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Abstract— This paper investigates the problem of dis-
tributed convex optimisation under constrained commu-
nication. A novel stochastic event-triggering algorithm is
shown to solve the problem asymptotically to any arbitrarily
small error without exhibiting Zeno behaviour. A systematic
design of the stochastic event processes is then derived
from the analysis on optimality and communication rate
with the help of a meta-optimisation problem. Lastly, a
numerical example on distributed classification is provided
to visualise the performance of the proposed algorithm in
terms of convergence in optimisation error and average
communication rate with comparison to other algorithms
in the literature. We show that the proposed algorithm is
highly effective in reducing communication rates compared
with algorithms proposed in the literature.

Index Terms— Distributed Optimisation, Networked Con-
trol Systems, Event-Triggered Control

I. INTRODUCTION

In recent years, distributed optimisation problems, where
multiple compute nodes collectively and distributively solve a
global optimisation problem, have gained considerable amount
of attention and interests. This is largely attributed to its wide
range of potential applications, including but not limited to
resource allocation, multi-robot control and machine learning.

In the distributed convex optimisation problem, each com-
pute node holds a private local objective function and does
not have access to global or centralised information, such as
the topology of the network or the overall objective function.
Instead, each node can only rely on local information in a
subset of the network to solve the problem by communicating
with others to obtain a consensual solution. The setup is
analogous to the multi-agent consensus problem, where the
agents aim to reach consensus in their states. The main
difference is that distributed optimisation problems require
optimality besides consensus. Due to the similarity, numerous
literature on distributed optimisation are related to consensus
control protocols such as the proportional consensus controller
[1–6] and proportional-integral (PI) controller [7–10].
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The study on distributed optimisation has traditionally fo-
cused on discrete-time systems [11, 12]. Nedić and Ozdaglar
[4] introduced the subgradient method combining the gradi-
ent descent method and consensus control and showed that
their algorithm converges to a certain accuracy. Nedić and
Olshevsky [13] further developed a subgradient-push algo-
rithm based on the subgradient method and showed that it
works under weaker assumptions. Lei et al. [14] proposed
a distributed algorithm based on PI control with improved
performance compared with the original subgradient method.

There has also been an increasing prevalence in the study
of continuous-time distributed optimisation. Wang and Elia [7]
proposed a continuous-time distributed PI algorithm to tackle
the problem that the original subgradient method by Nedić
and Ozdaglar [4] is not sufficient in continuous time to reach
both consensus and optimality. Lu and Tang [6] proposed a
zero-gradient-sum second-order algorithm based on Hessian
matrices which converges to the optimal value exponentially.

The aforementioned algorithms all require continuous com-
munication among agents as they rely on the information of
other nodes in real time. This is detrimental in practice because
distributed algorithms are often deployed on mobile or remote
agents with constraints on communication bandwidth and
energy. To overcome this drawback, event-triggered protocols
are introduced. State-of-the-art event-triggering models for the
consensus problem can be found in [15–21], which have been
the foundations for event-triggered algorithms in distributed
optimisation. Du et al. [22] and Yi et al. [23] adopted
the dynamic event-triggering law introduced in [17] for the
distributed optimisation problems with single and double in-
tegrator agents, respectively. Li et al. [24] proposed an input-
feedforward passive event-triggering algorithm. Chen and Ren
[25] proposed a zero-gradient-sum event-triggering algorithm
with time-varying threshold. Kia et al. [8] implemented an
event-triggered distributed continuous-time PI algorithm.

Most event-triggering protocols introduced for consensus
and distributed optimisation are deterministic. However, it
has been shown that stochastic event-triggering protocols are
highly effective in reducing communication rate for networked
control systems [26–28]. By assigning different triggering
probabilities to the events based on the local information and
deterministic threshold, stochastic event-triggering protocols
can prioritise more urgent events to reduce unnecessary com-
munications. It is therefore worthwhile to investigate stochas-
tic event-triggered algorithms for the distributed optimisation
problem to achieve better communication efficiency.

In this paper, we solve the continuous-time distributed
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convex optimisation problem by designing a stochastic event-
triggered algorithm. The main contributions of this paper are
summarised in the following:

1) We propose a novel stochastic event-triggering algorithm
for the considered distributed optimisation problem.

2) We prove that the proposed algorithm can solve the
distributed optimisation problem asymptotically to any
accuracy, without exhibiting Zeno behaviour.

3) We propose a systematic design of the stochastic process
in the event-triggering protocol to achieve tradeoff be-
tween the asymptotic optimisation accuracy and commu-
nication rate, without the need of any global parameters.

4) We show that the proposed algorithm is effective in
reducing peak communication rate and outperforms al-
gorithms proposed in the literature.

Preliminary versions of this work have been presented at
conferences [26, 28]. Major extensions in this paper include
a generalisation of the design parameters and a systematic
design for the stochastic event-triggering protocol. These
extensions allow greater design flexibility and therefore the
ability to adjust the performance tradeoff between optimality
and communication, be it in the transient or steady-state. The
problem of distributed support vector machine (SVM) is used
as a numerical example to illustrate the effectiveness of the
proposed algorithm in a practical data mining application and
compared to state-of-the-art algorithms.

The remainder of this paper is organised as follows. Sec-
tion II introduces notations and preliminaries. Section III
describes the system setup and problem formulation while Sec-
tion IV presents the proposed algorithm to solve the problem.
Section V provides analysis on optimality and non-existence
of Zeno behaviour. Section VI presents a systematic method
for parameters selection and tuning to balance the tradeoff
between residual optimisation error and communication rate.
Section VII illustrates the effectiveness and performance of the
proposed algorithm against existing literature and Section VIII
concludes the paper with potential future directions.

II. NOTATIONS AND PRELIMINARIES

A. Linear Algebra

The matrix In ∈ Rn×n denotes an n × n identity matrix
with size and 1n denotes a vector with all entries being 1. The
operator ‖ · ‖p is the p-norm for vectors and the induced p-
norm for matrices. The norm operator ‖ · ‖ without subscripts
denotes the 2-norm for vectors and Frobenius norm for ma-
trices. For any matrices M,N with appropriate dimensions,
M ≥ N means M − N is positive semi-definite. The n-th
smallest eigenvalue for matrix M is denoted by λn(M).

B. Algebraic Graph Theory

Let G = (V, E) be an undirected weighted graph where V =
{1, 2, . . . , N} is the set of nodes and E ⊂ {(i, j) : ∀i, j ∈ V}
the set of edges. Let Ni denote the neighbours of node i:
Ni = {j ∈ V : (i, j) ∈ E}, for i = 1, . . . , N . A graph is
strongly connected if every node v ∈ V is reachable from
any other node. In other words, for any starting and ending

nodes v1, vK ∈ V , there exists a path {v1, v2, . . . , vK} where
(vi, vi+1) ∈ E for i = 1, 2, . . . ,K − 1. The adjacency matrix
A = [aij ] ∈ RN×N is commonly used to describe the structure
of a weighted graph where aij is the weight of the edge
(i, j) ∈ E and aij = 0 if (i, j) 6∈ E . The degree matrix
D = diag{d11, . . . , dNN} ∈ RN×N captures the degree of
each node such that dii =

∑
j aij . The Laplacian matrix

L = [Lij ] is then defined as L = D−A which is positive semi-
definite for undirected and connected graph. In the remainder
of this paper, the shorthanded notation λn(L) = λn will be
used to avoid excessively tedious mathematical expressions.

C. Miscellaneous
For any real-valued function F : R 7→ R, the notation

F (x−) is the left limit of limy→x F (y) should it exist. The
function W : R 7→ R, denotes the Lambert W function, which
is the inverse function of f(x) = x exp(x). For any random
variable X ∼ Beta(α, β) with continuous beta distribution,
the underlying distribution of the random variable Z = (c −
a)X +a, where 0 ≤ a < c, is a re-parametrisation of the beta
distribution, denoted by Beta(α, β, a, c).

III. PROBLEM FORMULATION

Consider a networked control systems with N compute
nodes represented by a weighted, undirected and connected
graph G = (V, E) where E represents the set of bidirectional
communication channels among nodes. Each node in the
system holds a private local objective function fi : Rn 7→ R
that is unknown to any other nodes. The objective is to solve

minimize
x∈Rn

f(x) =

N∑
i=1

fi(x). (1)

Because the local objective functions fi are private to
each node, the optimisation problem (1) needs to be solved
distributively with cooperation among the nodes. A case in
point is distributed classification where each node has a set of
private data but wishes to find the globally optimal classifier
for all data in the entire network. This example will be used
in the numerical case study in Section VII. Note that problem
(1) is equivalent to the constrained problem

minimize
x1,x2,...,xN∈Rn

N∑
i=1

fi(xi),

subject to xi = xj , ∀i, j ∈ V.
(2)

We assume that the local objective functions fi : Rn 7→ R
for all i ∈ V satisfy the following standing assumption:

Assumption 1. Each of the functions fi is twice-differentiable,
strongly convex with convexity parameter mi and Lipschitz
continuous gradient with Lipschitz constant Li.

We consider a broadcast-based communication model
among the compute nodes, where the nodes broadcast their
states to the neighbours when needed. The broadcasting of
each node i is based on a binary decision variable γi(t):

γi(t) =

{
1, node i broadcasts its state at time t
0, otherwise

.
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Fig. 1: Block diagram of the generic algorithm for node i

We denote the current state of node i as xi(t) and the last
broadcast state as x̂i(t):

x̂i(t) =

{
xi(t), γi(t) = 1

xi(τi(t)), γi(t) = 0
, (3)

τi(t) = max{k < t : γi(k) = 1}. (4)

Let us define the class of distributed algorithms to be
considered. Each node has mainly two components, namely
computation (C) and stochastic event-triggering communi-
cation (ETC), based on the information received from the
neighbours, as illustrated in Fig. 1. The dashed lines repre-
sent information exchange with other nodes while solid lines
represent information flow within the node. We denote such
an algorithm a stochastic event-triggered (SET) algorithm.

Let x(t) = [x1(t)T , x2(t)T , . . . , xN (t)T ]T , x̂(t) =
[x̂1(t)T , x̂2(t)T , . . . , x̂N (t)T ]T , x? = arg minx f(x) and

ε(t) =
1

N
(x(t)− x? ⊗ 1N )T (x(t)− x? ⊗ 1N ) (5)

=
1

N

N∑
i=1

‖xi(t)− x?‖2 (6)

be the global optimisation error. We adopt the following
definitions of optimality:

Definition 1. A SET algorithm solves (1) to an accuracy of ε
asymptotically if there exists ε > 0 such that

lim
t→∞

ε(t) ≤ ε.

In addition, it solves (1) in expectation to an accuracy of ε if
there exists ε > 0 such that

lim
t→∞

E [ε(t)] ≤ ε.

The objective of this work is to design the SET algorithm in
Fig. 1 to solve problem (1) according to Definition 1 without
displaying Zeno behaviour.

IV. STOCHASTIC EVENT-TRIGGERED ALGORITHM

In this section, we propose a specific SET algorithm, which
solves the problem (1) as shown in Section V. We start with the
computation followed by the event-triggering communication.

A. Local Computation

Each compute node in the network computes the state
locally as follows:

xi(0) = arg min
x

fi(x),

ẋi(t) = −α
(
∇2fi(xi(t))

)−1 N∑
j=1

Lij x̂j(t)
(7)

where α > 0 is a constant gain. This is inspired by the
zero-gradient-sum algorithm in [6, 22]. One can also interpret
the above computation law as a combination of the standard
consensus control [3] and Newton’s method for optimisation.

B. Event-Triggered Communication

Let ei(t) = x̂i(t)−xi(t) be the local state error. The event-
triggered broadcast of each node i is given by

γi(t) =

{
1, ξi(t) > κ exp (−Liiρi(t)/δ(t))
0, otherwise

(8)

ρi(t) = ‖ei(t)‖2 +
β

Lii

N∑
j=1

Lij ‖x̂j(t)− x̂i(t)‖2 (9)

where ξi(t) ∈ [a, 1], for some a ∈ (0, 1), are ergodic stationary
random processes with identical probability density function
fξ for all nodes i ∈ V . The scalars a ∈ (0, 1), κ ∈ (1,∞), β ∈
(0, 1/4) are parameters to be designed. The function δ(t)
allows for fine adjustment of the event-triggering law in the
transient. We consider the set of functions where there exists
δmax, δ∞ such that limt→∞ δ(t) = δ∞ and δ∞ ≤ δ(t) ≤ δmax.

A summary of the parameters and the expected direct effects
on the performance is provided in Table I. The cells marked
with “–” mean that the corresponding effects are uncertain.

TABLE I: Summary of parameters and their effects

Parameter Convergence
Rate

Optimisation
Error

Communication
Rate

α↗ ↗ – ↗
a↗ – ↘ ↗
κ↗ – ↗ ↘
β ↗ ↘ ↗ ↘
δ ↗ – ↗ ↘

The intuition behind the proposed stochastic event-
triggering law (8) is to extend the existing deterministic trigger
in the form of

γi(t) =

{
1, ρi(t) > 0

0, otherwise
(10)

such as those proposed in [17, 25], by assigning a proba-
bility for each ρi(t) > 0, instead of triggering whenever
the threshold functions ρi(t) exceeds 0. In other words, it
only triggers with a probability when ρi(t) > 0, not with
certainty. Moreover, the probability should be monotonically
non-decreasing in ρi(t), such that it prioritises more urgent
cases which corresponds to a higher value of ρi(t).
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ρi(t)0

Pr [γi(t) = 1]

1
Deterministic

Stochastic

Decreasing δ(t)

Fig. 2: Intuition of the proposed stochastic event trigger

The effects of δi(t) can also be observed in Fig. 2. De-
creasing δ(t) is equivalent to pushing the probability function
towards the deterministic case. This allows system designers
to fine-tune the transient behaviour and performance. For
example, we may want δ(t) to be large for a period of time to
reduce the communication required during convergence. When
the system is close to consensus, however, the compute nodes
may need to communicate more often in order to achieve
higher precision, requiring a smaller δ(t) as t→∞.

V. MAIN RESULTS

In this section, we present the main results of analysis on
the optimality and non-existence of Zeno behaviour, which
directly impact the feasibility in practical deployment, of the
proposed stochastic event-triggering law (8).

A. Preliminary Analysis
We first prove the boundedness of the global optimisation

error ε(t) under the proposed algorithm in Section IV.

Lemma 1 (Lemma 2 in [26]). Let KN = IN − 1
N 1N1TN . For

an undirected graph G,

0 ≤ λ2KN ⊗ IN ≤ L⊗ IN .

Lemma 2 (Lemma 5 in [26]). For an undirected graph G and
the event-triggering law (8),

x̂(t)T (L⊗ In)x̂(t) ≥ ζ1x(t)T (KN ⊗ In)x(t)

− 2ζ2δ(t)

N∑
i=1

(lnκ− ln ξi(t))

with Lmin = mini Lii and

ζ1 =
λ2Lmin

2Lmin + λn
, ζ2 =

λn
Lmin + λn

.

The following result states that the optimisation error is
uniformly upper bounded at all time. It is used later on to
show the well-posedness and optimality of the SET algorithm.

Lemma 3. With the SET algorithm (7)-(8), the global optimi-
sation error is bounded regardless of δ(t) as follows:

ε(t) ≤ 2

Nmmin

[(
V0 −

ω?δmax

φ?

)
e−φ

?t +
ω?δmax

φ?

]
,

ω? = Nα(1− (1− 4β)ζ2)(lnκ− ln a),

φ? =
αζ1(1− 4β)

Lmax

for any realisations of the stochastic processes ξi(t) where
V0 =

∑N
i=1(fi(x

?)−minx fi(x)).

Proof. See Appendix A.

The upper bound in Lemma 3 is likely not tight. However,
the bound remains important to show that the proposed algo-
rithm excludes Zeno behaviour, and the existence of E [ε(t)]
in later sections.

B. Guarantee of Minimum Inter-Event Interval

In this section, we provide analysis on the non-existence
of Zeno behaviour in the proposed stochastic event-triggering
law for distributed optimisation. Let tik be the k-th triggering
time for agent i, Ki(t) = max{k > 0 : tik ≤ t} and

τi(t) = tiKi(t)
− tiKi(t)−1.

Theorem 1. The SET algorithm (7)–(8) does not exhibit Zeno
behaviour if

1) δ∞ > 0, or
2) δ(t) ≥ δ0e−ηt

for some finite δ0 > 0 and η ∈ (0, φ?). More specifically,
there exists a strictly positive lower bound on the inter-event
interval τi(t) > ∆̄ > 0, ∀i ∈ V, t ∈ [0,∞) with

∆̄ =

{
∆1, δ∞ > 0

∆2, δ(t) ≥ δ0e−ηt
,

∆1 =

√
−δ∞ lnκ

U2
W

(
− 2

e2

)(
W

(
− 2

e2

)
+ 2

)
,

∆2 =
2

η
W

(
η

ς1 + ς2

√
δ0 lnκ

Lmax

)
where Lmax = maxi Lii and

ς1 =
4
√

2αLmax

(1− 2
√
β)m

3/2
min

√∣∣∣∣V0 − ω?δ0
φ? − η

∣∣∣∣ ,
ς2 =

4αLmax

√
δ0

(1− 2
√
β)mmin

(√
ω?

φ? − η
+

√
lnκ− ln a

Lmin

)
,

U =
4αLmax

mmin(1− 2
√
β)

(√
2

mmin
max

(
V0,

ω?δmax

φ?

)

+

√
δmax(lnκ− ln a)

Lmin

 .

Proof. See Appendix B.

Remark 1. Theorem 1 shows the well-posedness of the
proposed SET algorithm. The result does not rely on any
extra assumptions on the networked system, but only the user-
defined function δ(t) which can be easily satisfied.

Remark 2. If restricted to deterministic settings, the SET
algorithm (7)–(8) is a reparametrisation of some algorithms in
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literature, such as [22, 25]. Compared with [25] which is re-
stricted to sampled-data systems, the proposed SET algorithm
removes such restriction. In contrast to some literature [8, 22],
we provide an explicit lower bound on the inter-event interval
in addition to proving the non-existence of Zeno behaviour.

C. Optimality

We are now ready to present the theorem on the optimality
of the proposed algorithm.

Theorem 2. The SET algorithm (7)–(8) solves the distributed
optimisation problem (1) asymptotically with

lim
t→∞

ε(t) ≤ ε1 =
2Lmaxδ∞(1 + (1− 4β)ζ2)(lnκ− ln a)

ζ1mmin(1− 4β)
,

(11)

lim
t→∞

E [ε(t)] ≤ ε2 =
2Lmaxδ∞(1 + (1− 4β)ζ2)(lnκ− µln)

ζ1mmin(1− 4β)
(12)

for any realisations of the stochastic processes ξi(t) where
Lmax = maxi Li, mmin = minimi and µln = E [ln ξi(t)].

Proof. See Appendix C.

Remark 3. Note that µln = E [ln ξi(t)] ∈ [ln a, 0] is a
constant because ξi(t) is ergodic and stationary for all i ∈ V .

Theorem 2 implies that for any ε > 0, there exists a δ∞ such
that limt→∞ ε(t) ≤ ε and limt→∞ E [ε(t)] ≤ ε by setting

δ∞ ≤
ζ1mmin(1− 4β)ε

2Lmax(1 + (1− 4β)ζ2)(lnκ− ln a)

which means the algorithm solves problem (1) to any arbitrary
accuracy according to Definition 1.

From Theorem 1 and Theorem 2, if the steady-state value
of δ(t) is a strictly positive constant, it does not need to be a
monotonically decreasing function, hence providing extra free-
dom in adjusting the transient performance of the algorithm.
However, the procedural knowledge for such design is still
unknown, and is left as a potential direction of future work.

VI. DESIGN OF STOCHASTIC PROCESS

In Section IV, the expected influences of the design param-
eters on the final performance have been discussed. Next, we
provide a systematic design for the probability distribution for
ξi(t) in the proposed algorithm, based on the tradeoff between
asymptotic optimisation error and inter-event interval as anal-
ysed in Theorem 2 and Theorem 1, respectively, assuming that
the values for the scalar parameters have been decided.

Let µ and σ2 be the expectation and variance of ξi(t) for
all i, t. The variance can be expressed as

σ2 = θ(1− µ)(µ− a) (13)

by the Bhatia-Davis inequality [29] for some θ ∈ [0, 1].

We then propose the following design of ξi(t), due to its
ability to display a wide range of characteristics:

ξi(t) ∼ Beta(αξ, βξ, a, 1),

αξ =
(1− a− θ)(µ− a)

θ(1− a)
,

βξ =
(1− a− θ)(1− µ)

θ(1− a)
.

(14)

The problem is to design µ and θ in (14), based on the needs of
tradeoff between optimisation error and communication rate,
as formulated in the following design problem:

min
µ,θ

J(µ, θ) = εe(µ, θ) + ψ̄τ−1e (µ, θ)

s.t. a ≤ µ ≤ 1

0 ≤ θ ≤ 1

(15)

where ψ̄ ∈ [0,∞) is the weighting factor, and

εe(µ, θ) = P

(
lnκ− lnµ+

θ(1− µ)(µ− a)

2µ2

)
, (16)

τe(µ, θ) = Q

(
lnκ− lnµ+

θ(1− µ)(µ− a)

2µ2

)
, (17)

P =
2Lmaxδ∞(1 + (1− 4β)ζ2)

ζ1mmin(1− 4β)
, (18)

Q =

√
−W (−2e−2)(W (−2e−2) + 2)δ∞

U
√

lnκ− ln a
. (19)

The εe(µ, θ) and τe(µ, θ) from (16) and (17) are proportional
to the upper and lower bounds for the asymptotic error and
inter-event intervals as outlined in Proposition 1:

Proposition 1. Let τ(t) = mini τi(t). If the lower bound of
the stochastic processes ξi(t) is strictly positive, i.e., a > 0,

lim
t→∞

E [ε(t)] ≤ εe(µ, θ) + HOT,

E [τ(t)] ≥ τe(µ, θ) + HOT, ∀t > 0

where HOT represents higher order terms in Taylor series.

Proof. See Appendix D.

Remark 4. The higher order terms in Proposition 1 are
neglected in (15) because they vanishes to 0 in factorial order.
The exact expression thereof can be found in Appendix D.

Furthermore, we provide the following normalisation of the
weighting factor, mapping from ψ̄ ∈ [0,∞) to ψ ∈ [0, 1]:

ψ̄ = PQ

(
lnκ+ ψ

(
a

2µ̄2
− ln µ̄− 3

2

))2

where µ̄ = (−(1+a)+
√
a2 + 18a+ 1)/4. This transformation

allows for the use of a normalised weighting factor ψ ∈ [0, 1],
and more importantly, eliminates some global and possibly
unknown parameters in the solutions. In the meantime, it
preserves the intuition that an increasing ψ, or equivalently ψ̄,
has larger emphasis on the communication rate. In addition,
ψ = 0 yields the same solution as ψ̄ = 0 and similarly for
ψ = 1 and ψ̄ → ∞. The analysis and verification for this
argument, along with the formulation for the normalisation,
will become clear in the proof of Theorem 3.
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Fig. 3: Indifference curves in the proposed design (20)

Theorem 3. The optimal solution to the design problem (15)
is the following indifference curve for ψ ∈ (0, 1):

θ(1− µ)(µ− a)

2µ2
− lnµ = ψ

(
a

2µ̄2
− ln µ̄− 3

2

)
. (20)

Moreover, if ψ ∈ {0, 1}, µ = 1 + ψ(µ̄− 1) and θ = ψ.

Proof. See Appendix E.

Theorem 3 implies that there exists infinitely many choices
for ψ 6∈ {0, 1}. The following proposition provided method to
obtain a unique solution:

Proposition 2. The selection θ = ψq is valid for all ψ ∈ [0, 1]
and q > 0 if a < 1/3.

Proof. For ψ ∈ {0, 1}, the statement has already been proven
in Theorem 3. We will therefore only consider ψ ∈ (0, 1) in
this proof. We can rewrite (20) into µ = C(µ) where

C(µ) = exp

(
ψq(1− µ)(µ− a)

2µ2
− ψ

(
a

2µ̄2
− ln µ̄− 3

2

))
.

Let C′(µ) = exp(ψq(1 − µ)(µ − a)/2µ2) with the domain
µ ∈ [a, 1]. It can be verified that C′(µ) ≥ 1 and C′(a) =
C′(1) = 1. The equation µ = C′(µ) has a unique solution at
µ = 1 regardless of ψ and q. Then we have 0 < C(1) <
1. If C(a) ∈ (a, 1), µ = C(µ) must have a solution by the
intermediate value theorem as C(µ) is continuous, i.e.,

a < exp

(
−ψ

(
a

2µ̄2
− ln µ̄− 3

2

))
< 1. (21)

It is important to note that µ̄ is dependent on a, and an ana-
lytical solution to (21) may not exist. Solving this inequality
numerically results in a sufficient condition of a < 1/3.

The selection principle of Proposition 2 is illustrated in
Fig. 3 where each coloured curve represents an indifference
curve for ψ from 0.01 to 0.97 with an interval of 0.06 as
labelled. Any choice of θ(ψ) that crosses all curves, i.e., has
a feasible pair of (θ, µ) for all ψ ∈ [0, 1], is valid.

Remark 5. It should be noted that any distributions satisfying
(20) is feasible for implementation. The main reason for
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Fig. 4: Beta distributions for various ψ with a = 0.1

choosing beta distribution is to allow for a systematic design
process given any (µ, θ), whereas it is difficult to do so with
other distributions. The beta distribution is also capable of
displaying a wide range of characteristics, as shown in Fig. 4.

A summary of the stochastic process design is as follows,
assuming the scalar parameter a has been chosen:

1) Select the tradeoff parameter ψ ∈ [0, 1], with larger
values for communication reduction.

2) Select θ = ψq for any q > 0, e.g., θ = ψ, and find the
corresponding µ according to Theorem 3.

3) Obtain the beta distribution parameters αξ, βξ by (14)
and ξi(t) ∼ Beta(αξ, βξ, a, 1).

VII. NUMERICAL SIMULATION

In this section, we illustrate the effectiveness of the proposed
event-triggering law (8) with the controller (7) in comparison
with the deterministic counterpart (10) along with the state-of-
the-art triggering laws in [8, 22, 24, 25]. In particular, we solve
the distributed SVM classification problem where each node
has a set of private data Zi ⊂ R2 × {−1, 1} with arbitrary
physical units and the entire network should collectively
compute the optimal parameters for the SVM classifier. Each
data pair (z, y) ∈ Zi consists of a data point z ∈ R2 and a
label y ∈ {−1, 1} defining the class to which z belongs.

The targeted SVM classifier can be expressed as I(z) =
wTϕ(z)− b whose value indicates which class the data point
z should belong to. The parameters w ∈ R3, b ∈ R are the
weight and bias, respectively, to be learned by each node from
the training set while ϕ : R2 7→ R3 is a custom nonlinear
feature mapping for the data, which is useful when the data
are not linearly separable, defined as

ϕ

([
z1
z2

])
=

 z1
z2

z21 + z2

 .
For (z, y) ∈ Zi, ∀i ∈ V , it is necessary that y(wTϕ(z)− b) >
0 in order for the resultant SVM to at least correctly classify
all data in the training set. More specifically, I(z) = −1 and
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Fig. 5: Decision boundaries of the distributed SVM

I(z) = 1 represent the decision boundaries for class −1 and
1 respectively. The local objective functions for node i, with
the state being xi = [wTi , bi]

T ∈ R4, are as follows:

fi(x) =
∑

(y,z)∈Zi

h(1− y(wTϕ(z)− b)) +
|Zi|
N

(
‖w‖2 + b2

)
where h(x) = ln(1 + ex) is the softplus function, an approxi-
mation to max(0, x). Note that the objective function above is
slightly modified from the conventional formulation of SVM,
with the inclusion of the softplus function and regularisation
for the bias b. This is to ensure the validity of assumptions
that each local objective function is strongly convex and has
a Lipschitz continuous gradient.

We run the simulation with the design parameters a = 0.05,
κ = 1.05, β = 0.1. The distributions of the random processes
ξi(t) follow Theorem 3 and Proposition 2 with q = 0.75 and
ψ ∈ {0, 0.5, 1} for three different cases. In addition, we let
δ(t) = 2e−0.3t + 10−8 which satisfies the condition for the
non-existence of Zeno behaviour and the assumption for the
optimal trigger design. For all stochastic event-triggering laws,
the simulation was run for 60 times to compute the empirical
mean and max-min range of the metrics.

In addition to the optimisation error ε(t), we define another
evaluation metric, namely the average communication rate, as

Γ(t) =
1

Nt

N∑
i=1

∫ t

0

γi(t) dτ, ∀t > 0

with Γ(0) = 0. This definition is quantifying the total number
of broadcast in the network per compute node per unit time.

Fig. 5 shows the decision boundaries resulted from the
proposed event-triggered algorithm at t = 40, where blue
and red represents I(z) = −1 and I(z) = 1 respectively.
The private data from each node are plotted with a unique
marker. The region beyond the blue boundary (away from the
black boundary) is supposedly certain that belongs to class
−1 and similarly for the red boundary. The black boundary
is where the classifier cannot distinguish which class the data
point belongs to, i.e., I(z) = 0.
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Fig. 7: Average communication rates Γ(t)

The global optimisation error ε(t), or the empirical mean
thereof, is plotted in Fig. 6 for each event-triggered algorithm
considered. The shades represents the range between maxi-
mum and minimum values for those with stochasticity. While
the proposed algorithms have slightly lower convergence rate
in t ∈ [0, 2], all algorithms have mostly comparable conver-
gence rate for t ∈ [2, 40] on average.

The main advantage of the proposed stochastic event-
triggering law lies in effective reduction of communication
rate Γ(t), particularly the maximum communication rate which
determines the required bandwidth for the system, as demon-
strated in Fig. 7 and Table II. The percentage reductions in
maxt E [Γ(t)] for the proposed algorithm with ψ = 1 com-
pared with each algorithm are shown in the last column of the
table. The proposed algorithm with the performance tradeoff
design achieved the lowest peak average communication rate
for ψ = 1, followed by ψ = 0.5 and 0, respectively, while
the deterministic counterpart showed the highest value of all.
The proposed algorithm showed a reduction of up to 87.7%
in maxt E [Γ(t)], meaning that it requires significantly lower
bandwidth in physical hardware implementation.
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TABLE II: Comparison of Algorithms in Γ(t)

Algorithm maxt E [Γ(t)] % reduction from

ψ = 1 0.856 −
ψ = 0.5 1.185 −27.8%

ψ = 0 2.400 −64.3%

[8] 6.957 −87.7%

[22] 3.556 −75.9%

[24] 2.898 −70.5%

[25] 6.321 −86.5%

Deterministic 6.000 −85.7%

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the distributed optimisation
problem with the aim to balance between optimisation ac-
curacy and communication rate. We proposed a stochastic
event-triggering algorithm to significantly reduce the commu-
nication rate with the guarantee of arbitrarily small residual
optimisation error. It is also possible to achieve asymptotic
convergence to zero optimisation error at the expense of in-
creased communication rate. We also proved that the proposed
event-triggering algorithm does not exhibit Zeno behaviour.
We then derived a systematic design of the stochastic process
with a meta-optimisation problem based on the guarantee of
optimisation accuracy and inter-event interval.

Potential future directions include the presence of malicious
nodes, extension of the algorithm to more general assumptions
and models as well as the generalisation of the results with
various triggering functions. The extension to other models
and problems are of particularly interest because this work
and the preliminary works [26, 28] focus solely on multi-
agent consensus and distributed optimisation, while other
problems involving distributed control or computation, such
as Nash equilibrium seeking, could potentially benefit from
the proposed stochastic event-triggering algorithm.

APPENDIX

A. Proof of Lemma 3

Consider the Lyapunov candidate

V (x(t))

=

N∑
i=1

(
fi(x

?)− fi(xi(t))−∇fi(xi(t))T (x? − xi(t))
)
.

(22)
The shortened notation V (t) will be used for the remainder
of this proof. Consider an arbitrary sample path of ξi(t),
thus xi(t), x̂i(t), γi(t), V (t), ε(t) by implication. Hence these
variables are no longer stochastic in the following proof.
It should be noted that xi(t) and ẋi(t) are not necessarily
Lipschitz continuous due to the event-triggering law. However
xi(t) is still continuous and differentiable while ẋi(t) is
Riemann integrable for any sample paths. Therefore the time
derivative V̇ (t) is well-defined as follows:

V̇ (t)

≤
N∑
i=1

(xi(t)− x?)T∇2fi(xi(t))ẋi(t)

= −α
N∑
i=1

N∑
j=1

Lijxi(t)
T x̂j(t)

= −α
N∑
i=1

N∑
j=1

Lij (x̂i(t)− ei(t))T x̂j(t)

= α

N∑
i=1

N∑
j=1
j 6=i

Lij

(
1

2
‖x̂j(t)− x̂i(t)‖2 + ei(t)

T (x̂j(t)− x̂i(t))
)

≤ α(ν − 1)

2ν

N∑
i=1

N∑
j=1

Lij ‖x̂j(t)− x̂i(t)‖2 +
αν

2

N∑
i=1

Lii ‖ei(t)‖2

≤ α

2ν

(
βν2 + ν − 1

) N∑
i=1

N∑
j=1

Lij ‖x̂j(t)− x̂i(t)‖2

+
αν

2
δ(t)

N∑
i=1

(lnκ− ln ξi(t))

≤ −α(−βν2 + ν − 1)

ν
x̂(t)T (L⊗ In)x̂(t)

+
Nαν

2
δ(t) (lnκ− ln a) .

To ensure exponential convergence, the coefficient of the first
term needs to be strictly positive. To this end, we restrict β =
c(ν − 1)/ν2 < 1/4 for some c ∈ (0, 1) and ν > 1. Let
x̄(t) = 1

N

∑N
i=1 xi(t). From Lemma 2 and the analysis above,

V̇ (t) ≤ −αζ1(1− c)(ν − 1)

ν
x(t)T (KN ⊗ IN )x(t)

+
Nα

2ν
(ν2 + 4(1− c)ζ2ν − 4(1− c)ζ2)δ(t)(lnκ− ln a)

=
−αζ1(1− c)(ν − 1)

ν

N∑
i=1

‖xi(t)− x̄(t)‖2

+
Nα

2ν
(ν2 + 4(1− c)ζ2ν − 4(1− c)ζ2)δ(t)(lnκ− ln a).

Following the analysis from [22], inasmuch as x? is the
global optimal solution, we have

∑N
i=1 fi(x

?) = f(x?) ≤∑N
i=1 fi(y) for any y. Moreover, we have

∑N
i=1∇fi(xi(t)) =

0 and consequently
∑N
i=1∇fi(xi(t))T (x? − xi(t)) =∑N

i=1∇fi(xi(t))T (y−xi(t)) for any constant vector y. Recall
the choice of the Lyapunov candidate (22) and the analysis
above, we have

V (x(t))

≤
N∑
i=1

(
fi(x̄(t))− fi(xi(t))−∇fi(xi(t))T (x̄(t)− xi(t))

)
≤

N∑
i=1

Li
2
‖xi(t)− x̄(t)‖2 ≤ Lmax

2

n∑
i=1

‖xi(t)− x̄(t)‖2

where Lmax = maxi Li. Therefore,

V̇ (t) ≤ −φ(ν)V (t) + ω(ν)δ(t) (23)
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with φ(ν) = 2αζ1(1− c)(ν − 1)/νLmax and

ω(ν) =
Nα

2ν
(ν2 + 4(1− c)ζ2ν − 4(1− c)ζ2)(lnκ− ln a).

Solving the differential inequality (23) yields

V (t) ≤ V (0)e−φ(ν)t + ω(ν)e−φ(ν)t
∫ t

0

eφ(ν)τδ(τ) dτ (24)

≤
(
V (0)− ω(ν)δmax

φ(ν)

)
e−φ(ν)t +

ω(ν)δmax

φ(ν)
. (25)

The equation (25) shows that V (t) is bounded for t ≥ 0. From
the definition of ε(t), we have ε(t) ≤ 2V (t)/Nmmin and

ε(t) ≤ min
ν>1

{
2

Nmmin

(
V (0)− ω(ν)δmax

φ(ν)

)
e−φ(ν)t

+
2δmaxω(ν)

Nmminφ(ν)

}
≤ 2

Nmmin

[(
V (0)− ω?δmax

φ?

)
e−φ

?t +
ω?δmax

φ?

]
which concludes the proof.

B. Proof of Theorem 1
The outline of the proof is as follows. For any node i ∈ V

in t ∈ [tik, t
i
k+1), an upper bound, E+

i , is first derived for
‖ei(t)‖2. In addition, the proposed algorithm (8) ensures a
lower bound E−i if the node i is triggered at tik+1. Then we
showed that tik+1−tik has a strictly positive lower bound from
E+
i > E−i which shows the non-existence of Zeno behaviour.
From the definition of the computation law (7), one can

derive a useful bound for ‖ui(t)‖ as follows

‖ui(t)‖ ≤
2α

mi

∥∥∥∥∥∥
N∑
j=1

aij(x̂j(t)− x̂i(t))

∥∥∥∥∥∥
≤ 2αLii

mi
max
i,j∈V

‖x̂j(t)− x̂i(t)‖ . (26)

By the triangular inequality,

‖x̂j(t)− x̂i(t)‖ = ‖xj(t)− xi(t) + ej(t)− ei(t)‖
≤ ‖xj(t)− xi(t)‖+ ‖ej(t)− ei(t)‖
≤ ‖xj(t)− xi(t)‖+ 2 max

i∈V
‖ei(t)‖ . (27)

From (8) – (9), the SET algorithm guarantees that

‖ei(t)‖2 ≤ −
β

Lii

N∑
j=1

Lij ‖x̂j(t)− x̂i(t)‖2 +
δ(t)

Lii
(lnκ− ln a)

(28)

≤ β max
i,j∈V

‖x̂j(t)− x̂i(t)‖2 +
δ(t)

Lmin
(lnκ− ln a).

(29)

The remainder of the proof is divided into two cases as
described in Theorem 1.
Case 1: δ∞ > 0. From (29),

‖ei(t)‖ ≤
√
β max
i,j∈V

‖x̂j(t)− x̂i(t)‖+

√
δmax(lnκ− ln a)

Lmin
.

(30)

Combining (30) with (27),

(1− 2
√
β) max

i,j∈V
‖x̂j(t)− x̂i(t)‖

≤ max
i,j∈V

‖xj(t)− xi(t)‖+

√
4δmax(lnκ− ln a)

Lmin
. (31)

Notice that

‖xi(t)− xj(t)‖ ≤ ‖xi(t)− x?‖+ ‖xj(t)− x?‖
≤ 2
√
Nε(t). (32)

Then substituting (32) back to (31) yields

‖ui(t)‖ ≤
4αLmax

mmin(1− 2
√
β)

√Nε(t) +

√
δmax(lnκ− ln a)

Lmin


≤ 4αLmax

mmin(1− 2
√
β)

(√
2

mmin
max

(
V0,

ω?δmax

φ?

)

+

√
δmax(lnκ− ln a)

Lmin

 = U

For t ∈ [tik, t
i
k+1) and any arbitrary constant ς > 0,

d

dt
‖ei(t)‖2 = 2 (x̂i(t)− xi(t))T

(
˙̂xi(t)− ẋi(t)

)
= −2ei(t)ui(t)

≤ ς ‖ei(t)‖2 +
1

ς
U2.

Solving the above ordinary differential inequality results in

‖ei(t)‖2 ≤
∥∥ei(tik)

∥∥2 eς(t−tik) +
U2

ς
eς(t−t

i
k)

∫ t

tik

eς(t
i
k−τ) dτ

=

(
U

ς

)2 (
eς(t−t

i
k) − 1

)
. (33)

In order for the node i to trigger broadcasting at tik+1, a
necessary condition is∥∥ei(ti−k+1)

∥∥2 > − β

Lii

N∑
i=1

Lij
∥∥x̂j(ti−k+1)− x̂i(ti−k+1)

∥∥2
+
δ(ti−k+1)

Lii

(
lnκ− ln ξi(t

i−
k+1)

)
. (34)

Recall that ‖ei(t)‖2 has an upper bound (33) when the node
is not at triggering instance. Combining (33) and (34) and
solving the inequality thereof leads to

tik+1 − tik >
1

ς
ln

(
1 +

ς2δ∞(lnκ− ln ξi(t
i−
k+1))

U2

)
. (35)

Since the above inequality holds for any ς > 0 and k > 0, we
can choose the maximum of the right hand side over ς , i.e.,

τi(t) ≥ max
ς>0

1

ς
ln

(
1 +

ς2δ∞ lnκ

U2

)
=

√
−δ∞ lnκ

U2
W

(
− 2

e2

)(
W

(
− 2

e2

)
+ 2

)
> 0.

(36)
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Case 2a: δ(t) = δ0e
−ηt for some δ0 > 0 and η ∈ [0, φ). From

the definition of ei(t), one can find that ėi(t) = −ẋi(t) =
−ui(t), therefore ‖ei(t)‖ ≤

∫ t
tik
‖ui(t)‖ dt. Following (29),

‖ei(t)‖ ≤
√
β max
i,j∈V

‖x̂j(t)− x̂i(t)‖+

√
δ0(lnκ− ln a)e−ηt

Lmin
.

(37)

Similarly to case 1,

(1− 2
√
β) max

i,j∈V
‖x̂j(t)− x̂i(t)‖

≤ max
i,j∈V

‖xj(t)− xi(t)‖+

√
4δ0(lnκ− ln a)

Lmin
e−ηt/2. (38)

Putting (24), (26)–(32) and (38) together, for t ∈ [tik, t
i
k+1),

‖ui(t)‖ ≤ ς1e−φ
?t/2 + ς2e

−ηt/2 ≤ ς1e−φ
?tik/2 + ς2e

−ηtik/2

since ς1, ς2, φ, η > 0. One can then obtain

‖ei(t)‖ ≤
(
ς1e
−φ?tik/2 + ς2e

−ηtik/2
)

(t− tik).

A necessary condition for triggering is

∥∥ei(ti−k+1)
∥∥ >

√
(δ0 lnκ)e−ηt

i
k+1

Lmax
= ς3 e

−ηtik+1/2

tik+1 − tik >
ς3 exp(−ηtik+1/2)

ς1 exp(−φ?tik/2) + ς2 exp(−ηtik/2)

=
ς3 exp(−η(tik+1 − tik)/2)

ς1 exp(−(φ? − η)tik/2) + ς2

≥ ς3
ς1 + ς2

exp

(
−
η(tik+1 − tik)

2

)
.

where ς3 =
√
δ0 lnκ/Lmax. Solving the last inequality yields

τi(t) ≥ tik+1 − tik >
2

η
W

(
ης3

2(ς1 + ς2)

)
> 0.

Case 2b: δ(t) > δ0e
−ηt for some δ0 > 0 and η ∈ [0, φ). Since

a larger δ(t) implies a higher threshold to trigger, provided
identical states for all other variables, the lower bound found
in case 2a is also applicable in this case.

C. Proof of Theorem 2

Let h(t) = e−φ(ν)t, g(t) = ω(ν)δ(t) with domain t ∈
[0,∞) and h(t) = g(t) = 0 for t < 0, H(s), G(s) be the
Laplace transform of h(t) and g(t) respectively. It is a well-
known result that H(s) = 1

s+φ(ν) . Moreover,

lim
t→∞

e−φ(ν)t
∫ t

0

eφ(ν)τg(τ) dτ = lim
t→∞

∫ t

−t
h(τ − t)g(τ) dτ

= lim
t→∞

h(t) ∗ g(t) (39)

where ∗ represents convolution. By the Final Value Theorem,

lim
t→∞

h(t) ∗ g(t) = lim
s→0

sG(s)

s+ φ(ν)
=

1

φ(ν)
lim
t→∞

g(t). (40)

Recall that for any realisations of ξi(t), hence V (t),

V (t) ≤ V (0)e−φ(ν)t + ω(ν)e−φ(ν)t
∫ t

0

eφ(ν)τδ(τ) dτ,

= V (0)e−φ(ν)t +

∫ t

0

h(τ − t)g(τ) dτ. (41)

Substituting the result from (40) into (41) leads to

lim
t→∞

V (t) ≤ lim
t→∞

h(t) ∗ g(t) =
1

φ(ν)
lim
t→∞

g(t) =
ω(ν)δ∞
φ(ν)

.

From the definition of the Lyapunov candidate, we also have
the inequality

V (t) ≥
N∑
i=1

mi

2
‖xi − x?‖2 ≥

mmin

2

N∑
i=1

‖xi − x?‖2 . (42)

Following (24) from the proof of Lemma 3 and (42),

lim
t→∞

ε(t) ≤ lim
t→∞

2

Nmmin
V (t) (43)

≤ min
ν>1

2ω(ν)δ∞
Nφ(ν)mmin

(44)

=
2Lmaxδ∞(1 + (1− 4β)ζ2)(lnκ− ln a)

ζ1mmin(1− 4β)
. (45)

The equality is obtained by straightforward minimization of
the rational function in (45) with respect to ν. Inasmuch as
the Lyapunov function is bounded for all t, its expectation
exists and

d

dt
E [V (t)] = E

[
d

dt
V (t)

]
.

Then one can follow a similar procedure as in (22)–(23) and
(39)–(45) to obtain

lim
t→∞

E [ε(t)] ≤ 2Lmaxδ∞(1 + (1− 4β)ζ2)(lnκ− E [ln ξi(t)])

ζ1mmin(1− 4β)
.

D. Proof of Proposition 1
By Taylor series expansion around µ = E [ξi(t)], the

quantity µln = E [ln ξi(t)] can be written as

µln = lnµ− σ2

2µ2
+

∞∑
j=3

(−1)j−1E
[
(ξi(t)− µ)j

]
j!µj︸ ︷︷ ︸

Higher Order Terms (HOT)

.

Let µk and µ′k be the k-th central moment and moment for
Beta(αξ, βξ), respectively, then the HOT can be written as

HOT =

∞∑
j=3

(−1)j−1(1− a)jµj
j!µj

=

∞∑
j=3

j∑
k=0

(−1)k+1(1− a)jCjkµ
′
k

j!µk

=

∞∑
j=3

j∑
k=0

(−1)k+1(1− a)j

(j − k)!k!

k∏
r=1

αξ + r

αξ + βξ + r

which vanishes in factorial order. Combining with Theorem 2,

ε2 ≤
2Lmaxδ∞(1 + (1− 4β)ζ2)

ζ1mmin(1− 4β)

(
lnκ− lnµ+

σ2

2µ2
+ HOT

)
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= P

(
lnκ− lnµ+

θ(1− µ)(µ− a)

2µ2
+ HOT

)
= εe(µ, θ) + HOT.

Let W = −W (−2e−2)
(
W (−2e−2) + 2

)
. Following (35) in

the proof in Theorem 1, for any i ∈ V , k ∈ N,

E
[
tik+1 − tik

]
≥ E

√Wδ∞(lnκ− ln ξi(t
−
k+1))

U2


≥ E

[√
Wδ∞(lnκ− ln ξi(t

−
k+1))

U
√

lnκ− ln a

]

≥ Q
(

lnκ− lnµ+
θ(1− µ)(µ− a)

2µ2
+ HOT

)
= τe(µ, θ) + HOT.

From the definition of τ(t), we have τ(t) ≥ mini,k{tik+1−tik},
hence E [τ(t)] ≥ τe(µ, θ) + HOT, which concludes the proof.

E. Proof of Theorem 3
The following proof consists of two major steps: unveiling

the hidden convexity in the objective function J(µ, θ), and
remapping the weighting factor from ψ̄ to ψ by exploiting the
constraints to eliminate the unknown quantities P and Q.

Let y(µ, θ) = lnκ− lnµ+ θ(1− µ)(µ− a)/(2µ2). While
J(µ, θ) is non-convex in µ, it is convex in y for y > 0. We
start by setting the derivative ∂J/∂y = 0,

∂J

∂y
= P − ψ̄

Qy2
= 0 =⇒ y? =

√
ψ̄

PQ

where y? is the optimal solution to miny J(y). In other words,
any pair of (µ, θ) satisfying

lnκ− lnµ+
θ(1− µ)(µ− a)

2µ2
=

√
ψ̄

PQ
(46)

is an optimal solution to (15) if and only if the constraints
are also satisfied. Now we investigates the feasibility of the
indifference curve. We first rewrite (46) into

θ =
2µ2

(1− µ)(µ− a)
(y? − lnκ+ lnµ).

If θ is to be feasible, it is sufficient and necessary that

− lnµ ≤ y? − lnκ ≤ (1− µ)(µ− a)

2µ2
− lnµ, µ ∈ [a, 1].

That is, ∃µ ∈ [a, 1] such that the solution (46) is feasible if

min
µ∈[a,1]

− lnµ ≤ y? − lnκ ≤ max
µ∈[a,1]

(1− µ)(µ− a)

2µ2
− lnµ.

Since − lnµ is monotone in µ ∈ [a, 1], its minimum can be
found by comparing the boundary value which is at µ = 1⇒
− lnµ = 0. For the rightmost side of the above inequality, first
we verify the existence of a unique critical point in µ ∈ [a, 1]:

d

dµ

(
(1− µ)(µ− a)

2µ2
− lnµ

)
= −a(µ− 2) + µ(2µ+ 1)

2µ3
= 0

µ =
−(1 + a) +

√
a2 + 18a+ 1

4
= µ̄.

Then,

d2

dµ2

(
(1− µ)(µ− a)

2µ2
− lnµ

)
=
µ2 + (1 + a)µ− 3a

µ4

which is strictly negative at µ = µ̄, implying concavity, hence
a local maximum. To determine the global maximum, we
compare with the endpoint µ = a (µ = 1 is neglected as it
yields 0 for both terms). With simple algebraic manipulations,

(1− µ̄)(µ̄− a)

2µ̄2
− ln µ̄ =

−µ̄2 + (1 + a)µ̄− a
2µ̄2

− ln µ̄

=
a

2µ̄2
− ln µ̄− 3

2
≥ − ln a

for 0 < a < 1. Therefore, the feasibility condition becomes

0 ≤ y? − lnκ ≤ a

2µ̄2
− ln µ̄− 3

2

lnκ ≤

√
ψ̄

PQ
≤ a

2µ̄2
− ln µ̄+ lnκ− 3

2

or we can restrict the range by the transformation on ψ̄:√
ψ̄

PQ
= (1− ψ) lnκ+ ψ

(
a

2µ̄2
− ln µ̄+ lnκ− 3

2

)
ψ̄ = PQ

(
lnκ+ ψ

(
a

2µ̄2
− ln µ̄− 3

2

))2

. (47)

Substituting (47) into (46) yields the intended result (20). It
is trivial to graphically validate that εe(µ, θ) increases with
ψ with the corresponding optimal solution and conversely
τ−1e (µ, θ) decreases. This implies that ψ serves the identical
weighting purpose as ψ̄ but simply normalised. Therefore (47)
is an appropriate transformation.

One can also verify that ψ ≤ 0⇒ ∂J/∂y ≥ 0 hence J(µ, θ)
being monotonically non-decreasing. On the other hand, we
have ∂J/∂y ≤ 0 for ψ ≥ 1. Under the constraints in (15), the
optimal solutions when ψ 6∈ (0, 1) are then

(µ, θ) =

{
arg minµ,θ y(µ, θ) = (1, 0), ψ ≤ 0

arg maxµ,θ y(µ, θ) = (µ̄, 1), ψ ≥ 1

or equivalently µ = 1− ψ + ψµ̄ and θ = ψ for ψ ∈ {0, 1}.
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