Stochastic Event-Triggered Algorithm for Distributed Convex Optimisation

Kam Fai Elvis Tsang, Mengyu Huang, Ling Shi and Karl Henrik Johansson

Abstract—This paper investigates the problem of distributed convex optimisation under constrained communication. A novel stochastic event-triggering algorithm is shown to solve the problem asymptotically to any arbitrarily small error without exhibiting Zeno behaviour. A systematic design of the stochastic event processes is then derived from the analysis on optimality and communication rate with the help of a meta-optimisation problem. Lastly, a numerical example on distributed classification is provided to visualise the performance of the proposed algorithm in terms of convergence in optimisation error and average communication rate with comparison to other algorithms in the literature. We show that the proposed algorithm is highly effective in reducing communication rates compared with algorithms proposed in the literature.

Index Terms—Distributed Optimisation, Networked Control Systems, Event-Triggered Control

I. INTRODUCTION

In recent years, distributed optimisation problems, where multiple compute nodes collectively and distributively solve a global optimisation problem, have gained considerable amount of attention and interests. This is largely attributed to its wide range of potential applications, including but not limited to resource allocation, multi-robot control and machine learning.

In the distributed convex optimisation problem, each compute node holds a private local objective function and does not have access to global or centralised information, such as the topology of the network or the overall objective function. Instead, each node can only rely on local information in a subset of the network to solve the problem by communicating with others to obtain a consensual solution. The setup is analogous to the multi-agent consensus problem, where the agents aim to reach consensus in their states. The main difference is that distributed optimisation problems require optimality besides consensus. Due to the similarity, numerous literature on distributed optimisation are related to consensus control protocols such as the proportional consensus controller [1–6] and proportional-integral (PI) controller [7–10].

Kam Fai Elvis Tsang and Karl Henrik Johansson are with the Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden. Email: {kfetsang, kallej}@kth.se. They are also affiliated with Digital Futures.

Mengyu Huang and Ling Shi are with the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong. Email: {mhuangak, eesling}@ust.hk

The work by Kam Fai Elvis Tsang and Karl Henrik Johansson is supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, and the Swedish Foundation for Strategic Research.

The work by Mengyu Huang and Ling Shi is supported by a Hong Kong RGC General Research Fund 16206620.

The study on distributed optimisation has traditionally focused on discrete-time systems [11, 12]. Nedić and Ozdaglar [4] introduced the subgradient method combining the gradient descent method and consensus control and showed that their algorithm converges to a certain accuracy. Nedić and Olshevsky [13] further developed a subgradient-push algorithm based on the subgradient method and showed that it works under weaker assumptions. Lei *et al.* [14] proposed a distributed algorithm based on PI control with improved performance compared with the original subgradient method.

There has also been an increasing prevalence in the study of continuous-time distributed optimisation. Wang and Elia [7] proposed a continuous-time distributed PI algorithm to tackle the problem that the original subgradient method by Nedić and Ozdaglar [4] is not sufficient in continuous time to reach both consensus and optimality. Lu and Tang [6] proposed a zero-gradient-sum second-order algorithm based on Hessian matrices which converges to the optimal value exponentially.

The aforementioned algorithms all require continuous communication among agents as they rely on the information of other nodes in real time. This is detrimental in practice because distributed algorithms are often deployed on mobile or remote agents with constraints on communication bandwidth and energy. To overcome this drawback, event-triggered protocols are introduced. State-of-the-art event-triggering models for the consensus problem can be found in [15-21], which have been the foundations for event-triggered algorithms in distributed optimisation. Du et al. [22] and Yi et al. [23] adopted the dynamic event-triggering law introduced in [17] for the distributed optimisation problems with single and double integrator agents, respectively. Li et al. [24] proposed an inputfeedforward passive event-triggering algorithm. Chen and Ren [25] proposed a zero-gradient-sum event-triggering algorithm with time-varying threshold. Kia et al. [8] implemented an event-triggered distributed continuous-time PI algorithm.

Most event-triggering protocols introduced for consensus and distributed optimisation are deterministic. However, it has been shown that stochastic event-triggering protocols are highly effective in reducing communication rate for networked control systems [26–28]. By assigning different triggering probabilities to the events based on the local information and deterministic threshold, stochastic event-triggering protocols can prioritise more urgent events to reduce unnecessary communications. It is therefore worthwhile to investigate stochastic event-triggered algorithms for the distributed optimisation problem to achieve better communication efficiency.

In this paper, we solve the continuous-time distributed

convex optimisation problem by designing a stochastic eventtriggered algorithm. The main contributions of this paper are summarised in the following:

- 1) We propose a novel stochastic event-triggering algorithm for the considered distributed optimisation problem.
- 2) We prove that the proposed algorithm can solve the distributed optimisation problem asymptotically to any accuracy, without exhibiting Zeno behaviour.
- 3) We propose a systematic design of the stochastic process in the event-triggering protocol to achieve tradeoff between the asymptotic optimisation accuracy and communication rate, without the need of any global parameters.
- We show that the proposed algorithm is effective in reducing peak communication rate and outperforms algorithms proposed in the literature.

Preliminary versions of this work have been presented at conferences [26, 28]. Major extensions in this paper include a generalisation of the design parameters and a systematic design for the stochastic event-triggering protocol. These extensions allow greater design flexibility and therefore the ability to adjust the performance tradeoff between optimality and communication, be it in the transient or steady-state. The problem of distributed support vector machine (SVM) is used as a numerical example to illustrate the effectiveness of the proposed algorithm in a practical data mining application and compared to state-of-the-art algorithms.

The remainder of this paper is organised as follows. Section II introduces notations and preliminaries. Section III describes the system setup and problem formulation while Section IV presents the proposed algorithm to solve the problem. Section V provides analysis on optimality and non-existence of Zeno behaviour. Section VI presents a systematic method for parameters selection and tuning to balance the tradeoff between residual optimisation error and communication rate. Section VII illustrates the effectiveness and performance of the proposed algorithm against existing literature and Section VIII concludes the paper with potential future directions.

II. NOTATIONS AND PRELIMINARIES

A. Linear Algebra

The matrix $I_n \in \mathbb{R}^{n \times n}$ denotes an $n \times n$ identity matrix with size and $\mathbf{1}_n$ denotes a vector with all entries being 1. The operator $\|\cdot\|_p$ is the *p*-norm for vectors and the induced *p*norm for matrices. The norm operator $\|\cdot\|$ without subscripts denotes the 2-norm for vectors and Frobenius norm for matrices. For any matrices M, N with appropriate dimensions, $M \ge N$ means M - N is positive semi-definite. The *n*-th smallest eigenvalue for matrix M is denoted by $\lambda_n(M)$.

B. Algebraic Graph Theory

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be an undirected weighted graph where $\mathcal{V} = \{1, 2, \ldots, N\}$ is the set of nodes and $\mathcal{E} \subset \{(i, j) : \forall i, j \in \mathcal{V}\}$ the set of edges. Let \mathcal{N}_i denote the neighbours of node *i*: $\mathcal{N}_i = \{j \in \mathcal{V} : (i, j) \in \mathcal{E}\}$, for $i = 1, \ldots, N$. A graph is strongly connected if every node $v \in \mathcal{V}$ is reachable from any other node. In other words, for any starting and ending

nodes $v_1, v_K \in \mathcal{V}$, there exists a path $\{v_1, v_2, \ldots, v_K\}$ where $(v_i, v_{i+1}) \in \mathcal{E}$ for $i = 1, 2, \ldots, K - 1$. The adjacency matrix $A = [a_{ij}] \in \mathbb{R}^{N \times N}$ is commonly used to describe the structure of a weighted graph where a_{ij} is the weight of the edge $(i, j) \in \mathcal{E}$ and $a_{ij} = 0$ if $(i, j) \notin \mathcal{E}$. The degree matrix $D = \text{diag}\{d_{11}, \ldots, d_{NN}\} \in \mathbb{R}^{N \times N}$ captures the degree of each node such that $d_{ii} = \sum_j a_{ij}$. The Laplacian matrix $L = [L_{ij}]$ is then defined as L = D - A which is positive semidefinite for undirected and connected graph. In the remainder of this paper, the shorthanded notation $\lambda_n(L) = \lambda_n$ will be used to avoid excessively tedious mathematical expressions.

C. Miscellaneous

For any real-valued function $F \colon \mathbb{R} \to \mathbb{R}$, the notation $F(x^-)$ is the left limit of $\lim_{y\to x} F(y)$ should it exist. The function $W \colon \mathbb{R} \to \mathbb{R}$, denotes the Lambert W function, which is the inverse function of $f(x) = x \exp(x)$. For any random variable $X \sim \text{Beta}(\alpha, \beta)$ with continuous beta distribution, the underlying distribution of the random variable Z = (c - a)X + a, where $0 \le a < c$, is a re-parametrisation of the beta distribution, denoted by $\text{Beta}(\alpha, \beta, a, c)$.

III. PROBLEM FORMULATION

Consider a networked control systems with N compute nodes represented by a weighted, undirected and connected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where \mathcal{E} represents the set of bidirectional communication channels among nodes. Each node in the system holds a private local objective function $f_i \colon \mathbb{R}^n \to \mathbb{R}$ that is unknown to any other nodes. The objective is to solve

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) = \sum_{i=1}^N f_i(x). \tag{1}$$

Because the local objective functions f_i are private to each node, the optimisation problem (1) needs to be solved distributively with cooperation among the nodes. A case in point is distributed classification where each node has a set of private data but wishes to find the globally optimal classifier for all data in the entire network. This example will be used in the numerical case study in Section VII. Note that problem (1) is equivalent to the constrained problem

$$\begin{array}{ll}
\underset{x_1, x_2, \dots, x_N \in \mathbb{R}^n}{\text{minimize}} & \sum_{i=1}^N f_i(x_i), \\
\text{subject to} & x_i = x_j, \quad \forall i, j \in \mathcal{V}.
\end{array}$$
(2)

We assume that the local objective functions $f_i \colon \mathbb{R}^n \mapsto \mathbb{R}$ for all $i \in \mathcal{V}$ satisfy the following standing assumption:

Assumption 1. Each of the functions f_i is twice-differentiable, strongly convex with convexity parameter m_i and Lipschitz continuous gradient with Lipschitz constant \mathcal{L}_i .

We consider a broadcast-based communication model among the compute nodes, where the nodes broadcast their states to the neighbours when needed. The broadcasting of each node *i* is based on a binary decision variable $\gamma_i(t)$:

$$\gamma_i(t) = \begin{cases} 1, & \text{node } i \text{ broadcasts its state at time } t \\ 0, & \text{otherwise} \end{cases}$$

Fig. 1: Block diagram of the generic algorithm for node i

We denote the current state of node *i* as $x_i(t)$ and the last broadcast state as $\hat{x}_i(t)$:

$$\hat{x}_{i}(t) = \begin{cases} x_{i}(t), & \gamma_{i}(t) = 1\\ x_{i}(\tau_{i}(t)), & \gamma_{i}(t) = 0 \end{cases}$$
(3)

$$\tau_i(t) = \max\{k < t : \gamma_i(k) = 1\}.$$
(4)

Let us define the class of distributed algorithms to be considered. Each node has mainly two components, namely computation (C) and stochastic event-triggering communication (ETC), based on the information received from the neighbours, as illustrated in Fig. 1. The dashed lines represent information exchange with other nodes while solid lines represent information flow within the node. We denote such an algorithm a stochastic event-triggered (SET) algorithm.

Let
$$x(t) = [x_1(t)^T, x_2(t)^T, \dots, x_N(t)^T]^T$$
, $\hat{x}(t) = [\hat{x}_1(t)^T, \hat{x}_2(t)^T, \dots, \hat{x}_N(t)^T]^T$, $x^* = \arg \min_x f(x)$ and

$$\varepsilon(t) = \frac{1}{N} (x(t) - x^* \otimes \mathbf{1}_N)^T (x(t) - x^* \otimes \mathbf{1}_N)$$
 (5)

$$= \frac{1}{N} \sum_{i=1}^{N} \|x_i(t) - x^{\star}\|^2$$
(6)

be the global optimisation error. We adopt the following definitions of optimality:

Definition 1. A SET algorithm solves (1) to an accuracy of ϵ asymptotically if there exists $\epsilon > 0$ such that

$$\lim_{t \to \infty} \varepsilon(t) \le \epsilon.$$

In addition, it solves (1) in expectation to an accuracy of ϵ if there exists $\epsilon > 0$ such that

$$\lim_{t \to \infty} \mathbb{E}\left[\varepsilon(t)\right] \le \epsilon.$$

The objective of this work is to design the SET algorithm in Fig. 1 to solve problem (1) according to Definition 1 without displaying Zeno behaviour.

IV. STOCHASTIC EVENT-TRIGGERED ALGORITHM

In this section, we propose a specific SET algorithm, which solves the problem (1) as shown in Section V. We start with the computation followed by the event-triggering communication.

A. Local Computation

Each compute node in the network computes the state locally as follows:

$$x_{i}(0) = \underset{x}{\arg\min} f_{i}(x),$$

$$\dot{x}_{i}(t) = -\alpha \left(\nabla^{2} f_{i}(x_{i}(t))\right)^{-1} \sum_{j=1}^{N} L_{ij} \hat{x}_{j}(t)$$
(7)

where $\alpha > 0$ is a constant gain. This is inspired by the zero-gradient-sum algorithm in [6, 22]. One can also interpret the above computation law as a combination of the standard consensus control [3] and Newton's method for optimisation.

B. Event-Triggered Communication

Let $e_i(t) = \hat{x}_i(t) - x_i(t)$ be the local state error. The eventtriggered broadcast of each node *i* is given by

$$\gamma_i(t) = \begin{cases} 1, & \xi_i(t) > \kappa \exp\left(-L_{ii}\rho_i(t)/\delta(t)\right) \\ 0, & \text{otherwise} \end{cases}$$
(8)

$$\rho_i(t) = \|e_i(t)\|^2 + \frac{\beta}{L_{ii}} \sum_{j=1}^N L_{ij} \|\hat{x}_j(t) - \hat{x}_i(t)\|^2 \qquad (9)$$

where $\xi_i(t) \in [a, 1]$, for some $a \in (0, 1)$, are ergodic stationary random processes with identical probability density function f_{ξ} for all nodes $i \in \mathcal{V}$. The scalars $a \in (0, 1), \kappa \in (1, \infty), \beta \in$ (0, 1/4) are parameters to be designed. The function $\delta(t)$ allows for fine adjustment of the event-triggering law in the transient. We consider the set of functions where there exists $\delta_{\max}, \delta_{\infty}$ such that $\lim_{t\to\infty} \delta(t) = \delta_{\infty}$ and $\delta_{\infty} \leq \delta(t) \leq \delta_{\max}$.

A summary of the parameters and the expected direct effects on the performance is provided in Table I. The cells marked with "–" mean that the corresponding effects are uncertain.

TABLE I: Summary of parameters and their effects

Parameter	Convergence Rate	Optimisation Error	Communication Rate
$\alpha \nearrow$	7	-	7
$a \nearrow$	-	\searrow	\nearrow
$\kappa \nearrow$	-	\nearrow	\searrow
$\beta \nearrow$	\searrow	\nearrow	\searrow
$\delta \nearrow$	-	\nearrow	\searrow

The intuition behind the proposed stochastic eventtriggering law (8) is to extend the existing deterministic trigger in the form of

$$\gamma_i(t) = \begin{cases} 1, & \rho_i(t) > 0\\ 0, & \text{otherwise} \end{cases}$$
(10)

such as those proposed in [17,25], by assigning a probability for each $\rho_i(t) > 0$, instead of triggering whenever the threshold functions $\rho_i(t)$ exceeds 0. In other words, it only triggers with a probability when $\rho_i(t) > 0$, not with certainty. Moreover, the probability should be monotonically non-decreasing in $\rho_i(t)$, such that it prioritises more urgent cases which corresponds to a higher value of $\rho_i(t)$. This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3229769

Fig. 2: Intuition of the proposed stochastic event trigger

The effects of $\delta_i(t)$ can also be observed in Fig. 2. Decreasing $\delta(t)$ is equivalent to pushing the probability function towards the deterministic case. This allows system designers to fine-tune the transient behaviour and performance. For example, we may want $\delta(t)$ to be large for a period of time to reduce the communication required during convergence. When the system is close to consensus, however, the compute nodes may need to communicate more often in order to achieve higher precision, requiring a smaller $\delta(t)$ as $t \to \infty$.

V. MAIN RESULTS

In this section, we present the main results of analysis on the optimality and non-existence of Zeno behaviour, which directly impact the feasibility in practical deployment, of the proposed stochastic event-triggering law (8).

A. Preliminary Analysis

We first prove the boundedness of the global optimisation error $\varepsilon(t)$ under the proposed algorithm in Section IV.

Lemma 1 (Lemma 2 in [26]). Let $K_N = I_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$. For an undirected graph \mathcal{G} ,

$$0 \le \lambda_2 K_N \otimes I_N \le L \otimes I_N.$$

Lemma 2 (Lemma 5 in [26]). For an undirected graph \mathcal{G} and the event-triggering law (8),

$$\hat{x}(t)^T (L \otimes I_n) \hat{x}(t) \ge \zeta_1 x(t)^T (K_N \otimes I_n) x(t) - 2\zeta_2 \delta(t) \sum_{i=1}^N (\ln \kappa - \ln \xi_i(t))$$

with $L_{\min} = \min_i L_{ii}$ and

$$\zeta_1 = \frac{\lambda_2 L_{\min}}{2L_{\min} + \lambda_n}, \ \zeta_2 = \frac{\lambda_n}{L_{\min} + \lambda_n}.$$

The following result states that the optimisation error is uniformly upper bounded at all time. It is used later on to show the well-posedness and optimality of the SET algorithm.

Lemma 3. With the SET algorithm (7)-(8), the global optimisation error is bounded regardless of $\delta(t)$ as follows:

$$\varepsilon(t) \leq \frac{2}{Nm_{\min}} \left[\left(V_0 - \frac{\omega^* \delta_{\max}}{\phi^*} \right) e^{-\phi^* t} + \frac{\omega^* \delta_{\max}}{\phi^*} \right],$$
$$\omega^* = N\alpha (1 - (1 - 4\beta)\zeta_2) (\ln \kappa - \ln a),$$

$$\phi^{\star} = \frac{\alpha \zeta_1 (1 - 4\beta)}{\mathcal{L}_{\max}}$$

for any realisations of the stochastic processes $\xi_i(t)$ where $V_0 = \sum_{i=1}^{N} (f_i(x^*) - \min_x f_i(x)).$

Proof. See Appendix A.
$$\Box$$

The upper bound in Lemma 3 is likely not tight. However, the bound remains important to show that the proposed algorithm excludes Zeno behaviour, and the existence of $\mathbb{E}[\varepsilon(t)]$ in later sections.

B. Guarantee of Minimum Inter-Event Interval

In this section, we provide analysis on the non-existence of Zeno behaviour in the proposed stochastic event-triggering law for distributed optimisation. Let t_k^i be the k-th triggering time for agent i, $K_i(t) = \max\{k > 0 : t_k^i \le t\}$ and

$$\tau_i(t) = t^i_{K_i(t)} - t^i_{K_i(t)-1}.$$

Theorem 1. The SET algorithm (7)–(8) does not exhibit Zeno behaviour if

- 1) $\delta_{\infty} > 0$, or 2) $\delta(t) \ge \delta_0 e^{-\eta t}$

for some finite $\delta_0 > 0$ and $\eta \in (0, \phi^*)$. More specifically, there exists a strictly positive lower bound on the inter-event interval $\tau_i(t) > \overline{\Delta} > 0, \forall i \in \mathcal{V}, t \in [0, \infty)$ with

$$\bar{\Delta} = \begin{cases} \Delta_1, & \delta_\infty > 0\\ \Delta_2, & \delta(t) \ge \delta_0 e^{-\eta t} \end{cases},\\ \Delta_1 = \sqrt{-\frac{\delta_\infty \ln \kappa}{U^2}} W\left(-\frac{2}{e^2}\right) \left(W\left(-\frac{2}{e^2}\right) + 2\right),\\ \Delta_2 = \frac{2}{\eta} W\left(\frac{\eta}{\varsigma_1 + \varsigma_2} \sqrt{\frac{\delta_0 \ln \kappa}{L_{\max}}}\right) \end{cases}$$

where $L_{\max} = \max_i L_{ii}$ and

$$\begin{split} \varsigma_1 &= \frac{4\sqrt{2}\alpha L_{\max}}{(1 - 2\sqrt{\beta})m_{\min}^{3/2}} \sqrt{\left|V_0 - \frac{\omega^*\delta_0}{\phi^* - \eta}\right|},\\ \varsigma_2 &= \frac{4\alpha L_{\max}\sqrt{\delta_0}}{(1 - 2\sqrt{\beta})m_{\min}} \left(\sqrt{\frac{\omega^*}{\phi^* - \eta}} + \sqrt{\frac{\ln\kappa - \ln a}{L_{\min}}}\right),\\ U &= \frac{4\alpha L_{\max}}{m_{\min}(1 - 2\sqrt{\beta})} \left(\sqrt{\frac{2}{m_{\min}}\max\left(V_0, \frac{\omega^*\delta_{\max}}{\phi^*}\right)} + \sqrt{\frac{\delta_{\max}(\ln\kappa - \ln a)}{L_{\min}}}\right). \end{split}$$

Proof. See Appendix B.

Remark 1. Theorem 1 shows the well-posedness of the proposed SET algorithm. The result does not rely on any extra assumptions on the networked system, but only the userdefined function $\delta(t)$ which can be easily satisfied.

Remark 2. If restricted to deterministic settings, the SET algorithm (7)–(8) is a reparametrisation of some algorithms in

literature, such as [22, 25]. Compared with [25] which is restricted to sampled-data systems, the proposed SET algorithm removes such restriction. In contrast to some literature [8, 22], we provide an explicit lower bound on the inter-event interval in addition to proving the non-existence of Zeno behaviour.

C. Optimality

We are now ready to present the theorem on the optimality of the proposed algorithm.

Theorem 2. *The SET algorithm* (7)–(8) *solves the distributed optimisation problem* (1) *asymptotically with*

$$\lim_{t \to \infty} \varepsilon(t) \le \epsilon_1 = \frac{2\mathcal{L}_{\max}\delta_{\infty}(1 + (1 - 4\beta)\zeta_2)(\ln \kappa - \ln a)}{\zeta_1 m_{\min}(1 - 4\beta)},$$
(11)

$$\lim_{t \to \infty} \mathbb{E}\left[\varepsilon(t)\right] \le \epsilon_2 = \frac{2\mathcal{L}_{\max}\delta_{\infty}(1 + (1 - 4\beta)\zeta_2)(\ln \kappa - \mu_{\ln})}{\zeta_1 m_{\min}(1 - 4\beta)}$$
(12)

for any realisations of the stochastic processes $\xi_i(t)$ where $\mathcal{L}_{\max} = \max_i \mathcal{L}_i$, $m_{\min} = \min_i m_i$ and $\mu_{\ln} = \mathbb{E} [\ln \xi_i(t)]$.

Proof. See Appendix C.

Remark 3. Note that $\mu_{\ln} = \mathbb{E}[\ln \xi_i(t)] \in [\ln a, 0]$ is a constant because $\xi_i(t)$ is ergodic and stationary for all $i \in \mathcal{V}$.

Theorem 2 implies that for any $\epsilon > 0$, there exists a δ_{∞} such that $\lim_{t\to\infty} \varepsilon(t) \leq \epsilon$ and $\lim_{t\to\infty} \mathbb{E} [\varepsilon(t)] \leq \epsilon$ by setting

$$\delta_{\infty} \leq \frac{\zeta_1 m_{\min}(1-4\beta)\epsilon}{2\mathcal{L}_{\max}(1+(1-4\beta)\zeta_2)(\ln\kappa - \ln a)}$$

which means the algorithm solves problem (1) to any arbitrary accuracy according to Definition 1.

From Theorem 1 and Theorem 2, if the steady-state value of $\delta(t)$ is a strictly positive constant, it does not need to be a monotonically decreasing function, hence providing extra freedom in adjusting the transient performance of the algorithm. However, the procedural knowledge for such design is still unknown, and is left as a potential direction of future work.

VI. DESIGN OF STOCHASTIC PROCESS

In Section IV, the expected influences of the design parameters on the final performance have been discussed. Next, we provide a systematic design for the probability distribution for $\xi_i(t)$ in the proposed algorithm, based on the tradeoff between asymptotic optimisation error and inter-event interval as analysed in Theorem 2 and Theorem 1, respectively, assuming that the values for the scalar parameters have been decided.

Let μ and σ^2 be the expectation and variance of $\xi_i(t)$ for all i, t. The variance can be expressed as

$$\sigma^2 = \theta(1-\mu)(\mu-a) \tag{13}$$

by the Bhatia-Davis inequality [29] for some $\theta \in [0, 1]$.

We then propose the following design of $\xi_i(t)$, due to its ability to display a wide range of characteristics:

$$\xi_{i}(t) \sim \text{Beta}(\alpha_{\xi}, \beta_{\xi}, a, 1),$$

$$\alpha_{\xi} = \frac{(1 - a - \theta)(\mu - a)}{\theta(1 - a)},$$

$$\beta_{\xi} = \frac{(1 - a - \theta)(1 - \mu)}{\theta(1 - a)}.$$
(14)

The problem is to design μ and θ in (14), based on the needs of tradeoff between optimisation error and communication rate, as formulated in the following design problem:

$$\min_{\substack{\mu,\theta}} \quad J(\mu,\theta) = \epsilon_e(\mu,\theta) + \bar{\psi}\tau_e^{-1}(\mu,\theta)$$

s.t. $a \le \mu \le 1$
 $0 \le \theta \le 1$ (15)

where $\bar{\psi} \in [0,\infty)$ is the weighting factor, and

$$\epsilon_e(\mu,\theta) = P\left(\ln\kappa - \ln\mu + \frac{\theta(1-\mu)(\mu-a)}{2\mu^2}\right), \quad (16)$$

$$\tau_e(\mu,\theta) = Q\left(\ln\kappa - \ln\mu + \frac{\theta(1-\mu)(\mu-a)}{2\mu^2}\right), \quad (17)$$

$$P = \frac{2\mathcal{L}_{\max}\delta_{\infty}(1 + (1 - 4\beta)\zeta_2)}{\zeta_1 m_{\min}(1 - 4\beta)},$$
(18)

$$Q = \frac{\sqrt{-W(-2e^{-2})(W(-2e^{-2})+2)\delta_{\infty}}}{U\sqrt{\ln\kappa - \ln a}}.$$
 (19)

The $\epsilon_e(\mu, \theta)$ and $\tau_e(\mu, \theta)$ from (16) and (17) are proportional to the upper and lower bounds for the asymptotic error and inter-event intervals as outlined in Proposition 1:

Proposition 1. Let $\tau(t) = \min_i \tau_i(t)$. If the lower bound of the stochastic processes $\xi_i(t)$ is strictly positive, i.e., a > 0,

$$\begin{split} &\lim_{t\to\infty} \mathbb{E}\left[\varepsilon(t)\right] \leq \epsilon_e(\mu,\theta) + \text{HOT}, \\ &\mathbb{E}\left[\tau(t)\right] \geq \tau_e(\mu,\theta) + \text{HOT}, \quad \forall t>0 \end{split}$$

where HOT represents higher order terms in Taylor series.

Remark 4. The higher order terms in Proposition 1 are neglected in (15) because they vanishes to 0 in factorial order. The exact expression thereof can be found in Appendix D.

Furthermore, we provide the following normalisation of the weighting factor, mapping from $\bar{\psi} \in [0, \infty)$ to $\psi \in [0, 1]$:

$$\bar{\psi} = PQ \left(\ln \kappa + \psi \left(\frac{a}{2\bar{\mu}^2} - \ln \bar{\mu} - \frac{3}{2} \right) \right)^2$$

where $\bar{\mu} = (-(1+a)+\sqrt{a^2+18a+1})/4$. This transformation allows for the use of a normalised weighting factor $\psi \in [0, 1]$, and more importantly, eliminates some global and possibly unknown parameters in the solutions. In the meantime, it preserves the intuition that an increasing ψ , or equivalently $\bar{\psi}$, has larger emphasis on the communication rate. In addition, $\psi = 0$ yields the same solution as $\bar{\psi} = 0$ and similarly for $\psi = 1$ and $\bar{\psi} \to \infty$. The analysis and verification for this argument, along with the formulation for the normalisation, will become clear in the proof of Theorem 3.

Fig. 3: Indifference curves in the proposed design (20)

Theorem 3. The optimal solution to the design problem (15) is the following indifference curve for $\psi \in (0, 1)$:

$$\frac{\theta(1-\mu)(\mu-a)}{2\mu^2} - \ln\mu = \psi\left(\frac{a}{2\bar{\mu}^2} - \ln\bar{\mu} - \frac{3}{2}\right).$$
 (20)

Moreover, if $\psi \in \{0,1\}$, $\mu = 1 + \psi(\bar{\mu} - 1)$ and $\theta = \psi$.

Proof. See Appendix E.

Theorem 3 implies that there exists infinitely many choices for $\psi \notin \{0, 1\}$. The following proposition provided method to obtain a unique solution:

Proposition 2. The selection $\theta = \psi^q$ is valid for all $\psi \in [0, 1]$ and q > 0 if a < 1/3.

Proof. For $\psi \in \{0, 1\}$, the statement has already been proven in Theorem 3. We will therefore only consider $\psi \in (0, 1)$ in this proof. We can rewrite (20) into $\mu = C(\mu)$ where

$$\mathcal{C}(\mu) = \exp\left(\frac{\psi^q (1-\mu)(\mu-a)}{2\mu^2} - \psi\left(\frac{a}{2\bar{\mu}^2} - \ln{\bar{\mu}} - \frac{3}{2}\right)\right)$$

Let $C'(\mu) = \exp(\psi^q(1-\mu)(\mu-a)/2\mu^2)$ with the domain $\mu \in [a, 1]$. It can be verified that $C'(\mu) \ge 1$ and C'(a) = C'(1) = 1. The equation $\mu = C'(\mu)$ has a unique solution at $\mu = 1$ regardless of ψ and q. Then we have 0 < C(1) < 1. If $C(a) \in (a, 1), \ \mu = C(\mu)$ must have a solution by the intermediate value theorem as $C(\mu)$ is continuous, i.e.,

$$a < \exp\left(-\psi\left(\frac{a}{2\bar{\mu}^2} - \ln\bar{\mu} - \frac{3}{2}\right)\right) < 1.$$
 (21)

It is important to note that $\bar{\mu}$ is dependent on a, and an analytical solution to (21) may not exist. Solving this inequality numerically results in a sufficient condition of a < 1/3. \Box

The selection principle of Proposition 2 is illustrated in Fig. 3 where each coloured curve represents an indifference curve for ψ from 0.01 to 0.97 with an interval of 0.06 as labelled. Any choice of $\theta(\psi)$ that crosses all curves, i.e., has a feasible pair of (θ, μ) for all $\psi \in [0, 1]$, is valid.

Remark 5. It should be noted that any distributions satisfying (20) is feasible for implementation. The main reason for

Fig. 4: Beta distributions for various ψ with a = 0.1

choosing beta distribution is to allow for a systematic design process given any (μ, θ) , whereas it is difficult to do so with other distributions. The beta distribution is also capable of displaying a wide range of characteristics, as shown in Fig. 4.

A summary of the stochastic process design is as follows, assuming the scalar parameter a has been chosen:

- 1) Select the tradeoff parameter $\psi \in [0, 1]$, with larger values for communication reduction.
- 2) Select $\theta = \psi^q$ for any q > 0, e.g., $\theta = \psi$, and find the corresponding μ according to Theorem 3.
- Obtain the beta distribution parameters α_ξ, β_ξ by (14) and ξ_i(t) ~ Beta(α_ξ, β_ξ, a, 1).

VII. NUMERICAL SIMULATION

In this section, we illustrate the effectiveness of the proposed event-triggering law (8) with the controller (7) in comparison with the deterministic counterpart (10) along with the state-ofthe-art triggering laws in [8, 22, 24, 25]. In particular, we solve the distributed SVM classification problem where each node has a set of private data $Z_i \subset \mathbb{R}^2 \times \{-1, 1\}$ with arbitrary physical units and the entire network should collectively compute the optimal parameters for the SVM classifier. Each data pair $(z, y) \in Z_i$ consists of a data point $z \in \mathbb{R}^2$ and a label $y \in \{-1, 1\}$ defining the class to which z belongs.

The targeted SVM classifier can be expressed as $I(z) = w^T \varphi(z) - b$ whose value indicates which class the data point z should belong to. The parameters $w \in \mathbb{R}^3, b \in \mathbb{R}$ are the weight and bias, respectively, to be learned by each node from the training set while $\varphi : \mathbb{R}^2 \mapsto \mathbb{R}^3$ is a custom nonlinear feature mapping for the data, which is useful when the data are not linearly separable, defined as

$$\varphi\left(\begin{bmatrix}z_1\\z_2\end{bmatrix}\right) = \begin{bmatrix}z_1\\z_2\\z_1^2 + z_2\end{bmatrix}.$$

For $(z, y) \in \mathcal{Z}_i$, $\forall i \in \mathcal{V}$, it is necessary that $y(w^T \varphi(z) - b) > 0$ in order for the resultant SVM to at least correctly classify all data in the training set. More specifically, I(z) = -1 and

Fig. 5: Decision boundaries of the distributed SVM

I(z) = 1 represent the decision boundaries for class -1 and 1 respectively. The local objective functions for node *i*, with the state being $x_i = [w_i^T, b_i]^T \in \mathbb{R}^4$, are as follows:

$$f_i(x) = \sum_{(y,z)\in\mathcal{Z}_i} h(1 - y(w^T\varphi(z) - b)) + \frac{|\mathcal{Z}_i|}{N} \left(||w||^2 + b^2 \right)$$

where $h(x) = \ln(1 + e^x)$ is the softplus function, an approximation to $\max(0, x)$. Note that the objective function above is slightly modified from the conventional formulation of SVM, with the inclusion of the softplus function and regularisation for the bias b. This is to ensure the validity of assumptions that each local objective function is strongly convex and has a Lipschitz continuous gradient.

We run the simulation with the design parameters a = 0.05, $\kappa = 1.05$, $\beta = 0.1$. The distributions of the random processes $\xi_i(t)$ follow Theorem 3 and Proposition 2 with q = 0.75 and $\psi \in \{0, 0.5, 1\}$ for three different cases. In addition, we let $\delta(t) = 2e^{-0.3t} + 10^{-8}$ which satisfies the condition for the non-existence of Zeno behaviour and the assumption for the optimal trigger design. For all stochastic event-triggering laws, the simulation was run for 60 times to compute the empirical mean and max-min range of the metrics.

In addition to the optimisation error $\varepsilon(t)$, we define another evaluation metric, namely the average communication rate, as

$$\Gamma(t) = \frac{1}{Nt} \sum_{i=1}^{N} \int_{0}^{t} \gamma_{i}(t) d\tau, \quad \forall t > 0$$

with $\Gamma(0) = 0$. This definition is quantifying the total number of broadcast in the network per compute node per unit time.

Fig. 5 shows the decision boundaries resulted from the proposed event-triggered algorithm at t = 40, where blue and red represents I(z) = -1 and I(z) = 1 respectively. The private data from each node are plotted with a unique marker. The region beyond the blue boundary (away from the black boundary) is supposedly certain that belongs to class -1 and similarly for the red boundary. The black boundary is where the classifier cannot distinguish which class the data point belongs to, i.e., I(z) = 0.

Fig. 6: Optimisation errors $\varepsilon(t)$ in semi-log scale

Fig. 7: Average communication rates $\Gamma(t)$

The global optimisation error $\varepsilon(t)$, or the empirical mean thereof, is plotted in Fig. 6 for each event-triggered algorithm considered. The shades represents the range between maximum and minimum values for those with stochasticity. While the proposed algorithms have slightly lower convergence rate in $t \in [0, 2]$, all algorithms have mostly comparable convergence rate for $t \in [2, 40]$ on average.

The main advantage of the proposed stochastic eventtriggering law lies in effective reduction of communication rate $\Gamma(t)$, particularly the maximum communication rate which determines the required bandwidth for the system, as demonstrated in Fig. 7 and Table II. The percentage reductions in $\max_t \mathbb{E}[\Gamma(t)]$ for the proposed algorithm with $\psi = 1$ compared with each algorithm are shown in the last column of the table. The proposed algorithm with the performance tradeoff design achieved the lowest peak average communication rate for $\psi = 1$, followed by $\psi = 0.5$ and 0, respectively, while the deterministic counterpart showed the highest value of all. The proposed algorithm showed a reduction of up to 87.7%in $\max_t \mathbb{E}[\Gamma(t)]$, meaning that it requires significantly lower bandwidth in physical hardware implementation. This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3229769

Algorithm	$\max_t \mathbb{E}\left[\Gamma(t)\right]$	% reduction from
$\psi = 1$	0.856	_
$\psi = 0.5$	1.185	-27.8%
$\psi = 0$	2.400	-64.3%
[8]	6.957	-87.7%
[22]	3.556	-75.9%
[24]	2.898	-70.5%
[25]	6.321	-86.5%
Deterministic	6.000	-85.7%

TABLE II: Comparison of Algorithms in $\Gamma(t)$

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the distributed optimisation problem with the aim to balance between optimisation accuracy and communication rate. We proposed a stochastic event-triggering algorithm to significantly reduce the communication rate with the guarantee of arbitrarily small residual optimisation error. It is also possible to achieve asymptotic convergence to zero optimisation error at the expense of increased communication rate. We also proved that the proposed event-triggering algorithm does not exhibit Zeno behaviour. We then derived a systematic design of the stochastic process with a meta-optimisation problem based on the guarantee of optimisation accuracy and inter-event interval.

Potential future directions include the presence of malicious nodes, extension of the algorithm to more general assumptions and models as well as the generalisation of the results with various triggering functions. The extension to other models and problems are of particularly interest because this work and the preliminary works [26, 28] focus solely on multiagent consensus and distributed optimisation, while other problems involving distributed control or computation, such as Nash equilibrium seeking, could potentially benefit from the proposed stochastic event-triggering algorithm.

APPENDIX

A. Proof of Lemma 3

Consider the Lyapunov candidate

$$V(x(t)) = \sum_{i=1}^{N} \left(f_i(x^*) - f_i(x_i(t)) - \nabla f_i(x_i(t))^T (x^* - x_i(t)) \right).$$
(22)

The shortened notation V(t) will be used for the remainder of this proof. Consider an arbitrary sample path of $\xi_i(t)$, thus $x_i(t), \hat{x}_i(t), \gamma_i(t), V(t), \varepsilon(t)$ by implication. Hence these variables are no longer stochastic in the following proof. It should be noted that $x_i(t)$ and $\dot{x}_i(t)$ are not necessarily Lipschitz continuous due to the event-triggering law. However $x_i(t)$ is still continuous and differentiable while $\dot{x}_i(t)$ is Riemann integrable for any sample paths. Therefore the time derivative $\dot{V}(t)$ is well-defined as follows:
$$\begin{split} &\leq \sum_{i=1}^{N} (x_{i}(t) - x^{\star})^{T} \nabla^{2} f_{i}(x_{i}(t)) \dot{x}_{i}(t) \\ &= -\alpha \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij} x_{i}(t)^{T} \hat{x}_{j}(t) \\ &= -\alpha \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij} \left(\hat{x}_{i}(t) - e_{i}(t) \right)^{T} \hat{x}_{j}(t) \\ &= \alpha \sum_{i=1}^{N} \sum_{\substack{j=1\\ j \neq i}}^{N} L_{ij} \left(\frac{1}{2} \| \hat{x}_{j}(t) - \hat{x}_{i}(t) \|^{2} + e_{i}(t)^{T} (\hat{x}_{j}(t) - \hat{x}_{i}(t)) \right) \\ &\leq \frac{\alpha(\nu - 1)}{2\nu} \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij} \| \hat{x}_{j}(t) - \hat{x}_{i}(t) \|^{2} + \frac{\alpha\nu}{2} \sum_{i=1}^{N} L_{ii} \| e_{i}(t) \|^{2} \\ &\leq \frac{\alpha}{2\nu} \left(\beta\nu^{2} + \nu - 1 \right) \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij} \| \hat{x}_{j}(t) - \hat{x}_{i}(t) \|^{2} \\ &\quad + \frac{\alpha\nu}{2} \delta(t) \sum_{i=1}^{N} (\ln \kappa - \ln \xi_{i}(t)) \\ &\leq -\frac{\alpha(-\beta\nu^{2} + \nu - 1)}{\nu} \hat{x}(t)^{T} (L \otimes I_{n}) \hat{x}(t) \\ &\quad + \frac{N\alpha\nu}{2} \delta(t) (\ln \kappa - \ln a) \,. \end{split}$$

To ensure exponential convergence, the coefficient of the first term needs to be strictly positive. To this end, we restrict $\beta = c(\nu - 1)/\nu^2 < 1/4$ for some $c \in (0, 1)$ and $\nu > 1$. Let $\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t)$. From Lemma 2 and the analysis above,

$$\dot{V}(t) \leq -\frac{\alpha\zeta_1(1-c)(\nu-1)}{\nu}x(t)^T(K_N \otimes I_N)x(t) + \frac{N\alpha}{2\nu}(\nu^2 + 4(1-c)\zeta_2\nu - 4(1-c)\zeta_2)\delta(t)(\ln\kappa - \ln a) = \frac{-\alpha\zeta_1(1-c)(\nu-1)}{\nu}\sum_{i=1}^N \|x_i(t) - \bar{x}(t)\|^2 + \frac{N\alpha}{2\nu}(\nu^2 + 4(1-c)\zeta_2\nu - 4(1-c)\zeta_2)\delta(t)(\ln\kappa - \ln a).$$

Following the analysis from [22], inasmuch as x^* is the global optimal solution, we have $\sum_{i=1}^{N} f_i(x^*) = f(x^*) \leq \sum_{i=1}^{N} f_i(y)$ for any y. Moreover, we have $\sum_{i=1}^{N} \nabla f_i(x_i(t)) = 0$ and consequently $\sum_{i=1}^{N} \nabla f_i(x_i(t))^T(x^* - x_i(t)) = \sum_{i=1}^{N} \nabla f_i(x_i(t))^T(y - x_i(t))$ for any constant vector y. Recall the choice of the Lyapunov candidate (22) and the analysis above, we have

$$V(x(t)) \le \sum_{i=1}^{N} \left(f_i(\bar{x}(t)) - f_i(x_i(t)) - \nabla f_i(x_i(t))^T(\bar{x}(t) - x_i(t)) \right) \le \sum_{i=1}^{N} \frac{\mathcal{L}_i}{2} \|x_i(t) - \bar{x}(t)\|^2 \le \frac{\mathcal{L}_{\max}}{2} \sum_{i=1}^{n} \|x_i(t) - \bar{x}(t)\|^2$$

where $\mathcal{L}_{\max} = \max_i \mathcal{L}_i$. Therefore,

$$\dot{V}(t) \le -\phi(\nu)V(t) + \omega(\nu)\delta(t) \tag{23}$$

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 16,2023 at 08:09:20 UTC from IEEE Xplore. Restrictions apply.

 $\dot{V}(t)$

with $\phi(\nu) = 2\alpha\zeta_1(1-c)(\nu-1)/\nu\mathcal{L}_{\max}$ and

$$\omega(\nu) = \frac{N\alpha}{2\nu} (\nu^2 + 4(1-c)\zeta_2\nu - 4(1-c)\zeta_2)(\ln\kappa - \ln a)$$

Solving the differential inequality (23) yields

$$V(t) \leq V(0)e^{-\phi(\nu)t} + \omega(\nu)e^{-\phi(\nu)t} \int_0^t e^{\phi(\nu)\tau}\delta(\tau) d\tau \quad (24)$$
$$\leq \left(V(0) - \frac{\omega(\nu)\delta_{\max}}{\phi(\nu)}\right)e^{-\phi(\nu)t} + \frac{\omega(\nu)\delta_{\max}}{\phi(\nu)}. \quad (25)$$

The equation (25) shows that V(t) is bounded for $t \ge 0$. From the definition of $\varepsilon(t)$, we have $\varepsilon(t) \le 2V(t)/Nm_{\min}$ and

$$\varepsilon(t) \leq \min_{\nu>1} \left\{ \frac{2}{Nm_{\min}} \left(V(0) - \frac{\omega(\nu)\delta_{\max}}{\phi(\nu)} \right) e^{-\phi(\nu)t} + \frac{2\delta_{\max}\omega(\nu)}{Nm_{\min}\phi(\nu)} \right\}$$
$$\leq \frac{2}{Nm_{\min}} \left[\left(V(0) - \frac{\omega^*\delta_{\max}}{\phi^*} \right) e^{-\phi^*t} + \frac{\omega^*\delta_{\max}}{\phi^*} \right]$$

which concludes the proof.

B. Proof of Theorem 1

The outline of the proof is as follows. For any node $i \in \mathcal{V}$ in $t \in [t_k^i, t_{k+1}^i)$, an upper bound, E_i^+ , is first derived for $\|e_i(t)\|^2$. In addition, the proposed algorithm (8) ensures a lower bound E_i^- if the node *i* is triggered at t_{k+1}^i . Then we showed that $t_{k+1}^i - t_k^i$ has a strictly positive lower bound from $E_i^+ > E_i^-$ which shows the non-existence of Zeno behaviour.

From the definition of the computation law (7), one can derive a useful bound for $||u_i(t)||$ as follows

$$\|u_{i}(t)\| \leq \frac{2\alpha}{m_{i}} \left\| \sum_{j=1}^{N} a_{ij}(\hat{x}_{j}(t) - \hat{x}_{i}(t)) \right\|$$
$$\leq \frac{2\alpha L_{ii}}{m_{i}} \max_{i,j \in \mathcal{V}} \|\hat{x}_{j}(t) - \hat{x}_{i}(t)\|.$$
(26)

By the triangular inequality,

$$\begin{aligned} \|\hat{x}_{j}(t) - \hat{x}_{i}(t)\| &= \|x_{j}(t) - x_{i}(t) + e_{j}(t) - e_{i}(t)\| \\ &\leq \|x_{j}(t) - x_{i}(t)\| + \|e_{j}(t) - e_{i}(t)\| \\ &\leq \|x_{j}(t) - x_{i}(t)\| + 2\max_{i\in\mathcal{V}} \|e_{i}(t)\|. \end{aligned}$$
(27)

From (8) - (9), the SET algorithm guarantees that

$$\|e_i(t)\|^2 \le -\frac{\beta}{L_{ii}} \sum_{j=1}^N L_{ij} \|\hat{x}_j(t) - \hat{x}_i(t)\|^2 + \frac{\delta(t)}{L_{ii}} (\ln \kappa - \ln a)$$
(28)

$$\leq \beta \max_{i,j\in\mathcal{V}} \left\| \hat{x}_j(t) - \hat{x}_i(t) \right\|^2 + \frac{\delta(t)}{L_{\min}} (\ln \kappa - \ln a).$$
(29)

The remainder of the proof is divided into two cases as described in Theorem 1. Case 1: $\delta_{\infty} > 0$. From (29),

$$\|e_i(t)\| \le \sqrt{\beta} \max_{i,j\in\mathcal{V}} \|\hat{x}_j(t) - \hat{x}_i(t)\| + \sqrt{\frac{\delta_{\max}(\ln\kappa - \ln a)}{L_{\min}}}.$$
(30)

Combining (30) with (27),

$$(1 - 2\sqrt{\beta}) \max_{i,j \in \mathcal{V}} \|\hat{x}_j(t) - \hat{x}_i(t)\|$$

$$\leq \max_{i,j \in \mathcal{V}} \|x_j(t) - x_i(t)\| + \sqrt{\frac{4\delta_{\max}(\ln \kappa - \ln a)}{L_{\min}}}.$$
 (31)

Notice that

$$||x_{i}(t) - x_{j}(t)|| \leq ||x_{i}(t) - x^{\star}|| + ||x_{j}(t) - x^{\star}|| \leq 2\sqrt{N\varepsilon(t)}.$$
(32)

Then substituting (32) back to (31) yields

$$\begin{aligned} |u_i(t)|| &\leq \frac{4\alpha L_{\max}}{m_{\min}(1 - 2\sqrt{\beta})} \left(\sqrt{N\varepsilon(t)} + \sqrt{\frac{\delta_{\max}(\ln \kappa - \ln a)}{L_{\min}}}\right) \\ &\leq \frac{4\alpha L_{\max}}{m_{\min}(1 - 2\sqrt{\beta})} \left(\sqrt{\frac{2}{m_{\min}}\max\left(V_0, \frac{\omega^* \delta_{\max}}{\phi^*}\right)} + \sqrt{\frac{\delta_{\max}(\ln \kappa - \ln a)}{L_{\min}}}\right) = U \end{aligned}$$

For $t \in [t_k^i, t_{k+1}^i)$ and any arbitrary constant $\varsigma > 0$,

$$\frac{d}{dt} \|e_i(t)\|^2 = 2 \left(\hat{x}_i(t) - x_i(t) \right)^T \left(\dot{\hat{x}}_i(t) - \dot{x}_i(t) \right) \\ = -2e_i(t)u_i(t) \\ \le \varsigma \|e_i(t)\|^2 + \frac{1}{\varsigma} U^2.$$

Solving the above ordinary differential inequality results in

$$\|e_{i}(t)\|^{2} \leq \|e_{i}(t_{k}^{i})\|^{2} e^{\varsigma(t-t_{k}^{i})} + \frac{U^{2}}{\varsigma} e^{\varsigma(t-t_{k}^{i})} \int_{t_{k}^{i}}^{t} e^{\varsigma(t_{k}^{i}-\tau)} d\tau$$
$$= \left(\frac{U}{\varsigma}\right)^{2} \left(e^{\varsigma(t-t_{k}^{i})} - 1\right).$$
(33)

In order for the node i to trigger broadcasting at $t^i_{k+1}, \mbox{ a necessary condition is }$

$$\left\| e_{i}(t_{k+1}^{i-}) \right\|^{2} > -\frac{\beta}{L_{ii}} \sum_{i=1}^{N} L_{ij} \left\| \hat{x}_{j}(t_{k+1}^{i-}) - \hat{x}_{i}(t_{k+1}^{i-}) \right\|^{2} + \frac{\delta(t_{k+1}^{i-})}{L_{ii}} \left(\ln \kappa - \ln \xi_{i}(t_{k+1}^{i-}) \right).$$
(34)

Recall that $||e_i(t)||^2$ has an upper bound (33) when the node is not at triggering instance. Combining (33) and (34) and solving the inequality thereof leads to

$$t_{k+1}^{i} - t_{k}^{i} > \frac{1}{\varsigma} \ln \left(1 + \frac{\varsigma^{2} \delta_{\infty}(\ln \kappa - \ln \xi_{i}(t_{k+1}^{i-}))}{U^{2}} \right).$$
(35)

Since the above inequality holds for any $\varsigma > 0$ and k > 0, we can choose the maximum of the right hand side over ς , i.e.,

$$\tau_i(t) \ge \max_{\varsigma>0} \frac{1}{\varsigma} \ln\left(1 + \frac{\varsigma^2 \delta_\infty \ln \kappa}{U^2}\right)$$
$$= \sqrt{-\frac{\delta_\infty \ln \kappa}{U^2}} W\left(-\frac{2}{e^2}\right) \left(W\left(-\frac{2}{e^2}\right) + 2\right)} > 0.$$
(36)

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 16,2023 at 08:09:20 UTC from IEEE Xplore. Restrictions apply. **Case 2a:** $\delta(t) = \delta_0 e^{-\eta t}$ for some $\delta_0 > 0$ and $\eta \in [0, \phi)$. From Recall that for any realisations of $\xi_i(t)$, hence V(t), the definition of $e_i(t)$, one can find that $\dot{e}_i(t) = -\dot{x}_i(t) =$ $-u_i(t)$, therefore $||e_i(t)|| \leq \int_{t_i^t}^t ||u_i(t)|| dt$. Following (29),

$$\|e_{i}(t)\| \leq \sqrt{\beta} \max_{i,j\in\mathcal{V}} \|\hat{x}_{j}(t) - \hat{x}_{i}(t)\| + \sqrt{\frac{\delta_{0}(\ln\kappa - \ln a)e^{-\eta t}}{L_{\min}}}$$
(37)

Similarly to case 1,

$$(1 - 2\sqrt{\beta}) \max_{i,j \in \mathcal{V}} \|\hat{x}_{j}(t) - \hat{x}_{i}(t)\|$$

$$\leq \max_{i,j \in \mathcal{V}} \|x_{j}(t) - x_{i}(t)\| + \sqrt{\frac{4\delta_{0}(\ln \kappa - \ln a)}{L_{\min}}} e^{-\eta t/2}.$$
 (38)

Putting (24), (26)–(32) and (38) together, for $t \in [t_k^i, t_{k+1}^i)$,

$$||u_i(t)|| \le \varsigma_1 e^{-\phi^* t/2} + \varsigma_2 e^{-\eta t/2} \le \varsigma_1 e^{-\phi^* t_k^i/2} + \varsigma_2 e^{-\eta t_k^i/2}$$

since $\varsigma_1, \varsigma_2, \phi, \eta > 0$. One can then obtain

$$||e_i(t)|| \le \left(\varsigma_1 e^{-\phi^* t_k^i/2} + \varsigma_2 e^{-\eta t_k^i/2}\right) (t - t_k^i).$$

A necessary condition for triggering is

$$\begin{split} \left\| e_i(t_{k+1}^{i-}) \right\| &> \sqrt{\frac{(\delta_0 \ln \kappa) e^{-\eta t_{k+1}^i}}{L_{\max}}} = \varsigma_3 \, e^{-\eta t_{k+1}^i/2} \\ t_{k+1}^i - t_k^i &> \frac{\varsigma_3 \exp(-\eta t_{k+1}^i/2)}{\varsigma_1 \exp(-\phi^* t_k^i/2) + \varsigma_2 \exp(-\eta t_k^i/2)} \\ &= \frac{\varsigma_3 \exp(-\eta (t_{k+1}^i - t_k^i)/2)}{\varsigma_1 \exp(-(\phi^* - \eta) t_k^i/2) + \varsigma_2} \\ &\geq \frac{\varsigma_3}{\varsigma_1 + \varsigma_2} \exp\left(-\frac{\eta (t_{k+1}^i - t_k^i)}{2}\right). \end{split}$$

where $\varsigma_3 = \sqrt{\delta_0 \ln \kappa / L_{\text{max}}}$. Solving the last inequality yields

$$\tau_i(t) \ge t_{k+1}^i - t_k^i > \frac{2}{\eta} W\left(\frac{\eta\varsigma_3}{2(\varsigma_1 + \varsigma_2)}\right) > 0.$$

Case 2b: $\delta(t) > \delta_0 e^{-\eta t}$ for some $\delta_0 > 0$ and $\eta \in [0, \phi)$. Since a larger $\delta(t)$ implies a higher threshold to trigger, provided identical states for all other variables, the lower bound found in case 2a is also applicable in this case.

C. Proof of Theorem 2

Let $h(t) = e^{-\phi(\nu)t}$, $g(t) = \omega(\nu)\delta(t)$ with domain $t \in$ $[0,\infty)$ and h(t) = g(t) = 0 for t < 0, H(s), G(s) be the Laplace transform of h(t) and g(t) respectively. It is a wellknown result that $H(s) = \frac{1}{s + \phi(\nu)}$. Moreover,

$$\lim_{t \to \infty} e^{-\phi(\nu)t} \int_0^t e^{\phi(\nu)\tau} g(\tau) \, d\tau = \lim_{t \to \infty} \int_{-t}^t h(\tau - t) g(\tau) \, d\tau$$
$$= \lim_{t \to \infty} h(t) * g(t) \tag{39}$$

where * represents convolution. By the Final Value Theorem,

$$\lim_{t \to \infty} h(t) * g(t) = \lim_{s \to 0} \frac{sG(s)}{s + \phi(\nu)} = \frac{1}{\phi(\nu)} \lim_{t \to \infty} g(t).$$
 (40)

$$V(t) \le V(0)e^{-\phi(\nu)t} + \omega(\nu)e^{-\phi(\nu)t} \int_0^t e^{\phi(\nu)\tau}\delta(\tau) \, d\tau,$$

= $V(0)e^{-\phi(\nu)t} + \int_0^t h(\tau - t)g(\tau) \, d\tau.$ (41)

Substituting the result from (40) into (41) leads to

$$\lim_{t \to \infty} V(t) \le \lim_{t \to \infty} h(t) * g(t) = \frac{1}{\phi(\nu)} \lim_{t \to \infty} g(t) = \frac{\omega(\nu)\delta_{\infty}}{\phi(\nu)}.$$

From the definition of the Lyapunov candidate, we also have the inequality

$$V(t) \ge \sum_{i=1}^{N} \frac{m_i}{2} \|x_i - x^\star\|^2 \ge \frac{m_{\min}}{2} \sum_{i=1}^{N} \|x_i - x^\star\|^2.$$
(42)

Following (24) from the proof of Lemma 3 and (42),

$$\lim_{t \to \infty} \varepsilon(t) \le \lim_{t \to \infty} \frac{2}{Nm_{\min}} V(t) \tag{43}$$

$$\min_{\nu>1} \frac{2\omega(\nu)o_{\infty}}{N\phi(\nu)m_{\min}} \tag{44}$$

$$=\frac{2\mathcal{L}_{\max}\delta_{\infty}(1+(1-4\beta)\zeta_2)(\ln\kappa-\ln a)}{\zeta_1m_{\min}(1-4\beta)}.$$
 (45)

The equality is obtained by straightforward minimization of the rational function in (45) with respect to ν . Inasmuch as the Lyapunov function is bounded for all t, its expectation exists and

$$\frac{d}{dt}\mathbb{E}\left[V(t)\right] = \mathbb{E}\left[\frac{d}{dt}V(t)\right].$$

Then one can follow a similar procedure as in (22)–(23) and (39)–(45) to obtain

$$\lim_{t \to \infty} \mathbb{E}\left[\varepsilon(t)\right] \le \frac{2\mathcal{L}_{\max}\delta_{\infty}(1 + (1 - 4\beta)\zeta_2)(\ln \kappa - \mathbb{E}\left[\ln \xi_i(t)\right])}{\zeta_1 m_{\min}(1 - 4\beta)}.$$

D. Proof of Proposition 1

 \leq

By Taylor series expansion around $\mu = \mathbb{E}[\xi_i(t)]$, the quantity $\mu_{\ln} = \mathbb{E} \left[\ln \xi_i(t) \right]$ can be written as

$$\mu_{\rm ln} = \ln \mu - \frac{\sigma^2}{2\mu^2} + \underbrace{\sum_{j=3}^{\infty} \frac{(-1)^{j-1} \mathbb{E}\left[(\xi_i(t) - \mu)^j\right]}{j! \mu^j}}_{\text{Higher Order Terms (HOT)}}.$$

Let μ_k and μ'_k be the k-th central moment and moment for Beta $(\alpha_{\xi}, \beta_{\xi})$, respectively, then the HOT can be written as

$$HOT = \sum_{j=3}^{\infty} \frac{(-1)^{j-1}(1-a)^j \mu_j}{j!\mu^j}$$
$$= \sum_{j=3}^{\infty} \sum_{k=0}^j \frac{(-1)^{k+1}(1-a)^j C_k^j \mu_k'}{j!\mu^k}$$
$$= \sum_{j=3}^{\infty} \sum_{k=0}^j \frac{(-1)^{k+1}(1-a)^j}{(j-k)!k!} \prod_{r=1}^k \frac{\alpha_{\xi} + r}{\alpha_{\xi} + \beta_{\xi} + r}$$

which vanishes in factorial order. Combining with Theorem 2,

$$\epsilon_2 \le \frac{2\mathcal{L}_{\max}\delta_{\infty}(1+(1-4\beta)\zeta_2)}{\zeta_1 m_{\min}(1-4\beta)} \left(\ln\kappa - \ln\mu + \frac{\sigma^2}{2\mu^2} + \text{HOT}\right)$$

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 16,2023 at 08:09:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3229769

$$= P\left(\ln \kappa - \ln \mu + \frac{\theta(1-\mu)(\mu-a)}{2\mu^2} + \text{HOT}\right)$$
$$= \epsilon_e(\mu, \theta) + \text{HOT}.$$

Let $\mathcal{W} = -W(-2e^{-2}) (W(-2e^{-2}) + 2)$. Following (35) in the proof in Theorem 1, for any $i \in \mathcal{V}, k \in \mathbb{N}$,

$$\begin{split} \mathbb{E}\left[t_{k+1}^{i} - t_{k}^{i}\right] &\geq \mathbb{E}\left[\sqrt{\frac{\mathcal{W}\delta_{\infty}(\ln\kappa - \ln\xi_{i}(t_{k+1}^{-}))}{U^{2}}}\right] \\ &\geq \mathbb{E}\left[\frac{\sqrt{\mathcal{W}\delta_{\infty}}(\ln\kappa - \ln\xi_{i}(t_{k+1}^{-}))}{U\sqrt{\ln\kappa - \ln a}}\right] \\ &\geq Q\left(\ln\kappa - \ln\mu + \frac{\theta(1-\mu)(\mu-a)}{2\mu^{2}} + \mathrm{HOT}\right) \\ &= \tau_{e}(\mu,\theta) + \mathrm{HOT}. \end{split}$$

From the definition of $\tau(t)$, we have $\tau(t) \geq \min_{i,k} \{t_{k+1}^i - t_k^i\}$, hence $\mathbb{E}[\tau(t)] \geq \tau_e(\mu, \theta) + \text{HOT}$, which concludes the proof.

E. Proof of Theorem 3

The following proof consists of two major steps: unveiling the hidden convexity in the objective function $J(\mu, \theta)$, and remapping the weighting factor from $\bar{\psi}$ to ψ by exploiting the constraints to eliminate the unknown quantities P and Q.

Let $y(\mu, \theta) = \ln \kappa - \ln \mu + \theta(1-\mu)(\mu-a)/(2\mu^2)$. While $J(\mu, \theta)$ is non-convex in μ , it is convex in y for y > 0. We start by setting the derivative $\partial J/\partial y = 0$,

$$\frac{\partial J}{\partial y} = P - \frac{\bar{\psi}}{Qy^2} = 0 \implies y^{\star} = \sqrt{\frac{\bar{\psi}}{PQ}}$$

where y^* is the optimal solution to $\min_y J(y)$. In other words, any pair of (μ, θ) satisfying

$$\ln \kappa - \ln \mu + \frac{\theta (1 - \mu)(\mu - a)}{2\mu^2} = \sqrt{\frac{\bar{\psi}}{PQ}}$$
(46)

is an optimal solution to (15) if and only if the constraints are also satisfied. Now we investigates the feasibility of the indifference curve. We first rewrite (46) into

$$\theta = \frac{2\mu^2}{(1-\mu)(\mu-a)} (y^* - \ln \kappa + \ln \mu).$$

If θ is to be feasible, it is sufficient and necessary that

$$-\ln\mu \le y^{\star} - \ln\kappa \le \frac{(1-\mu)(\mu-a)}{2\mu^2} - \ln\mu, \quad \mu \in [a,1].$$

That is, $\exists \mu \in [a, 1]$ such that the solution (46) is feasible if

$$\min_{\mu \in [a,1]} -\ln \mu \le y^* - \ln \kappa \le \max_{\mu \in [a,1]} \frac{(1-\mu)(\mu-a)}{2\mu^2} - \ln \mu$$

Since $-\ln \mu$ is monotone in $\mu \in [a, 1]$, its minimum can be found by comparing the boundary value which is at $\mu = 1 \Rightarrow$ $-\ln \mu = 0$. For the rightmost side of the above inequality, first we verify the existence of a unique critical point in $\mu \in [a, 1]$:

$$\frac{d}{d\mu} \left(\frac{(1-\mu)(\mu-a)}{2\mu^2} - \ln \mu \right) = -\frac{a(\mu-2) + \mu(2\mu+1)}{2\mu^3} = 0$$
$$\mu = \frac{-(1+a) + \sqrt{a^2 + 18a + 1}}{4} = \bar{\mu}.$$

Then,

$$\frac{d^2}{d\mu^2} \left(\frac{(1-\mu)(\mu-a)}{2\mu^2} - \ln \mu \right) = \frac{\mu^2 + (1+a)\mu - 3a}{\mu^4}$$

which is strictly negative at $\mu = \bar{\mu}$, implying concavity, hence a local maximum. To determine the global maximum, we compare with the endpoint $\mu = a$ ($\mu = 1$ is neglected as it yields 0 for both terms). With simple algebraic manipulations,

$$\frac{(1-\bar{\mu})(\bar{\mu}-a)}{2\bar{\mu}^2} - \ln\bar{\mu} = \frac{-\bar{\mu}^2 + (1+a)\bar{\mu} - a}{2\bar{\mu}^2} - \ln\bar{\mu}$$
$$= \frac{a}{2\bar{\mu}^2} - \ln\bar{\mu} - \frac{3}{2} \ge -\ln a$$

for 0 < a < 1. Therefore, the feasibility condition becomes

$$0 \le y^* - \ln \kappa \le \frac{a}{2\bar{\mu}^2} - \ln \bar{\mu} - \frac{3}{2}$$
$$\ln \kappa \le \sqrt{\frac{\bar{\psi}}{PQ}} \le \frac{a}{2\bar{\mu}^2} - \ln \bar{\mu} + \ln \kappa - \frac{3}{2}$$

or we can restrict the range by the transformation on $\overline{\psi}$:

$$\sqrt{\frac{\bar{\psi}}{PQ}} = (1-\psi)\ln\kappa + \psi\left(\frac{a}{2\bar{\mu}^2} - \ln\bar{\mu} + \ln\kappa - \frac{3}{2}\right)$$
$$\bar{\psi} = PQ\left(\ln\kappa + \psi\left(\frac{a}{2\bar{\mu}^2} - \ln\bar{\mu} - \frac{3}{2}\right)\right)^2.$$
(47)

Substituting (47) into (46) yields the intended result (20). It is trivial to graphically validate that $\epsilon_e(\mu, \theta)$ increases with ψ with the corresponding optimal solution and conversely $\tau_e^{-1}(\mu, \theta)$ decreases. This implies that ψ serves the identical weighting purpose as $\bar{\psi}$ but simply normalised. Therefore (47) is an appropriate transformation.

One can also verify that $\psi \leq 0 \Rightarrow \partial J/\partial y \geq 0$ hence $J(\mu, \theta)$ being monotonically non-decreasing. On the other hand, we have $\partial J/\partial y \leq 0$ for $\psi \geq 1$. Under the constraints in (15), the optimal solutions when $\psi \notin (0, 1)$ are then

$$(\mu, \theta) = \begin{cases} \arg \min_{\mu, \theta} y(\mu, \theta) = (1, 0), & \psi \le 0\\ \arg \max_{\mu, \theta} y(\mu, \theta) = (\bar{\mu}, 1), & \psi \ge 1 \end{cases}$$

or equivalently $\mu = 1 - \psi + \psi \overline{\mu}$ and $\theta = \psi$ for $\psi \in \{0, 1\}$.

REFERENCES

- R. Olfati-Saber and R. M. Murray, "Consensus protocols for networks of dynamic agents," in *American Control Conference*, 2003, pp. 951–956.
- [2] —, "Consensus problems in networks of agents with switching topology and time-delays," *IEEE Transactions on Automatic Control*, vol. 49, no. 9, pp. 1520–1533, 2004.
- [3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," in *Proceedings of the IEEE*, vol. 95, no. 1, 2007, pp. 215–233.
- [4] A. Nedic and A. Ozdaglar, "Distributed subgradient methods for multiagent optimization," *IEEE Transactions on Automatic Control*, vol. 54, no. 1, pp. 48–61, 2009.
- [5] D. V. Dimarogonas and K. H. Johansson, "Event-triggered control for multi-agent systems," in *IEEE Conference on Decision and Control held jointly with Chinese Control Conference*, Shanghai, 2009, pp. 7131– 7136.
- [6] J. Lu and C. Y. Tang, "Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case," *IEEE Transactions on Automatic Control*, vol. 57, no. 9, pp. 2348–2354, 2012.

- [7] J. Wang and N. Elia, "Control approach to distributed optimization," in Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2010, pp. 557–561.
- [8] S. S. Kia, J. Cortés, and S. Martínez, "Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication," *Automatica*, vol. 55, pp. 254–264, 2015.
- [9] D. Shi, T. Chen, and L. Shi, "On set-valued kalman filtering and its application to event-based state estimation," *IEEE Transactions on Automatic Control*, vol. 60, no. 5, pp. 1275–1290, 2015.
- [10] A. Sundararajan, B. Van Scoy, and L. Lessard, "A canonical form for first-order distributed optimization algorithms," in *American Control Conference*, Philadelphia, 2019, pp. 4075–4080.
- [11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundations and Trends in Machine Learning*, vol. 3, no. 1, pp. 1–122, 2010.
- [12] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, "A survey of distributed optimization," *Annual Reviews in Control*, vol. 47, pp. 278–305, 2019.
- [13] A. Nedić and A. Olshevsky, "Distributed optimization over time-varying directed graphs," *IEEE Transactions on Automatic Control*, vol. 60, no. 3, pp. 601–615, 2015.
- [14] J. Lei, H. F. Chen, and H. T. Fang, "Primal–dual algorithm for distributed constrained optimization," *Systems and Control Letters*, vol. 96, pp. 110– 117, 2016.
- [15] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, "Event-based broadcasting for multi-agent average consensus," *Automatica*, vol. 49, no. 1, pp. 245–252, Jan. 2013.
- [16] L. Ding, Q. L. Han, X. Ge, and X. M. Zhang, "An overview of recent advances in event-triggered consensus of multiagent systems," *IEEE Transactions on Cybernetics*, vol. 48, no. 4, pp. 1110–1123, 2018.
- [17] X. Yi, K. Liu, D. V. Dimarogonas, and K. H. Johansson, "Distributed dynamic event-triggered control for multi-agent systems," in *IEEE Conference on Decision and Control*, 2017, pp. 6683–6698.
- [18] W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-observer-based control and related methods - an overview," *IEEE Transactions on Industrial Electronics*, vol. 63, no. 2, pp. 1083–1095, 2016.
- [19] Z. Wu, Z. Li, Z. Ding, S. Member, and Z. Li, "Distributed continuoustime optimization with scalable adaptive event-based mechanisms," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, pp. 1–6, 2018.
- [20] X. Shi, R. Zheng, Z. Lin, and G. Yan, "Consensus of first-order multiagent systems under event-triggered communication," in *Chinese Control And Decision Conference*, 2018, pp. 4679–4683.
- [21] W. Xu, D. W. Ho, J. Zhong, and B. Chen, "Event/self-triggered control for leader-following consensus over unreliable network with dos attacks," *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–13, 2019.
- [22] W. Du, X. Yi, J. George, K. H. Johansson, and T. Yang, "Distributed optimization with dynamic event-triggered mechanisms," in *IEEE Conference on Decision and Control*, Miami Beach, 2018, pp. 969–974.
- [23] X. Yi, L. Yao, T. Yang, J. George, and K. H. Johansson, "Distributed optimization for second-order multi-agent systems with dynamic eventtriggered communication," in *IEEE Conference on Decision and Control*, 2018, pp. 3397–3402.
- [24] M. Li, L. Su, and T. Liu, "Distributed optimization with event-triggered communication via input feedforward passivity," *IEEE Control Systems Letters*, vol. 5, no. 1, pp. 283–288, 2021.
- [25] W. Chen and W. Ren, "Event-triggered zero-gradient-sum distributed consensus optimization over directed networks," *Automatica*, vol. 65, pp. 90–97, 2016.
- [26] K. F. E. Tsang, J. Wu, and L. Shi, "Zeno-free stochastic distributed event-triggered consensus control for multi-agent systems," in *American Control Conference*, Philadelphia, PA, 2019, pp. 778–783.
- [27] D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi, "Stochastic event-triggered sensor schedule for remote state estimation," *IEEE Transactions on Automatic Control*, vol. 60, no. 10, pp. 2661– 2675, 2015.
- [28] K. F. E. Tsang, J. Wu, and L. Shi, "Distributed optimisation with stochastic event-triggered multi-agent control algorithm," in *IEEE Conference* on Decision and Control, 2020, pp. 6222–6227.
- [29] R. Bhatia and C. Davis, "A better bound on the variance," *The American Mathematical Monthly*, vol. 107, no. 4, pp. 353–357, 2000.

Kam Fai Elvis Tsang received the B.Eng. degree from the Department of Mechanical Aerospace Engineering and the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology (HKUST), Hong Kong in 2018, and M.Phil degree from the Department of Electronic and Computer Engineering of HKUST in 2020. He is currently pursuing the Ph.D. degree in Electrical Engineering at KTH Royal Institute of Technology, Sweden. His re search interests include

multi-agent systems, distributed optimisation and machine learning.

Mengyu Huang received the B.Eng. degree from the School of Information Science and Engineering, Southeast University, Nanjing, China, in 2018. She is currently pursuing the Ph.D. degree in Electronic and Computer Engineering at the Hong Kong University of Science and Technology. Her research interests include reinforcement learning, machine learning, and cyber-physical systems security.

Ling Shi received the B.S. degree in electrical and electronic engineering from Hong Kong University of Science and Technology, Kowloon, Hong Kong, in 2002 and the Ph.D. degree in Control and Dynamical Systems from California Institute of Technology, Pasadena, CA, USA, in 2008. He is currently a Professor in the Department of Electronic and Computer Engineering, and the associate director of the Robotics Institute, both at the Hong Kong University of Science and Technology. His research interests in-

clude cyber-physical systems security, networked control systems, sensor scheduling, event-based state estimation, and exoskeleton robots. He is a senior member of IEEE. He served as an editorial board member for the European Control Conference 2013-2016. He was a subject editor for International Journal of Robust and Nonlinear Control (2015-2017). He has been serving as an associate editor for IEEE Transactions on Control of Network Systems from July 2016, and an associate editor for IEEE Control Systems Letters from Feb 2017. He also served as an associate editor for a special issue on Secure Control of Cyber Physical Systems in the IEEE Transactions on Control of Network Systems in 2015-2017. He served as the General Chair of the 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS 2018). He is a member of the Young Scientists Class 2020 of the World Economic Forum (WEF).

Karl Henrik Johansson is the Director of Digital Futures and a Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyberphysical systems, and applications in transportation, energy, and automation. He is a member of

the Swedish Research Council's Scientific Council for Natural Sciences and Engineering Sciences. He has served on the IEEE Control Systems Society Board of Governors, the IFAC Executive Board, and is currently Vice-President of the European Control Association Council. He has received several best paper awards and other distinctions from IEEE, IFAC, and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Control Systems Society Distinguished Lecturer.