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Abstract

Necessary and su�cient conditions for hybrid automata
to be non-blocking and deterministic (local existence
and uniqueness of executions, respectively) are devel-
oped. The problem of global existence of executions is
discussed in the context of Zeno hybrid automata, that
is, hybrid automata that can exhibit in�nitely many
discrete transitions in �nite time.

1 Introduction

Despite a great deal of recent activity in the area of hy-
brid systems, the study of fundamental properties, such
as the existence and uniqueness of executions, has been
somewhat overlooked. These properties are important
for analysis, controller synthesis and simulation, which
in the absence of general analysis methodologies plays
an important role in the study of hybrid systems. Ex-
istence and uniqueness properties have been formally
studied only for special classes of systems [1, 2, 3].

In this paper we try to formalize some basic properties
of executions for a general class of hybrid automata.
In addition to the usual technical conditions for exis-
tence of solutions for continuous dynamical systems,
conditions are introduced to prevent blocking and non-
determinism. We also discuss briey the Zeno phe-
nomenon, where the executions of the hybrid system
exhibit an in�nite number of discrete transitions in �-
nite time. We illustrate by means of examples that
Zeno executions are closely related to chattering, that
sometimes arises in optimal control [4] and in variable
structure systems [5].

We start by giving formal de�nitions of hybrid au-
tomata and their executions in Section 2. Results on
existence and uniqueness of executions are derived in
Section 3. Section 4 presents some examples of Zeno

hybrid automata, highlighting various aspects of the
Zeno phenomenon.

2 Hybrid Automata

Let W be a �nite collection of variables and let W
denote the set of valuations of W , i.e. the set of all
possible assignments of the variables in W . We refer
to variables whose set of valuations is countable as dis-
crete and to variables whose set of valuations is a subset
of Euclidean space as continuous. We assume that Eu-
clidean space is given the Euclidean metric topology,
whereas countable and �nite sets are given the discrete
topology. Subsets of a topological space are given the
subset topology and products of topological spaces are
given the product topology. For a subset U of a topo-
logical space we use U c to denote its complement, jU j
its cardinality, and 2U the set of all subsets of U .

We are interested in hybrid phenomena, that involve
both continuous and discrete dynamics. A hybrid time
trajectory encodes the set of times over which the evo-
lution of the system will be de�ned.

De�nition 1 (Hybrid Time Trajectory) A hybrid
time trajectory � = fIigNi=0 is a �nite or in�nite se-
quence of intervals such that Ii = [�i; �

0
i ] for i < N , if

N <1, IN = [�N ; �
0
N ] or IN = [�N ; �

0
N ), and for all i,

�i � � 0i = �i+1.

The interpretation is that �i are the \times" at which
discrete transitions take place. Notice that discrete
transitions are assumed to be instantaneous and that
multiple discrete transitions may take place at the same
time, since it is possible for �i = �i+1. We denote by
T the set of all hybrid time trajectories. Note that hy-
brid time trajectories can extend to \in�nity" if � is an
in�nite sequence or if it is a �nite sequence ending with
an interval of the form [�N ;1). For t 2 R and � 2 T
we use t 2 � as a shorthand notation for \there exists a
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j such that t 2 [�j ; �
0
j ] 2 �". For a topological space K

and � 2 T , we use k : � ! K as a shorthand notation
for a map assigning values from K to every element
of every interval of � . For a collection of variables W ,
we denote by Hyb(W ) the set of all hybrid trajectories
of W , de�ned as Hyb(W ) = f(�; w) j � 2 T and w :
� ! Wg. We say (�; w) with � = fIigNi=0 is a pre�x

of (� 0; w0) with � 0 = fI 0ig
N 0

i=0 (write (�; w) � (� 0; w0)) if
N � N 0, Ii = I 0i for all i = 0; : : : ; N � 1, IN � I 0N and
w(t) = w0(t) for all t 2 � . We say (�; w) is a strict pre�x
of (� 0; w0) (write (�; w) < (� 0; w0)) if (�; w) � (� 0; w0)
and (�; w) 6= (� 0; w0). Note that the pre�x relation de-
�nes a partial order on the set of executions.

A hybrid automaton provides a formal way of restrict-
ing the set of hybrid trajectories of a collection of dis-
crete and continuous variables. The following de�ni-
tions are based on [6, 7].

De�nition 2 (Hybrid Automaton) A hybrid au-
tomaton H is a collection H = (Q, X, Init, f , I, E,
G, R), where Q is a �nite collection of discrete vari-
ables, X is a �nite collection of continuous variables
with X = R

n and

� Init � Q�X is a set of initial states;

� f : Q�X! R
n is a vector �eld;

� I : Q! 2X is an invariant set for each q 2 Q;

� E � Q�Q is a collection of edges;

� G : E ! 2X is a guard for each edge; and

� R : E�X! 2X is a reset relation for each edge.

We refer to (q; x) 2 Q�X as the state ofH . Pictorially,
a hybrid automaton is represented by a directed graph
with vertices Q and edges E. With each vertex q 2 Q,
we associate a set of initial conditions fx 2 X j (q; x) 2
Initg, a vector �eld f(q; x) and an invariant I(q). With
each edge e 2 E, we associate a guard G(e) and a reset
relation R(e; x).

De�nition 3 (Execution) An execution � of a hy-
brid automaton H is hybrid trajectory � = (�; q; x) 2
Hyb(Q [X) satisfying

� initial condition:
�
q(�0); x(�0)

�
2 Init;

� continuous evolution: for all i with �i < � 0i , q(�)
is constant, x(�) is a solution to the di�erential
equation dx=dt = f(q; x) over [�i; �

0
i ]
1, and for all

t 2 [�i; �
0
i ), x(t) 2 I(q(t)); and,

� discrete evolution: for all i,
�
q(� 0i ); q(�i+1)

�
=

e 2 E, x(� 0i ) 2 G(e), and x(�i+1) 2 R
�
e; x(� 0i )

�
.

Unlike conventional continuous dynamical systems,
the interpretation is that a hybrid automaton accepts
(as opposed to generates) executions. An execution

1The solution is considered in the sense of Caratheodory, and
may be de�ned over over [�i; � 0

i
), if � ends in a right open interval

and i = N .

(�; q; x) is called �nite, if � is a �nite sequence ending
with a closed interval, in�nite, if � is an in�nite se-
quence, or if

P1
i=0(�

0
i � �i) = 1, Zeno, if it is in�nite

but
P1

i=0(�
0
i��i) <1, andmaximal, if it is not a strict

pre�x of any other execution of H . For an in�nite exe-
cution we de�ne the Zeno time as �1 =

P1
i=0(�

0
i � �i).

Clearly, �1 < 1 if and only if the execution is Zeno.
We use H(q0;x0) to denote the set of all executions
of H with initial condition (q0; x0) 2 Init, HM

(q0;x0)
the set of all maximal executions, and H1

(q0;x0)
the

set of all in�nite executions. Since an in�nite execu-
tion can not be a strict pre�x of any other execution,
H1
(q0;x0)

� HM
(q0;x0)

. Notice thatH(q0;x0) is pre�x closed,

that is if � 2 H(q0;x0) then �
0 2 H(q0;x0) for all �

0 � �.

To simplify the statement of subsequent results we in-
troduce the following assumption.

Assumption 1 f is globally Lipschitz in its second ar-
gument. (q; q0) 2 E if and only if G(q; q0) 6= ; and
x 2 G(q; q0) if and only if R(q; q0; x) 6= ;.

The Lipschitz assumption is standard. The rest of As-
sumption 1 be made without loss of generality. It can
be shown that for every hybrid automaton, H , there
exists a hybrid automaton, bH, with an identical set of
executions, that satis�es the assumption.

3 Local Existence and Uniqueness

We provide conditions to characterize the following
classes of automata.

De�nition 4 (Non-Blocking and Deterministic)
A hybrid automaton H is called non-blocking if H1

(q0;x0)

is non-empty for all (q0; x0) 2 Init. It is called deter-
ministic if HM

(q0;x0)
contains at most one element for

all (q0; x0) 2 Init.

Subsequent results involve the set of states that can be
\reached" by H , and the set of states from which con-
tinuous evolution is impossible. A state (bq; bx) 2 Q�X
is called reachable by H if there exists a �nite execu-
tion (�; q; x) with � = f[�i; �

0
i ]g

N
i=0 and (q(�

0
N ); x(�

0
N )) =

(bq; bx). We use Reach(H) � Q�X to denote the set of
states reachable by H .

To characterize the set of states from which continuous
evolution is impossible, consider q 2 Q and, for some
� > 0 small enough2, the solution, x(�) : [0; �) ! X to
the di�erential equation

dx

dt
= f(q; x) with x(0) = x0: (1)

2Such � exists by the Lipschitz assumption on f in De�ni-
tion 2.
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Consider Out : Q! 2X de�ned by

Out(q) =
�
x0 2 X j 8� > 0 9t 2 [0; �); x(t) 62 I(q)

	
;

Note that I(q)c � Out(q). If I(q) is a closed set, Out(q)
may also contain pieces of its boundary.

Lemma 1 A hybrid automaton H is non-blocking if
for all (q; x) 2 Reach(H) with x 2 Out(q), there exists
(q; q0) 2 E with x 2 G(q; q0).

Proof: Consider an initial state (q0; x0) 2 Init and
assume, for the sake of contradiction, that there does
not exist an in�nite execution starting at (q0; x0). Let
� = (�; q; x) denote a maximal execution starting at
(q0; x0), and note that � is a �nite sequence.

First consider the case � = f[�i; � 0i ]g
N�1
i=0 [�N ; �

0
N ). Let

(qN ; xN ) = limt!� 0

N
(q(t); x(t)). Note that, by the

de�nition of execution and a standard existence ar-
gument for continuous dynamical systems, the limit
exists and � can be extended to b� = (b� ; bq; bx) withb� = f[�i; � 0i ]g

N
i=0, bq(� 0N ) = qN , and bx(� 0N ) = xN . This

contradicts the maximality of �.

Now consider the case � = f[�i; � 0i ]g
N
i=0, and let

(qN ; xN ) = (q(� 0N ); x(�
0
N )). Clearly, (qN ; xN ) 2

Reach(H). If xN 62 Out(qN ), then there exists � > 0
such that � can be extended to b� = (b� ; bq; bx) withb� = f[�i; �

0
i ]g

N�1
i=0 [�N ; �

0
N + �) by continuous evolution.

If, on the other hand, xN 2 Out(qN ), then, there ex-
ists (q0; x0) 2 Q � X such that (qN ; q

0) 2 E, xN 2
G(qN ; q

0) and x0 2 R(qN ; q
0; xN ) (by Assumption 1).

Therefore, � can be extended to b� = (b� ; bq; bx) withb� = f[�i; � 0i ]g
N+1
i=0 , �N+1 = � 0N+1 = � 0N , q(�N+1) = q0,

x(�N+1) = x0 by a discrete transition. In both cases
the maximality of � is contradicted.

The conditions of Lemma 1 are tight, in the sense that
blocking automata that violate the conditions exist,
but are not necessary, in the sense that not all au-
tomata that violate them are blocking. However:

Lemma 2 A deterministic hybrid automaton is non-
blocking if and only if the conditions of Lemma 1 are
satis�ed.

Proof: Consider a deterministic hybrid automaton
H that violates the conditions of Lemma 1, that is,
there exists (q0; x0) 2 Reach(H) such that x0 2 Out(q0),
but there is no bq0 2 Q with (q0; bq0) 2 E, x0 2 G(q0; bq0).
Since (q0; x0) 2 Reach(H), there exists (q0; x0) 2 Init
and a �nite execution, � = (�; q; x) 2 H(q0;x0) such that
� = f[�i; �

0
i ]g

N
i=0 and (q0; x0) = (q(� 0N ); x(�

0
N )).

We �rst show that � is maximal. Assume
�rst that there exists b� = (b� ; bq; bx) with b� =
f[�i; � 0i ]g

N�1
i=0 [�N ; �N + �) for some � > 0. This would

violate the assumption that x0 2 Out(q0). Next assume

that there exists b� = (b� ; bq; bx) with b� = � [�N+1; �
0
N+1]

with �N+1 = � 0N . This requires that the execution can
be extended beyond (q0; x0) by a discrete transition,
that is there exists (bq0; bx0) 2 Q such that (q0; bq0) 2 E,
x0 2 G(q0; bq0) and bx0 2 R(q0; bq0; x0). This would also
contradict our original assumptions.

Now assume, for the sake of contradiction that H is
non-blocking. Then, there exists �0 2 H1

(q0;x0)
�

HM
(q0;x0)

. But � 6= �0 (as the former is �nite and the

latter in�nite), therefore HM
(q0;x0)

� f�; �0g. This con-
tradicts the assumption that H is deterministic.

Lemma 3 A hybrid automaton is deterministic if and
only if for all (q; x) 2 Reach(H), x 2

S
(q;q0)2E G(q; q

0)

implies x 2 Out(q), (q; q0) 2 E and (q; q00) 2 E with
q0 6= q00 imply x 62 G(q; q0) \ G(q; q00), and (q; q0) 2 E
and x 2 G(q; q0) imply jR(q; q0; x)j � 1.

Proof: For the \if" part, assume, for the sake of con-
tradiction, that there exists an initial state (q0; x0) 2
Init and two maximal executions � = (�; q; x) andb� = (b� ; bq; bx) starting at (q0; x0) with � 6= b�. Let
 = (�; p; y) 2 H(q0;x0) denote the maximal common
pre�x of � and b�. Such a pre�x exists as the exe-
cutions start at the same initial state. Moreover,  
is not in�nite, as � 6= b�. Therefore, as in the proof
of Lemma 1, � can be assumed to be of the form
� = f[�i; �0i]g

N
i=0, as otherwise the maximality of  

would be contradicted by an existence and unique-
ness argument of the continuous solution along f . Let
(qN ; xN ) = (q(�0N ); x(�

0
N )) = (bq(�0N ); bx(�0N )). Clearly,

(qN ; xN ) 2 Reach(H). We distinguish the following
cases:

Case 1: �0N 62 f� 0ig and �0N 62 fb� 0ig, i.e., �0N is not a
time when a discrete transition takes place in either �
or b�. Then, by a standard existence and uniqueness
argument for continuous systems, there exists � > 0
such that the pre�xes of � and b� are de�ned overb� = f[�i; �0i]g

N�1
i=0 [�N ; �

0
N + �) and are identical. This

contradicts the maximality of  .

Case 2: �0N 2 f� 0ig and �0N 62 fb� 0ig, i.e., �0N is a time
when a discrete transition takes place in � but not inb�. The fact that a discrete transition takes place from
(qN ; xN ) in � indicates that there exists q0 2 Q such
that (qN ; q

0) 2 E and xN 2 G(qN ; q0). The fact that no
discrete transition takes place from (qN ; xN ) in b� indi-
cates that there exists � > 0 such that b� is de�ned overb� = f[�i; �0i]g

N�1
i=0 [�N ; �

0
N + �), therefore xN 62 Out(q).

This contradicts the �rst lemma condition.

Case 3: �0N 62 f� 0ig and �
0
N 2 fb� 0ig, symmetric to 2.

Case 4: �0N 2 f� 0ig and �0N 2 fb� 0ig, i.e., �0N is a time
when a discrete transition takes place in both � andb�. The fact that a discrete transition takes place from
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(qN ; xN ) in both � and b� indicates that there exist
(q0; x0) and (bq0; bx0) such that (qN ; q

0) 2 E, (qN ; bq0) 2 E,
xN 2 G(qN ; q

0), xN 2 G(qN ; bq0), x0 2 R(qN ; q
0; xN ),

and bx0 2 R(qN ; bq0; xN ). Note that by condition 2 of
the lemma, q0 = bq0, hence, by condition 3, x0 = bx0.
Therefore, the pre�xes of � and b� are de�ned over b� =
f[�i; �0i]g

N
i=0[�N+1; �

0
N+1], with �N+1 = �0N+1 = �0N ,

and are identical. This contradicts the maximality of
 and concludes the proof of the \if" part.

For the \only if" part, assume that there exists
(q0; x0) 2 Reach(H) such that at least one of the
conditions of the lemma is violated. Since (q0; x0) 2
Reach(H), there exists (q0; x0) 2 Init and a �nite
execution, � = (�; q; x) 2 H(q0;x0) such that � =
f[�i; � 0i ]g

N
i=0 and (q0; x0) = (q(� 0N ); x(�

0
N )). If condi-

tion 1 is violated, then there exists b� and ~� with b� =
f[�i; � 0i ]g

N�1
i=0 [�N ; �N + �), � > 0, and ~� = � [�N+1; �

0
N+1],

�N+1 = � 0N , such that � < b� and � < ~�. If condi-
tion 2 is violated, there exist b� and ~� with b� = ~� =
� [�N+1; �N+1], �N+1 = � 0N , and bq(�N+1) 6= ~q(�N+1),
such that � < b�, � < ~�. Finally, if condition 3
is violated, then there exist b� and ~� with b� = ~� =
� [�N+1; �

0
N+1], �N+1 = � 0N , and bx(�N+1) 6= ~x(�N+1),

such that � < b�, � < ~�. In all three cases, letb� 2 HM
(q0;x0)

and ~� 2 HM
(q0;x0)

denote maximal execu-

tions of which b� and ~� are pre�xes respectively. Sinceb� 6= ~�, it follows that b� 6= ~�. Therefore jHM
(q0;x0)

j � 2
and thus H is non-deterministic.

Theorem 1 (Existence and Uniqueness) If a hy-
brid automaton satis�es the conditions of Lemmas 1
and 3, then it accepts a unique in�nite execution for
all (q0; x0) 2 Init.

Proof: If the hybrid automaton satis�es Lemma 1,
then jH1

(q0;x0)
j � 1, for all (q0; x0) 2 Init. If it satis�es

Lemma 3, then jHM
(q0;x0)

j � 1, for all (q0; x0) 2 Init.

But H1
(q0;x0)

� HM
(q0;x0)

, therefore, 1 � jH1
(q0;x0)

j �

jHM
(q0;x0)

j � 1 and jH1
(q0;x0)

j = jHM
(q0;x0)

j = 1.

The conditions of the theorem are su�cient and tight.
They require one to compute the set Out(q) for q 2
Q. We list some cases for which this computation is
straightforward; in general one may have to make use
of more powerful tools from viability theory [8].

Proposition 1 (Open Invariant) If I(q) is open,
then Out(q) = I(q)c.

Proof: Recall that I(q)c � Out(q). Consider
x0 2 I(q). By the continuity of the solution of (1) with
respect to time and the fact that I(q) is open, there
exists � > 0 such that for all t 2 [0; �), x(t) 2 I(q).
Therefore, I(q) � Out(q)c.

Next, assume that I(q) = fx 2 X j �(q; x) � 0g for
some � : Q � X ! R. Assuming f and � are su�-

ciently di�erentiable in x, we inductively de�ne the Lie
derivatives of � along f , Lmf � : Q�X! R, m 2 N by

L0f�(q; x) = �(q; x) and for m > 0

Lmf �(q; x) =

�
@

@x
Lm�1f �(q; x)

�
f(q; x):

The pointwise relative degree of � with respect to f is
de�ned as the function n(�;f) : Q�X! N given by

n(�;f)(q; x) = min
�
m 2 N j Lmf �(q; x) 6= 0

	
:

Note that n(�;f)(q; x) = 0 if and only if �(q; x) 6= 0.

Proposition 2 (Analytic Invariant) If f and � are

analytic in x, Out(q) = fx 2 X j L
n(�;f)(q;x)

f �(q; x) <
0g.

Proof: Since f is analytic in x, the solution x(t) of
(1) is analytic as a function of t. Since � is analytic in x,
�
�
q; x(t)

�
is also analytic as a function of t. Consider

the Taylor expansion of �
�
q; x(t)

�
about t = 0. By

analyticity,

�
�
q; x(t)

�
= �(q; x0) + Lf�(q; x

0)t+ L2f�(q; x
0)
t2

2!
+ : : :

converges locally. If n(�;f)(q; x
0) < 1, the �rst non-

zero term in the expansion, L
n(�;f)(x)

f �(q; x0), dom-
inates the sum for t small enough. Therefore, if

L
n(�;f)(q;x)

f �(q; x0) < 0, for all � > 0 there exists

t 2 [0; �) such that �
�
q; x(t)

�
< 0. Hence, fx 2

X j L
n(�;f)(q;x)

f �(q; x) < 0g � Out(q). If, on the

other hand, L
n(�;f)(q;x)

f �(q; x0) > 0, then there exists

� > 0 such that for all t 2 [0; �), �
�
q; x(t)

�
> 0,

and x0 62 Out(q). Finally, if n(�;f)(Q; x
0) = 1, the

Taylor expansion is identically equal to zero and, lo-
cally, �

�
q; x(t)

�
= 0 and x(t) 2 I(q). Therefore,

Out(q) � fx 2 X j L
n(�;f)(q;x)

f �(q; x) < 0g.

The analyticity requirement can be relaxed some-
what, since the only part where it is crucial is when
n(�;f)(q; x

0) = 1. n(�;f)(q; x) < 1 indicates that the
vector �eld f is in a sense \transverse" to the boundary
of the invariant set.

Proposition 3 (Transverse Invariant) If � and f
are m � 1 times di�erentiable in x and n(�;f)(q; x) <
m for all (q; x) 2 Q � X, then Out(q) = fx 2

X j L
n(�;f)(q;x)

f �(q; x) < 0g.

The conditions of Theorem 1 also involve Reach(H),
but do not necessarily require one to compute it explic-
itly; it su�ces to show that the conditions hold in a set
of states that contains Reach(H). A set S � Q�X is
called invariant if Reach(H) � S. Trivially Q �X is
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invariant; more interesting sets can be shown to be in-
variant by deductive arguments. For example, assume
that S = f(q; x) 2 Q � X j s(q; x) � 0g, for some
s : Q�X! R, and that s and f are analytic in x. Let

OutS(q) = fx 2 X j L
n(�;f)(q;x)

f �(q; x) < 0g.

Proposition 4 S is invariant if Init � S, and for all
(q; x) 2 S \ Reach(H), x 2 G(q; q0) implies fq0g �
R((q; q0); x) � S and x 2 OutS(q) implies x 2 Out(q).

Proof: Consider an arbitrary execution � =
(�; q; x) 2 H(q0;x0) and show that for all t 2 � ,
(q(t); x(t)) 2 S. By the �rst condition of the propo-
sition, Init � S, therefore (q0; x0) 2 S. Consider the
�nite pre�x of � de�ned over b� = f[�i; � 0i ]g

M�1
i=0 [�M ; r]

and assume (q(t); x(t)) 2 S for all t 2 b� .
First consider the case r < � 0M . Assume for the sake
of contradiction that there exists r0 2 (r; � 0M ] such that
(q(r0); x(r0)) 62 S. Then, by continuity of the execu-
tion along continuous evolution and by the assumption
that S is closed, there must exist r00 2 (r; r0) such that
x(r00) 2 OutS(q(r

00)) (i.e. s(q(r00); x(r00)) = 0 and the
vector �eld pointing \outside" S). Since (q(r00); x(r00))
is reachable (in particular, by the �nite pre�x of �
de�ned over f[�i; � 0i ]g

M�1
i=0 [�M ; r

00]), by the third con-
dition of the proposition, x(r00) 2 Out(q(r00)), which
contradicts the assumption that r00 < � 0M . Therefore,
if (q(t); x(t)) 2 S for all t 2 b� , then (q(t); x(t)) 2 S for
all t 2 f[�i; � 0i ]g

M
i=0.

Finally, consider the case r = � 0M . Clearly, (q(r); x(r))
is reachable and x(r) 2 G(q(r); q(�M+1)). There-
fore, by the second condition of the proposition,
(q(�M+1); x(�M+1)) 2 S. Therefore, if (q(t); x(t)) 2
S for all t 2 b� , then (q(t); x(t)) 2 S for all t 2b� [�M+1; �M+1]. The claim follows by induction.

Notice that Reach(H) again appears in the statement
of Proposition 4. This allows us to build chains of
invariant sets, S0 � S1 � S2 � : : :, starting with
S0 = Q � X and using the fact that Si is invariant
to prove that Si+1 is invariant.

4 Zeno Hybrid Automata

It remains to investigate whether executions can be ex-
tended over arbitrary time horizons. The Lipschitz as-
sumption on the vector �eld f excludes the possibil-
ity of escape in �nite time along continuous evolution.
There is still, however, the possibility of Zeno execu-
tions. We illustrate the Zeno property through a num-
ber of examples. These are further analyzed in [6].

Example 1: (Non-Analytic System) Consider the
hybrid automaton of Figure 1. The (unique) execution
with initial state (q1;�1) exhibits an in�nite number

q1 q2
.

_exp(-1/|x|)sin(1/x) > 0

x = 1
.

_exp(-1/|x|)sin(1/x) < 0

x = 1

exp(-1/|x|)sin(1/x) > 0

_exp(-1/|x|)sin(1/x) < 0

_

Figure 1: Non-analytic system

q1 q1

_

x < 0_

_x > 0

_x > 0

x < 0

x = 1
. .

x = -1

Figure 2: Chattering system

of discrete transitions by �1 = �0 + 1. The reason is
that the (non-analytic) function e�1=jxj sin(1=x) has an
in�nite number of zeros in the �nite interval (�1; 0).

Example 2: (Chattering System) Consider the hy-
brid automaton of Figure 2. It is easy to show that the
(unique) execution starting in x0 at reaches x = 0 in
�nite time �1 = �0+ jx0j and takes an in�nite number
of transitions from then on, without any time progress.

Example 3: (Water Tank System) Consider the
water tank system of [9] (Figure 3). xi denotes the
volume of water in Tank i, and vi > 0 denotes the
(constant) ow of water out of Tank i. Let w denote
the constant ow of water into the system, dedicated
exclusively to either Tank 1 or Tank 2 at each point
in time. The goal is to keep the water volumes above
r1 and r2, respectively, assuming that x1(0) > r1 and
x2(0) > r2. This is to be achieved by a switching strat-
egy that turns the inow to Tank 1 whenever x1 � r1
and to Tank 2 whenever x2 � r2.

Using Theorem 1, one can show that the water tank
automaton accepts a unique in�nite execution for each
initial state. One can also show that if maxfv1; v2g <
w < v1+v2, then the execution is Zeno with Zeno time

�1 = �0 +
x1(�0) + x2(�0)� r1 � r2

v1 + v2 � w
:

Example 4: (Bouncing Ball System) The bounc-
ing ball automaton (Figure 4) is a simpli�ed model of
an elastic ball that is bouncing on a level surface, loos-
ing a fraction of its energy with each bounce. Let x1
denote the altitude of the ball and x2 its vertical speed.
One can show that the bouncing ball automaton ac-
cepts a unique in�nite, Zeno execution for each initial
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x2 > r2-
x1 < r1-

-x2 < r2

x1 > r1-

x1=w-v1
.
x2=-v2
.

x2=w-v2
.x1=-v1
.

w

v2v1

r2
r1

x1 x2
q1 q2

Figure 3: Water tank system

state, with Zeno time

�1 = �0 +
x2(�0) +

p
x2(�0)2 + 2gx1(�0)

g
+

2x2(�0)

g(1� c)
:

The four examples shed light on di�erent aspects of
the Zeno phenomenon. The �rst, shows how things
can go wrong even with simple systems involving only
in�nitely di�erentiable functions. The second, is an
instance of a di�erential equations with discontinuous
right hand side (see [1] for a thorough treatment). In
this example, an in�nite number of transitions takes
place at �1, while there exists an interval (�1� �; �1)
with � > 0 that contains no discrete transitions; in the
remaining examples, there are in�nitely many transi-
tions on any interval (�1 � �; �1). In the water tank
example, x is continuous and converges as t tends to
�1. Finally, in the bouncing ball example the x is
discontinuous (due to the non-trivial reset relation as-
sociated with the bounce), but still converges as t tends
to �1.

Regularization was proposed in [6] as a way of extend-
ing a Zeno execution beyond the Zeno time. It was,
however, shown that in some cases di�erent regulariza-
tions may lead to di�erent extensions. This may be
an undesirable property (especially from a simulation
point of view) since it suggests that the model does
not contain su�cient information to yield a unique so-
lution.

5 Conclusions

Conditions were derived for local existence and unique-
ness of executions for hybrid automata; the structure
of the invariant in each discrete state was found to play
a crucial role. Using examples, it was also shown that
the Zeno phenomenon may in some cases prevent exten-
sion of the execution over in�nite time horizons. Moti-
vated by simulation problems for hybrid automata [10],
we are currently investigating properties of Zeno exe-
cutions, in an attempt to develop formal methods for
extending them beyond the Zeno time.
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