
Automatica 49 (2013) 1538–1552
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Lie bracket approximation of extremum seeking systems✩

Hans-Bernd Dürr a,1, Miloš S. Stanković b, Christian Ebenbauer a, Karl Henrik Johansson c

a Institute for Systems Theory and Automatic Control, University of Stuttgart, Germany
b Innovation Center, School of Electrical Engineering, University of Belgrade, Serbia
c ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 25 August 2011
Received in revised form
13 November 2012
Accepted 13 January 2013
Available online 10 April 2013

Keywords:
Extremum seeking
Approximation methods
Lie brackets
Practical stability

a b s t r a c t

Extremum seeking feedback is a powerful method to steer a dynamical system to an extremum of a
partially or completely unknown map. It often requires advanced system-theoretic tools to understand
the qualitative behavior of extremum seeking systems. In this paper, a novel interpretation of extremum
seeking is introduced.We show that the trajectories of an extremum seeking system can be approximated
by the trajectories of a system which involves certain Lie brackets of the vector fields of the extremum
seeking system. It turns out that the Lie bracket system directly reveals the optimizing behavior of the
extremum seeking system. Furthermore, we establish a theoretical foundation and prove that uniform
asymptotic stability of the Lie bracket system implies practical uniform asymptotic stability of the
corresponding extremum seeking system.We use the established results in order to prove local and semi-
global practical uniform asymptotic stability of the extrema of a certain map for multi-agent extremum
seeking systems.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In diverse engineering applications one faces the problem
of finding an extremum of a map without knowing its explicit
analytic expression. Suppose, for example, one vehicle tries tomin-
imize the distance to another vehicle. The only information avail-
able is the distance to the other vehicle. Clearly, the distance does
not provide a direction in which the vehicle has tomove. However,
it is intuitively clear that one can obtain a direction by using mul-
tiple measurements of the distance. Extremum seeking feedback
exploits this procedure in a systematic way and can be used for
steering dynamical systems to the extremum of an unknownmap.
Extremum seeking has a long history and has found many appli-
cations to diverse problems in control and communications (see
Moase, Manzie, Nesic, & Mareels, 2010 and references therein).
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In this paper, we provide a novel methodology to analyze ex-
tremum seeking systems which differs from commonly used tech-
niques (see e.g. Sanders, Verhulst, & Murdock, 2007). Specifically,
this work contains three main contributions.

First, we provide a novel view on extremum seeking by identi-
fying the sinusoidal perturbations in the extremumseeking system
as artificial inputs and by writing it in a certain input-affine form.
Based on this input-affine form, we derive an approximate system
which captures the behavior of the trajectories of the original ex-
tremum seeking system. It turns out that the approximate system
can be represented by certain Lie brackets of the vector fields in the
extremumseeking system.We call this approximate system the Lie
bracket system. The proposed methodology is different from re-
sults in the existing literature (see e.g. Krstić & Ariyur, 2003, Krstic
& Wang, 2000 and Tan, Nešić, & Mareels, 2006).

Second, we establish a theoretic foundation which is based on
this novel viewpoint. We prove that the trajectories of a class of
input-affine systems with certain inputs are approximated by the
trajectories of the Lie bracket systems. Similar results concerning
sinusoidal inputs are covered in Kurzweil and Jarnik (1987) and
were extended in Gurvits (1992) and Li & Gurvits, 1992 to the class
of periodic inputs. In Sussmann and Liu (1991) and Sussmann and
Liu (1992) convergence of trajectories of a class of input-affine
systems to the trajectories of more general Lie bracket systems
was established. These results are closely related to our results.
Furthermore, we prove under mild assumptions that semi-global
(local) practical uniform asymptotic stability of a class of input-
affine systems follows from global (local) uniform asymptotic
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stability of the corresponding Lie bracket systems. These results
are based on Moreau and Aeyels (2000, 2003). Summarizing, to
the authors best knowledge, the generality of the setup proposed
herein was not addressed in the literature before.

Third, we apply the established results to analyze the behav-
ior and the stability properties of extremum seeking vehicles with
single-integrator and unicycle dynamics and with static maps. We
formulate amulti-agent setup consisting of extremumseeking sys-
tems where the individual nonlinear maps of the agents satisfy
a certain relationship which assures the existence of a potential
function. We use the established theoretical results to show that
the set of extrema of the potential function is (locally or semi-
globally) practically uniformly asymptotically stable for the multi-
agent system. This multi-agent setup is strongly related to game
theory and potential games (seeMonderer & Shapley, 1996). In the
single-agent case, this potential function coincides with the indi-
vidual nonlinearmap. Similar extremum seeking vehicleswere an-
alyzed in Zhang, Arnold, Ghods, Siranosian, and Krstić (2007) and
Zhang, Siranosian, and Krstić (2007) by using averaging theory (see
Khalil, 2002 and Sanders et al., 2007). The authors proposed various
extremum seeking feedbacks for different vehicle dynamics and
provided a local stability analysis for quadratic maps. Using sinu-
soidal perturbationswith vanishing gains, the authors of Stanković
and Stipanović (2009, 2010) were able to extend these results
to prove almost sure convergence in the case of noisy measure-
ments of the map. In a slightly different setup the authors of Tan
et al. (2006) considered feedbacks which stabilize the extremum
of a scalar, dynamic input–output map and established semi-
global practical stability of the overall systemunder some technical
assumptions. Multi-agent extremum seeking setups which use
similar game-theoretic approaches can be found in Stanković, Jo-
hansson, and Stipanović (2012), where the agents seek a Nash
equilibrium (see Nash, 1951). The authors proved almost sure con-
vergence of the scheme but without explicit consideration of the
global stability properties. A closely related result, which consid-
ers the local stability of Nash equilibrium seeking systems, can be
found in Frihauf, Krstic, and Basar (2012).

Preliminary results of this work were published in Dürr,
Stanković, and Johansson (2011a,b) where the main proofs were
omitted. Moreover, the results in this paper are more general.

1.1. Organization

The remainder of this paper is structured as follows. In Section 2
we illustrate the main idea using a simple example. In Section 3
we present theoretical results which link the stability properties
of an input-affine system to its Lie bracket system. In Section 4 we
apply these results to analyze stability properties of multi-agent
extremum seeking systems. Finally, in Section 5 we illustrate the
results with examples and give a conclusion in Section 6.

1.2. Notation

N0 denotes the set of positive integers including zero. Q++

denotes the set of positive rational numbers. The intervals of real
numbers are denoted by (a, b) = {x ∈ R : a < x < b}, [a, b) =

{x ∈ R : a ≤ x < b} and [a, b] = {x ∈ R : a ≤ x ≤ b}. Let f :

Rn
× Rm

→ Rk, then we write f (·, y) if we consider f as a function
of the first argument only and for all y ∈ Rm. We denote by Cn with
n ∈ N0 the set of n times continuously differentiable functions
and by C∞ the set of smooth function. The norm | · | denotes
the Euclidean norm. The Jacobian of a continuously differentiable
function b ∈ C1

: Rn
→ Rm is denoted by
Fig. 1. Basic extremum seeking system.

∂b(x)
∂x

:=


∂b1(x)
∂x1

· · ·
∂b1(x)
∂xn

...
. . .

...
∂bm(x)

∂x1
· · ·

∂bm(x)
∂xn


and the gradient of a continuously differentiable function J ∈ C1

:

Rn
→ R is denoted by ∇xJ(x) :=


∂ J(x)
∂x1

, . . . ,
∂ J(x)
∂xn

⊤

. The Lie
bracket of two vector fields f , g : R × Rn

→ Rn with f (t, ·), g(t, ·)
being continuously differentiable is defined by [f , g](t, x) :=
∂g(t,x)

∂x f (t, x) −
∂ f (t,x)

∂x g(t, x). The a-neighborhood of a set S ⊆ Rn

with a ∈ (0, ∞) is denoted by US
a := {x ∈ Rn

: infy∈S |x− y| < a}.
ŪS

a denotes the closure of US
a . A function u : R → R is called

measurable if it is Lebesgue-measurable. We use s ∈ C for the
complex variable of the Laplace transformation if not indicated
otherwise.

2. Main idea

One simple extremum seeking feedback for static maps is
shown in Fig. 1 (see alsoKrstić &Ariyur, 2003 andZhang, Siranosian
et al., 2007). Suppose that the function f ∈ C2

: R → R admits a
local, strict maximum at x∗ and α, ω ∈ (0, ∞).

The extremum seeking system can be written as

ẋ = α
√

ω cos(ωt) + f (x)
√

ω sin(ωt). (1)

The main idea is now to identify sin(ωt) and cos(ωt) as artificial
inputs, i.e. u1(ωt) := cos(ωt) and u2(ωt) := sin(ωt). Thus, we
obtain an input-affine system of the form

ẋ = b1(x)
√

ωu1(ωt) + b2(x)
√

ωu2(ωt) (2)

with b1(x) = α and b2(x) = f (x). Interestingly, if one computes
the so called Lie bracket system involving [b1, b2], i.e.

ż =
1
2
[b1, b2](z) =

α

2
∇z f (z), (3)

then one sees that this system maximizes f . Having in mind,
that trajectories resulting from sinusoidal inputs in (1) can be
approximated by trajectories of (3) (see Gurvits, 1992, Kurzweil
& Jarnik, 1987, Li & Gurvits, 1992, Sussmann & Liu, 1992) allows
us to establish a novel methodology to analyze extremum seeking
systems.

The goal of this paper is to generalize this viewpoint to a larger
class of extremum seeking systems. We derive a methodology
which allows us to analyze a broad class of extremum seeking
systems by calculating their respective Lie bracket systems. The
procedure can be summarized as follows: Write the extremum
seeking system in input-affine form, calculate its corresponding
Lie bracket system and prove asymptotic stability of the Lie
bracket systemwhich implies practical asymptotic stability for the
extremum seeking system.
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3. Lie bracket approximation for a class of input-affine systems

In this section we consider a class of input-affine systems
depending on a parameter and we deliver general results for
approximating the trajectories of such systems by the trajectories
of their respective Lie bracket systems. First, we state the
definition of practical stability of a compact, invariant set for
this class of systems. Second, we prove that their trajectories are
approximated by the trajectories of their corresponding Lie bracket
system for large values of the parameter. Third, we show how the
stability properties of the input-affine system and the Lie bracket
system are linked. The results in this section rely on a combination
of results in Gurvits (1992), Kurzweil and Jarnik (1987), Li and
Gurvits (1992),Moreau andAeyels (2000, 2003) and Sussmann and
Liu (1992).

3.1. Practical stability

In the following, we define the notion of practical stability
which is closely related to Lyapunov stability and applies to
differential equations depending on a parameter. Throughout the
paper, we denote this parameter as ω. For related literature about
this concept we refer to Moreau and Aeyels (2000), Tan et al.
(2006), Teel, Peuteman, and Aeyels (1998) and references therein.

Let x(·) := x(·; t0, x0, ω) denote the solution of the differential
equation
ẋ = fω(t, x) (4)
through x(t0) = x0, where the vector field fω : R × Rn

→ Rn

depends on ω ∈ (0, ∞).

Definition 1. A compact set S ⊆ Rn is said to be practically
uniformly stable for (4) if for every ϵ ∈ (0, ∞) there exists a
δ ∈ (0, ∞) and ω0 ∈ (0, ∞) such that for all t0 ∈ R and for all
ω ∈ (ω0, ∞)

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ , t ∈ [t0, ∞). (5)

Definition 2. Let δ ∈ (0, ∞). A compact set S ⊆ Rn is said to be
δ-practically uniformly attractive for (4) if for every ϵ ∈ (0, ∞)
there exists a tf ∈ [0, ∞) and ω0 ∈ (0, ∞) such that for all t0 ∈ R
and all ω ∈ (ω0, ∞)

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ , t ∈ [t0 + tf , ∞). (6)

Definition 3. A compact set S ⊆ Rn is said to be locally practically
uniformly asymptotically stable for (4) if it is practically uniformly
stable and there exists a δ ∈ (0, ∞) such that it is δ-practically
uniformly attractive.

Definition 4. Let S ⊆ Rn be a compact set. The solutions of (4)
are said to be practically uniformly bounded if for every δ ∈ (0, ∞)
there exists an ϵ ∈ (0, ∞) andω0 ∈ (0, ∞) such that for all t0 ∈ R
and for all ω ∈ (ω0, ∞)

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ , t ∈ [t0, ∞). (7)

Definition 5. A compact set S ⊆ Rn is said to be semi-globally
practically uniformly asymptotically stable for (4) if it is practically
uniformly stable and for every δ ∈ (0, ∞) it is δ-practically
uniformly attractive. Furthermore the solutions of (4) must be
practically uniformly bounded.

When (4) is independent of ω we omit the term ‘‘practically’’
in Definitions 1–5 as well as ‘‘semi’’ in Definition 5. In this case,
they are equivalent to the notion of stability in the sense of
Lyapunov; we refer to e.g. Khalil (2002), Moreau and Aeyels (2000)
and Hale (1969).
3.2. Lie bracket approximation

Throughout the paper, we consider the class of input-affine
systems which can be written in the following form:

ẋ = b0(t, x) +

m
i=1

bi(t, x)
√

ωui(t, ωt) (8)

with x(t0) = x0 ∈ Rn and ω ∈ (0, ∞). Next, we define a differen-
tial equation, which we call the Lie bracket system corresponding
to (8)

ż = b0(t, z) +

m
i=1

j=i+1

[bi, bj](t, z)νji(t) (9)

with

νji(t) =
1
T

 T

0
uj(t, θ)

 θ

0
ui(t, τ )dτdθ. (10)

Remark 1. If ui can be decomposed as ui(t, ωt) = ri(t)ũi(ωt), i =

1, . . . ,m, then (8) yields ẋ = b0(t, x) +
m

i=1 b̃i(t, x)
√

ωũi(ωt)
with b̃i(t, x) = bi(t, x)ri(t). This is the usual setup in the existing
literature (see e.g. Kurzweil & Jarnik, 1987, Sussmann & Liu, 1992).

We impose the following assumptions on bi and ui:

A1 bi ∈ C2
: R × Rn

→ Rn, i = 0, . . . ,m.
A2 For every compact set C ⊆ Rn there exist A1, . . . , A6 ∈

[0, ∞) such that |bi(t, x)| ≤ A1, |
∂bi(t,x)

∂t | ≤ A2, |
∂bi(t,x)

∂x | ≤

A3, |
∂2bj(t,x)

∂t∂x | ≤ A4, |
∂[bj,bk](t,x)

∂x | ≤ A5, |
∂[bj,bk](t,x)

∂t | ≤ A6 for all
x ∈ C, t ∈ R, i = 0, . . . ,m, j = 1, . . . ,m, k = j, . . . ,m.

A3 ui : R × R → R, i = 1, . . . ,m are measurable functions.
Moreover, for every i = 1, . . . ,m there exist constants Li,Mi ∈

(0, ∞) such that |ui(t1, θ) − ui(t2, θ)| ≤ Li|t1 − t2| for all
t1, t2 ∈ R and such that supt,θ∈R |ui(t, θ)| ≤ Mi.

A4 ui(t, ·) is T -periodic, i.e. ui(t, θ + T ) = ui(t, θ), and has zero
average, i.e.

 T
0 ui(t, τ )dτ = 0, with T ∈ (0, ∞) for all t, θ ∈

R, i = 1, . . . ,m.

Remark 2. Assumption A1 is a regularity assumption on the
vector fields, which are usually assumed to be smooth in the case
of extremum seeking systems (see Krstic & Wang, 2000 and Tan
et al., 2006).

Remark 3. Assumption A2 means that expressions involving
bi, i = 0, . . . ,m, and their derivatives must be bounded uniformly
in t . A similar assumption was made in Eq. (2.2), Section 2 in
Kurzweil and Jarnik (1987).

Remark 4. Assumption A3 imposes measurability on ui, i =

1, . . . ,m, which is necessary to establish existence of solutions of
(8) (see e.g. Bressan & Piccoli, 2007 and Hale, 1969). Alternatively,
one could impose that the inputs ui, i = 1, . . . ,m, are continuous
functions and use the existence and uniqueness theorem of
Picard–Lindelöf (see Coddington & Levinson, 1955). However, this
does not cover certain classes of inputs, whichmight be interesting
in some applications, e.g. replacing the sinusoids by piecewise
constant functions in the extremum seeking systems.

Remark 5. Similarly as in Gurvits (1992) we impose in Assump-
tion A4 the T -periodicity and zero average of ui, i = 1, . . . ,m,
which is common in the averaging literature but also in the litera-
ture dealing with Lie brackets.
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Finally, we introduce a set B of initial conditions for (9) which
have unique, uniformly bounded solutions, i.e. there exists an A ∈

(0, ∞) such that for all t0 ∈ R we have that

z(t0) ∈ B ⇒ z(t) ∈ U0
A, t ∈ [t0, ∞). (11)

B is used in the proof of the main theorems and is crucial in order
to assure existence of trajectories uniformly in t0.

In the following, we state the main theorems which link
stability properties of the systems in (8) and (9). The first theorem
states that trajectories of (8) are approximated by trajectories of
(9). Related results are presented in Gurvits (1992), Li and Gurvits
(1992) and Teel et al. (1998). However, we show for a larger class
of inputs that the time interval of approximation can be made
arbitrary large by choosing ω sufficiently large. We extend this
result to infinite time-intervals and prove that the semi-global
(local) practical uniform asymptotic stability of the input-affine
system (8) follows from the global (local) uniform asymptotic
stability of the corresponding Lie bracket system (9). These results
are stated in the second and third theorem which are similar to
results in Moreau and Aeyels (2000).

Theorem 1. Let Assumptions A1–A4 be satisfied. Then for every
bounded set K ⊆ B with B as in (11), for every D ∈ (0, ∞) and
for every tf ∈ (0, ∞), there exists anω0 ∈ (0, ∞) such that for every
ω ∈ (ω0, ∞), for every t0 ∈ R and every x0 ∈ K there exist unique
solutions x and z of (8) and (9) through x(t0) = z(t0) = x0 which
satisfy

|x(t) − z(t)| < D, t ∈ [t0, t0 + tf ]. (12)

Theproof of Theorem1uses similar arguments as in B.3, p. 1941,
in Moreau and Aeyels (2003) but we consider more general inputs,
which are characterized by Assumptions A3 and A4. The proof can
be found in Appendix B.

Theorem 2. Let Assumptions A1–A4 be satisfied and suppose that a
compact set S is locally uniformly asymptotically stable for (9). Then
S is locally practically uniformly asymptotically stable for (8).

The proof can be found in Appendix C.

Theorem 3. Let Assumptions A1–A4 be satisfied and suppose that a
compact set S is globally uniformly asymptotically stable for (9). Then
S is semi-globally practically uniformly asymptotically stable for (8).

We omit the proof of Theorem 3 since it is already covered
in Moreau and Aeyels (2000) for the case of S being the origin.
The proof directly carries over to compact sets S by replacing the
Euclidean norm with a distance function to the set S.

Remark 6. The results above only capture stability and not
performance and do not deliver a systematic way for choosing
ω. The notion of practical stability only requires the existence of
ω0 without explicitly considering a specific value. As indicated by
Theorem 1 the choice of ω depends on the set of initial conditions
K , the distance D and the time tf .

4. Lie bracket approximation of extremum seeking systems

In this section, we show how the results from the previous
section can be applied to multi-agent extremum seeking systems.
As indicated in Section 2, the procedure consists of writing the
extremum seeking system in the input-affine form, calculating
the corresponding Lie bracket system and deducing the respective
stability properties of the extremum seeking system from the
stability properties of the Lie bracket system by using Theorems 2
and 3.
In the following, we define a suitable framework for multi-
agent extremum seeking systems. Suppose a group of N agents
tries to achieve a common goal which is defined as an extremum
of a map F . Specifically, we enumerate the agents using the
superscript i. The position of agent i is denoted by x̄i = [xi1, x

i
2]

⊤
∈

R2. We define furthermore x̄ := [x11, x
1
2, . . . , x

N
1 , xN2 ]

⊤ as the
position vector of the overall system. Every agent is equipped with
a specific extremum seeking feedback, which is defined below.
We do not assume that all agents are seeking the extremum of
the same map, but rather that each agent is equipped with an
individual map f i : R2N

→ R, i = 1, . . . ,N , which also depends
on the states of the other agents and satisfies
B1 f i ∈ C2, i = 1, . . . ,N .

Furthermore, the individual maps have to satisfy the following
assumption:
B2 There exists a function F ∈ C1

: R2N
→ R such that ∇x̄i f

i(x̄) =

∇x̄iF(x̄), i = 1, . . . ,N, x̄ ∈ R2N .

These conditions imply that if every agentmoves into the direction
of the gradient of its individual map f i, then it also moves in the
direction of the gradient of F . We call this a potential function. The
goal of themulti-agent system is to find theminimum (maximum)
of the common map F by only seeking the minimum (maximum)
of the individual map f i.

The following assumptions guarantee the existence of local
(global) maxima of the potential function:
B3 There exists a nonempty and compact set Sloc ⊆ R2N of strict

local maxima and a δ ∈ (0, ∞) such that F(x̄∗) > F(x̄) for all
x̄∗

∈ Sloc and all x̄ ∈ U
Sloc
δ \ Sloc. Furthermore, ∇x̄F(x̄) = 0

implies x̄ ∈ Sloc for all x̄ ∈ U
Sloc
δ .

B4 There exists a nonempty and compact set Sglob = {x̄ ∈

R2N
: x̄ = argmaxx∈R2N F(x̄)} of global maxima. Furthermore,

F(x̄) → −∞ for |x̄| → ∞ and ∇x̄F(x̄) = 0 implies x̄ ∈ Sglob

for all x̄ ∈ R2N .

This framework originates from game theory, where Assumption
B2 formally defines a potential game with potential function F .
We refer to Monderer and Shapley (1996) for more information on
potential games.

Remark 7. Under the assumptions above, the common goal can
be formalized as the minimization (maximization) of the potential
function F . There exist powerful tools to construct meaningful
individual maps for a given potential function (see e.g. the
approach using the so-called Wonderful Life Utility in Wolpert,
2003). The design should be done such that an optimization of the
individual maps leads to an optimization of F ; see Monderer and
Shapley (1996). For this case, even though the utility functions are
designed, they usually depend on some parameters or functions
(e.g. environmental conditions, individual agents’ properties)
which are unknown a priori. A typical example for this scenario
is the coverage control problem formulated as a potential game
in Dürr et al. (2011a) and Marden, Arslan, and Shamma (2009).
These aspects justify the usage of extremum seeking in this setup.
For a specific application of extremum seeking in a potential game
framework we refer to Dürr et al. (2011a).

In the next subsection, we show how the framework above can
be combined with extremum seeking agents. We saw in Section 2
that the trajectories of the extremum seeking system can be
approximated by the trajectories of its corresponding Lie bracket
system, which moves into the gradient direction of its individual
map. We generalize this to the multi-agent case. If each agent is
equipped with an extremum seeking feedback which drives it into
the gradient direction of its individual map f i, we expect with
Assumption B2 that the overall system practically converges to an
extremum of F . This is shown in the next subsection.



1542 H.-B. Dürr et al. / Automatica 49 (2013) 1538–1552
Fig. 2. Single-integrator dynamics.

4.1. Multi-agent extremum seeking

We show how extremum seeking can be applied to the above
framework assuming single-integrator agent dynamics.

Consider the system in Fig. 2 which is motivated by a similar
extremum seeking feedback as in Zhang, Siranosian et al. (2007).
Since the agents move in the plane, there are two extremum
seeking loops, one for each dimension. The perturbations are
chosen to be sinusoidal, whose frequencies are chosen for each
agent individually, as specified below. The high-pass filters Gi(s)
=

s
s+hi

, i = 1, . . . ,N , are introduced since they provide better
transient behavior by removing possible constant offsets of the
individual maps f i, i = 1, . . . ,m. They introduce an additional
degree of freedom but do not influence the stability of the overall
system, as it can be seen in the proofs of Theorems 4 and 5.

Define x̄e := [x1e , . . . , x
N
e ]

⊤ and x := [x̄⊤, x̄⊤
e ]

⊤ with xie denoting
the state of the filter Gi(s) =

s
s+hi

, i.e. in state space form we have
ẋie = −xieh

i
+ ui and yi = −xieh

i
+ ui with ui

= f i(x̄).
The differential equations describing the dynamics of agent i are

given by

ẋi1 = c i

f i(x̄) − xieh

i√ωiui
1(ω

it) + αi
√

ωiui
2(ω

it)

ẋi2 = −c i

f i(x̄) − xieh

i√ωiui
2(ω

it) + αi
√

ωiui
1(ω

it)

ẋie = −xieh
i
+ f i(x̄) (13)

with ui
1(ω

it) = sin(ωit), ui
2(ω

it) = cos(ωit).
We need an additional assumption for the multi-agent case

concerning the parameter ω. We see in the proof of the next
theorem that if the following assumption is satisfied, then some
of the νji in (10) vanish in the corresponding Lie bracket system.
This can be assured by assuming

B5 ωi
= aiω and ai ≠ aj, i ≠ j, ai ∈ Q++, ω ∈ (0, ∞), hi, αi, c i ∈

(0, ∞), i, j = 1, . . . ,N .

Since the high-pass filter s
s+hi

introduces an additional state xie,
which has also to be taken into account in the analysis, we denote
by

ES
:=


x̄e ∈ RN

: x̄e =


f 1(x̄)
h1

, . . . ,
f N(x̄)
hN

⊤

, x̄ ∈ S


, (14)

where S is either Sloc or Sglob, the set which is shown in the
following theorem to be attractive for the filter states xie, i =

1, . . . ,N .
Theorem 4. Consider a multi-agent system with N agents, each one
having dynamics given by (13). Let Assumptions B1–B3 and B5 be
satisfied, then the set Sloc × ESloc is locally practically uniformly
asymptotically stable for the overall system with state [x̄⊤, x̄⊤

e ]
⊤.

Proof. The proof can be split up into three steps. In the first step,
we rewrite the system in the input-affine form. In the second
step, we calculate the corresponding Lie bracket system and in the
third step, we prove uniform asymptotic stability of the Lie bracket
system. Theorem 2 then allows us to conclude practical asymptotic
stability for the original system.

In the first step, we rewrite the overall system with state x =

[x̄⊤, x̄⊤
e ]

⊤, where each component is described by the differential
equations given in (13), as input-affine system of the form

ẋ =

N
i=1

bi0(x) + bi1(x)
√

ωi sin(ωit)  
=:ui1(ω

it)

+bi2(x)
√

ωi cos(ωit)  
=:ui2(ω

it)

(15)

with bi0, b
i
1, b

i
2 having non-zero entries only at positions corre-

sponding to agent i and zeros elsewhere, i.e. bi0(x) = [0, . . . ,
0, 0, 0, −xie + f i(x̄), 0, . . . , 0]⊤, bi1(x) = [0, . . . , 0, c i(f i(x̄) −

xieh
i), αi, 0, 0, . . . , 0]⊤, bi2(x) = [0, . . . , 0, αi, −c i(f i(x̄)− xieh

i), 0,
0, . . . , 0]⊤.

Note that due to Assumption B5 we have that ai can be written
as ai =

pi
qi

with pi, qi ∈ N and define q :=
N

i=1 qi and ω̃ =
ω
q .

Thus, aiω =
pi
qi
ω = pi


j≠i qjω̃ = niω̃, i = 1, . . . ,N and j = 1, 2,

and for ni
:= pi


j≠i qj ∈ N. We rewrite (15) as follows:

ẋ =

N
i=1

bi0(x) + bi1(x)
√

ni
√

ω̃ui
1(n

iω̃t)

+ bi2(x)
√

ni
√

ω̃ui
2(n

iω̃t). (16)

It can directly be seen that ui
k(n

iθ) ∈ {sin(niθ), cos(niθ)} are also
2π-periodic in niω̃t for i = 1, . . . ,N and k = 1, 2 and for ni

∈ N.
In the second step, we calculate the corresponding Lie bracket

system as defined in (9). Define z̄ := [z11 , z
1
2 , . . . , z

N
1 , zN2 ]

⊤, z̄e :=

[z1e , . . . , z
N
e ]

⊤ and z := [z̄⊤, z̄⊤
e ]

⊤ and ν
i,j
k,l =

1
2π

 2π
0 ui

k(n
iτ)

×
 τ

0 uj
l(n

jθ)dθdτ which are constant for all i, j = 1, . . . ,N and
k, l = 1, 2.

The crucial point now is that some Lie brackets in the
differential equation of the overall system vanish due to the choice
of different parametersωi for the agents.We obtain using Lemma1
(see Appendix A) that ν

i,j
k,l = −

1
2ni

for all ni
= nj and k = l and

ν
i,j
k,l = 0 otherwise. Thus, the Lie bracket system simplifies to

ż =

N
i=1

bi0(z) −
1
2ni

[

√

nibi1,
√

nibi2](z)

=

N
i=1

bi0(z) −
1
2
[bi1, b

i
2](z). (17)

Explicitly, for the states of agent i we obtain

ż i1 =
1
2


c iαi

∇zi1
f i(z̄) − c i

2
∇zi2

f i(z̄)

f i(z̄) − z ieh


ż i2 =

1
2


c iαi

∇zi2
f i(z̄) + c i

2
∇zi1

f i(z̄)

f i(z̄) − z ieh


ż ie = −z ieh

i
+ f i(z̄). (18)

In the third step, we prove uniform asymptotic stability of the
set Sloc × ESloc for (17). We first need to show existence of the
solutions of (17) on [t0, ∞) for all t0 ∈ R. Note that the vector



H.-B. Dürr et al. / Automatica 49 (2013) 1538–1552 1543
field in (17) is independent of t and continuously differentiable
in z. The existence anduniqueness theorembyPicard–Lindelöf (see
Coddington & Levinson, 1955) guarantees that there exist a time
tf ∈ (0, ∞) and a solution z defined on [t0, t0 + tf ) for all t0 ∈ R.
Note furthermore, that with hi

∈ (0, ∞) in Assumption B5, the
differential equation for z ie, i.e. ż

i
e = −hiz ie + u with u = f i(z̄) in

(18) is linear and its origin is exponentially stable for u = 0.
Thus if f i(z̄(t)) is bounded, then z ie(t) exists and is boundedwith

gain 1
hi

for all i = 1, . . . ,N , for all t0 ∈ R and for all t ∈ [t0, ∞).
Suppose now that Sloc is uniformly asymptotically stable for z̄, then
it can be shown that the set ESloc is uniformly asymptotically stable
for z ie, i = 1, . . . ,N . Therefore, the set Sloc × ESloc is uniformly
asymptotically stable for the overall system [z̄⊤, z̄⊤

e ]
⊤.

It is left to show that the set Sloc is uniformly asymptotically
stable for z̄. Choose V := −F which is due to Assumption B3 a
valid Lyapunov function in U

Sloc
δ . Observe that due to Assumption

B2 we have that ∇z̄i f
i(z̄) = ∇z̄iF(z̄), i = 1, . . . ,N , and thus

V̇ = −

N
i=1

c iαi

2


∇zi1

F(z̄)⊤∇zi1
F(z̄) + ∇zi2

F(z̄)⊤∇zi2
F(z̄)


. (19)

Due to c i, αi
∈ (0, ∞), i = 1, . . . ,N , in Assumption B5, we

know that V (z̄(t)) is decreasing along the trajectories of z̄(t) for
all z̄(t0) ∈ U

Sloc
δ , all t0 ∈ R and all t ∈ [t0, t0 + tf ). We conclude

that |z̄(t)| is bounded and therefore all f i(z̄(t)), i = 1, . . . ,N , are
bounded for all z̄(t0) ∈ U

Sloc
δ , all t0 ∈ R and all t ∈ [t0, ∞). Thus,

z(t) = [z̄(t)⊤, z̄e(t)⊤]
⊤ exists for all t0 ∈ R, for all z(t0) ∈ U

Sloc
δ

and for all t ∈ [t0, ∞). Furthermore, we conclude with (19) and
Assumption B3 that the set Sloc is locally uniformly asymptotically
stable for the subsystem z̄ = [z11 , z

1
2 , . . . , z

N
1 , zN2 ]

⊤ in (17).
Note that due to Assumption B1 and the fact that ui

k(n
iθ̃ ) ∈

{sin(niθ̃ ), cos(niθ̃ )} for i = 1, . . . ,N and k = 1, 2 we conclude
that Assumptions A1–A4 are satisfied. Thus, with Theorem 2 the
set Sloc×ESloc is locally practically uniformly asymptotically stable
for the overall system with state [x̄⊤, x̄⊤

e ]
⊤. �

Theorem 5. Consider a multi-agent system with N agents, each one
having dynamics given by (13). Let AssumptionsB1, B2, B4 andB5 be
satisfied, then the set Sloc × ESglob is semi-globally practically
uniformly asymptotically stable for the overall system with state
[x̄⊤, x̄⊤

e ]
⊤.

Proof. If Assumption B4 is satisfied, then Sglob is a connected set
containing the global maximum of F . Furthermore, F is radially
unbounded and with (19) we see that if V̇ (z̄) = 0 implies z̄(t) ∈

Sglobal. Thus, we conclude that Sloc × ESglob is globally uniformly
asymptotically stable for (17) and thus with Theorem 3, it is semi-
globally practically uniformly asymptotically stable for the overall
system with state [x̄⊤, x̄⊤

e ]
⊤. �

In the following, we analyze the same setup as before but
replace the single-integrator dynamics with unicycle dynamics as
shown in Fig. 3. The setup is motivated by Zhang, Arnold et al.
(2007).

Let us consider the unicycle model for each agent given by the
equations

ẋi1 = ui cos(xiθ ), ẋi2 = ui sin(xiθ ), ẋiθ = vi. (20)

The extremum seeking feedback controls only the forward velocity
of the vehicle, whereas the angular velocity is constant, so that the
inputs to each vehicle are ui(t, x) = (c i(f i(x̄)−xieh

i)
√

ωi sin(ωit)+
αi

√
ωi cos(ωit)) and vi

= Ω i. We assume that xiθ (t0) = 0 for all
i = 1, . . . ,N and

B6 Ω i
= diΩ with di ∈ Q++, Ω ∈ R \ {0}.
Fig. 3. Unicycle dynamics.

Remark 8. It becomes clear in the proof that the corresponding
vector field of the Lie bracket system is time-varying and vanishes
at discrete points in time. Assumption B6 assures that the vector
field is periodic so that a LaSalle-like argument can be used in order
to prove uniform asymptotic stability. Note that the Ω i’s can be
equal, whereas the ωi’s must be different for all agents.

By substituting the expressions for the inputs into (20) and
replacing xiθ (t) = Ω it we obtain

ẋi1 =


c i(f i(x̄) − xieh

i)
√

ωiui
1(ω

it)

+ αi
√

ωiui
2(ω

it)

cos(Ω it)

ẋi2 =


c i(f i(x̄) − xieh

i)
√

ωiui
1(ω

it)

+ αi
√

ωiui
2(ω

it)

sin(Ω it)

ẋie = −xiehi + f i(x̄)

(21)

with ui
1(ω

it) = sin(ωit), ui
2(ω

it) = cos(ωit).

Theorem 6. Consider a multi-agent system with N agents, each one
having dynamics given by (21). Let Assumptions B1–B3, B5 and B6 be
satisfied, then the set Sloc × ESloc is locally practically uniformly
asymptotically stable for the overall system with state [x̄⊤, x̄⊤

e ]
⊤.

Proof. The proof goes along the same lines as the proof of
Theorem 4. In the first step, we rewrite the overall system (21) as
input-affine system

ẋ =

N
i=1

bi0(x) + bi1(t, x)
√

ωiui
1(ω

it) + bi2(t, x)
√

ωiui
2(ω

it), (22)

where bi0, b
i
1, b

i
2 have non-zero entries only at the positions

corresponding to agent i and zeros elsewhere, i.e. bi0(x) =

[0, . . . , 0, 0, 0, −xiehi + f i(x), 0, . . . , 0]⊤, bi1(t, x) = [0, . . . , (c i

(f i(x̄) − xieh
i)) cos(Ω it), (c i(f i(x̄) − xieh

i)) sin(Ω it), 0, 0, . . . , 0]⊤

and bi2(t, x) = [0, . . . , αi cos(Ω it), αi sin(Ω it), 0, 0, . . . , 0]⊤.
Note that due to Assumption B5 ai can be written as ai =

pi
qi

with pi, qi ∈ N and define q :=
N

i=1 qi and ω̃ =
ω
q . Thus,

aiω =
pi
qi
ω = pi


j≠i qjω̃ = niω̃, i = 1, . . . ,N and j = 1, 2, and

for ni
:= pi


j≠i qj ∈ N. We rewrite (22) as follows:

ẋ =

N
i=1

bi0(x) + bi1(t, x)
√

ni
√

ω̃ui
1(n

iω̃t)

+ bi2(t, x)
√

ni
√

ω̃ui
2(n

iω̃t). (23)
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In the second step, we calculate the corresponding Lie bracket
system as it was defined in (9),

ż =

N
i=1

bi0(z) −
1
2
[bi1, b

i
2](t, z). (24)

By the same reasoning as in the proof of Theorem 4, this yields for
the state of agent i

ż i1 =
1
2
(c iαi

∇zi1
f i(z̄) cos2(Ω it)

+ c iαi
∇zi2

f i(z̄) cos(Ω it) sin(Ω it))

ż i2 =
1
2
(c iαi

∇zi2
f i(z̄) sin2(Ωit)

+ c iαi
∇zi1

f i(z̄) cos(Ω it) sin(Ω it))

ż ie = −z ieh
i
+ f i(z̄).

(25)

In the third step, we prove uniform asymptotic stability of the
set Sloc×ESloc for the Lie bracket systemof (23). Due to Assumption
B3 we exploit the function V := −F as a Lyapunov function
candidate which is valid in U

Sloc
δ . Observe that due to Assumption

B2 we have that ∇z̄i f i(z̄) = ∇z̄iF(z̄), i = 1, . . . ,N and thus

V̇ = −

N
i=1

c iαi

2
(∇zi1

F(z̄) cos(Ω it) + ∇zi2
F(z̄) sin(Ω it))⊤

· (∇zi1
F(z̄) cos(Ω it) + ∇zi2

F(z̄) sin(Ω it)). (26)

We have that c i, αi
∈ (0, ∞), i = 1, . . . ,N , from Assumption

B5, and thus V̇ is negative semi-definite. Observe that the vector
field in (25) is time-varying and there are time-instances where
˙̄z(t) = 0, but which are not steady-states for the system. Next,
we make use of Assumption B6, which assures the existence of
ki, li ∈ N, i = 1, . . . ,N , such that di =

ki

li
. One can verify that

the vector field of the overall system (24) consisting of N agents
with system equations as in (25) is T -periodic with T =

2π
Ω

N
i=1 l

i.
We can now use Theorem 4 in LaSalle (1962) which is LaSalle’s
Invariance Principle for periodic vector fields and conclude uni-
form asymptotic stability. It is left to show that no trajectory of
(24) can stay identically in the set where V̇ (z̄) = 0 except if
z̄ ∈ Sloc. To see this, observe that the summands of V̇ can only
be equal to zero if ∇zi1

F(z̄(t)) cos(Ω it) + ∇zi2
F(z̄(t)) sin(Ω it) = 0,

i = 1, . . . ,N . On the set V̇ (z̄) = 0 the differential equation yields
ż i1 = ż i2 = 0 and therefore z i1(t) = const. and z i2(t) = const.
Thus ∇zi1

F(z̄(t)) = const. and ∇zi2
F(z̄(t)) = const. But there are

no constants a, b ∈ R such that a cos(Ω it) + b sin(Ω it) = 0
for all t ∈ [t0, ∞) except a = b = 0 and therefore ∇zi1

F(z̄(t))
= ∇zi2

F(z̄(t)) = 0. We conclude that the set Sloc is locally uni-
formly asymptotically stable for the subsystem z̄ in (25). Observe
furthermore, that due to hi

∈ (0, ∞) in Assumption B5, the differ-
ential equation for z ie, i.e. ż

i
e = −hiz ie + u with u = f i(z̄) in (18)

is linear and its origin is exponentially stable for u = 0. Thus if
f i(z̄(t)) is bounded then z ie(t) exists and is bounded with gain 1

hi
for all i = 1, . . . ,N , for all t0 ∈ R and for all t ∈ [t0, ∞). Therefore,
the set Sloc×ESloc is uniformly asymptotically stable for the overall
system [z̄⊤, z̄⊤

e ]
⊤.

Note that due to Assumption B1 and the fact that ui
k(n

iθ̃ ) ∈

{sin(niθ̃ ), cos(niθ̃ )} for i = 1, . . . ,N and k = 1, 2 we conclude
that Assumptions A1–A4 are satisfied. Thus, with Theorem 2 the
set Sloc×ESloc is locally practically uniformly asymptotically stable
for the overall system with state [x̄⊤, x̄⊤

e ]
⊤. �
Theorem 7. Consider a multi-agent system with N agents, each one
having dynamics given by (21). Let Assumptions B1, B2 and B4–B6 be
satisfied, then the set Sloc × ESglob is semi-globally practically
uniformly asymptotically stable for the overall system with state
[x̄⊤, x̄⊤

e ]
⊤.

The proof uses the same argumentation as the proof of Theorem 5.

5. Discussion

5.1. Relationship to averaging methods

There is a close relationship between the results herein and
averaging theory. The Lie bracket system in (9) can be seen as the
averaged systemof (8). In order to use averaging theory, the system
must be in the following form (see p. 404 in Khalil, 2002 for details)

dx
dτ

= ϵb(τ , x, ϵ) (27)

with x(τ ) ∈ Rn, ϵ ∈ [0, ∞), b ∈ C2
: R×Rn

×R → Rn andwhere
b(·, x, ϵ) is T -periodic with T ∈ (0, ∞). The associate averaged
system is given by

dz
dτ

= ϵbT (z) (28)

with bT (z) =
1
T

 T
0 b(s, z, 0)ds.

Standard averaging cannot be applied directly to (8). We show
this with a simple calculation. After rescaling time τ = ωt and by
setting ϵ =

1
ω
we obtain

dx
dτ

= ϵ


b0(ϵτ , x) +

1
√

ϵ

m
i=1

bi(ϵτ , x)ui(ϵτ , τ )


. (29)

Since 1
√

ϵ
appears in the vector field of (29) the vector field

is not twice continuously differentiable and b(τ , z, 0) does not
exist. Thus the integral 1

T

 T
0 b(s, z, 0)ds does not exist. However,

following the same ideas as in the proof of Theorem 1 in the
Appendix, we can establish a connection between averaging
theory and the results in this paper. We illustrate this idea
using the introductory example. Consider (1) and suppose that
f is continuously differentiable. After integrating the differential
equation, we obtain

x(t) = x0 +
√

ω

 t

t0
α cos(ωs) + f (x(s)) sin(ωs)ds (30)

andby integrating the first expression of the integral
 t
t0
α cos(ωs)ds

=
α
ω
(sin(ωt) − sin(ωt0)) and performing a partial integration for

the second expression
 t
t0
f (x(s)) sin(ωs)ds = −

1
ω
(f (x(t)) cos(ωt)

− f (x(t0)) cos(ωt0)) +
1
ω

 t
t0

∇xf (x(s))ẋ cos(ωs)dswe obtain

x(t) = x0 +

√
ω

ω
r(ωt, x(t)) +

 t

t0
b(ωs, x(s))ds (31)

with

r(ωt, x(t)) = −f (x(t)) cos(ωt) + f (x(t0)) cos(ωt0)
+ α(sin(ωt) − sin(ωt0)) (32)

b(ωs, x(s)) = α∇xf (x(s)) cos2(ωs)
+ ∇xf (x(s))f (x(s)) sin(ωs) cos(ωs). (33)

We see that for bounded trajectories the expression
√

ω

ω
r(ωt, x(t))

tends to zero when ω tends to infinity. Thus, we have that x(t) ≈
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x0 +
 t
t0
b(ωs, x(s))ds and therefore ẋ ≈ b(ωt, x). By rescaling time

with τ = ωt where ω =
1
ϵ
we obtain

dx
dτ

≈
1
ω
b(τ , x) = ϵb(τ , x) (34)

which is now in the form (27). We can use standard averaging
analysis and obtain the averaged system

dz
dτ

=
1
ω

α

2
∇z f (z) = ϵ

α

2
∇z f (z) (35)

which coincides with (3). Summarizing, we established a connec-
tion between (1) and (3) using average-like arguments.

Notice that the amplitudes and frequencies of the sinusoids of
the extremum seeking feedbacks in Figs. 2 and 3 are different,
compared to the amplitudes in the corresponding schemes in the
existing literature Tan et al. (2006), Zhang, Arnold et al. (2007)
and Zhang, Siranosian et al. (2007). Specifically, in Zhang, Arnold
et al. (2007) and Zhang, Siranosian et al. (2007) the amplitudes
of the perturbations are chosen to be ω and one, respectively,
whereas the frequencies are chosen to be ω. The choice of

√
ω for

the amplitudes in combination with ω for the frequency is crucial
in order to obtain the Lie bracket system (9) as approximation of
the input-affine system (8) since the procedure described above
would lead to a different averaged system for a different choice
of the amplitudes. A similar remark was also pointed out on
p. 241 in Kurzweil and Jarnik (1987). Therefore, even though
the schemes differ only in the choice of the amplitudes, the
observation above let us expect that the average systems of the
corresponding extremum seeking systems in Zhang, Arnold et al.
(2007) and Zhang, Siranosian et al. (2007) differ from the Lie
bracket systems obtained in this paper. A similar reasoning applies
to Tan et al. (2006) concerning the results on staticmaps,where the
parameters do not influence the frequencies of the perturbations
but only their amplitudes.

5.2. Single-agent case

Theorems 4 and 5 state local and semi-global practical uniform
asymptotic stability for a group of N agents with single-integrator
and unicycle dynamics. A special case is a single-agent extremum
seeking system forwhichwe haveN = 1 and f 1 = F . Furthermore,
a similar analysis can be adopted in a straight forward fashion to
the case of extremum seeking in one dimension by removing one
feedback loop in Fig. 2.

5.3. Non-sinusoidal perturbations

In the presented schemes in Figs. 1–3 it is not essential that
the perturbation signals are sinusoidal. Theorems 2 and 3 can be
applied to analogous schemes where the sinusoidal perturbations
are replaced with other appropriately defined periodic signals as
long as they satisfy Assumptions A3 and A4. This also includes
discontinuous and/or non-differentiable signals such as square,
triangle or sawtooth waveforms (see also Remark 4).

6. Examples

In this section, we show numerical examples which illustrate
the main results. First, we compare for different values of ω
the trajectories of the single-integrator system of (15) with its
corresponding Lie bracket system (17). Second, using the Lie
bracket system, we are able to explain characteristic points which
are visible in the trajectories of the extremum seeking with
unicycle dynamics.
–2.5
–4 –3 –2 –1 0 1 2 3

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3

Fig. 4. Comparison of trajectories of a three-agent single-integrator system and its
respective Lie bracket system, for ω = 10.

We consider a system of N = 3 agents and enumerate them
with a, b, c. We assign each agent themaps f a(x̄) = −

1
2 (x

a
1−1)2−

1
2 (x

a
2 − 1)2 + xb1

2
+ xb2

2
+ e(−xc1

2
−xc2

2
)
− 10, f b(x̄) = −

1
2 (x

b
1 + 1)2 −

1
2 (x

b
2+1)2+sin(xa1+xa2)−10, f c(x̄) = −

1
2 (x

c
1+1)2− 3

2 (x
c
2−1)2+10.

We choose the parameters h = ha
= hb

= hc
= 1, αa

=

αb
= αc

= 1, ca = cb = cc = 0.3 and the initial conditions
[x̄⊤

0 , x̄⊤

0e]
⊤

= [2, −2, −2, 2, −1, 2.5, 0, 0, 0]⊤. Observe that each
of the f i’s, i = a, b, c are functions of the states of the respective
other agents.

Furthermore, we consider the quadratic function F(x̄) =

−
1
2 (x̄ − x̄∗)⊤Q (x̄ − x̄∗), where x̄∗

= [1, 1, −1, −1, −1, 1]⊤ and
the diagonal matrix Q = diag(1, 1, 1, 1, 1, 3). We can verify
that ∇x̄i f

i(x̄) = ∇x̄iF(x̄), i = a, b, c and we see that F is quadratic
and attains its maximal value at x̄∗. We expect from Theorems 5
and 7 that


(x̄∗)⊤,

f a(x̄∗)

h ,
f b(x̄∗)

h ,
f c (x̄∗)

h

⊤
is semi-globally practi-

cally uniformly asymptotically stable for the extremum seeking
systems.

In Fig. 4 the trajectories of the original and the Lie bracket
systems are depicted with ω = 10 and ωa

= ω, ωb
= 2ω, ωc

= 3ω. The trajectories of the Lie bracket system captures the
qualitative evolution of the trajectories of the original system. In
Fig. 5 we see a simulation with the same parameters but with
ω = 100.

These examples illustrate two properties. First, the trajectories
of the original system approach those of the Lie bracket system
for large values of ω. This observation points up the result of
Theorem 1. Second, we deduce from Figs. 4 and 5 that even though
each of the f i’s, i = a, b, c , contains highly nonlinear terms
depending on the states of the other agents, the overall system
practically converges even for small values of ω to the expected
extremum.

The same result can be observed in the case of unicycle
dynamics and the same choice of parameters as above, with
additionally Ωa

= 1, Ωb
= 2, Ωc

= 3. In Fig. 6 the trajectories of
the original and the Lie bracket systems are depicted for ω = 80.
Observe that the overall system practically converges as expected
to the extremum. The trajectory of the extremum seeking system
contains characteristic points, which also appear in the trajectory
of the Lie bracket system. Apparently the vector field changes
its direction abruptly. This can be explained by regarding the
differential equation of the Lie bracket system in (25), which is
time-varying and vanishes at the zero-crossing instances of the
sinusoids.
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Fig. 5. Comparison of trajectories of a three-agent single-integrator system and its
respective Lie bracket system, for ω = 100.
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Fig. 6. Comparison of trajectories of a three-agent unicycle system and its
respective Lie bracket system, for ω = 80.

7. Conclusion

In this work we developed a methodology, which led to a novel
interpretation as well as to novel stability results for extremum
seeking systems. By identifying the sinusoidal perturbations of the
extremum seeking as artificial inputs, we were able to rewrite the
system in a certain input-affine form and to relate this system
to the so-called Lie bracket system, which nicely reveals the
optimizing behavior of extremum seeking. The Lie bracket system
viewpoint of extremum seeking allowed us to establish strong
stability results for extremum seeking systems. We proved that
the trajectories of systems belonging to a certain class of input-
affine systems can be approximated by the trajectories of their
corresponding Lie bracket system. Furthermore, we showed that
global (local) uniformasymptotic stability of the Lie bracket system
implies semi-global (local) practical uniform asymptotic stability
of the input-affine system. We applied these results to a multi-
agent extremum seeking system consisting of agents with either
single-integrator or unicycle dynamics. Finally, the results are
illustrated using numerical examples.
Acknowledgments
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Appendix A. Preliminary lemmas

Lemma 1. Let

νij =
1
2π

 2π

0
ui(niτ)

 τ

0
uj(njθ)dθdτ (A.1)

with ni, nj
∈ N, ui(nit) ∈ {sin(nit), cos(nit)}, then

νij =


1
2ni

ni
= nj, ui(nit) = sin(nit),

uj(njt) = cos(njt)

−
1
2ni

ni
= nj, ui(nit) = cos(nit),

uj(njt) = sin(njt)
0 else .

(A.2)

Proof. The result follows by a direct calculation. �

Lemma 2. Let u : R × R → R satisfy Assumption A3. Furthermore,
u(t, ·) is T -periodic, i.e. u(t, θ + T ) = u(t, θ) for some T ∈ (0, ∞)
and all t, θ ∈ R. Then, there exist k1, k2 ∈ [0, ∞) such that the
inequality
 t

t0


u(τ , ωτ) −

1
T

 T

0
u(τ , θ)dθ


dτ

 ≤
k1(t − t0) + k2

ω
(A.3)

is satisfied for all t0 ∈ R and all t ∈ [t0, ∞). Furthermore, k2 = 0 if
ω(t − t0) is an integer multiple of T , i.e. there exists an n ∈ N0 such
that ω(t − t0) = Tn.

Proof. Using the fact that u(τ , ωτ) =
1
T

 T
0 u(τ , ωτ)dθ and apply-

ing the change of variables r = ωτ, dr = ωdτ , the expression in
the norm of left hand-side in (A.3) yields

1
Tω

 T

0

 ωt

ωt0
u
 r

ω
, r


− u
 r

ω
, θ

drdθ. (A.4)

Since T ∈ (0, ∞) we can divide [ωt0, ωt] into n ∈ N0 pieces of
length T such that ω(t − t0) = Tn + δ with 0 ≤ δ < T being the
leftover piece. We obtain for (A.4)

1
Tω

n−1
k=0

 T

0

 ωt0+T (k+1)

ωt0+Tk
u
 r

ω
, r


− u
 r

ω
, θ

drdθ + R1, (A.5)

where we introduced the left-over piece

R1 :=
1
Tω

 T

0

 ωt0+Tn+δ

ωt0+Tn
u
 r

ω
, r


− u
 r

ω
, θ

drdθ, (A.6)

which is considered later.
The integration interval in (A.5) is now shifted by introducing

the change of variable s = r − ωt0 − Tk, ds = dr

1
Tω

n−1
k=0

 T

0

 T

0
u

hk(s)
ω

, hk(s)


− u

hk(s)
ω

, θ


dsdθ + R1 (A.7)

with hk(s) := s+ωt0+Tk. Since u(t, ·) is T -periodic, it follows that
u( hk(s)

ω
, hk(s)) = u( hk(s)

ω
, h0(s)). Thus, this simplifies to

1
Tω

n−1
k=0

 T

0

 T

0
u

hk(s)
ω

, h0(s)


− u

hk(s)
ω

, θ


dsdθ + R1. (A.8)



H.-B. Dürr et al. / Automatica 49 (2013) 1538–1552 1547
Note that since the integrationwith respect to s andwith respect to
θ is performed from 0 to T and due to the periodicity of u(t, ·), we
can add

 T
0 u( hk(0)

ω
, θ)dθ and subtract

 T
0 u( hk(0)

ω
, h0(s))ds which

sums up to zero. We obtain

1
Tω

n−1
k=0

 T

0

 T

0
u

hk(s)
ω

, h0(s)


− u

hk(0)

ω
, h0(s)



+ u

hk(0)

ω
, θ


− u


hk(s)
ω

, θ


dsdθ + R1. (A.9)

Assumption A3 yields the existence of L ∈ (0, ∞) such that the
above expression can be bounded from above as follows
|u( hk(s)

ω
, h0(s)) − u( hk(0)

ω
, h0(s))| ≤

L
ω
|s| and

|u( hk(0)
ω

, θ)−u( hk(s)
ω

, θ)| ≤
L
ω
|s|. Thus, (A.9) can be upper bounded

by

1
Tω

n−1
k=0

 T

0

 T

0
2
L
ω

|s|dsdθ + |R1| =
T 2L
ω2

n + |R1|. (A.10)

We now consider the expression R1 in (A.6). Assumption A3 yields
the existence of M ∈ (0, ∞) such that it can be upper bounded as
follows:

|R1| ≤
1
Tω

 T

0

 ωt0+Tn+δ

ωt0+Tn
2Mdτdθ =

2Mδ

ω
. (A.11)

Therefore, using the definition of n =
ω(t−t0)−δ

T we obtain

T 2L
ω2

n +
2Mδ

ω
=

T 2L
ω2

ω(t − t0) − δ

T
+

2Mδ

ω

≤
TL(t − t0) + 2Mδ

ω
. (A.12)

Choosing k1 := TL and k2 := 2Mδ proves the first claim. If
ω(t − t0) = Tn then δ = 0 and therefore, k2 = 0 which proves
the second claim. �

Lemma 3. Let ui, uj : R × R → R satisfy Assumptions A3 and A4.
Furthermore, let

ũij(t, θ) := ui(t, θ)

 θ

0
uj(t, r)dr, (A.13)

then there exist Mij, Lij ∈ (0, ∞) such that

(1) ũij(t, ·) is T -periodic, i.e. ũij(t, θ + T ) = ũij(t, θ),
(2) supt,θ∈R |ũij(t, θ)| ≤ Mij,
(3) |ũij(t1, θ) − ũij(t2, θ)| ≤ Lij|t1 − t2|.

Proof. To (1): Consider ũij(t, θ + T ). Performing a change of
variables s = r − T and ds = dr yields

ui(t, θ + T )

 θ+T

0
uj(t, r)dr = ui(t, θ)

 θ

−T
uj(t, s + T )ds, (A.14)

where we made use of T -periodicity of ui(t, ·) in Assumption A4.
Again, due to Assumption A4 uj(t, ·) has zero average and is T -
periodic. Thus, the expression above yields

ui(t, θ)

 0

−T
uj(t, s)ds  

=0

+ui(t, θ)

 θ

0
uj(t, r)dr. (A.15)

To (2): Since T ∈ (0, ∞)we can divide [0, θ] into n ∈ N0 pieces
of length T such that θ = Tn+ δ with 0 ≤ δ < T being the leftover
piece. Due to Assumption A4, the first pieces are zero. Thus, we
obtain

|ũij(t, θ)| ≤ |ui(t, θ)|

 nT+δ

nT
|uj(t, r)|dr

≤ MiMjδ ≤ MiMjT  
=:Mij

, (A.16)

where the last step follows from Assumption A3.
To (3): Using the definition of ũij in (A.13) we can add and

subtract the term ui(t1, θ)
 θ

0 uj(t2, r)dr which yields

|ũij(t1, θ) − ũij(t2, θ)|

=

ui(t1, θ)

 θ

0
(uj(t1, r) − uj(t2, r)dr)

+ (ui(t1, θ) − ui(t2, θ))

 θ

0
uj(t2, r)dr

 . (A.17)

Since T ∈ (0, ∞) we can divide [0, θ] into n ∈ N0 pieces of length
T such that θ = Tn + δ with 0 ≤ δ < T being the leftover piece.
We obtain for the expression above

=

ui(t1, θ)

n−1
k=0

 (k+1)T

kT
(uj(t1, r) − uj(t2, r)dr)

+ ui(t1, θ)

 nT+δ

nT
(uj(t1, r) − uj(t2, r)dr)

+ (ui(t1, θ) − ui(t2, θ))

n−1
k=0

 (k+1)T

kT
uj(t2, r)dr

+ (ui(t1, θ) − ui(t2, θ))

 nT+δ

nT
uj(t2, r)dr

 . (A.18)

The first and third line in (A.18) sum up to zero due to Assumption
A4. Furthermore, due to Assumptions A3 we obtain

≤ |ui(t1, θ)|

 nT+δ

nT
Lj|t1 − t2|dr

+ Li|t1 − t2|
 nT+δ

nT
|uj(t2, r)|dr

≤ (MiLj + LiMj)δ|t1 − t2| ≤ (MiLj + LiMj)T  
=:Lij

|t1 − t2|. (A.19)

This was the last property we had to prove. �

Lemma 4. Let ui, uj : R × R → R satisfy Assumptions A3 and A4.
Then there exist k1, k2, k3, k4 ∈ [0, ∞) such that the following
inequality
 t

t0


ωui(τ , ωτ)

 τ

t0
uj(s, ωs)ds

−
1
T

 T

0


ui(τ , θ)

 θ

0
uj(τ , r)dr


dθ


dτ


≤ k1

(t − t0)2

ω
+ k2

t − t0
ω

+ k3
1
ω

+ k4
1
ω2

+ k5
1
ω3

(A.20)

is satisfied for all t0 ∈ R and all t ∈ [t0, ∞).

Proof. In order to use Lemma 2 we add and subtract
 t
t0
ũij(τ , ωτ)

dτ =
 t
t0
(ui(τ , ωτ)

 ωτ

0 uj(τ , r)dr)dτ (see (A.13)) in the norm on
the left hand-side of (A.20). Thus, it can be written as



1548 H.-B. Dürr et al. / Automatica 49 (2013) 1538–1552
 t

t0


ũij(τ , ωτ) −

1
T

 T

0
ũij(τ , θ)dθ


dτ + R (A.21)

with

R :=

 t

t0


ωui(τ , ωτ)

 τ

t0
uj(s, ωs)ds − ũij(τ , ωτ)


dτ . (A.22)

Due to Lemma 3 the expression ũij in (A.21) satisfies all
assumptions needed in Lemma 2 which can now be applied in
order to establish the existence of k̃1, k̃2 ∈ [0, ∞) such that
 t

t0


ũij (τ , ωτ) −

1
T

 T

0
ũij (τ , θ) dθ


dτ


≤

k̃1(t − t0) + k̃2
ω

. (A.23)

In the following we establish an upper bound for R. We first
split up the integration interval in (A.22), i.e.

 ωτ

0 uj(τ , r)dr = ωt0
0 uj(τ , r)dr +

 ωτ

ωt0
uj(τ , r)dr and obtain

R =

 t

t0


ωui(τ , ωτ)

 τ

t0
uj(s, ωs)ds

−
1
ω

 ωτ

ωt0
uj(τ , r)dr


dτ + R1, (A.24)

where we introduced

R1 := −

 t

t0


ui(τ , ωτ)

 ωt0

0
uj(τ , r)dr


dτ . (A.25)

By the changes of variables p = ωτ, dp = ωdτ and q = ωs, dq =

ωdswe obtain

R =
1
ω

 ωt

ωt0


ui

 p
ω

, p
 p

ωt0
uj

 q
ω

, q

dq

−

 p

ωt0
uj

 p
ω

, r

dr


dp + R1. (A.26)

Since the integration intervals with respect to r and q are now
equal, we combine the two inner integrals and introduce I(q, p) :=

uj(
q
ω
, q) − uj(

p
ω
, q). Furthermore, we divide [ωt0, ωt] into n ∈ N0

pieces of length T such that ω(t − t0) = Tn + δ with 0 ≤ δ < T
being the leftover piece. Thus, we have

R =
1
ω

n−1
k=0

 ωt0+T (k+1)

ωt0+Tk


ui

 p
ω

, p
  p

ωt0
I(q, p)dq


dp

+
1
ω

 ωt0+Tn+δ

ωt0+Tn


ui

 p
ω

, p
  p

ωt0
I(q, p)dq


dp + R1. (A.27)

For reasonswhich become clear later,we again split up the integra-
tion interval

 p
ωt0

I(q, p)dq =
 ωt0+Tk
ωt0

I(q, p)dq +
 p
ωt0+Tk I(q, p)dq,

k = 1, . . . , n and obtain R = R1 + R2 + R3, where we define

R2 :=
1
ω

n−1
k=0

 ωt0+T (k+1)

ωt0+Tk


ui

 p
ω

, p
  ωt0+Tk

ωt0
I(q, p)dq


dp

+
1
ω

 ωt0+Tn+δ

ωt0+Tn


ui

 p
ω

, p
  ωt0+Tn

ωt0
I(q, p)dq


dp (A.28)
and

R3 :=
1
ω

n−1
k=0

 ωt0+T (k+1)

ωt0+Tk


ui

 p
ω

, p
  p

ωt0+Tk
I(q, p)dq


dp

+
1
ω

 ωt0+Tn+δ

ωt0+Tn


ui

 p
ω

, p
  p

ωt0+Tn
I(q, p)dq


dp. (A.29)

Each part is now treated separately.
For R1 we split up the second integration interval [0, ωt0] by

introducing l ∈ N0 such that ωt0 = Tl + ϵ with 0 ≤ ϵ < T being
the left-over piece. We know from Assumption A4 that uj(t, ·) has
zero average. Thus (A.25) simplifies to

R1 = −

 t

t0


ui (τ , ωτ)

 Tl+ϵ

Tl
uj (τ , s) ds


dτ (A.30)

and with Assumption A3, i.e. |
 Tl+ϵ

Tl uj (τ , s) ds| ≤ Mjϵ the ex-
pression ūij(τ , θ) := ui(τ , θ)

 Tl+ϵ

Tl uj(τ , s)ds is bounded, ūij(τ , ·)

is T -periodic with zero mean and ūij(·, θ) is Lipschitz continuous
which follows from the same reasoning as in the proof of part (3)
of Lemma 3 (i.e. (A.17)–(A.19)). Thus it satisfies all assumptions of
Lemma 2. We conclude with the first statement of Lemma 2 that
there exist k̃3, k̃4 ∈ [0, ∞) such that

|R1| ≤
k̃3(t − t0) + k̃4

ω
. (A.31)

We now turn to R2. Since uj(t, ·) is T -periodic with zero mean,
wehave that

 ωt0+Tk
ωt0

uj(
p
ω
, q)dq = 0 and therefore

 ωt0+Tk
ωt0

I(q, p)dq

=
 ωt0+Tk
ωt0

uj
 q

ω
, q

dq, k = 1, . . . , n. The crucial point now is that

this integral does not depend on p anymore. Thus the expression
R2 can be written as

R2 =
1
ω

n−1
k=0

 ωt0+T (k+1)

ωt0+Tk
ui

 p
ω

, p

dp
 ωt0+Tk

ωt0
uj

 q
ω

, q

dq

+
1
ω

 ωt0+Tn+δ

ωt0+Tn
ui

 p
ω

, p

dp
 ωt0+Tn

ωt0
uj

 q
ω

, q

dq. (A.32)

Substituting r =
p
ω
, dr =

dp
ω

and s =
q
ω
, ds =

dq
ω

yields

R2 = ω

n−1
k=0

 t0+
T (k+1)

ω

t0+
Tk
ω

ui (r, ωr) dr
 t0+

Tk
ω

t0
uj (s, ωs) ds

+ ω

 t0+
Tn+δ

ω

t0+
Tn
ω

ui (r, ωr) dr
 t0+

Tn
ω

t0
uj (s, ωs) ds. (A.33)

Wenow treat each integral in (A.33) separately. Since ui is bounded
by Mi ∈ (0, ∞) we can upper bound the third integral and since
both ui, uj satisfy the conditions of Lemma 2 and ω(t0 +

T (k+1)
ω

−

t0− Tk
ω

) = T aswell asω(t0+ Tk
ω

−t0) = Tk, k = 1, . . . , n, we obtain
for the first, second and fourth integral with the second statement
of Lemma 2 that there exist k̃5, k̃6, k̃7 ∈ [0, ∞) such that

|R2| ≤ ω

n−1
k=0

k̃5T
ω2

k̃6Tk
ω2

+ Miδ
k̃7Tn
ω2

≤ k̃5k̃6


(t − t0)2

ω
+

δ2

ω3


+

k̃7MiT (t − t0)
ω

, (A.34)

where we have made use of 0 ≤ δ < T and the definition of
n =

ω(t−t0)−δ

T above.
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For R3 we proceed as follows. Note that due to Assumption A3
we have that |I(q, p)| ≤

Lj
ω
|q− p| and furthermore, |ui(t, θ)| ≤ Mi,

for all t, θ ∈ R and all i, j = 1, . . . ,m. Thus, we obtain for |R3|

|R3| ≤
1
ω

n−1
k=0

 ωt0+T (k+1)

ωt0+Tk
Mi

 p

ωt0+Tk

Lj
ω

|q − p|dqdp

+
1
ω

 ωt0+Tn+δ

ωt0+Tn
Mi

 p

ωt0+Tn

Lj
ω

|q − p|dqdp. (A.35)

The crucial point now is that the lower integration limits of both
integrations are equal. One can verify that after the substitutions
s = q − ωt0 − Tk, ds = dq and r = p − ωt0 − Tk, dr = dp, k =

1, . . . , nwe obtain

|R3| ≤
MiLj
ω2


n−1
k=0

 T

0

 r

0
|s − r|dsdr +

 δ

0

 r

0
|s − r|dsdr



=
MiLj
6ω2


T 3n + δ3 . (A.36)

Using the definition of n =
ω(t−t0)−δ

T above, we obtain

|R3| ≤
T 2MiLj(t − t0)

6ω
+

MiLjT 3

6ω2
, (A.37)

where we have used 0 < δ ≤ T . With R = R1 + R2 + R3 in (A.22),
(A.23), (A.31), (A.34) and (A.37) we obtain the desired upper bound
for the left hand-side of (A.20) with k1 = k̃5k̃6, k2 = k̃1 + k̃3 +

T2MiLj
6 + k̃7MiT , k3 = k̃2 + k̃4, k4 =

MiLjT3

6 and k5 = k̃5k̃6T 2. �

Appendix B. Proof of Theorem 1

Consider the vector field fω(t, x) = b0(t, x) +
m

i=1 bi(t, x)
×

√
ωui(t, ωt) in (8) and note that due to Assumptions A1 and

A3 fω(t, ·) is continuously differentiable and fω(·, x) is measurable.
Furthermore, with Assumption A2 we have that for every compact
set C ⊆ Rn and every ω ∈ (0, ∞) there exist M, L ∈

[0, ∞) such that |b0(t, x) +
m

i=1 bi(t, x)
√

ωui(t, ωt)| ≤ M and
such that |b0(t, x1) +

m
i=1 bi(t, x1)

√
ωui(t, ωt) − b0(t, x2) −m

i=1 bi(t, x2)
√

ωui(t, ωt)| ≤ |b0(t, x1)−b0(t, x2)|+
√

ω
m

i=1 Mi
|(bi(t, x1) − bi(t, x2))| ≤ L|x1 − x2|, t ∈ R, x, x1, x2 ∈ C. We
conclude with Theorem. 2.1.1 on p. 14 and Theorem 2.1.3 on p.
16 in Bressan and Piccoli (2007) (see also Theorem 5.3 on p. 30
in Hale, 1969), for every ω ∈ (0, ∞), every t0 ∈ R and every
x0 ∈ Rn there exist a te ∈ (0, ∞) and a unique absolutely
continuous solution x of (8) such that x(t) = x0 +

 t
t0
b0(τ , x) +m

i=1 bi(τ , x)
√

ωui(τ , ωτ)dτ with t ∈ [t0, t0 + te) and x0 = x(t0).
Since, x(t) is absolutely continuous on [t0, t0 + te) we can perform
a partial integration (see Theorem 4 on p. 266 in Nathanson,
1964) for each bi(τ , x)

√
ωui(τ , ωτ), i = 1, . . . ,m with derivative

dbi(τ ,x)
dτ =

∂bi(τ ,x)
∂x ẋ +

∂bi(τ ,x)
∂τ

almost everywhere and obtain

x(t) = x0 +

 t

t0


b0(τ , x) −

√
ω

m
i=1


∂bi(τ , x)

∂x
ẋ

+
∂bi(τ , x)

∂τ


Ui(t0, τ )


dτ +

√
ω

m
i=1

bi(t, x(t))Ui(t0, t) (B.1)

with Ui(t0, t) :=
 t
t0
ui(r, ωr)dr . Since ẋ(t) = b0(t, x(t)) +m

i=1 bi(t, x(t))
√

ωui(t, ωt) for almost all t , we obtain

x(t) = x0 +

 t

t0


b0(τ , x) − ω

m
i,j=1

∂bi(τ , x)
∂x

bj(τ , x)
× uj(τ , ωτ)Ui(t0, τ )


dτ + R1 + R2, (B.2)

where we introduced

R1 := −
√

ω

 t

t0


m
i=1


∂bi(τ , x)

∂x
b0(τ , x)

+

m
i=1

∂bi(τ , x)
∂τ


Ui(t0, τ )


dτ (B.3)

and

R2 :=
√

ω

m
i=1

bi(t, x(t))Ui(t0, t). (B.4)

Adding and subtracting the expression ω
 t
t0

m
i=1
m

j=i+1
∂bj(τ ,x)

∂x
bi(τ , x)uj(τ , ωτ)Ui(t0, τ )dτ yields

x(t) = x0 +

 t

t0


b0(τ , x) + ω

m
i=1

j=i+1

[bi, bj](τ , x)uj(τ , ωτ)

×Ui(t0, τ )


dτ + R1 + R2 + R3 + R4 (B.5)

with

R3 := −ω

 t

t0

m
i=1

∂bi(τ , x)
∂x

bi(τ , x)
1
2

∂Ui(t0, τ )2

∂τ
dτ (B.6)

and

R4 := −ω

 t

t0

m
i=1

i−1
j=1

∂bi(τ , x)
∂x

bj(τ , x)

·
∂Ui(t0, τ )Uj(t0, τ )

∂τ
dτ (B.7)

and by using ∂Ui(t0,τ )Uj(t0,τ )

∂τ
= ui(τ , ωτ)Uj(t0, τ ) + uj(τ , ωτ)

× Ui(t0, τ ) for almost all τ , i = 1, . . . ,m, j = 1, . . . ,m. Note
that R3 and R4 contain the rest terms after relabeling the indices.
Furthermore, R3 contains the terms where i = j, which is treated
as a special case.

We now turn to (9). By definition of the set B, the solution
z of (9) exists, is unique and z(t) is bounded for t = [t0, ∞)
and for all z(t0) = z0 ∈ B. Thus, z(t) that can be written as
z(t) = z0 +

 t
t0
b0(τ , z) +

m
i=1

j=i+1
[bi, bj](τ , z)νji(τ )dτ with t ∈

[t0, ∞), z(t0) = z0 and νji(t) as defined in (9).
In the following, we show that the distance between x(t) and

z(t) with z(t0) = x(t0) = x0 can be made arbitrary small on a
finite time intervalwithω chosen sufficiently large. Choose z(t0) =

x(t0) = x0 ∈ K and since K ⊆ B is bounded and since solutions
initialized in B stay uniformly bounded, there exists a bounded
set M ⊆ Rn such that for all t0 ∈ R and all z(t0) ∈ K we have
z(t) ∈ M, t ∈ [t0, ∞). Define a tubular set around z(t), i.e.O(t) =

{x ∈ Rn
: |x − z(t)| ≤ D}, t ∈ [t0, ∞). We now consider the

case, where we assume that there exists a time tD(t0, x0, ω) with
0 < tD(t0, x0, ω) < t̄e such that x(t) = x(t; t0, x0, ω) leaves O(t)
at t0 + tD(t0, x0, ω) and with t̄e the maximal time of existence of
x(t). The trivial case is given, when x(t) ∈ O(t) for all t ∈ [t0, ∞).

Let tf ∈ (0, ∞) be given. We now show that there exists an
ω0 ∈ (0, ∞) such that for every ω ∈ (ω0, ∞), every t0 ∈ R and
every x0 ∈ K we have tD := tD(t0, x0, ω) ≥ tf . Suppose for the
sake of contradiction that there exists a t0 ∈ R and an x0 ∈ K such
that for all ω0 ∈ (0, ∞) we have that there exists an ω ∈ (ω0, ∞)
such that tD(t0, x0, ω) < tf .
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Fig. B.1. x(t) stays in ŪM
D for all t ∈ [t0, t0 + tD].

Consider the distance between x(t) and z(t) through z(t0) =

x(t0) for t ∈ [t0, t0 + tD]. We add and subtract the expression t
t0
[bi, bj](τ , x)νji(τ )dτ and obtain

x(t) − z(t) =

 t

t0
b0(τ , x) − b0(τ , z)

+

m
i=1

j=i+1


[bi, bj](τ , x) − [bi, bj](τ , z)


× νji(τ )dτ + R1 + R2 + R3 + R4 + R5 (B.8)

withR5 :=
m

i=1
m

j=i+1

 t
t0
[bi, bj](τ , x)Vji(τ , ωτ)dτ andVji(τ , ωτ)

= ωuj(τ , ωτ)Ui(t0, τ ) − νji(τ ).
Suppose for the moment that there exist k ∈ [0, ∞) and

ω∗

0 ∈ (0, ∞) such that for every ω ∈ (ω∗

0, ∞), every t0 ∈ R
and every x0 ∈ K we have

5
i=1 |Ri| ≤

k
√

ω
, t ∈ [t0, t0 + tD].

Note that x(t), z(t) ∈ ŪM
D , t ∈ [t0, t0 + tD] (see Fig. B.1) and

note that with Assumption A3 we have that |νji(τ )| ≤

1
T

 T
0 |uj(τ , θ)

 θ

0 ui(τ , s)dsdθ | ≤
1
2MjMiT . Thus, with Assumption

A1 we have for the compact set ŪM
D that there exists an L ∈

(0, ∞) such that |b0(τ , x) − b0(τ , z) +
m

i=1
j=i+1

([bi, bj](τ , x) −

[bi, bj](τ , z))νji(τ )| ≤ L|x(τ ) − z(τ )| and therefore |x(t) − z(t)| ≤ t
t0
L|x(τ )−z(τ )|dτ+

k
√

ω
with x(t), z(t) ∈ ŪM

D , t ∈ [t0, t0+tD] and
ω ∈ (ω∗

0, ∞). Using the lemma of Gronwall–Bellman we obtain

|x(t) − z(t)| ≤
k

√
ω
eL(t−t0), t ∈ [t0, t0 + tD]. (B.9)

Choose nowω0 = max{ 4k2e2Ltf
D2 , ω∗

0}, which is independent of t0 ∈ R
and x0 ∈ K . Now suppose that tD < tf , but since for every
ω ∈ (ω0, ∞), every t0 ∈ R and every x0 ∈ K we have with (B.9)
that |x(t) − z(t)| < D, t ∈ [t0, t0 + tD], thus tD cannot be the time,
when x(t) leaves O(t) which contradicts tD < tf . Furthermore,
sinceω0 is independent of t0, x0, the estimate holds for every t0 ∈ R
and every x0 ∈ K . Thus, we conclude that for every bounded set
K ⊆ B, for every D ∈ (0, ∞) and every tf ∈ (0, ∞) there exists
an ω0 ∈ (0, ∞) such that for every ω ∈ (ω0, ∞), for every t0 ∈ R
and for every x0 ∈ K there exist unique solutions x and z through
x(t0) = z(t0) = x0 which satisfy |x(t)− z(t)| < D, t ∈ [t0, t0 + tf ].

It remains to show that there exist k ∈ [0, ∞) andω∗

0 ∈ (0, ∞)
such that for every ω ∈ (ω∗

0, ∞), every t0 ∈ R and every x0 ∈ K

we have
5

i=1 |Ri| ≤
k

√
ω
, t ∈ [t0, t0+ tD]. Following the same lines

as in Moreau and Aeyels (2003) the expressions |Ri|, i = 1, . . . , 5
decay uniformly to zero with ω → ∞ on compact sets. Due to
space limitations, this is shownonly for R5. The procedure is similar
for R1 to R4.

Note that for every x0 ∈ K we have that x(t) ∈ ŪM
D ,

t ∈ [t0, t0 + tD]. Due to Assumption A1, the vector fields bi,
i = 1, . . . ,m, are twice continuously differentiable and thus we
can perform a partial integration which yields to

R5 =

m
i=1

j=i+1

[bi, bj](t, x)
 t

t0
Vji(τ , ωτ)dτ

−

 t

t0


∂[bi, bj](τ , x)

∂x
ẋ +

∂[bi, bj](τ , x)
∂τ

 τ

t0
Vji(θ, ωθ)dθ


dτ .

Substituting ẋ(τ ) = b0(τ , x(τ )) +
m

i=1 bi(τ , x(τ ))
√

ω ui(τ , ωτ)

yields

R5 =

m
i=1

j=i+1

[bi, bj](t, x)
 t

t0
Vji(τ , ωτ)dτ

−

 t

t0


∂[bi, bj](τ , x)

∂x

×


b0(τ , x) +

m
i=1

bi(τ , x)
√

ωui(τ , ωτ)



+
∂[bi, bj](τ , x)

∂τ

 τ

t0
Vji(θ, ωθ)dθ


dτ . (B.10)

Due to Assumptions A1–A3 there exist for ŪM
D constants

C1, . . . , C4 ∈ [0, ∞) such that |[bi, bj](t, x)| ≤ C1, |
∂[bi,bj](τ ,x)

∂x | ≤

C2, |b0(τ , x) +
∂[bi,bj](τ ,x)

∂τ
| ≤ C3 and |

m
i=1 bi(τ , x)ui(τ , ωτ)| ≤

C4 for every t, τ ∈ R and every x ∈ ŪM
D . This yields |R5| ≤m

i=1
j=i+1

C1

 t
t0
Vji(τ , ωτ)dτ

+ t
t0
C2(C3 +

√
ωC4)

 τ

t0
Vji(θ, ωθ)dθ


dτ . Furthermore, the functionsui, i = 1, . . . ,m satisfy the assump-
tions of Lemma 4 and thus, there exist kji1, k

ji
2, k

ji
3, k

ji
4, k

ji
5 ∈ [0, ∞)

such that |
 t
t0
Vji(τ , ωτ)dτ | ≤ kji1

(t−t0)2

ω
+ kji2

t−t0
ω

+ kji3
1
ω

+ kji4
1

ω2 +

kji5
1

ω3 and also
 t
t0

|
 τ

t0
Vji(θ, ωθ)dθ |dτ ≤ kji1

(t−t0)3

3ω + kji2
(t−t0)2

2ω +

kji3
(t−t0)

ω
+ kji4

(t−t0)
ω2 + kji5

(t−t0)
ω3 . From these estimates it becomes

clear that there exist k0,5 ∈ [0, ∞) and ω0,5 ∈ (0, ∞) such that
for every ω ∈ (ω0,5, ∞), t0 ∈ R and every x0 ∈ K we have
|R5| ≤

k0,5
√

ω
, t ∈ [t0, t0 + tD].

Estimates for R1 and R2 follow immediately from Assumptions
A1–A4 and Lemma 2. For the expressions R3 and R4 a partial
integration and Lemma 2 yields a similar result. Thus, there exist
k0,i, ωi

0, such that |Ri| ≤
k0,i
√

ω
, ω ∈ (ω0,i, ∞), i = 1, . . . , 5,

respectively. Summarizing, there exist k = 5maxi{k0,i} and ω∗

0 =

maxi{ω0,i} such that for all ω ∈ (ω∗

0, ∞), every t0 ∈ R and every
x0 ∈ K we have

5
i=1 |Ri| ≤

k
√

ω
, t ∈ [t0, t0 + tD].

Appendix C. Proof of Theorem 2

The proof follows the same argumentation as in Moreau and
Aeyels (2000) but extends it to the stability of a compact set.

Practical uniform stability. We show now that S is practically
uniformly stable for (8); see Definition 1. First, since the set S
is locally uniformly asymptotically stable for (9) there exists a
δ1 ∈ (0, ∞) such that S is δ1-uniformly attractive for (9). Take
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an arbitrary ϵ ∈ (0, ∞) and let B1 ∈ (0, ϵ). Since S is uniformly
stable for (9), there exists a δ ∈ (0, δ1) such that for all t0 ∈ R

z(t0) ∈ US
δ ⇒ z(t) ∈ US

B1 , t ∈ [t0, ∞). (C.1)

Second observe that since the set S is δ1-uniformly attractive for
(9) and δ ∈ (0, δ1) we have that for every B2 ∈ (0, δ), there exists
a time tf ∈ (0, ∞) such that for all t0 ∈ R

z(t0) ∈ US
δ ⇒ z(t) ∈ US

B2 , t ∈ [t0 + tf , ∞). (C.2)

Let D = min{ϵ − B1, δ − B2}, B = K = US
δ and tf determined

above. Because of (C.1) the set B satisfies (11). Due to Theorem 1,
there exists an ω0 ∈ (0, ∞) such that for all t0 ∈ R and for all
ω ∈ (ω0, ∞) and all x(t0) ∈ K we have that |x(t) − z(t)| < D,
t ∈ [t0, t0 + tf ]. This together with (C.1) and (C.2) yields for all
ω ∈ (ω0, ∞)

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ ,

t ∈ [t0, t0 + tf ] and x(t0 + tf ) ∈ US
δ . (C.3)

Since x(t0 + tf ) ∈ US
δ a repeated application of the procedure with

another solution z(t) of (9) through x(t0 + tf ) and the same choice
ofD, K and tf as above yields for all t0 ∈ R and for allω ∈ (ω0, ∞)
that

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ , t ∈ [t0, ∞). (C.4)

Practical uniform attractivity. We show now that there exists a
δ ∈ (0, ∞) such that S is δ-practically uniformly attractive for (8);
see Definition 2. Since the set S is locally uniformly asymptotically
stable for (9) there exists a δ1 ∈ (0, ∞) such that S is δ1-uniformly
attractive for (9). Furthermore, by uniform stability there exists a
δ2 ∈ (0, ∞) such that for all t0 ∈ R we have that

z(t0) ∈ US
δ2

⇒ z(t) ∈ US
δ1

, t ∈ [t0, ∞). (C.5)

Choose some ϵ ∈ (0, ∞). By practical uniform stability proven
above, there exist B3 ∈ (0, ∞) and ω0,1 ∈ (0, ∞) such that for
all t0 ∈ R and for all ω ∈ (ω0,1, ∞)

x(t0) ∈ US
B3 ⇒ x(t) ∈ US

ϵ , t ∈ [t0, ∞). (C.6)

Let B4 ∈ (0, B3) and δ ∈ (0, δ2). Note that δ < δ2 ≤ δ1. Since the
set S is δ1-uniformly attractive for (9), there exists a tf ∈ (0, ∞)
such that for all t0 ∈ R

z(t0) ∈ US
δ ⇒ z(t) ∈ US

B4 , t ∈ [t0 + tf , ∞). (C.7)

Let D = B3 − B4, B = K = US
δ and tf determined above. Because

of (C.5) the set B satisfies (11). Due to Theorem 1, there exists an
ω0,2 ∈ (0, ∞) such that for all t0 ∈ R and for all ω ∈ (ω0,2, ∞)
and all x(t0) ∈ K we have that |x(t) − z(t)| < D, t ∈ [t0, t0 + tf ].
This estimate together with (C.7) yield for all t0 ∈ R and for all
ω ∈ (ω0,2, ∞)

x(t0) ∈ US
δ ⇒ x(t0 + tf ) ∈ US

B3 . (C.8)

With (C.6), this leads for all t0 ∈ R and for allω ∈ (ω0,2, ∞)where
ω0 = max{ω0,1, ω0,2} to

x(t0) ∈ US
δ ⇒ x(t) ∈ US

ϵ , t ∈ [t0 + tf , ∞). (C.9)

This is the last property we had to prove.
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