
with two simulated examples.

Index Terms—Control synthesis, linear temporal logic,
model checking, temporal logic trees.

I. INTRODUCTION

IN THE recent past, the integration of computer science and
control theory has promoted the development of new areas

such as embedded systems design, hybrid systems theory, and,
more recently, cyber–physical systems [1]–[4]. Given a model
of a dynamical process and a specification (i.e., a description
of desired properties), the following two fundamental problems
arise:

1) Model Checking: automatically verifying whether the
behavior of the model satisfies the given specification;

2) Formal Control Synthesis: automatically designing con-
trollers (inputs to the system) so that the behavior of the
model provably satisfies the given specification.

Both problems are of great interest in disparate and diverse ap-
plications, such as robotics, transportation systems, and safety-
critical embedded system design. However, they are challeng-
ing problems when considering dynamical systems affected by
uncertainty, and in particular uncertain infinite (uncountable)
systems under complex, temporal logic specifications. In this
article, we provide solutions to the model checking and formal
control synthesis problems, for discrete-time uncertain systems
under linear temporal logic (LTL) specification.

A. Related Work

In general, LTL formulae are expressive enough to capture
many important properties, e.g., safety (nothing bad will ever
happen), liveness (something good will eventually happen), and
more complex combinations of Boolean and temporal state-
ments [5].

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5072 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

In the area of formal verification, a dynamical process is
by and large modeled as a finite transition system. A typical
approach to both model checking and control synthesis for a
finite transition system and an LTL formula leverages automata
theory. It is known that each LTL formula can be transformed to
an equivalent automaton [6]. The model checking problem can
be solved by verifying whether the intersection of the trace set
of the transition system and the set of accepted languages of the
automaton expressing the negation of the LTL formula is empty
or not [5]. The control synthesis problem can be solved by the
following steps:

1) translate the LTL formula into a deterministic automaton;
2) build a “product automaton” between the transition sys-

tem and the obtained automaton;
3) transform the product automaton into a game [7];
4) solve the game [8]–[10];
5) map the solution into a control strategy.

In recent years, the study of model checking and control
synthesis for dynamical systems with continuous (uncountable)
spaces, which extends the standard setup in formal verification,
has attracted significant attention within the control community.
This has enabled the formal control synthesis for interesting
properties, which are more complex than the usual control
objectives such as stability and set invariance. In order to adapt
automaton-based methods to infinite systems, abstraction plays
a central role in both model checking and control synthesis,
which entails: 1) to abstract an infinite system to a finite transi-
tion system; 2) to conduct automaton-based model checking or
control synthesis for the finite transition system; 3) if a solution
is found, to map it back to the infinite system; otherwise, to refine
the finite transition system and repeat the steps above.

In order to show the correctness of the solution obtained
from the abstracted finite system over the infinite system, an
equivalence or inclusion relation between the abstracted finite
system and the infinite system needs to be established [11].
Relevant notions include (approximate) bisimulations and simu-
lations. These relations and their variants have been explored for
systems that are incrementally (input-to-state) stable [12], [13]
or systems with similar properties [14]. Recent work [15] shows
that the condition of approximate simulation can be relaxed to
controlled globally asymptotic or practical stability with respect
to a given set for nonlinear systems. We remark that such a
condition holds for only a small class of systems in practice.

Based on abstractions, the problem of model checking for
infinite systems has been studied in [16] and [17]. In [16], it is
shown that model checking for discrete-time, controllable, linear
systems from LTL formulae is decidable through an equivalent
finite abstraction. In [17], the authors study the problem of
verifying whether a linear system with additive uncertainty from
some initial states satisfies a fragment of LTL formulae, which
can be transformed to a deterministic Büchi automaton. The
key idea is to use a formula-guided method to construct and
refine a finite system abstracted from the linear system and
guarantee their equivalence. Along the same line, the problem
of control synthesis has also been widely studied for linear
systems [18], nonlinear systems [19], stochastic systems [20],
hybrid systems [21], and stochastic hybrid systems [22]. The ap-
plications of control synthesis under LTL specifications include

single-robot control in dynamic environments [23], multi-robot
control [24], and transportation control [25].

Beyond automata-based methods, alternative attempts have
been made for specific model classes. Receding horizon methods
are used to design controllers under LTL for deterministic linear
systems [26] and uncertain linear systems [27]. The control of
Markov decision processes under LTL is considered in [26]
and further applied to multi-robot coordination in [28]. Control
synthesis for dynamical systems has been extended also to
other specifications like signal temporal logic (STL) [29] and
probabilistic computational tree logic [30]. Interested readers
may refer to the tutorial paper [31] and the book [32] for detailed
discussions.

In this article, we propose a new tool for model checking and
control synthesis that builds upon the close relationship between
temporal logics and reachability analysis. In [33], the connec-
tion between STL and reachability analysis is studied, which
inspires our work. Furthermore, reachability analysis on infinite
systems [34], [35] and the computation of both forward and
backward reachable sets [36]–[38] have been widely studied.
As will be seen later in this article, the implementation of our
methods is facilitated by these works.

B. Motivations

Although the last two decades have witnessed great progress
on model checking and control synthesis for infinite systems
from both theoretical and practical perspectives, there are some
inherent restrictions in the dominant automaton-based methods.

First, abstraction from infinite systems to finite systems suf-
fers from the curse of dimensionality: Abstraction techniques
usually partition the state space, and transitions are constructed
via reachability analysis. The computational complexity in-
creases exponentially with the system dimension. Many works
are dedicated to improving the computational efficiency by using
overapproximation for (mixed) monotone systems [25] or by
exploiting the structure of the uncertainty [22]. However, another
issue with abstraction techniques is that only systems with “good
properties” (e.g., incremental stability or smooth dynamics)
might admit finite abstractions with guarantees, which limits
their generality.

Second, there are few results for handling general LTL
formulae when an infinite system comes with uncertainty
(e.g., bounded disturbance or additive noise). In most contri-
butions on control synthesis of uncertain systems, fragments of
LTL formulae (e.g., bounded LTL or co-safe LTL) are usually
taken into account [39], [40]. As mentioned before, the LTL
formulae are defined over infinite trajectories, and it is difficult
to control uncertainties propagating along such trajectories. This
restriction results from conservative overapproximation in the
computation of forward reachable sets, which is widely used for
abstraction, and which leads to information loss when used with
automaton-based methods.

Third, current methods usually lack online scalability. In
many applications, full a priori knowledge of a specification
cannot be obtained. For example, consider an automated
vehicle required to move from some initial position to some
destination without colliding into any obstacle (e.g., other

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5073

vehicles and pedestrians). Since the trajectories of other
vehicles and pedestrians cannot be accurately predicted, we
cannot, in advance, define a specification that captures all the
possibilities during the navigation process. Thus, offline design
of automaton-based methods is significantly restricted.

Finally, the controller obtained from automaton-based meth-
ods usually only contains a single control policy. In some
applications, e.g., human-in-the-loop control [41], [42], a set
of feasible control inputs are needed to provide more degrees of
freedom in the actual implementation. For example, [41] studies
a control problem where humans are given a higher priority
than the automated system in the decision making process. A
controller is designed to provide a set of admissible control
inputs with enough degrees of freedom to allow the human
operator to easily complete the task.

C. Contributions

Motivated by the above, this article studies LTL model check-
ing and reachability-based control synthesis for discrete-time
uncertain systems. The main contributions of this article are
threefold.

1) We construct tree structures from LTL formulae via reach-
ability analysis over dynamical models. We denote the tree
structure as a temporal logic tree (TLT). The connection between
TLT and LTL is shown to hold for both uncertain finite and
infinite models. The construction of the TLT is abstraction-
free for infinite systems and admits online implementation, as
demonstrated in Section VI. More specifically, given a system
and an LTL formula, we prove that both a universal TLT and
an existential TLT can be constructed for the LTL formula via
minimal and maximal reachability analysis, respectively (The-
orems III.1 and III.2). We also show that the universal TLT is an
underapproximation for the LTL formula and the existential TLT
is an overapproximation for the LTL formula. Our formulation
does not restrict the generality of LTL formulae.

2) We provide a method for model checking of discrete-time
dynamical systems using TLTs. We provide sufficient conditions
to verify whether a transition system satisfies an LTL formula
by using universal TLTs for underapproximating the satisfaction
set or alternatively using existential TLTs for overapproximating
the violation set (Theorem IV.1). Dually, we provide necessary
conditions by using existential TLTs for overapproximating
the satisfaction set or alternatively using universal TLTs for
underapproximating the violation set (Theorem IV.2).

3) As a core and novel contribution of this article, we detail an
approach for online control synthesis for a controlled transition
system to guarantee that the controlled system will satisfy the
specified LTL formula. Given a control system and an LTL
formula, we construct a controlled TLT (Theorem V.1). Based
on the obtained TLT, we design an online control synthesis algo-
rithm, under which a set of feasible control inputs is generated
at each time step (Algorithm 3). We prove that this algorithm is
recursively feasible (Theorem V.2). We provide applications to
show the scalability of our methods.

D. Organization

The remainder of the article is organized as follows. In
Section II, we define the notion of transition system, recall the
problem of reachability analysis, and provide preliminaries on

LTL specifications. In Section III, we introduce TLT structures
and show how to construct a TLT from a given LTL formula. In
Section IV, we solve the LTL model checking problem through
the constructed TLT. Section V solves the LTL control synthesis
problem. In Section VI, we illustrate the effectiveness of our
approaches with two numerical examples. In Section VII, we
conclude the article with a discussion about our work and future
directions.

Notation: Let N denote the set of nonnegative integers and R
denote the set of real numbers. For some q, s ∈ N, and q < s,
let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q} and {r ∈
N | q ≤ r ≤ s}, respectively. When ≤, ≥, <, and > are applied
to vectors, they are interpreted elementwise. For a matrix A ∈
Rm×n, AT denotes its transpose.

II. PRELIMINARIES

This section will first introduce transition systems and then
recall reachability analysis and LTL.

A. Transition System

Definition II.1: A transition system TS is a tuple TS=(S,→,
S0,AP , L) consisting of the following:

1) a set S of states;
2) a transition relation →∈ S × S 1;
3) a set S0 ⊆ S of initial states;
4) a set AP of atomic propositions;
5) a labeling function L : S → 2AP .

Definition II.2: A transition system TS is said to be finite if
|S| < ∞ and |AP| < ∞.

Definition II.3: For x ∈ S, the set Post(x) of direct succes-
sors of x is defined by Post(x) = {x′ ∈ S | x → x′}.

Definition II.4: A transition system TS is said to be nonblock-
ing if Post(x) 	= ∅, ∀x ∈ S.

Definition II.5: A transition system TS is said to be deter-
ministic if |S0| = 1 and |Post(x)| = 1, ∀x ∈ S.

Definition II.6: (Trajectory 2) For a transition system TS, an
infinite trajectory p starting from x0 is a sequence of states p =
x0x1 . . . xkxk+1 . . . such that ∀k ∈ N, xk+1 ∈ Post(xk).

Through this article, we assume that the transition system TS
is nonblocking, i.e., Post(x) 	= ∅, ∀x ∈ S. Denote by Trajs(x0)
the set of infinite trajectories starting from x0. Let Trajs(TS) =
∪x∈S0

Trajs(x). For a trajectory p, the kth state is denoted by
p[k], i.e., p[k] = xk, the kth prefix is denoted by p[..k], i.e.,
p[..k] = x0 . . . xk, and the kth suffix is denoted by p[k..], i.e.,
p[k..] = xkxk+1

Example II.1: A traffic light can be red, green, yellow, or
black (not working). The traffic light might stop working at any
time. After it has been repaired, it turns red. Initially, the light is
red. An illustration of such a traffic light is shown in Fig. 1(a).
We can model the traffic light as a transition system TS=(S,→,
S0,AP , L):

1Here, the transition relation is not a functional relation, but instead for some
state x, there may exist two different states x′ and x′′ such that x → x′ and x →
x′′ hold. For notational simplicity, we use →∈ S × S, rather than →∈ S × 2S .
The same claim holds for the controlled transition systems in Section V.

2Note that a trajectory p = x0x1 . . . xkxk+1 . . . is different from a trace,
which is the sequence of corresponding sets of atomic propositions, and is
denoted by L(x0)L(x1) . . . L(xk)L(xk+1)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5074 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Fig. 1. (a) Transition system illustrating a traffic light example. Labels
are shown aside the states. The initial state is denoted by an incoming
edge. (b) TLT corresponding to an LTL formula ϕ = �♦(g ∨ b) for this
system. Note that ♦ϕ = true ∪ ϕ.

1) S = {1, 2, 3, 4, 5};
2) →= {(1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (3, 5),

(4, 5), (5, 1)};
3) S0 = {1};
4) AP = {r, y, g, b};
5) L = {1 → {r}, 2 → {r, y}, 3 → {g}, 4 → {y}, 5 →

{b}}. �
Remark II.1: We can rewrite the following discrete-time au-

tonomous system as an infinite transition system:

S :

{
xk+1 = f(xk, wk),

yk = g(xk)

where xk ∈ SS ⊆ Rnx , wk ∈ Rnw , yk ∈ 2O, f : Rnx ×
Rnw → Rnx , and g : Rnx → 2O. Here, O denotes the set of
observations. At each time instant k, the disturbance wk belongs
to a compact set W ⊂ Rnw . Denote by Ini ⊆ Rnx the set of
initial states. The system S can be rewritten as an infinite
transition system TSS = (SS,→, Ini,O, g), where ∀x, x′ ∈ SS,
x → x′ if and only if there exists w ∈ W such that x′ =
f(x,w). �

B. Reachability Analysis

This subsection specifies the reachability analysis for a tran-
sition system TS. We first define the minimal reachable set and
the maximal reachable set.

Definition II.7: Consider a transition system TS and two sets
Ω1,Ω2 ⊆ S. The k-step minimal reachable set from Ω1 to Ω2 is
defined as

Rmin(Ω1,Ω2, k) = {x0 ∈ S | ∀p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xk, ∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The minimal reachable set from Ω1 to Ω2 is defined as

Rmin(Ω1,Ω2) =
⋃
k∈N

Rmin(Ω1,Ω2, k).

The minimal reachable set can be recursively computed in the
following way. For two sets Ω1,Ω2 ⊆ S, define

Qmin
k+1 = {x ∈ Ω1 | Post(x) ⊆ Qmin

k } ∪ Qmin
k

with initialization Qmin
0 = Ω2. Then, Rmin(Ω1,Ω2) =⋃

i∈N Qmin
k .

Definition II.8: Consider a transition system TS and two sets
Ω1,Ω2 ⊆ S. The k-step maximal reachable set from Ω1 to Ω2

is defined as

Rmax(Ω1,Ω2, k) = {x0 ∈ S | ∃p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xk, ∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The maximal reachable set from Ω1 to Ω2 is defined as

Rmax(Ω1,Ω2) =
⋃
k∈N

Rmax(Ω1,Ω2, k).

Define

Qmax
k+1 = {x ∈ Ω1 | Post(x) ∩ Qmax

k 	= ∅} ∪ Qmax
k

with initialization Qmax
0 = Ω2. Similarly, Rmax(Ω1,Ω2) =⋃

i∈N Qmax
k .

We define the robust invariant set and the invariant set in the
following.

Definition II.9: A set Ωf ⊆ S is said to be a robust invariant
set of a transition system TS if for any x ∈ Ωf , Post(x) ⊆ Ωf .

Definition II.10: For a set Ω ⊆ S, a set RI(Ω) ⊆ S is said
to be the largest robust invariant set in Ω if each robust invariant
set Ωf ⊆ Ω satisfies Ωf ⊆ RI(Ω).

Define

Qriv
k+1 = {x ∈ Qriv

k | Post(x) ⊆ Qriv
k }

with initialization Qriv
0 = Ω. As shown in [43], the largest robust

invariant set RI(Ω) = Qriv
k for some k ∈ N if and only if

Qriv
k = Qriv

k+1.
Definition II.11: A set Ωf ⊆ S is said to be an invariant set

of a transition system TS if for any x ∈ Ωf , Post(x) ∩ Ωf 	= ∅.
Definition II.12: For a set Ω ⊆ S, a set I(Ω) ⊆ S is said to

be the largest invariant set in Ω if each invariant set Ωf ⊆ Ω
satisfies Ωf ⊆ I(Ω).

Define

Qiv
k+1 = {x ∈ Qiv

k | Post(x) ∩ Qiv
k 	= ∅}

with initialization Qiv
0 = Ω. Similarly, the largest invariant set

I(Ω) = Qiv
k for some k ∈ N if and only if Qiv

k = Qiv
k+1.

We can understand the reachable sets and invariant sets de-
fined above as mapsRmin : 2S × 2S → 2S,Rmax : 2S × 2S →
2S, RI : 2S → 2S, and I : 2S → 2S, respectively. In the fol-
lowing, we will refer to them as “reachability operators.”

C. LTL

An LTL formula is defined over a finite set of atomic propo-
sitions AP and both logic and temporal operators. The syntax
of LTL can be described as

ϕ ::= true | a ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5075

where © and U denote the “next” and “until” operators,
respectively. By using the negation and conjunction opera-
tors, we can define disjunction: ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2). By
employing the until operator, we can define: 1) eventually,
♦ϕ = true ∪ ϕ; 2) always, �ϕ = ¬♦¬ϕ; and 3) weak-until,
ϕ1Wϕ2 = ϕ1Uϕ2 ∨�ϕ1.

Definition II.13: (LTL semantics) For an LTL formula ϕ and
a trajectory p, the satisfaction relation p � ϕ is defined as

p � a ⇔ a ∈ L(x0),

p � ¬ϕ ⇔ p � ϕ,

p � ϕ1 ∧ ϕ2 ⇔ p � ϕ1 ∧ p � ϕ2,

p � ϕ1 ∨ ϕ2 ⇔ p � ϕ1 ∨ p � ϕ2,

p � ©ϕ ⇔ p[1..] � ϕ,

p � ϕ1Uϕ2 ⇔ ∃j ∈ N s.t.

{
p[j..] � ϕ2,

∀i ∈ N[0,j−1],p[i..] � ϕ1

where a ∈ AP .
An LTL formula is in positive normal form if negations only

occur adjacent to atomic propositions.
Lemma II.1: [5] For each LTL formula, there exists an

equivalent LTL formula in weak-until positive normal form that
is inductively defined as

ϕ ::= true | false | a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ©ϕ

| ϕ1Uϕ2 | ϕ1Wϕ2.

Definition II.14: Consider a transition system TS and an LTL
formula ϕ. The semantics of the universal form of ϕ, denoted
by ∀ϕ, is

x0 � ∀ϕ ⇔ ∀p ∈ Trajs(x0),p � ϕ.

The semantics of the existential form of ϕ, denoted by ∃ϕ, is

x0 � ∃ϕ ⇔ ∃p ∈ Trajs(x0),p � ϕ.

III. TEMPORAL LOGIC TREES

This section will introduce the notion of TLT and establish a
satisfaction relation between a trajectory and a TLT. Then, we
construct TLTs from LTL formulae and discuss the approxima-
tion relation between them.

A. Definitions

A TLT refers to a tree that simulates a hierarchical structure
with linked set nodes and operator nodes and serves as an alterna-
tive tool for model checking and control synthesis. The intuition
of the TLT is that it collects a sequence of state sets (from root
node to leaf nodes), indicating how a state trajectory ought to
evolve from top to bottom in order to satisfy the corresponding
temporal logic specification.

Definition III.1: A TLT is a tree for which the next holds:
1) each node is a set node, a subset of S, or an operator node,

from {∧,∨,©,U,�};
2) the root node and the leaf nodes are set nodes;

3) if a set node is not a leaf node, its unique child is an
operator node;

4) the children of any operator node are set nodes.
Next we define the complete path and the minimal Boolean

fragment for a TLT. Minimal Boolean fragments play an im-
portant role when simplifying the TLT for model checking and
control synthesis in the following.

Definition III.2: A complete path of a TLT is a sequence
of nodes and edges from the root node to a leaf node. Any
subsequence of a complete path is called a fragment of the
complete path.

Definition III.3: A minimal Boolean fragment of a complete
path is one of the following fragments:

1) a fragment from the root node to the first Boolean operator
node (∧ or ∨) in the complete path;

2) a segment from one Boolean operator node to the next
Boolean operator node in the complete path;

3) a fragment from the last Boolean operator node of the
complete path to the leaf node.

Example III.1: A TLT is shown in Fig. 1(b). We encode one of
the complete paths of this TLT in the form of X0�X1UX2 ∨ X3,
where X0 = X1 = {1, 2, 3, 4, 5}, X2 = {3, 5}, and X3 = {3}.
For this complete path, the minimal Boolean fragments consist
of X0�X1♦X2∨ and ∨X3, which correspond to cases 1) and 3)
in Definition III.3, respectively. �

We now define the satisfaction relation between a given
trajectory and a complete path of a TLT.

Definition III.4: Consider a trajectory p = x0x1 . . . xk . . .
and encode a complete path of a TLT in the form of X0 �1

X1 �2 . . .�Nf
XNf

where Nf is the number of operators
in the complete path, Xi ⊆ S for all i ∈ N[0,Nf] and �i ∈
{∧,∨,©,U,�} for all i ∈ N[1,Nf]. The trajectory p is said to
satisfy this complete path if x0 ∈ X0 and there exists a sequence
of time steps k0k1, . . . , kNf

with ki ∈ N for all i ∈ N[0,Nf] and

0 � k0 ≤ k1 ≤ k2 ≤ . . . ≤ kNf
such that for all i ∈ N[0,Nf],

we have the following:
1) if �i = ∧ or �i = ∨, xki

∈ Xi−1 and xki
∈ Xi;

2) if �i = ©, xki−1 ∈ Xi−1 and xki
∈ Xi;

3) if �i = U, xj ∈ Xi−1, ∀j ≥ N[ki−1,ki−1], and xki
∈ Xi;

4) if �i = �, xj ∈ Xi, ∀j ≥ ki.
Consider a kth prefix p[..k] = x0x1 . . . xk from p and a

fragment from the complete path in the form of X0 �1 X1 �2

. . .�N ′
f

XN ′
f

where N ′
f ≤ Nf . The prefix p[..k] is said to

satisfy this fragment if x0 ∈ X0, xk ∈ XN ′
f

, and there exists
a sequence of time steps k0k1, . . . , kN ′

f
with ki ∈ N for all

i ∈ N[0,N ′
f]

and 0 � k0 ≤ k1 ≤ k2 ≤ . . . ≤ kN ′
f
≤ k, such that

for all i ∈ N[0,N ′
f]

, 1)–3) holds and furthermore
4’) if �i = �, xj ∈ Xi, ∀j ∈ N[ki,k].

Definition III.5: A time coding of a TLT is an assignment of
each operator node in the tree to a nonnegative integer.

The time coding is an extension of the time sequence in Defini-
tion III.4 to be associated with a tree structure and indicates when
the operators in the TLT are activated along a given trajectory.

Definition III.6: Consider a trajectory p = x0x1 . . . xk . . .
and a TLT. The trajectory p is said to satisfy the TLT if there
exists a time coding such that Algorithm 1 outputs true.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5076 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Algorithm 1: TLT Satisfaction.
Input: a trajectory p = x0x1 . . . xk . . ., a TLT and a time
coding

Output: true or false;
1: construct a compressed tree via Algorithm 2 with

input of the TLT;
2: replace all set nodes of the compressed tree with false;
3: for each complete path of the TLT do
4: if p satisfies the complete path under the time

coding, then
5: set the corresponding leaf node in the compressed

tree with true;
6: else
7: set the corresponding leaf node in the compressed

tree with false;
8: end if
9: end for

10: backtrack the tree;
11: return the root node of the tree.

Algorithm 1 provides a procedure to test if a trajectory satisfies
a TLT under a given time coding. The TLT is first transformed
into a compressed tree by removing all the temporal operators
(lines 1–2), through Algorithm 2. Then, we check if the tra-
jectory satisfies each complete path of the TLT under the time
coding (lines 3–9). The outcome from lines 1–9 is a tree where
the operator nodes are either ∨ or ∧ and other nodes are either
true or false. This is similar to the tree structure for the Boolean
expressions. Finally, we backtrack the tree with output true or
false (line 10). To backtrack the tree is to recursively evaluate
all the subtrees from bottom to top with respect to the Boolean
calculation. If the output is true, the trajectory satisfies the TLT;
otherwise, the trajectory does not satisfy the TLT under the given
time coding.

Algorithm 2 aims to obtain a tree in a compact form. Each
minimal Boolean fragment is encoded according to Defini-
tion III.3. The notation �i denotes the operator node and Nf

denotes the number of set nodes in the corresponding minimal
Boolean fragment. We compress the sets in the minimal Boolean
fragment to be a single set. The simplified tree consists of set
nodes and Boolean operator nodes.

Example III.2: From Definition III.4, we can verify that the
trajectory p = (1234)ω satisfies the complete path given in
Example III.1 by choosing k0 = k1 = 0 and k2 = k3 = 2. It
follows from Definition III.6 that this trajectory satisfies the
corresponding TLT. �

B. Construction and Approximation of TLT

We define the approximation relations between TLTs and LTL
formulae as follows.

Definition III.7: A TLT is said to be an underapproximation
of an LTL formula ϕ if all the trajectories that satisfy the TLT
also satisfy ϕ.

Definition III.8: A TLT is said to be an overapproximation of
an LTL formula ϕ if all the trajectories that satisfy ϕ also satisfy
the TLT.

Algorithm 2: Tree Compression.
Input: a tree
Output: a compressed tree

1: for each complete path of the tree do
2: for each minimal Boolean fragment do
3: switchminimal Boolean fragmentdo
4: case1) in Definition III.3
5: encode the fragment in the form of

Y1 �1 . . .�i . . .YNf
�Nf

with �Nf
∈ {∧,∨};

6: replace the fragment with ∪Nf

i=1Yi�Nf
;

7: case2) in Definition III.3
8: encode the fragment in the form of

�1Y1 �2 . . .�Nf
YNf

�Nf+1 with
�1,�Nf+1 ∈ {∧,∨};

9: replace the fragment with �1 ∪Nf

i=1 Yi�Nf+1;
10: case3) in Definition III.3
11: encode the fragment in the form of

�1Y1 �2 . . .�Nf
YNf

with �1 ∈ {∧,∨};

12: replace the fragment with �1 ∪Nf

i=1 Yi;
13: � �i denotes the operator node and Nf denotes

the number of set nodes in the minimal Boolean
fragment;

14: end for
15: end for
16: return the updated tree.

The following two theorems show how to construct TLTs
via reachability analysis for the LTL formulae and discuss their
approximation relations.

Theorem III.1: For any transition system TS and any LTL
formula ϕ, we have the following.

1) A TLT can be constructed from the formula ∀ϕ through
the reachability operators Rmin and RI.

2) This TLT is an underapproximation of ϕ.
Proof: Here we provide a proof sketch. See Appendix A for

a detailed proof.
We prove the constructability by the following three steps: 1)

According to Lemma II.1, we transform the given LTL formula
ϕ into an equivalent LTL formula in the weak-until positive
normal form; 2) for each atomic proposition a ∈ AP , we show
that a TLT can be constructed from ∀a (or ∀¬a); 3) we leverage
induction to show the following: given LTL formulae ϕ, ϕ1,
and ϕ2 in weak-until positive normal form, if TLTs can be
constructed from ∀ϕ, ∀ϕ1, and ∀ϕ2, respectively, then TLTs can
also be constructed through reachability operatorsRmin andRI
from the formulae ∀(ϕ1 ∧ ϕ2), ∀(ϕ1 ∨ ϕ2), ∀© ϕ, ∀(ϕ1Uϕ2),
and ∀(ϕ1Wϕ2), respectively.

We follow a similar approach to prove an underapproxi-
mation relation between the constructed TLT and the LTL
formula. The underapproximation occurs due to the conjunc-
tion operator and the presence of branching in the transition
system. �

Similarly, the following results hold.
Theorem III.2: For any transition system TS and any LTL

formula ϕ, we have the following.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5077

1) A TLT can be constructed from the formula ∃ϕ through
the reachability operators Rmax and I.

2) This TLT is an overapproximation of ϕ.
Proof: The proof of the first part is similar to that of Theo-

rem III.1 by replacing the universal quantifier ∀ and the reach-
ability operators Rmin and RI with the existential quantifier ∃
and the operators Rmax and I, respectively. Also, the proof of
the second part is similar to that of Theorem III.1 by following
the definitions of the maximal reachable set and invariant set.�

We call the constructed TLT of ∀ϕ the universal TLT of ϕ
and the TLT of ∃ϕ the existential TLT of ϕ. We remark that
the constructed TLT is not unique: This is because an LTL
formula can have different equivalent expressions (e.g., normal
forms). Despite this, the approximation relations between an
LTL formula and the corresponding TLT still hold.

The following corollary shows that the approximation relation
between TLTs and LTL formulae are tight for deterministic
transition systems.

Corollary III.1: For any deterministic transition system TS
and any LTL formula ϕ, the universal TLT and the existential
TLT of ϕ are identical.

Proof: If the system is deterministic, it follows that for any
Ω1,Ω2 ⊆ S and Ω ⊆ S, Rmin(Ω1,Ω2) = Rmax(Ω1,Ω2) and
RI(Ω) = I(Ω). Then, by the same construction procedure,
we have that the constructed universal TLT is the same as the
constructed existential TLT. �

Remark III.1: Computing reachable and invariant sets is a
classical problem in the analysis of both dynamical systems and
computer programs and plays a central role in the construction
of the TLT. A discrete-time dynamical system can be seen as a
while loop that repeats a difference equation; an invariant set can
thus be seen as a loop invariant, as intended in Hoare logic. How
to compute reachable and invariant sets is not the focus of this ar-
ticle. Interested readers are referred to relevant results [36]–[38]
and associated computational tools, e.g., the multiparametric
toolbox [44] and the Hamilton–Jacobi toolbox [45]. �

Example III.3: Consider the traffic light in Example II.1
and the LTL formula ϕ = �♦(g ∨ b). We follow the proof of
Theorem III.1 to show the correspondence between ∀ϕ and the
TLT in Fig. 1(b).

1) The universal TLT of g is a single set node, i.e., {3}, and
the universal TLT of b is also a single set node, i.e., {5}.

2) The root node of the universal TLT of g ∨ b is the union
of {3} and {5}, i.e., {3, 5}.

3) The root node of the universal TLT of ♦(g ∨ b) is
Rmin(S, {3, 5}) = {1, 2, 3, 4, 5}.

4) The root node of the universal TLT of �♦(g ∨ b) is
RI({1, 2, 3, 4, 5}) = {1, 2, 3, 4, 5}.

We can follow the same steps in the proof of Theorem III.2
to construct the existential TLT of ϕ, which is the same as the
universal TLT of ϕ for the system in Example II.1. �

IV. MODEL CHECKING VIA TLT

This section focuses on the model checking problem.
Problem IV.1: Consider a transition system TS and an LTL

formula ϕ. Verify whether TS � ϕ, i.e., ∀x0 ∈ S0, x0 � ∀ϕ.

Thanks to the approximation relations between the TLTs and
the LTL formulae, we obtain the following lemma.

Lemma IV.1: For any transition system TS and any LTL
formula ϕ, we have the following.

1) x0 � ∀ϕ if x0 belongs to the root node of the universal
TLT of ϕ.

2) x0 � ∃ϕ only if x0 belongs to the root node of the
existential TLT of ϕ.

Proof: The first result follows from that the root node of the
universal TLT is an underapproximation of the satisfaction set of
ϕ, as shown in Theorem III.1. Dually, the second result follows
from that the root node of the universal TLT is an overapproxi-
mation of the satisfaction set of ϕ, shown in Theorem III.2. �

The next theorem provides two sufficient conditions for solv-
ing Problem IV.1.

Theorem IV.1: For a transition system TS and an LTL formula
ϕ, TS � ϕ if one of the following conditions holds.

1) The initial state set S0 is a subset of the root node of the
universal TLT for ϕ.

2) No initial state from S0 belongs to the root node of the
existential TLT for ¬ϕ.

Proof: Condition 1) directly follows from the first result of
Lemma IV.1. Let us next prove condition 2). It follows that

TS � ϕ ⇔ ∀p∈Trajs(TS),p � ϕ ⇔ ∀p∈Trajs(TS),p � ¬ϕ.
From the second result of Lemma IV.1, if x0 does not belong
to the root node of the existential TLT of ¬ϕ, we have p � ¬ϕ,
∀p ∈ Trajs(x0). Thus, condition 2) is sufficient for verifying
TS � ϕ. �

Similarly, we derive two necessary conditions for solving the
model checking problem.

Theorem IV.2: For a transition system TS and an LTL formula
ϕ, TS � ϕ only if one of the following conditions holds.

1) The initial state set S0 is a subset of the root node of the
existential TLT for ϕ.

2) No initial state from S0 belongs to the root node of the
universal TLT for ¬ϕ.

Proof: Similar to Theorem IV.1. �
Note that the approximation relations between the TLT and

the LTL formula are tight for deterministic transition systems,
as shown in Corollary III.1. In this case, the model checking
problem can be tackled as follows.

Corollary IV.1: For a deterministic transition system TS and
an LTL formula ϕ, TS � ϕ if and only if the initial state set S0

is a subset of the root node of the universal (or existential) TLT
for ϕ.

Proof: Follows from Corollary III.1. �
The conditions in Theorems IV.1–IV.2 imply that one can

directly do model checking by using TLTs, as shown in the
following example.

Example IV.1: Let us continue to consider the traffic light and
the LTL formula ϕ = �♦(g ∨ b). Let us verify whether TS � ϕ
by using the above method. Since the unique initial state x0

belongs to the root node of the universal TLT of ϕ shown in
Fig. 1(b), it follows from condition 1) in Theorem IV.1 that
TS � ϕ. Next, we show how to use condition 2) to verify that
TS � ϕ.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5078 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

First of all, we have¬ϕ = ♦�(¬g ∧ ¬b). Following the proof
of Theorem III.2, we construct the existential TLT of ¬ϕ.

1) The existential TLT of ¬g is a single set node, i.e.,
{1, 2, 4, 5} and the existential TLT of ¬b is also a single
set node, i.e., {1, 2, 3, 4}.

2) The root node of the existential TLT of ¬g ∧ ¬b is the
intersection of {1, 2, 4, 5} and {1, 2, 3, 4}, i.e., {1, 2, 4}.

3) The root node of the existential TLT of �(¬g ∧ ¬b) is
I({1, 2, 4}) = ∅.

As the existential TLT of ¬ϕ is the empty set ∅, this im-
plies that condition 2) in Theorem IV.1 holds, and, thus, TS
� ϕ. �

V. CONTROL SYNTHESIS VIA TLT

This section will show how to use the TLT to do control
synthesis. Before that, we will introduce the notion of controlled
transition system and recall the controlled reachability analysis.

A. Controlled Transition System

We first define a controlled transition system, which is used
to model discrete-time uncertain control systems.

Definition V.1: A controlled transition system CTS is a tuple
CTS = (S,U ,→,S0,AP , L) consisting of the following:

1) a set S of states;
2) a set U of control inputs;
3) a transition relation →∈ S × U × S;
4) a set S0 of initial states;
5) a set AP of atomic propositions;
6) a labeling function L : S → 2AP .

Definition V.2: A controlled transition system CTS is said to
be finite if |S| < ∞, |U | < ∞, and |AP| < ∞.

Definition V.3: For x ∈ S and u ∈ U , the set Post(x, u) of
direct successors of x under u is defined by Post(x, u) = {x′ ∈
S | x u−→ x′}.

Definition V.4: For x ∈ S, the set U(x) of admissible control
inputs at state x is defined by U(x) = {u ∈ U | Post(x, u) 	=
∅}.

Definition V.5: (Policy) For a controlled transition system
CTS, a policy µ = μ0μ1 . . . μk . . . is a sequence of maps μk :
Sk+1 → U . Denote by M the set of all policies.

Definition V.6: (Trajectory) For a controlled transition system
CTS, an infinite trajectory p starting from x0 under a policy
µ = μ0μ1 . . . μk . . . is a sequence of states p = x0x1 . . . xk . . .
such that ∀k ∈ N, xk+1 ∈ Post(xk, μk(p[..k])). Denote by
Trajs(x0,µ) the set of infinite trajectories starting fromx0 under
µ.

We assume that the controlled transition system CS consid-
ered in this article is nonblocking, i.e., for each x ∈ S, there ex-
ists an admissible control inputu ∈ U such that Post(x, u) 	= ∅.

Example V.1: A controlled transition system CTS =
(S,U ,→,S0,AP , L) is shown in Fig. 2(a), where

1) S = {s1, s2, s3, s4};
2) U = {a1, a2};
3) →= {(s1, a1, s2), (s1, a1, s3), (s2, a1, s2), (s2, a1, s3),

(s2, a1, s3), (s2, a2, s4), (s3, a1, s2), (s3, a2, s3),
(s4, a1, s2), (s4, a1, s4)};

Fig. 2. (a) Graph description of a controlled transition system.
(b) Controlled TLT of ϕ = ♦�o2 for the system.

4) S0 = {s1};
5) AP = {o1, o2, o3};
6) L = {s1 → {o1}, s2 → {o2}, s3 → {o3}, s4 →

{o2}}. �
Remark V.1: Similar to the transition systems, we can ex-

press the following discrete-time uncertain control system as an
infinite controlled transition system:

CS :

{
xk+1 = f(xk, uk, wk),

yk = g(xk)
(1)

where xk ∈ SCS ⊆ Rnx and uk ∈ UCS ⊂ Rnu , wk ∈ W ⊂
Rnw , yk ∈ 2O, f : Rnx × Rnu × Rnw → Rnx , and g : Rnx →
2O. Here, O denotes the set of observations. Assume that the
sets UCS and W are compact. Let Ini ⊆ Rnx be the set of the
initial states. Then, following the similar step in Remark II.1,
the system CS can be rewritten as an infinite controlled transi-
tion system, CTSCS = (SCS,UCS,→, Ini,O, g)where∀x, x′ ∈
SCS and ∀u ∈ UCS, x

u−→ x′ if and only if there exists w ∈ W
such that x′ = f(x, u, w). �

B. Controlled Reachability Analysis

This subsection will develop reachability analysis of a con-
trolled transition system CTS.

Definition V.7: Consider a controlled transition system CTS
and two sets Ω1,Ω2 ⊆ S. The k-step controlled reachable set
from Ω1 to Ω2 is defined as

Rc(Ω1,Ω2, k) = {x0 ∈ S | ∃µ ∈ M s.t., ∀p ∈ Trajs(x0,µ),

p[..k] = x0 . . . xk, ∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The controlled reachable set from Ω1 to Ω2 is defined as

Rc(Ω1,Ω2) =
⋃
k∈N

Rc(Ω1,Ω2, k).

For two sets Ω1,Ω2 ⊆ S, define

Qc
k+1 = {x ∈ Ω1 | ∃u ∈ U(x),Post(x, u) ⊆ Qc

k} ∪ Qc
k

with initialization Qc
0 = Ω2. Then, Rc(Ω1,Ω2) =

⋃
k∈N Qc

k.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5079

Definition V.8: A set Ωf ⊆ S is said to be a robust con-
trolled invariant set (RCIS) of a transition system TS if
for any x ∈ Ωf , there exists u ∈ U(x) such that Post(x, u)
⊆ Ωf .

Definition V.9: For a set Ω ⊆ S, a set RCI(Ω) ⊆ S is said to
be the largest RCIS in Ω if each RCIS Ωf ⊆ Ω satisfies Ωf ⊆
RCI(Ω).

For a set Ω ⊆ S, define

Qrci
k+1 = {x ∈ Qrci

k | ∃u ∈ U(x),Post(x, u) ⊆ Qrci
k }

with initialization Qrci
0 = Ω. As shown in [43],RCI(Ω) = Qrci

k

for some k ∈ N if and only if Qrci
k = Qrci

k+1.
The definitions of controlled reachable sets and RCISs pro-

vide us a way to synthesize the feasible control set, which is
detailed in Algorithm 4. In the following, we treat the maps
Rc : 2S × 2S → 2S and RCI : 2S → 2S as the reachability
operators.

C. Construction and Approximation of TLT

The next theorem shows how to construct a TLT from an
LTL formula for a controlled transition system and discusses its
approximation relation.

Theorem V.1: For a controlled transition system CTS and any
LTL formula ϕ, the following holds.

1) A TLT can be constructed from the formula ϕ through
the reachability operators Rc and RCI.

2) Given an initial state x0, if there exists a policy µ such
that p satisfies the constructed TLT, ∀p ∈ Trajs(x0,µ),
then p � ϕ, ∀p ∈ Trajs(x0,µ).

Proof: The proof of the first part is similar to that of Theo-
rem III.1 by replacing the reachability operators Rmin(·) and
RI(·) with Rc(·) and RCI(·), respectively.

Similar to the underapproximation of the universal TLT in
Theorem III.1, we can show that the path satisfying the con-
structed TLT in the first part also satisfies the LTL formula.
Then, we can directly prove the second result. �

Let us call the constructed TLT of ϕ in Theorem V.1 the
controlled TLT of ϕ.

Remark V.2: Checking whether there exists a policy, such
that all the resulting trajectories satisfy the obtained controlled
TLT, is, in general, a hard problem. A straightforward necessary
condition is that x0 belongs to the root node of the controlled
TLT; however, this is neither a necessary nor a sufficient con-
dition on the existence of a policy such that all the resulting
trajectories satisfy the given LTL formula. Instead, if we treat
the controlled transition system as a nondeterministic transition
system, a (rather conservative) necessary condition is that there
exists at least one trajectory for this transition system that satis-
fies the LTL formula. This necessary condition can be further
characterized by constructing the corresponding existential TLT
and applying Theorem IV.2. �

Next, we will show how to construct the controlled TLT
through an example.

Example V.2: Consider the controlled transition system in
Example V.1. For an LTL formula ϕ = ♦�o2, we can follow
the steps in the proof of Theorem V.1 to construct the controlled
TLT of ϕ, as shown in Fig. 2(b). �

D. Control Synthesis Algorithm

In this subsection, we solve the following control synthesis
problem.

Problem V.1: Consider a controlled transition system CTS
and an LTL formula ϕ. For an initial state x0 ∈ S0, find,
whenever existing, a sequence of feedback control inputs
u = u0u1 . . . uk. . . such that the resulting trajectory p =
x0x1 . . . xk . . . satisfies ϕ.

Remark V.3: Note that the objective of the above problem
is not to find a policy µ but a sequence of control inputs that
depend on the measured state. In general, synthesizing a policy
µ such that each trajectory p ∈ Trajs(x0,µ) satisfies ϕ is
computationally intractable for infinite systems. Instead, we
seek to find online a feasible control input at each time step,
in a similar spirit to constrained control or receding horizon
control. �

Instead of directly solving Problem V.1, we consider the
following related task, whose solution is also a solution to
Problem V.1, thanks to Theorem V.1.

Problem V.2: Consider a controlled transition system CTS
and an LTL formula ϕ. For an initial state x0 ∈ S0, find, when-
ever existing, a sequence of control inputs u = u0u1 . . . uk . . .
such that the resulting trajectory p = x0x1 . . . xk . . . satisfies
the controlled TLT constructed from ϕ.

Algorithm 3 provides a solution to Problem V.2. In particular,
Algorithm 3 presents an online feedback control synthesis proce-
dure, which consists of three steps: 1) control tree—replace each
set node of the TLT with a corresponding control set candidate
(Algorithm 4); 2) compressed control tree—compress the con-
trol tree as a new tree whose set nodes are control sets and whose
operator nodes are conjunctions and disjunctions (Algorithm 2);
3) backtrack on the control sets through a bottom-up traversal
over the compressed control tree (Algorithm 5). If the output of
Algorithm 3 is NExis, there does not exist a feasible solution
to Problem V.2. We remark that Algorithm 3 is implemented in
a similar way to receding horizon control with the prediction
horizon being one.

Algorithm 4 aims to construct a control tree that enjoys the
same tree structure as the input TLT. The difference is that all the
set nodes are replaced with the corresponding control set nodes.
The correspondence is established as follows:

1) whether the initial state x0 belongs to the root node or not
(lines 1–3);

2) whether the prefix p[..k] satisfies the fragment from the
root node to the set node (lines 5–7);

3) whether or not the set node is a leaf node (lines 9–14);
4) which operator the child of the set node is (lines 16–23).
Algorithm 5 aims to backtrack a set by using the compressed

tree. We update the parent of each Boolean operator node
through a bottom-up traversal.

Note that the construction of a control tree in Algorithm 4
is closely related to the controlled reachability analysis in Sec-
tion V-B. In lines 10–12, the computation of control set follows
from the definition of RCIS. In lines 20–21, the definition of
one-step controlled reachable set is used to compute the control
set. In lines 22–23, the control set is synthesized from the
definition of a controlled reachable set.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5080 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Algorithm 3: Online Feedback Control Synthesis via TLT.
Input: an initial state x0 ∈ S0 and the controlled TLT of
an LTL formula ϕ

Output: NExis or (u,p) with u = u0u1 . . . uk . . . and
p = x0x1 . . . xk . . .

1: initialize k = 0;
2: construct a control tree via Algorithm 4, with inputs

p[..k] = x0 . . . xk and the TLT;
3: construct a compressed tree via Algorithm 2, with

input the control tree;
4: synthesize a control set Uϕ

k via Algorithm 5, with
input the compressed tree;

5: if Uϕ
k = ∅ then

6: stop and return NExis;
7: else
8: choose uk ∈ Uϕ

k ;
9: implement uk and measure xk+1 ∈ Post(xk, uk);

10: update k = k + 1 and go to Step 2;
11: end if

The following theorem shows that Algorithm 3 is recursively
feasible. This means that initial feasibility implies future feasi-
bility. This is an important property, particularly used in receding
horizon control.

Theorem V.2: Consider a controlled transition system CTS,
an LTL formula ϕ, and an initial state x0 ∈ S0. Let x0 and the
controlled TLT of ϕ be the inputs of Algorithm 3. If there exists
a policy µ such that p satisfies the controlled TLT of ϕ, ∀p ∈
Trajs(x0,µ), then we have the following.

1) The control set Uϕ
k (line 8 of Algorithm 3) is nonempty

for all k ∈ N.
2) At each time step k, there exists at least one trajectory

p with prefix p[..k + 1] = x0 . . . xkxk+1 under some
policy such that p satisfies the controlled TLT of ϕ,
∀uk ∈ Uϕ

k and ∀xk+1 ∈ Post(xk, uk).
Proof: The proof follows from the construction of the set Uϕ

k

in Algorithm 4 and the operations in Algorithms 2 and 5, and
the definitions of controlled reachable sets and RCIS. If there
exists a policy µ such that p satisfies the controlled TLT of
ϕ, ∀p ∈ Trajs(x0,µ), we have that Algorithm 3 is feasible at
each time step k, which implies that Uϕ

k 	= ∅. Furthermore, from
Algorithm 4, each element in Uϕ

k guarantees the one-step ahead
feasibility for all realizations of xk+1 ∈ Post(xk, uk), which
implies the result 2). �

Theorem V.2 implies that if there exists a policy such that all
the resulting trajectories satisfy the controlled TLT built from
ϕ, then Algorithm 3 is always feasible at each time step in two
senses: 1) the control set Uϕ

k is nonempty; and 2) there always
exists a feasible policy such that the trajectories with the realized
prefix satisfy the controlled TLT.

Remark V.4: In Algorithm 3, the integration of Algorithms 2,
4, and 5 can be interpreted as a feedback control law. This
control law is a set-valued map Sk+1 → 2U at time step k. Given
the prefix p[..k] = x0 . . . xk, this map collects all the feasible
control inputs such that the state can move along the TLT from
p[..k]. �

Algorithm 4: Control Tree.

Input: p[..k] = x0 . . . xk and a TLT
Output: a control tree

1: if k = 0 and x0 /∈ the root node of TLT, then
2: return ∅
3: else
4: for each set node X of TLT through a bottom-up

traversal do
5: if p[..k] does not satisfy the fragment from the root

node to X, then
6: � see Definition III.4;
7: replace X with ∅;
8: else
9: if X is leaf node then

10: if the parent of X is � then
11: replace X with

UX = {u ∈ U | Post(xk, u) ⊆ RCI(X)};
12: else
13: replace X with U ;
14: end if
15: else
16: switch the child of X do
17: case ∧ (or ∨)
18: replace X with UX = ∩i∈CHUCH,i (or

UX = ∪i∈CHUCH,i)
19: � for each Boolean operator node, CH

collects its children and UCH,i is the
corresponding control set for each child;

20: case ©
21: replace X with

UX = {u ∈ U | Post(xk, u) ⊆ Y}; � Y is
the child of ©;

22: case U or �
23: replace X with

UX = {u ∈ U | Post(xk, u) ⊆ X};
24: end if
25: end if
26: end for
27: return the updated tree as the control tree.
28: end if

Remark V.5: Note that to implement Algorithm 3, we do not
need to first check for the existence of a policy for the controlled
TLT. The fact that a nonempty control set is synthesized by
Algorithm 3 at each time step is necessary for the existence of
the policy for the controlled TLT. We use the existence of the
policy as a priori condition for proving the recursive feasibility
of Algorithm 3 in Theorem V.1. �

Example V.3: Let us continue to consider the controlled tran-
sition system in Example V.1 and the LTL formulaϕ = ♦�o2 in
Example V.2. Implementing Algorithm 3, we obtain Table I. We
can see that at each time step, we can synthesize a nonempty
feedback control set. One realization is s1

a1−→ s3
a2−→ s3

a1−→
s2

a1−→ s3
a1−→ s2

a2−→ s4
a1−→ s2

a2−→ s4 · · · , of which the trajec-
toryp = s1s3s3s2s3s2(s4s2)

ω satisfies both the controlled TLT
and the formula ϕ.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5081

Algorithm 5: Set Backtracking.
Input: a compressed tree
Output: a set Uϕ

k

1: for each Boolean operator node of the compressed tree
through a bottom-up traversal do

2: switchBoolean operatordo
3: case∧
4: replace its parent with YP ∪ (∩i∈CHYCH,i);
5: case∨
6: replace its parent with YP ∪ (∪i∈CHYCH,i);
7: end for
8: � for each Boolean operator node, YP denotes its

parent, CH collects its children, and YCH,i is the
corresponding control set for each child;

9: return the root node.

Fig. 3. (a) Scenario of Example 1. (b) Controlled TLT for the
LTL formula ϕ = ((a1 ∧ ¬a2 ∧ ¬a3)U�a6) ∧ (¬a6U(a4 ∨ a5)) in Exam-
ple 1, where Y0 = Y1 ∩ Y2, Y1 = Rc(X \ (O1 ∪ O2),RCI(T)), and
Y2 = Rc(X \ T ,A ∪ B).

In this example, Algorithm 3 is recursively feasible since we
can verify that the condition in Theorem V.2 holds. That is,
there exists a policy such that all the resulting trajectories satisfy
the controlled TLT: A feasible state-dependent stationary policy
is µ = μμ · · · , where μ : S → U with μ(s1) = a1, μ(s2) =
a2, μ(s3) = a1, and μ(s4) = a1. Under this policy, there are
two possible trajectories, p = s1s3(s2s4)

ω and p = s1(s2s4)
ω ,

both of which satisfy the controlled TLT and the LTL formula
ϕ. �

VI. EXAMPLES

A. Obstacle Avoidance

Following the example of obstacle avoidance for double in-
tegrator in [46], we consider the following dynamical system:

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk. (2)

Different from [46], we may take into account the distur-
bance wk that belongs to the disturbance set W . We con-
sider the same scenario as in [46], as shown in Fig. 3(a).

Fig. 4. State trajectories starting from different initial states for the
co-safe LTL formula ϕ′. (a) Our approach. (b) Language-guided control
synthesis [46].

The working space is X = {z ∈ R2 | [−10,−10]T ≤ z ≤
[2, 1.85]T } and the control constraint set is U = {z ∈ R |
−2 ≤ z ≤ 2}. In Fig. 3(a), the obstacle regions are O1 =
{z ∈ R2 | [−5,−4]T ≤ z ≤ [1.85,−3]T } and O2 = {z ∈ R2 |
[−10,−10]T ≤ z ≤ [−5,−5]T }, the target region is T = {z ∈
R2 | [−0.5,−0.5]T ≤ z ≤ [0.5, 0.5]T }, and two visiting re-
gions are A = {z ∈ R2 | [−6, 1]T ≤ z ≤ [−5, 2]T } and B =
{z ∈ R2 | [−5,−3]T ≤ z ≤ [−4,−2]T }.

Recall the system CS (1). Let the set of the observations be
O = {a1, a2, a3, a4, a5, a6} and, if x ∈ X, we define the obser-
vation function as follows: if x ∈ X ∩ O1, g(x) = {a1, a2}; if
x ∈ X ∩ O2, g(x) = {a1, a3}; if x ∈ X ∩ A, g(x) = {a1, a4};
if x ∈ X ∩ B, g(x) = {a1, a5}; if x ∈ X ∩ T , g(x) = {a1, a6};
otherwise, g(x) = {a1}. As shown in Remark V.1, we can
rewrite the system (2) with the observation function as a con-
trolled transition system with the set of atomic propositions
AP = O and the labeling function L = g.

We first compare our approach with the language-guided con-
trol synthesis in [46]. Consider the corresponding deterministic
system, obtained setting W = {0}. The specification is to visit
the region A or region B and then the target region T , while
always avoiding obstacles O1 and O2 and staying inside the
working space X. This specification can be expressed as a co-
safe LTL formula ϕ′ = ((a1 ∧ ¬a2 ∧ ¬a3)Ua6) ∧ (¬a6U(a4 ∨
a5)). Fig. 4 shows the state trajectories starting from differ-
ent initial states for ϕ′, generated using our approach and the
approach in [46]. Let us introduce a performance function as
Jperf =

∑Tf

k=0(‖u(k)‖2), where Tf is the completion time. This
can be used when implementing our approach: In view of the
synthesized control sets Uϕ

k , control inputs uk can be selected
by solving a one-step optimization problem that minimizes
‖u(k)‖2, subject to u(k) ∈ Uϕ

k . As expected, the total Jperf

of the trajectories in Fig. 4 under our approach is 35.95 and
much less than the 70.52 obtained under the approach in [46].
Moreover, the TLT-based method in our article takes much
shorter computation time: The construction of TLT using ap-
proximate reachability takes about 3 s, while the construction of
control automaton in [46] takes about 70 s using the LanGuiCS
tool3—the main reason is that the refinement in [46] is quite
computationally expensive.

3[Online]. Available: http://sites.bu.edu/hyness/languics/

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5082 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Fig. 5. Trajectories starting from the initial state [−3.1,−5.1]T for the non-co-safe LTL formula ϕ under our approach. (a) State trajectory xk. (b)
Control trajectory uk (dashed line) together with control set Uϕ

k
(cyan region). (c) State trajectories for 100 realizations of disturbance trajectories.

Fig. 6. Scenario illustration of Example 2: an automated vehicle plans
to reach a target set T but with some unknown broken vehicles on the
road.

We next show that our approach can further handle LTL
formulae that are not co-safe as well as uncertain systems.
Let the disturbance set W = {z ∈ R2 | [−0.1,−0.1]T ≤ z ≤
[0.1, 0.1]T }. Here, we extend the co-safe LTL formula ϕ′ to
an LTL formula ϕ = ((a1 ∧ ¬a2 ∧ ¬a3)U�a6) ∧ (¬a6U(a4 ∨
a5)) that is not co-safe. The difference from ϕ′ is to always stay
inside the target region T after entering it. This specification
cannot be handled by the approach in [46]. Under our approach
instead, by computing inner approximations of the controlled
reachable sets, we can construct the controlled TLT of ϕ and
then use Algorithm 3 to synthesize controllers online. The
constructed controlled TLT for ϕ is shown in Fig. 3(b). The
state trajectories and the control trajectories are shown in Fig. 5
when the initial state is [−3.1,−5.1]T . Fig. 5(a) and (c) shows
the state trajectories for 1 and 100 realizations, respectively. The
black dots denote the initial states. In this example, the target
region T is an RCIS. After entering T , the states stay there
by using the controllers that ensure robust invariance. We can
see that all state trajectories satisfy the required specification ϕ.
The control information that corresponds to the state trajectory
in Fig. 5(a) is shown in Fig. 5(b). Here, the dashed lines denote
the control bounds, the cyan region represents the synthesized
control sets Uϕ

k in Algorithm 3, and the blue line represents the
implemented control inputs uk selected from the control sets
Uϕ

k .

B. Online Specification Update

This example will show how the specification can be updated
online when using our approach. As shown in Fig. 6, we consider
a scenario where an automated vehicle plans to move to a target
set T but with some unknown obstacles on the road. The sensing

region of the vehicle is limited. We use a single integrator model
with a sample period of 1 s to model the dynamics of the vehicle

xk+1 =

[
1 0
0 1

]
xk +

[
1 0
0 1

]
uk + wk.

The working space is X = {z ∈ R2 | [0,−5]T ≤ z ≤
[150, 5]T }, the control constraint set is U = {z ∈ R2 |
[−2,−0.5]T ≤ z ≤ [2, 0.5]T }, the disturbance set is W =
{z ∈ R2 | [−0.1,−0.1]T ≤ z ≤ [0.1, 0.1]T }, and the target
region is T = {z ∈ R2 | [145,−5]T ≤ z ≤ [150, 0]T }. We
assume that X, U , and W are known a priori to the vehicle and
the vehicle should move along the lane with the right direction
unless lane change is necessary. In Fig. 6, there are two broken
vehicles in the sets O1 = {z ∈ R2 | [40,−5]T ≤ z ≤ [45, 0]T }
and O2 = {z ∈ R2 | [100,−5]T ≤ z ≤ [105, 0]T }. We assume
that O1 and O2 are unknown to the vehicle at the beginning.
As long as the vehicle can sense them, they are known to the
vehicle.

Let the initial state be x0 = [0.5,−2.5]T and the sensing
limitation is 15. At time step k = 0, the set of observations is
O = {a1, a2} and if x ∈ X, we define the observation function
as follows: if x ∈ X ∩ T , g(x) = {a1, a2}; otherwise, g(x) =
{a1}. The initial specification can be expressed as an LTL
ϕ = a1Ua2. By constructing the controlled TLT of ϕ shown in
Fig. 7 and implementing Algorithm 3, we obtain one realization
as shown in Fig. 8. We can see that the vehicle keeps moving
straightforward until it senses the obstacle O1 at [25.5,−2.4]T .

When the vehicle can sense O1, a new observation a3 with
a3 	= a1 and a3 	= a2 is added to the set O, which becomes
O = {a1, a2, a3}. If x ∈ X, we update the observation func-
tion as follows: if x ∈ X ∩ T , g(x) = {a1, a2}; if x ∈ X ∩ O1,
g(x) = {a1, a3}; otherwise, g(x) = {a1}. To avoid O1, the
new specification is changed to be ϕ′ = ϕ ∧ (�¬a3). We can
construct the TLT of ϕ′ based on that of ϕ, which is shown in
Fig. 7, and then continue to implement Algorithm 3. We can see
that the vehicle changes lane from [25.5,−2.4]T and quickly
merges back after overtaking O1. The trajectories are shown in
Fig. 8. The vehicle is under the control with respect to ϕ′ until
it can sense O2 at [86.3,−2.5]T .

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5083

Fig. 7. Controlled TLT for the LTL formulae in Example 2, where
ϕ = a1Ua2, ϕ′ = ϕ ∧ (�¬a3), ϕ′′ = ϕ′ ∧ (�¬a4), Y0 = Rc(X,T) ∩
RCI(X \ O1), and Y1 = Rc(X,T) ∩RCI(X \ O1) ∩RCI(X \ O2).

Fig. 8. Trajectories for one realization of disturbance trajectories. (a)
State trajectories. (b) Control trajectories of x-axis. (c) Control trajecto-
ries of y-axis.

Similarly, when the vehicle can sense O2, we update O =
{a1, a2, a3, a4} and the observation function as follows: if
x ∈ X ∩ T , g(x) = {a1, a2}; if x ∈ X ∩ O1, g(x) = {a1, a3};
if x ∈ X ∩ O2, g(x) = {a1, a4}; otherwise, g(x) = {a1}. To
avoid O2, the new specification is changed to be ϕ′′ = ϕ′ ∧
(�¬a4). We can construct the TLT of ϕ′′ based on that of
ϕ′, which is shown in Fig. 7, and then continue to implement
Algorithm 3. We can see that the vehicle changes lane from
[86.3,−2.5]T and quickly merges back after overtaking O2.
Under the control with respect to ϕ′′, the vehicle finally reaches
the target set T .

Fig. 8(a) shows the state trajectories, from which we can
see that the whole specification is completed. Fig. 8(b) and
(c) show the corresponding control inputs, where the dashed
lines denote the control bounds. The cyan regions represent
the synthesized control sets and the blue lines are the control
trajectories. Furthermore, we repeat the above process for 100
realizations of the disturbance trajectories. The state trajectories
for such 100 realizations are shown in Fig. 9.

We remark that, in this example, the control inputs are chosen
to push the state to move down along the TLT as fast as possible.

Fig. 9. State trajectories for 100 realizations of disturbance trajecto-
ries.

In detail, if the state xk is the i-step reachable set in the set node
Rc(X,T), we can generate a smaller control set from which the
control input can push the state to the (i− 1)-step reachable set.
That is what we can see from Fig. 8, where almost all control
inputs in the synthesized control sets along x-axis are positive.

VII. CONCLUSION

We have studied LTL model checking and control synthesis
for discrete-time uncertain systems. Quite unlike automaton-
based methods, our solutions build on the connection between
LTL formulae and TLT structures via reachability analysis. For
a transition system and an LTL formula, we have proved that
the TLTs provide an underapproximation or overapproximation
for the LTL via minimal and maximal reachability analysis,
respectively. We have provided sufficient conditions and neces-
sary conditions to the model checking problem. For a controlled
transition system and an LTL formula, we have shown that the
TLT is an underapproximation for the LTL formula and thereby
proposed an online control synthesis algorithm, under which
a set of feasible control inputs is generated at each time step.
We have proved that this algorithm is recursively feasible. We
have also illustrated the effectiveness of the proposed methods
through several examples.

Future work includes the extension of TLTs to handle other
general specifications (e.g., CTL∗) and a broad experimental
evaluation of our approach.

APPENDIX A
PROOF OF THEOREM III.1

The whole proof is divided into two parts: The first part shows
how to construct a TLT from the formula ∀ϕ by means of the
reachability operators Rm and RI, while the second part shows
that such TLT is an underapproximation for ϕ.

Construction: We follow three steps to construct a TLT.
Step 1: Rewrite the given LTL in the weak-until positive

normal form. From Lemma II.1, each LTL formula has an
equivalent LTL formula in the weak-until positive normal form,
which can be inductively defined as

ϕ ::= true | false | a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ©ϕ

| ϕ1Uϕ2 | ϕ1Wϕ2.

Step 2: For each atomic proposition a ∈ AP , construct the
TLT with only a single set node from ∀a or ∀¬a. In detail, the
set node for ∀a is L−1(a) = {x ∈ S | a ∈ L(x)}, while the set
node for ∀¬a is S \ L−1(a). In addition, the TLT for ∀true (or
∀false) also has a single set node, which is S (or ∅).

Step 3: Based on Step 2, follow the induction rule to construct
the TLT for any LTL formula in the weak-until positive normal

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5084 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Fig. 10. TLT construction. (a) ∀(ϕ1 ∧ ϕ2). (b) ∀(ϕ1 ∨ ϕ2). (c) ∀© ϕ. (d) ∀(ϕ1Uϕ2). (e) ∀(ϕ1Wϕ2). Here, the circles denote the operator nodes
and the rectangles denote the set nodes.

TABLE I
ONLINE IMPLEMENTATION UNDER ALGORITHM 3

form. More specifically, we will show that given the LTL formu-
lae ϕ, ϕ1, and ϕ2 in the weak-until positive normal form, if the
TLTs can be constructed from ∀ϕ, ∀ϕ1, and ∀ϕ2, respectively,
then the TLTs can be thereby constructed from the formulae
∀(ϕ1 ∧ ϕ2), ∀(ϕ1 ∨ ϕ2), ∀© ϕ, ∀(ϕ1Uϕ2), and ∀(ϕ1Wϕ2),
respectively.

For ∀(ϕ1 ∧ ϕ2) (or ∀(ϕ1 ∨ ϕ2)), we construct the TLT by
connecting the root nodes of the TLTs for ∀ϕ1 and ∀ϕ2 through
the operator∧ (or∨) and taking the intersection (or union) of two
root nodes, as shown in Fig. 10(a) and (b). For ∀© ϕ, we denote
by Xϕ the root node of the TLT for ∀ϕ and then construct the
TLT by adding a new set node Rmin(S,Xϕ, 1) to be the parent
of Xϕ and connecting them through the operator ©, as shown
in Fig. 10(c).

For ∀(ϕ1Uϕ2), the TLT construction is as follows. Denote
by {(Yϕ1

i ,Oϕ1

i)}Nϕ1

i=1 all the pairs comprising a leaf node and
its corresponding parent in the TLT of ∀ϕ1, where Nϕ1 is the
number of the leaf nodes. Here, Yϕ1

i is the ith leaf node and
Oϕ1

i is its parent. Denote by Xϕ2 the root node of TLT for
∀ϕ2. We first change each leaf node Yϕ1

i to R̂min(Yϕ1

i ,Xϕ2) =
(Rmin(Yϕ1

i ,Xϕ2) \ Xϕ2) ∪ (Yϕ1

i ∩ Xϕ2). We then update the
new tree for ∀ϕ1 from the leaf node to the root node according to
the definition of the operators. After that, we take Nϕ1 copies of
the TLT of ϕ2. We set the root node of each copy as the child of
each new leaf node, respectively, and connect them through the
operator U. Finally, we have one more copy of the TLT of ∀ϕ2

and connect this copy and the new tree through the disjunction
∨. An illustrative diagram is given in Fig. 10(d).

For the fragment ∀(ϕ1Wϕ2), we first recall that ϕ1Wϕ2 =
ϕ1Uϕ2 ∨�ϕ1. Let ϕ′ = ϕ1Uϕ2 and ϕ′′ = �ϕ1. Denote by
Xϕ1 the root node of the TLT for ∀ϕ1. We first construct the
TLT of ∀ϕ′ as described above. Second, we further construct
the TLT of ∀ϕ′′ by adding a new node RI(Xϕ1) as the parent
of Xϕ1 and connecting them through �. Then, we construct the
TLT of∀(ϕ′ ∨ ϕ′′). An illustrative diagram is given in Fig. 10(e).

Underapproximation: First, it is very easy to verify that
the constructed TLT above with a single set node L−1(a) (or
S \ L−1(a) or S or ∅) for ∀a (or ∀¬a or ∀true or ∀false) is
an underapproximation for a ∈ AP (or ¬a or true or false)
and the underapproximation relation in these cases is also
tight.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: TEMPORAL LOGIC TREES FOR MODEL CHECKING AND CONTROL SYNTHESIS OF UNCERTAIN DISCRETE-TIME SYSTEMS 5085

Next we also follow the induction rule to show that the con-
structed TLT from ∀ϕ is an underapproximation for ϕ. Consider
LTL formulaeϕ,ϕ1, andϕ2. We will show that if the constructed
TLTs of ∀ϕ, ∀ϕ1, and ∀ϕ2 are the underapproximations of ϕ,
ϕ1, and ϕ2, respectively, then the TLTs constructed above for
the formulae ∀(ϕ1 ∧ ϕ2), ∀(ϕ1 ∨ ϕ2), ∀© ϕ, ∀(ϕ1Uϕ2), and
∀(ϕ1Wϕ2) are the underapproximations of ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
©ϕ, ϕ1Uϕ2, and ϕ1Wϕ2, respectively.

According to the set operation (intersection or union) or the
definition of one-step minimal reachable set, it is easy to verify
that the constructed TLT for ∀(ϕ1 ∧ ϕ2 (or ∀(ϕ1 ∨ ϕ2) or ∀©
ϕ) is an underapproximation for ϕ1 ∧ ϕ2 (or ϕ1 ∨ ϕ2 or ©ϕ) if
the TLTs of ∀ϕ1 and ∀ϕ2, and ∀ϕ are underapproximations for
ϕ1, ϕ2, and ϕ, respectively.

Let us consider ϕ1Uϕ2. Assume that a trajectory p satisfies
the TLT of ∀(ϕ1Uϕ2). Recall the construction of the TLT of
∀(ϕ1Uϕ2) from ∀ϕ1 and ∀ϕ2. According to the definition of
minimal reachable set, we have 1) p satisfies the TLT of ∀ϕ2

or 2) there exists that j ∈ N such that p[j..] satisfies the TLT
of ∀ϕ2 and for all i ∈ N[0,j−1], the trajectory p[i..] satisfies the
TLT of ∀ϕ1. Under the assumption that the TLTs of ∀ϕ1 and
∀ϕ2 are the underapproximations of ϕ1 and ϕ2, respectively,
we have that there exists j ∈ N such that p[j..] � ϕ2 and for all
i ∈ N[0,j−1], p[i..] � ϕ1, which implies that p � ϕ1Uϕ2. Thus,
the TLT of ∀(ϕ1Uϕ2) is an approximation of ϕ1Uϕ2.

Recall that ϕ1Wϕ2 = ϕ1Uϕ2 ∨�ϕ1. Following the proofs
for until operator U and the disjunction ∨ and the definition of
the robust invariant set, it yields that the constructed TLT of
∀(ϕ1Wϕ2) is an underapproximation of ϕ1Wϕ2.

The proof is complete. �

ACKNOWLEDGMENT

The authors would like to thank Dr. Ren (Shanghai University)
and H. Hasanbeig (University of Oxford) for helpful discussions
and feedback.

REFERENCES

[1] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Berlin, Germany: Springer, 2009.

[2] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory
and Design. Chelmsford, MA, USA: Courier Corporation, 2013.

[3] R. Alur, Principles of Cyber-Physical Systems. Cambridge, MA, USA:
MIT Press, 2015.

[4] R. Alur, M. Giacobbe, T. A. Henzinger, K. G. Larsen, and M. Mikucio-
nis, “Continuous-time models for system design and analysis,” in Proc.
Comput. Softw. Sci., Ser. Lecture Notes Comput. Sci., 2019, pp. 452–477.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[6] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,” in
Logics for Concurrency, F. Moller and G. Birtwistle, Eds. Berlin, Germany:
Springer, 1996, pp. 238–266.

[7] M. O. Rabin, “Decidability of second-order theories and automata on
infinite trees,” Trans. Amer. Math. Soc., vol. 141, pp. 1–35, 1969.

[8] E. A. Emerson, “Automata, tableaux, and temporal logics,” in Proc.
Workshop Log. Programs, 1985, pp. 79–88.

[9] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett games,”
in Proc. 21st Annu. IEEE Symp. Logic Comput. Sci., 2006, pp. 275–284.

[10] F. Horn, “Streett games on finite graphs,” in Proc. 2nd Workshop Games
Des. Verification, 2005, pp. 1–12.

[11] A. Girard and G. J. Pappas, “Approximation metrics for discrete and con-
tinuous systems,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 782–798,
May 2007.

[12] A. Girard, G. Pola, and G. J. Pappas, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Trans. Autom.
Control, vol. 55, no. 1, pp. 116–126, Jan. 2010.

[13] M. Zamani, P. M. Esfahani, R. Majumdar, A. Abate, and J. Lygeros,
“Symbolic control of stochastic systems via approximately bisimilar finite
abstractions,” IEEE Trans. Autom. Control, vol. 59, no. 12, pp. 3135–3150,
Dec. 2014.

[14] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans.
Autom. Control, vol. 57, no. 7, pp. 1804–1809, Jul. 2012.

[15] P. Yu and D. V. Dimarogonas, “Approximately symbolic models for a class
of continuous-time nonlinear systems,” in Proc. 58th IEEE Conf. Decis.
Control, 2019, pp. 4349–4354.

[16] P. Tabuada and G. J. Pappas, “Model checking LTL over controllable linear
systems is decidable,” in Proc. ACM Int. Conf. Hybrid Syst.: Comput.
Control, 2003, pp. 498–513.

[17] B. Yordanov, J. Tumová, I. Cerná, J. Barnat, and C. Belta, “Formal
analysis of piecewise affine systems through formula guided refinement,”
Automatica, vol. 49, no. 1, pp. 261–266, 2013.

[18] B. Yordanov, J. Tumová, I. Cerná, J. Barnat, and C. Belta, “Temporal logic
control of discrete-time piecewise affine systems,” IEEE Trans. Autom.
Control, vol. 57, no. 6, pp. 1491–1504, Jun. 2012.

[19] P.-J. Meyer and D. V. Dimarogonas, “Hierarchical decomposition of LTL
synthesis problem for nonlinear control systems,” IEEE Trans. Autom.
Control, vol. 64, no. 11, pp. 4676–4683, Nov. 2019.

[20] S. Haesaert and S. Soudjani, “Robust dynamic programming for temporal
logic control of stochastic systems,” IEEE Trans. Autom. Control, vol. 66,
no. 6, pp. 2496–2511, Jun. 2020.

[21] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,” in
Proc. 47th IEEE Conf. Decis. Control, 2008, pp. 2117–2122.

[22] N. Cauchi and A. Abate, “StocHy-automated verification and synthesis
of stochastic processes,” in Proc. ACM Int. Conf. Hybrid Syst.: Comput.
Control, 2019, pp. 258–259.

[23] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in
dynamic environments,” Int. J. Robot. Res., vol. 33, no. 12, pp. 1593–1607,
2014.

[24] M. Guo, J. Tumová, and D. V. Dimarogonas, “Communication-free
multi-agent control under local temporal tasks and relative-distance con-
straints,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3948–3962,
Dec. 2016.

[25] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Control Netw. Syst., vol. 3, no. 2,
pp. 162–171, Jun. 2016.

[26] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for finite
deterministic systems,” Automatica, vol. 50, no. 2, pp. 399–408, 2014.

[27] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Autom. Control, vol. 57, no. 11,
pp. 2817–2830, Nov. 2012.

[28] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Hierarchical LTL-
task MDPs for multi-agent coordination through auctioning and learning,”
2019. [Online]. Available: http://kth.diva-portal.org

[29] L. Lindemann and D. V. Dimarogonas, “Feedback control strategies for
multi-agent systems under a fragment of signal temporal logic tasks,”
Automatica, vol. 106, pp. 284–293, 2019.

[30] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
probabilistic real-time systems,” in Proc. 23rd Int. Conf. Comput. Aided
Verification, 2011, pp. 585–591.

[31] C. Belta, “Formal synthesis of control strategies for dynamical systems,”
in Proc. 55th IEEE Conf. Decis. Control, 2016, pp. 3407–3431.

[32] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time
Dynamical Systems. Berlin, Germany: Springer, 2017.

[33] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal tempo-
ral logic meets Hamilton-Jacobi reachability: Connections and applica-
tions,” in Proc. Int. Workshop Algorithmic Found. Robot., 2018. [On-
line]. Available: http://asl.stanford.edu/wp-content/papercite-data/pdf/
Chen.Tam.Livingston.Pavone.WAFR18.pdf

[34] F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Berlin,
Germany: Springer, 2007.

[35] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability spec-
ifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–370,
1999.

[36] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,
“Decomposition of reachable sets and tubes for a class of nonlinear
systems,” IEEE Trans. Autom. Control, vol. 63, no. 11, pp. 3675–3688,
Nov. 2018.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

5086 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

[37] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear
differential-algebraic systems,” IEEE Trans. Autom. Control, vol. 59, no. 2,
pp. 371–383, Feb. 2014.

[38] I. M. Mitchell, “Scalable calculation of reach sets and tubes for nonlinear
systems with terminal integrators: A mixed implicit explicit formulation,”
in Proc. ACM Int. Conf. Hybrid Syst.: Comput. Control, 2011, pp. 103–112.

[39] P. G. Sessa, D. Frick, T. A. Wood, and M. Kamgarpour, “From uncertainty
data to robust policies for temporal logic planning,” in Proc. ACM Int.
Conf. Hybrid Syst.: Comput. Control, 2018, pp. 157–166.

[40] K. Hashimoto and D. V. Dimarogonas, “Resource-aware networked con-
trol systems under temporal logic specifications,” Discrete Event Dyn.
Syst., vol. 29, no. 4, pp. 473–499, 2019.

[41] M. Inoue and V. Gupta, “‘Weak’ control for human-in-the-loop systems,”
IEEE Control Syst. Lett., vol. 3, no. 2, pp. 440–445, Apr. 2019.

[42] Y. Gao, F. J. Jiang, X. Ren, L. Xie, and K. H. Johansson, “Reachability-
based human-in-the-loop control with uncertain specifications,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 1880–1887, 2020.

[43] S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and J. Lygeros, “Reachability
analysis of discrete-time systems with disturbances,” IEEE Trans. Autom.
Control, vol. 51, no. 4, pp. 546–561, Apr. 2006.

[44] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in Proc. Eur. Control Conf., 2013, pp. 502–510.

[45] I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi solvers
for analysis of nondeterministic continuous and hybrid systems,” in Proc.
ACM Int. Conf. Hybrid Syst.: Comput. Control, 2005, pp. 480–494.

[46] E. A. Gol, M. Lazar, and C. Belta, “Language-guided controller syn-
thesis for linear systems,” IEEE Trans. Autom. Control, vol. 59, no. 5,
pp. 1163–1176, May 2014.

Yulong Gao received the B.E. degree in
automation and the M.E. degree in control sci-
ence and engineering from the Beijing Insti-
tute of Technology, Beijing, China, in 2013 and
2016, respectively, and the joint Ph.D. degree
in electrical engineering from the KTH Royal In-
stitute of Technology, Stockholm, Sweden, and
Nanyang Technological University, Singapore,
in 2021.

He was a Visiting Student with the Depart-
ment of Computer Science, University of Oxford,

Oxford, U.K., in 2019. He is currently a Postdoctoral Researcher with
KTH. His research interests include automatic verification, stochastic
control, and model predictive control with application to safety-critical
systems.

Alessandro Abate (Senior Member, IEEE)
received the Laurea in electrical engineering
from the University of Padova, Padova, Italy, in
2002 and the M.S. and Ph.D. degrees in elec-
trical engineering and computer sciences from
the University of California, Berkeley, Berkeley,
CA, USA, in 2004 and 2007, respectively.

He is currently a Professor of Verification and
Control with the Department of Computer Sci-
ence, University of Oxford, Oxford, U.K., and
a Fellow of the Alan Turing Institute for Data

Sciences, London, U.K. He has been an International Fellow with the
CS Lab, SRI International, Menlo Park, CA, USA, and a Postdoctoral
Researcher with the Department of Aeronautics and Astronautics, Stan-
ford University, Stanford, CA, USA. From 2009 to 2013, he has been an
Assistant Professor with the Delft Centre for Systems and Control, TU
Delft, Delft, Netherlands.

Frank J. Jiang received the B.S. degree in elec-
trical engineering and computer science from
the University of California, Berkeley, Berkeley,
CA, USA, in 2016, and the M.S. degree in sys-
tems, control and robotics in 2019 from the KTH
Royal Institute of Technology, Stockholm, Swe-
den, where he is currently working toward the
Ph.D. degree in electrical engineering with the
Division of Decision and Control Systems.

His research interests are in formal verifica-
tion, machine learning, and control, and their

applications in robotics and intelligent transportation systems.

Mirco Giacobbe received the B.S. and M.S. de-
grees in computer science from the University of
Trento, Trento, Italy, in 2010 and 2012, respec-
tively, the second M.S. degre in software sys-
tems engineering from RWTH Aachen, Aachen,
Germany, in 2012, and the Ph.D. degree in com-
puter science from IST Austria, Klosterneuburg,
Austria, in 2019.

He is a Lecturer with the School of Com-
puter Science, University of Birmingham, Birm-
ingham, U.K. Before that, he was a Postdoc-

toral Research Associate with the Department of Computer Science,
University of Oxford, Oxford, U.K. He is interested in formal methods
and machine learning for the analysis and the control of cyber–physical
systems.

Lihua Xie (Fellow, IEEE) received the Ph.D. de-
gree in electrical engineering from the University
of Newcastle, Australia, in 1992.

He is currenctly a Professor with the School of
Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, the Di-
rector of Delta-NTU Corporate Laboratory for
Cyber-Physical Systems, Singapore, and the
Director of Center for Advanced Robotics Tech-
nology Innovation, Singapore. He served as the
Head of Division of Control and Instrumentation

from 2011 to 2014. He held teaching appointments in the Department
of Automatic Control, Nanjing University of Science and Technology,
Nanjing, China, from 1986 to 1989. His research interests include robust
control and estimation, networked control systems, multiagent networks,
localization, and unmanned systems.

Dr Xie is an Editor-in-Chief for Unmanned Systems and has served
as Editor for IET Book Series in Control and Associate Editor for a num-
ber of journals including IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
Automatica, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,
IEEE TRANSACTIONS ON NETWORK CONTROL SYSTEMS, and IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS-II. He was an IEEE Distinguished
Lecturer from 2012 to 2014. He is a Fellow of Academy of Engineering
Singapore, IFAC, and CAA.

Karl Henrik Johansson (Fellow, IEEE)
received the M.Sc. and Ph.D. degrees in
electrical engineering from Lund University,
Lund, Sweden, in 1992 and 1997, respectively.

He is currently the Director of KTH Digital
Futures, Stockholm, Sweden, and a Professor
with the School of Electrical Engineering
and Computer Science, KTH Royal Institute
of Technology, Stockholm, Sweden. He has
held visiting positions with the University
of California, Berkeley, Berkeley, CA, USA;

California Institute of Technology, Pasadena, CA, USA; Nanyang
Technological University, Singapore; HKUST Institute of Advanced
Studies, Hong Kong; and Norwegian University of Science and
Technology, Trondheim, Norway. His research interests include
networked control systems, cyber–physical systems, and applications
in transportation, energy, and automation.

Dr. Johansson has served on the IEEE Control Systems Society
Board of Governors and the IFAC Executive Board and is currently
the Vice-President of the European Control Association Council. He is
the recipient of several best paper awards and other distinctions. He
has been awarded Distinguished Professor with the Swedish Research
Council and Wallenberg Scholar. He is a recipient of the Future
Research Leader Award from the Swedish Foundation for Strategic
Research and the triennial Young Author Prize from IFAC. He is a Fellow
of the Royal Swedish Academy of Engineering Sciences. He is an IEEE
Distinguished Lecturer.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:26:48 UTC from IEEE Xplore. Restrictions apply.

