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Abstract— In this paper, we consider remote state estimation.
A sensor locally processes its measurement data and sends its
local estimate to a remote estimator for further processing.
Due to the limited communication resources, the sensor can
only communicate with the estimator for a pre-specified number
within a given horizon. We propose a hybrid sensor data sched-
ule which introduces an event-triggering mechanism on top of
an optimal offline sensor schedule. This hybrid schedule, having
a small implementation cost, leads to a smaller estimation error
at the remote estimator when compared with the optimal offline
sensor schedule.

I. INTRODUCTION

Advances in modern control, communication and net-

working technologies enable a new generation of networked

control systems (NCSs) [1]. The last decade has witnessed a

wealth of NCS applications in smart grid, intelligent trans-

portation systems, health care, environmental monitoring,

etc. In many of these applications, remote state estimation is

a key component, where sensor data is sent to a remote state

estimator over a network. The communication resources for

remote estimation, in terms of communication energy and

bandwidth, are often scarce. Thus it is of significant impor-

tance to understand and obtain a desired tradeoff between the

limited communication resources and the remote estimation

quality. Such a tradeoff is sometimes possible to achieve

via a good sensor scheduling scheme. Most existing sensor

schedulers are either offline or online. The recent literature

is briefly reviewed below.

Offline Schedulers: Mo et al. [2] proposed a network

lifetime maximization policy under an estimation quality

constraint. Ambrosino et al. [3] considered remote estima-

tion, where sensors transmit measurements over a shared

network to a central base station. Gupta et al. [4] proposed

a stochastic sensor selection strategy which minimizes the

expected error covariance. Similar approaches can also be

found in [5]. Shi et al. [6] considered sensor data scheduling

over packet-dropping networks. Due to its limited energy, a

sensor has to decide whether to send its local estimate data

to the remote estimator at low or high power level at each

instance. They showed that the average estimation error is
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minimized when the transmission times at high power mode

are separated as much as possible.

Online Schedulers: Åström and Bernhardsson [7] consid-

ered a simple first-order stochastic system. They showed that

at the same average sampling rate of a periodic sampler, the

event-based sampler leads to smaller state variance. Imer

and Başar [8] considered an estimation problem over a

scalar linear system with a limited number of observations.

Upon observing the process, the observer needs to make a

decision whether to send some observation information to

the estimator. Li et al. [9] extended the results of [8] to

vector linear systems. A sub-optimal event-trigger is given

to minimize the mean square estimation error through a com-

putationally efficient way. Cogill [10] considered the problem

of controlling a system with limited actuation and sampling

rate, where a control action is only applied when a certain

event occurs. An event-based control policy was proposed

which minimizes the upper bound on control performance

using a quadratic approximate value function.

Offline schedules are often easier to compute then online

schedules, but at the same time, may have worse perfor-

mance. To make the best use of each approach, Shi et al. [11]

proposed a novel hybrid sensor schedule which introduced

an event-triggering mechanism on top of an optimal offline

schedule. They considered a scenario when a sensor can only

communicate with a remote state estimator m times within

a time-horizon T ≫ m. By selecting the event-triggering

threshold δ > 0 appropriately, the hybrid sensor schedule

was shown to have better performance than the optimal

offline one. However, the results of [11] have the following

limitations:

1) When an event occurs, the error covariance matrix is

not explicitly given, but only an upper bound.

2) The critical threshold δmax below which the hybrid

schedule outperforms the optimal offline one is not

explicitly given, but only a lower bound.

3) Selection of the optimal threshold δ relies on Monte

Carlo simulations.

This paper presents an improved hybrid sensor schedule

based on the results of [11]. The main contributions are

summarized as follows.

1) A modified event-triggering mechanism is given under

which a closed-form expression on the estimation error

covariance when an event happens is derived.

2) A closed-form expression on the critical threshold δmax

is given.

3) The optimal threshold δ is given analytically for first-







Hence ξ1
2lq is a zero mean Gaussian multivariate random

variable with unit variance, and ξ2
2lq = 0 almost surely.

Lemma 1.2 leads to the following:

1−pδ = Pr(‖ǫ2lq‖∞ ≤ δ) = Pr(‖ξ1
k‖∞ ≤ δ)) = [1 − 2Q(δ)]

r
,

which shows (20), and

E[ǫ2lqǫ
′

2lq|‖ǫ2lq‖∞ ≤ δ] = [1 − β(δ)]

[

Ir 0
0 0

]

.

Since U
′

= U−1, one has

E[ε2lqε
′
2lq|‖ǫ2lq‖∞ ≤ δ]

= (F
′

)−1
E[ǫ2lqǫ

′

2lq|‖ǫ2lq‖∞ ≤ δ]F−1

= [1 − β(δ)]U

[

Λ 0
0 0

]

U
′

= [1 − β(δ)][h2q(P ) − P ],

which completes the proof. �

Corollary 4.7: γ2lq’s are i.i.d Bernoulli random variables

with Pr(γ2lq = 0) = 1 − pδ, and Pr(γ2lq = 1) = pδ .

Proof: Note that Pr(γ2lq = 0) = Pr(‖ǫ2lq‖∞ ≤ δ). The

assertion is a direct result from (20). �

We now introduce one of the main results of this paper,

in which a closed-form expression on the error covariance

matrix Pk is obtained.

Theorem 4.8: The error covariance Pk under θh is given

by

Pk =

{

h(Pk−1), if γk = 0,
P , if γk = 1,

except at those time instances k = 2lq when l is odd and

‖ǫ2lq‖∞ ≤ δ, in which cases, γ2lq = 0 and P2lq is given by

P2lq = P + [1 − β(δ)][h2q(P ) − P ]. (22)

Proof: We only prove the exceptional case as the other

cases are straightforward. At the estimator, if no packet is

received at time k = 2lq, then γ2lq = 0, which also implies

‖ǫ2lq‖∞ ≤ δ. Therefore

P2lq = E[(x2lq − x̂2lq)(·)′|‖ǫ2lq‖∞ ≤ δ]

= E[(x2lq − x̂s
2lq + x̂s

2lq − x̂2lq)(·)′|‖ǫ2lq‖∞ ≤ δ]

= E[(es
2lq + ε2lq)(e

s
2lq + ε2lq)

′|‖ǫ2lq‖∞ ≤ δ]

= E[(es
2lq)(e

s
2lq)

′|‖ǫ2lq‖∞ ≤ δ] +

E[ε2lqε
′
2lq|‖ǫ2lq‖∞ ≤ δ]

= P + [1 − β(δ)][h2q(P ) − P ],

where the second last equality is from Lemma 4.2 and the

last equality is from Lemma 4.6. �

V. PERFORMANCE ANALYSIS

In this section we compare the performance of θh with that

of θ⋆
off . The following lemma on properties of β(δ) in (21) is

useful to derive the main result. The proof is straightforward

and is omitted.

Lemma 5.1: 1) β(δ) > 1 − δ2.

2) β(δ) is strictly decreasing in δ.

3) limδ→0 β(δ) = 1.

4) limδ→+∞ β(δ) = 0.

The following result provides a sufficient and necessary

condition on δ such that θh outperforms θ⋆
off .

Theorem 5.2: The following statements hold.

1) J(θh) ≤ J(θ⋆
off) iff δ ∈ [0, δmax], where δmax is the

unique solution to

β(δ) (Γ2 − Γ0) = Γ2 − Γ1 (23)

and

Γj = Tr





(j+1)q−1
∑

i=jq

hi(P )



 , j = 0, 1, 2.

2) For any δ ∈ (0, δmax) and for any realization φ of θh,

J(φ) ≤ J(θ⋆
off). (24)

Furthermore there exists a positive probability of φ
such that (24) becomes strict, hence J(θh) < J(θ⋆

off).

Proof: (1) Recall that pδ = Pr (‖ǫ2lq‖∞ > δ). For any odd

number l,

2(l+1)q−1
∑

k=2(l−1)q

E[Pk(θh)]

=

2q−1
∑

i=0

hi(P ) + pδ

2q−1
∑

i=0

hi(P ) + (1 − pδ)

[

β(δ)

q−1
∑

i=0

hi(P )

+[1 − β(δ)]

3q−1
∑

i=2q

hi(P ) +

q−1
∑

i=0

hi(P )



 ,

which is independent of l. Define Dδ as

Dδ

,Tr





2q−1
∑

i=q

hi(P ) − β(δ)

q−1
∑

i=0

hi(P ) − [1−β(δ)]

3q−1
∑

i=2q

hi(P )





= Γ1 − β(δ)Γ0 − [1 − β(δ)] Γ2.

With some manipulation, we obtain

J(θ⋆
off) − J(θh) =

1

4q
(1 − pδ)Dδ.

Since 1 − pδ ≥ 0, J(θ⋆
off) ≥ J(θh) iff Dδ ≥ 0. One can

easily verify that Γ2 > Γ1 > Γ0. From Lemmas 3.1 and 5.1,

Dδ is strictly decreasing in δ and

D0 = Γ1 − Γ0 > 0, D∞ = Γ1 − Γ2 < 0.

Hence there is a unique δmax such that Dδmax
= 0,

which corresponds to the δmax in (23). One notes that

(Γ2 − Γ1) / (Γ2 − Γ0) ∈ (0, 1), thus (23) must have a

solution. Furthermore, for all δ < δmax, Dδ > 0 and for

all δ > δmax, Dδ < 0.

(2) Let δmax > 0. For any δ ∈ (0, δmax) and for any

realization φ of θh, if ‖ǫ2lq‖∞ > δ for all odd number l,
then φ is the same as θ⋆

off . Hence J(φ) = J(θ⋆
off). Otherwise

if there exists an odd number l such that ‖ǫ2lq‖∞ ≤ δ, then

similar to the proof of the first statement, one easily verifies



that J(φ) < J(θ⋆
off). Notice that the probability of those φ’s

with at least one l such that ‖ǫ2lq‖∞ ≤ δ is positive, hence

J(θh) =
∑

φ

Pr(φ)J(φ) <
∑

φ

Pr(φ)J(θ⋆
off) = J(θ⋆

off). �

Remark 5.3: Since β(δ) is monotonically decreasing in δ
from Lemma 5.1 and Γ0, Γ1, Γ2 can be easily computed,

(23) can be solved efficiently via Newton’s method.

To minimize J(θh), we simply compute the δ that maxi-

mizes (1 − pδ)Dδ so that the difference between J(θh) and

J(θ⋆
off) is maximum. Let δ⋆ be the optimal δ, i.e.,

δ⋆ , arg min
δ>0

J(θh) = arg max
δ>0

[1 − 2Q(δ)]rDδ. (25)

The optimal δ⋆ for the schedule θh is presented in the

following theorem.

Theorem 5.4: The optimal δ⋆ is the unique solution to

δ2 + (r − 1) [1 − β(δ)] − r
Γ1 − Γ0

Γ2 − Γ0
= 0. (26)

In particular, if r = 1,

δ⋆ =

√

Γ1 − Γ0

Γ2 − Γ0
. (27)

Proof: (1) When r = 1,

d{[1 − 2Q(δ)]Dδ}
dδ

=
2e−

δ
2

2

√
2π

[

Γ1 − (1 − δ2)Γ0 − δ2Γ2

]

,

(28)

which is an increasing function. Setting (28) to zero, one

obtains (27).

(2) When r ≥ 2,

d{[1 − 2Q(δ)]rDδ}
dδ

=
2e−

δ
2

2

√
2π

[1 − 2Q(δ)]r−2
{

[1 − 2Q(δ)] (Γ2 − Γ0)(1 − δ2)

+(Γ2 − Γ0)(r − 1)
2δe−

δ
2

2

√
2π

− [1 − 2Q(δ)] (Γ2 − Γ1)r

}

=
2e−

δ
2

2

√
2π

[1 − 2Q(δ)]r−1
{

(Γ2 − Γ0)
[

1 − δ2 + (r−1)β(δ)
]

−(Γ2 − Γ1)r} .

Define

ϕ(δ) , (Γ2 − Γ0)
[

1 − δ2 + (r − 1)β(δ)
]

− (Γ2 − Γ1)r.

From Lemma 5.1, ϕ(δ) is strictly decreasing in δ with

lim
δ→0

ϕ(δ) = r

and

ϕ(δmax)< (Γ2−Γ0) [β(δmax) + (r−1)β(δmax)] − (Γ2 −Γ1)r

=0.

Note that 2e
−

δ
2

2√
2π

[1 − 2Q(δ)]r−1 > 0, therefore, the optimal

δ⋆ exists and is the unique solution to (26). �
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VI. EXAMPLES

A. First-order Systems

Consider the following parameters for system (1)-(2): A =
1.01, C = 1, Q = R = 0.5, m = 99, T = 399, q = 2. The

optimal offline schedule θ⋆
off is periodic with period 4. The

local Kalman filter converges to its steady-sate value, P =
0.3101, from which one obtains h2q(P ) = 2.3969, Γ0 =
1.1264, Γ1 = 3.1922 and Γ2 = 5.3419. Then we solve for

δmax = 1.3809 and δ⋆ = 0.7. Fig. 3 plots J(θ⋆
off) and J(θh)

for various values of δ. From the figure, δmax is 1.38, and

the optimal δ is 0.7 where the difference between J(θh) and

J(θ⋆
off) achieves its maximum. The empirical results from

Fig. 3 therefore agrees well with Theorem 5.2, and with

Theorem 5.4 for r = 1.

We further plot e2
k in a sample path of θ⋆

off and θh (taking

δ = 0.7) from k = 0 to k = 39 in Fig. 4, where a

red arrow indicates a particular time k when x̂s
k is sent.

Clearly, by rescheduling the transmission at appropriate times

(e.g., even transmission instances under θ⋆
off ), the estimation

error is reduced. These four instances indicated in the plot

demonstrate intuitively why and how the estimation error can

be reduced by the proposed hybrid schedule, as one can note

that the hybrid schedule allocates these four samples at more

suitable times than the offline schedule.

B. Second-order System

Consider the following system (1)-(2) with parame-

ters: A =

[

1 0.5
0 1.05

]

, C =
[

1 0
]

, Q =
[

0.5 0
0 0.5

]

, R = 0.5, m = 49, T = 199, q = 2. The

optimal offline schedule θ⋆
off is again periodic with period 4.
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The local Kalman filter converges to its steady-sate value

P =

[

0.3802 0.2840
0.2840 1.6894

]

,

from which one obtains

h2q(P ) =

[

13.3431 6.5106
6.5106 4.8251

]

,

Γ0 = 6.0188, Γ1 = 18.5135, Γ2 = 45.5479 and

F =

[

−0.2251 1.2726
−0.1091 −2.6253

]

.

Given a δ (e.g., δ = 1), the event is triggered when ξ1
k drop

inside the rectangle that is shown in Fig. 5(a), or equivalently

ε2lq is inside the parallelogram drawn in Fig. 5(b) From part

1) of Theorem 5.2 (with r = 2), we obtain δmax = 1.0493
and from Theorem 5.4, δ⋆ = 0.6940. Fig. 6 plots J(θ⋆

off)
and J(θh) for different values of δ. This figure shows that

δmax is about 1.05 and the optimal δ is approximately 0.7.

Again the empirical results match well with the theoretical

ones.

VII. CONCLUSION

In this paper, we present an improved hybrid sensor

schedule to tackle the problem of remote state estimation

with limited sensor communications. This schedule leads to

better performance when compared with the optimal offline

schedule and has a small implementation cost. Future work

include extensions to closed-loop control data scheduling and

multiple sensor scheduling.

APPENDIX

The following two lemmas are straightforward to verify

and the proofs are omitted.

Lemma 1.1: Let x ∈ R be a Gaussian random variable

with zero mean and variance E[x2] = 1. For δ > 0, we have

E[x2||x| ≤ δ] = 1 − β(δ).
Lemma 1.2: Let ξ ∈ R

r be a Gaussian random variable

with zero mean and E[ξξ
′

] = Ir. Let δ ≥ 0. Then

Pr(‖ξ‖∞ ≤ δ) = [1 − 2Q(δ)]r,

E[ξξ
′ | ‖ξ‖∞ ≤ δ] = [1 − β(δ)]Ir.
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