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Quickest Change Detection
with Observation Scheduling

Xiaoqiang Ren?, Karl H. Johansson† and Ling Shi?

Abstract—The quickest change detection problem is to detect
an abrupt change event as quickly as possible subject to con-
straints on false detection. Unlike the classical problem, where
the decision maker can access only one sequence of observations,
in this paper, the decision maker chooses one of two different
sequences of observations at each time instant. The information
quality and sampling cost of the two sequences of observations
are different. We present an asymptotically optimal joint design
of observation scheduling policy and stopping time such that
the detection delay is minimized subject to constraints on both
average run length to false alarm (ARLFA) and average cost
per sample. The observation scheduling policy has a threshold
structure and the detection scheme is a variant of the cumulative
sum test where the detection statistic stochastically crosses the
threshold that is used to switch observation modes. We further
study the decentralized case in a multi-channel setting. We show
that if each sensor uses the proposed observation scheduling
policy locally and the fusion center uses the Nsum algorithm, by
which the center declares the change when the sum of the sensors’
local detection statistics crosses a certain threshold, the detection
delay is asymptotically minimized for any possible combination of
the affected sensors subject to constraints on both global ARLFA
and average cost per sample at each sensor node. Numerical
examples are given to illustrate the main results.

Keywords: quickest change detection, minimax, observation
scheduling, CuSum, sensor networks, multi-channel.

I. INTRODUCTION

Motivations: The quickest change detection with obser-
vation scheduling arises when multiple data streams about
the monitored target are available but not all of those can
be accessed at each time instant by the decision maker. In
addition to determining the stopping time when the change
event is declared, the decision maker needs to enhance the
information quality of the observations taken using appropriate
scheduling policy. This problem can be motivated by the
following two examples. The first one is the detection with
controlled sensing [1]–[6], where the detection system can
adaptively control the information quality of observations
used for decision making. For example, in clinical trials [4],
patients may respond with different information about a drug
treatment. For ethical reasons, the patients should be carefully
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and adaptively chosen over the period of a trial (usually several
months or years), and the number of patients involved should
be as small as possible. The second motivating example is the
problem of detection with sensor networks [7], [8]. Consider
the example of anomaly detection with different types of
sensors, say proximity sensors and cameras. The sensors
communicate with the central decision maker via wired or
wireless channels. Obviously, the information quality of ob-
servations by proximity sensors and cameras are different. The
cost of each sampling, including sensing energy consumption,
bandwidth required to transmit, the computation load of data
processing, of the observations by these two types of sensors
is also different. Due to cost constraint, the decision maker
thus needs to schedule its sampling attention. Note that even
if there are only one type of sensors, the decision maker still
may need to decide how many or which group of sensors to
be activated.

The classical quickest change detection has been extensively
studied, see the textbooks [9], [10]. In the classical problem
formulation, the information quality of the observations is
fixed and the decision maker only needs to determine the
optimal stopping time. Recently, the quickest change detection
with sampling constraints has attracted attention [1], [2], [11]–
[13], where the decision maker needs to decide whether or
not to sample at each time instant. The most relevant work
is [1], where the authors proposed an asymptotically optimal
data efficient CuSum algorithm called DE-CuSum algorithm.
The DE-CuSum algorithm was studied in the sensor networks
and multi-channel setting by the same authors in [2], [13].
Inspired by [1], [2], we consider the setting of observation
scheduling, where, instead of sampling or not, the decision
maker has to choose among multiple available observations.
Take the intruder detection problem for example, at each
time instant the decision maker has to decide to use the
cheap proximity sensors or to activate the expensive cameras.
Premkumar and Kumar [14] studied the optimal sleep–wake
scheduling policy of wireless sensor networks for quickest
change detection. The problem formulation is in the Bayesian
setting [15], and since the sensors are homogenous, the ob-
servations available by switching on/off some sensor nodes
have special structures. Our problem is studied in the minimax
setting [16], [17] and the different data streams available have
quite general characterizations. The CuSum algorithm with
adaptive observations was also studied in the vehicle routing
setting [18], where to detect anomalies as quickly as possible,
a vehicle collect observations from adaptively chosen regions
based on the likelihood of regional anomalies. The problem
is fundamentally different from ours in the sense that it does
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not explicitly take the cost of observations into account in the
problem formulation.

Contributions: In this paper, we formulate the quickest
change detection with observation scheduling in the mini-
max setting. We assume that there exist two sequences of
observations with different information about the underlying
state and different cost for the decision maker, At each time
instant, the decision maker needs to select one of these
two sequences of observations. Due to the average cost per
sample constraint, the observation scheduling policy needs
to be carefully designed apart from the stopping time. We
propose an algorithm wherein the observation scheduling
policy has a threshold structure with respect to the detection
statistic. The detection procedure is a variant of the cumulative
sum (CuSum) algorithm [19] and a generalization of the
DE-CuSum algorithm proposed in [1], where the detection
statistic stochastically crosses that threshold used for the
scheduling policy. This observation scheduling CuSum (OS-
CuSum) algorithm is proved to asymptotically minimize the
detection delay subject to constraints on both the average run
length to false alarm (ARLFA) and average cost per sample
(Theorem 2). It should be pointed out that though we assume
that the decision maker chooses one of two sequences of
observations at each time instant, the OS-CuSum algorithm
can be easily generalized to scenarios where the decision
maker can choose m > 1 out of n > m sequences of
observations. This is because any m observations taken at the
same time can be treated as a single random vector, and the
OS–CuSum algorithm can be easily generalized and remains
asymptotically optimal in scenarios where the decision maker
can take one of n sequences of observations (Remark 6).

We also study the quickest change detection with observa-
tion scheduling in the multi-channel setting [20], where the
decision whether or not to stop is made by a fusion center
based on multiple data streams collected by different sensor
nodes. The sensor nodes affected by the change event is
unknown. We assume that each sensor has different sensing
modalities and needs to carefully schedule its sensing actions.
We propose a multi-channel OS-CuSum (MOS-CuSum) al-
gorithm: each sensor uses the observation scheduling policy
locally and the fusion center uses the Nsum detection proce-
dure proposed in [20], where the detection system stops when
the sum of all the sensors’ local detection statistic crosses a
certain threshold. With the MOS-CuSum algorithm, the global
detection delay is asymptotically (as the global ARLFA goes
to infinity) minimized subject to constraints on both global
ARLFA and average cost per sample at each sensor node, for
any combination of the affected sensor nodes (Corollary 1).

Other Related Works: In the setting of quickest change
detection with censoring sensors [21], [22], the sensors sample
the observations with fixed information quality at each time
instant and only send messages to the fusion center when the
sampled observations satisfy certain conditions. The detection
with control actions that can shape the information quality of
observations taken (e.g., active sensing and sensor selection)
has been extensively studied [3], [5], [23]–[25]. All of these
works are in rather general settings: hypothesis testing or
sequential hypothesis testing, while we focus on the quickest
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Fig. 1: Quickest change detection with observation scheduling.

change detection, which is fundamentally different.
Paper Organization: The remainder of this paper is orga-

nized as follows. The mathematical formulation of the consid-
ered problem is given in Section II. In Section III, we present
the proposed algorithm and prove its asymptotic optimality.
The observation scheduling in multi-channel setting is studied
in Section IV, where an asymptotically optimal algorithm is
given. Some numerical examples are provided in Section V
and concluding remarks are given in Section VI.

Notations: N, N+, R, R+ and R++ are the set of non-
negative integers, positive integers, real numbers, non-negative
real numbers and positive real numbers, respectively. 1A
represents the indicator function that takes value 1 on the set
A and 0 otherwise. × stands for the Cartesian product. For
x ∈ R, (x)+ = max(0, x). Let Xn

r with r, n ∈ N+ denote
the set {Xr, Xr+1, . . . , Xn}. For ~a,~b ∈ Rn, let ~a � (�)~b
represent that ai ≥ (>)bi, 1 ≤ i ≤ n.

II. PROBLEM SETUP

As illustrated in Fig. 1, there are two sequences of observa-
tions, {Xk}k∈N+

and {Yk}k∈N+
, about the monitored target.

At each time instant k, the decision maker samples from either
one. It is assumed that the observations before the change time
ν, Xν−1

1 and Y ν−1
1 , are independent and identically distributed

(i.i.d.) with density fX and fY , respectively. The observations
after the change, X∞ν and Y∞ν , are i.i.d. with density gX and
gY , respectively. It is further assumed that conditioned on the
change time, {Xk} and {Yk} are independent of each other
for any k ∈ N+.

Let I(·||·) be the Kullback-Leibler (K-L) divergence [26],
i.e., for probability density function (pdf) f(x) and g(x),
I(f ||g) :=

∫
f(x) ln f(x)

g(x) dx. Throughout this paper, we make
the following assumption. The assumption is standard [20],
[27] and avoids degenerate detection problem.

Assumption 1. The following four quantities are finite and
positive: I(fX ||gX), I(gX ||fX), I(fY ||gY ) and I(gY ||fY ).

The schedule at time k is characterized by a binary variable
γk as

γk =

{
0, if Xk is sampled,
1, if Yk is sampled. (1)

We assume that the decision maker must sample either Xk or
Yk, i.e., 1{γk=0}+1{γk=1} = 1. Let Zk denote the observation
available at the decision maker at time k: Zk = Xk1{γk=0}+
Yk1{γk=1}. Let θ denote the scheduling policy, i.e.,

γk+1 = θ(Zk1 ), k ∈ N+,
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with γ1 being determined by the a priori knowledge about the
system. In addition to the stopping rule (the rule stating when
the decision maker declares the change event), the scheduling
policy θ should be determined.

Denote by Pθν and Eθν the probability measure and expec-
tation when the scheduling policy θ is used and the change
event happens at ν, and denote the same by Pθ∞ and Eθ∞ when
there is no change. It is assumed that each sample Xk incurs
cost cX , while each sample Yk incurs cY with cY > cX . Let
the cost of sampling at k be cZ = 1{γk=0}cX + 1{γk=1}cY .
Let T be the stopping time, i.e., {T = k} is measurable
with respect to the σ-algebra generated by Zk1 . The following
average sampling cost constraint is considered:

c(θ) = lim sup
n→∞

1

n
Eθ∞

[
n∑
k=1

cZ

∣∣∣∣T > n

]
≤ c̄, (2)

where cX < c̄ ≤ cY is a design parameter. The quantity
c(θ) is the average cost per sample before the change event.
Note that in the cost (2), which is inspired by the identical
metric first proposed in [1] for data-efficient quickest change
detection, we do not include the sampling cost for the interval
between the actual change event and when it is detected. In
practice, this additional cost usually can be neglected, since
the detection delay is usually very small compared with the
ARLFA. The asymptotic optimality result of the paper does
not hold if the total cost is considered.

Given the pair of scheduling policy and stopping time
(θ, T ), there are two indices to characterize the detection
performance: detection delay and false detection. For detection
delay, we use Lorden’s criterion [16]:

dL(θ, T ) = sup
1≤ν<∞

dνL(θ, T ),

dνL(θ, T ) := ess supEθν [(T − ν + 1)+|Zν−1
1 ], (3)

with Z0
1 := ∅ by convention. The delay dL(θ, T ) is largest

delay one may encounter when the scheduling policy θ is used.
It is considered in the worst-worst case (the least favorable re-
alization of the observations and the change time). We should
remark that the asymptotic optimality results (Theorem 2)
also hold when Pollak’s criterion [17] is used. It is well
known that if dL(T,Θ) is finite, false alarm is inevitable, i.e.,
Pθ∞(T < ν) = 1 [16]. A reasonable measurement of false
detection is the ARLFA: Eθ∞[T ]. Note that 1/Eθ∞[T ] can be
interpreted as the frequency of false alarms.

We aim to find an optimal joint design of scheduling policy
and stopping rule such that the detection delay is minimized
subject to constraints on both false detection and average
sensing cost. This problem is formally stated as follows.

Problem 1.

minimize
(θ,T )

dL(θ, T ),

subject to Eθ∞[T ] ≥ ζ, (4)
c(θ) ≤ c̄, (5)

where ζ ≥ 1 is a given lower bound of the ARLFA and cX <
c̄ ≤ cY an upper bound on the average sampling cost.

III. MAIN RESULTS

In this section, the proposed OS-CuSum algorithm is given
and its properties are analyzed. The OS-CuSum algorithm
is optimal in the asymptotic regime as the ARLFA goes to
infinity. We should remark that it is too difficult to obtain
the strictly optimal solution to Problem 1; see the relevant
literatures [1], [12], [20]. In practice, scenarios where the
probability of false alarm is sufficiently small (i.e., the ARLFA
is sufficiently large) are more interesting.

A. The Observation Scheduling CuSum Algorithm

Let a, b be given parameters with 0 ≤ b ≤ a. The stopping
time and the observation scheduling policy are given by

T = inf{k : sk ≥ a},

θ(Zk1 ) =

{
0, if sk < b,
1, otherwise,

where sk evolves as

s0 = 0,

s̃k = (sk−1 + `(Zk))
+
,

sk =

 b, if s̃k ≥ b, sk−1 < b, εk ≤ p ,
0, if s̃k ≥ b, sk−1 < b, εk > p ,
s̃k, otherwise,

where `(Zk) = ln
gX(Zk)1{γk=0}+gY (Zk)1{γk=1}
fX(Zk)1{γk=0}+fY (Zk)1{γk=1}

is the log-
likelihood ratio of Zk and εk ∼ unif(0, 1) is uniformly
distributed and independent of Xk or Yk.

Remark 1. The OS-CuSum algorithm is a variant of the
CuSum algorithm with stochastically switching observation
modes. If b = 0 (b = a), the algorithm reduces to the CuSum
algorithm with Zk = Yk (Zk = Xk), ∀k ∈ N+. The random
variable εk is introduced to make sk cross b stochastically,
which makes it possible for the OS-CuSum algorithm to satisfy
any average sampling cost constraint as well as to attain the
asymptotic optimality (see proof of Theorem 2). If p = 1, sk
crosses b deterministically and the sampling cost cannot be
set arbitrarily by only adjusting b.

Remark 2. Here we compare our algorithm with the DE-
CuSum algorithm proposed in [1]. The DE-CuSum algorithm
is a variant of the CuSum algorithm that allows the detection
statistic to be negative. When the statistic is negative, it does
not update with the likelihood ratio of the observations (and
the sensor does not sample) but increases with a constant
each time instant. The DE-CuSum algorithm is for the “data-
efficient” scenario and one cannot apply it in our case. This
is because when the statistic increases with a constant, it does
not utilize the information of the observations at all, which will
inevitably cause performance deterioration when the ARLFA
takes moderate values. Efficiently utilizing the information of
both sequences of observations to satisfy the sampling cost
constraint as well as to possess good detection performance
is challenging for the algorithm design. We thus introduce
the stochastic crossing mechanism. We should remark that
such stochastic crossing mechanism has not been found in
the quickest change detection related literatures. Note that
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not sampling can be viewed as a special observation, of which
both the K–L divergence and cost are zero. Our algorithm can
be slightly modified to work in the “data-efficient” scenario.
One may modify it as follows. Let b = 0 and the number
of the time instants sk stays at zero, once it becomes zero,
be geometrically distributed with parameter p that can be
adjusted. Note that the undershoot in the statistics is utilized
in the DE-CuSum algorithm, while the OS-CuSum algorithm
does not use such information. Thus compared to the DE-
CuSum algorithm, the OS-CuSum algorithm (specialized to
data-efficient scenarios) might suffer from some performance
loss.

Remark 3. It might happen that our algorithm
cannot satisfy the average cost per sample constraint
when c̄ is close to cY . This is because for any
b > 0, lim supn→∞

1
nE

θ
∞

[∑n
k=1 1{γk=0}

∣∣∣T > n
]

>

limk→∞ Pθν{sk = 0} > 0. To cope with this, one can
adopt “stochastic restart”, i.e., γk+1 = 0 with certain
probability (less than one) whenever sk = 0. The main results
(Theorems 1–3 and Corollary 1) can be easily generalized
to the case with stochastic restart. In practice, however,
the more interesting situation is when the average cost per
sample constraint is severe, i.e., c̄ is close to cX . We only
study the algorithm with deterministic restart for simplicity
of presentation.

In the remainder of this paper, the stopping time of the
OS-CuSum algorithm is referred to as T(a,b,p). Since the
algorithm is completely characterized by (a, b, p), to highlight
the specific values of these parameters, we also use T(a,b,p)

to represent the algorithm. The properties of the OS-CuSum
algorithm are given in the following.

B. Asymptotic Optimality

Theorem 1. The OS-CuSum algorithm is an equalizer rule,
i.e., dL(T(a,b,p)) = dνL(T(a,b,p)), ∀ν ∈ N+.

Proof: When b = 0 or b = a, the OS-CuSum algorithm
reduces to the CuSum algorithm. It is well known that the
CuSum algorithm is an equalizer rule [10].

When 0 < b < a, following the same reasoning as in proof
of Lemma 1 and Theorem 1 in [22], one obtains the desired
result.

Remark 4. This property is beneficial to reduce the computa-
tional burden to determine the parameters of the algorithm. In
general, the parameters can only be determined by numerical-
ly evaluating the performance indices, which include dL(θ, T ).
The property of Theorem 1, however, means that for simplicity,
one can just let ν = 1.

Before presenting the main theorem, we first give a sup-
porting lemma that provides the asymptotic lower bound
of detection delay for any scheduling policy and detection
procedure. The proof is presented in Appendix A.

Lemma 1. For any cX < c̄ ≤ cY , scheduling policy θ and

stopping time T , as ζ →∞,

inf{dL(θ, T ) : Eθ∞[T ] ≥ ζ}

≥ ln ζ

max(I(gX ||fX), I(gY ||fY ))
(1 + o(1)). (6)

Note that since cX < c̄ ≤ cY , if I(gX ||fX) ≥ I(gY ||fY ), to
achieve the asymptotic optimality, the observation Xk can be
sampled along the whole horizon, i.e., T(ln ζ,ln ζ,p) is asymp-
totically optimal. We henceforth assume that I(gX ||fX) <
I(gY ||fY ).

Theorem 2. For any cX < c̄ ≤ cY , ζ > 1 and 0 < b <
ln ζ, there exists 0 < p∗ ≤ 1 such that T(ln ζ,b,p), p ∈ (0, p∗],
satisfies the constraints (4) and (5). What is more, T(ln ζ,b,p)

with p ∈ (0, p∗] is asymptotically optimal, i.e., as ζ →∞

dL(T(ln ζ,b,p)) ≤
ln ζ

I(gY ||fY )
(1 + o(1)). (7)

Proof: See Appendix B.

Remark 5. The mechanism of stochastically crossing b from
below (when p < 1) is introduced to satisfy any average
sampling cost constraints as well as to attain the asymptot-
ic optimality. This stochastic crossing mechanism increases
(compared with p = 1) the duration when sk ∈ [0, b], which,
alas, inevitably increases the detection delay Eθ1[T(ln ζ,b,p)].
Fortunately, given p, the increment of Eθ∞[T(ln ζ,b,p)] generally
significantly exceeds that of Eθ1[T(ln ζ,b,p)], which means that
the ARLFA constraint (4) can be satisfied with a relatively
small cost (the detection delay is increased). This can be
verified using Wald’s approximation (Page 11, [28]), which is
an approximation method that relates the expected sample size
with the two thresholds for a two-sided sequential probability
ratio test. By Wald’s approximation, Eθ∞[T(b,b,p)] = |eb−b−1|

pI(fX ||gX)

and Eθ1[T(b,b,p)] = |e−b+b−1|
pI(gX ||fX) .

Remark 6. One can see in the proof that the OS-CuSum
algorithm can be easily generalized to the scenario where
multiple sequences of observations are available. The OS-
CuSum algorithm might be modified as follows: the sequence
of observations that has the largest K-L divergence, say
Imax(g||f), are sampled when sk ≥ b, and any other ob-
servations are sampled when sk < b. It can be verified that
the asymptotically optimal detection delay only depends on
Imax(g||f).

IV. MULTI-CHANNEL OBSERVATION SCHEDULING

In this section, we study the quickest change detection with
observation scheduling in the multi-channel setting, which is
illustrated in Fig. 2. Suppose that the target is monitored
by M sensors. Denote by M = {1, 2, . . . ,M} the set of
sensors. Sensor m ∈ M can access Xm,k or Ym,k and sends
a message to the fusion center at each time instant. At an
unknown time instant ν, an event occurs and the distribution
of the observations for an unknown subset of the sensor nodes
change. Let Ξ ⊆M be the set of sensors that are affected. It
is assumed that at sensor m ∈ Ξ, the observations before the
change Xν−1

m,1 (Y ν−1
m,1 ) are i.i.d. with density fX,m (fY,m) and
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the observations after the change X∞m,ν (Y∞m,ν) are i.i.d. with
gX,m (gY,m). For a sensor m 6∈ Ξ, the observations {Xm,k}
({Ym,k}) are i.i.d. with density fX,m (fY,m) along the whole
horizon. It is assumed that the observations are independent
across the sensors. We aim to find the optimal stopping time
at the fusion center and the optimal observation scheduling
policy for each sensor node.

In addition to the finiteness and positiveness assumption of
the K–L divergence of pre-change and post-change distribu-
tions at each sensor node as in Assumption 1, for the multi-
channel scenario we further assume that the second moment
of the K–L divergence of {Ym,k} is finite:∫

gY,m(x)

(
ln
gY,m(x)

fY,m(x)

)2

dx <∞. (8)

This is a technical requirement for Theorem 3 to bound the
asymptotic detection delay. Similar assumptions can be found
in [2], [13], [27].

Let γm,k, Zm,k, θm, cm,X , cm,Y , cm,Z be the corresponding
parts of γk, Zk, θ, cX , cY , cZ defined in Section II for sen-
sor m. Let Θ = {θ1, . . . , θM} be the observation scheduling
policy for the whole sensor network. Denote by PΘ,Ξ

ν and EΘ,Ξ
ν

the probability measure and expectation when the scheduling
policy Θ is used, the change event happens at ν and the sensor
m ∈ Ξ is affected, and denote the same by PΘ,Ξ

∞ and EΘ,Ξ
∞

when there is no change. Let T be the stopping time at the
fusion center. We consider the constraint on average sampling
cost before the change for each sensor:

cm(Θ) = lim sup
n→∞

1

n
EΘ,Ξ
∞

[
n∑
k=1

cm,Z

∣∣∣∣T > n

]
≤ c̄m, (9)

where cm,X < c̄m ≤ cm,Y is a design parameter. Let Zk =
{Z1,k, . . . , ZM,k}. The Lorden’s detection delay is given by

dL(Θ, T ) = sup
1≤ν<∞

ess supEΘ,Ξ
ν [(T − ν + 1)+|Zν−1

1 ].

The problem of optimal joint design of multi-channel observa-
tion scheduling policy and stopping rule is stated as follows:

Problem 2. For any non-empty Ξ ⊆M,

minimize
(Θ,T )

dL(Θ, T ),

subject to EΘ,Ξ
∞ [T ] ≥ ζ, (10)

cm(Θ) ≤ c̄m,∀m ∈M, (11)

where ζ ≥ 1 is a given lower bound of the global ARLFA and
cm,X < c̄m ≤ cm,Y is an upper bound on average sampling
cost for the sensor m.

The MOS-CuSum algorithm is as follows. Each sensor
runs the observation scheduling policy proposed in Section III
locally. The stopping rule Nsum proposed in [20] is used at
the fusion center. The details are as follows. The observation
scheduling policy at sensor m is given by

θm(Zkm,1) =

{
0, if sm,k < bm ,
1, if sm,k ≥ bm ,

(12)
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Fig. 2: Quickest change detection with observation scheduling
in a multi-channel setting. Each smart sensor corresponds to
the red-dashed rectangle in Fig. 1.

where sm,k evolves as

sm,0 = 0,

s̃m,k = (sm,k−1 + `(Zm,k))
+
,

sm,k =

 bm, if s̃m,k ≥ bm, sm,k−1 < bm, εm,k ≤ pm,
0, if s̃m,k ≥ bm, sm,k−1 < bm, εm,k > pm,
s̃m,k, otherwise,

with εm,k ∼ unif(0, 1) being uniformly distributed and inde-
pendent of Xm,k or Ym,k. The stopping time at the fusion
center is

T = inf{k :
M∑
m=1

sm,k ≥ a}.

Remark 7. Because the observation scheduling policy runs
locally at each sensor node, the algorithm inherits the scala-
bility of the Nsum procedure, see [20].

In the following, we show the asymptotic optimality of the
MOS-CuSum algorithm for any possible non-empty Ξ, which
is a generalization of the results obtained in [20]. With a little
abuse of notation, let b = [b1, . . . , bm] and p = [p1, . . . , pm].
To specifically point out the parameters used, as for the
OS-CuSum algorithm, we henceforth call the MOS-CuSum
algorithm (also the stopping time) T (a, b, p). As in Section III,
we assume that I(gY,m||fY,m) ≥ I(gX,m||fX,m),∀m ∈M.

Theorem 3. For any possible non-empty Ξ ⊆M, finite b � 0
and 0 ≺ p � 1, as a→∞,

dL(T (a, b, p)) ≤ a∑
m∈Ξ I(gY,m||fY,m)

(1 + o(1)), (13)

EΘ,Ξ
∞ [T (a, b, p)] ≥ ea

1 + a+ a2/2! + · · ·+ aM−1/(M − 1)!
.

(14)

Proof: See Appendix C.

Remark 8. In [2], a similar algorithm called DE-Censor-
Sum algorithm is studied. In the DE-Censor-Sum algorithm,
the DE-CuSum algorithm proposed in [1] runs locally at the
sensor nodes and the Nsum procedure in [20] is used at the
fusion center. Despite the similarities, the methodology used
to bound the asymptotic detection delay of the MOS-CuSum
algorithm (i.e., equation (13)) is completely different from that
in [2]. We remark that our method is much simpler, and since
our method also works in the scenarios studied in [2], it pro-
vides another perspective on the asymptotic detection delay of
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Fig. 3: Typical evolution of the OS-CuSum algorithm. In the
top plot, the red stars are used to indicate when the observation
Yk is sampled.

the DE-Censor-Sum algorithm. Also, compared with the DE-
Censor-Sum algorithm, our algorithm requires slightly more
effort to bound its asymptotic ARLFA (i.e., equation (14)).

Corollary 1. Let aζ = ln ζ + (M − 1) ln ln ζ. Then for any
non-empty Ξ ⊆ M, cm,X < c̄m ≤ cm,Y and finite b, there
exists 0 ≺ p∗ � 1 such that for any p � p∗, as ζ → ∞,
T (aζ , b, p) satisfies (10) and sampling cost constraints (11)
for any c̄m, and also minimizes the detection delay, i.e.,

dL(T (aζ , b, p)) ≤
ln ζ∑

m∈Ξ I(gY,m||fY,m)
(1 + o(1)).

Proof: The existence of p∗ such that the sampling cost
constraint is satisfied can be easily verified using the similar
analysis of the proof of Lemma 5.

By (14), as in Corollary 1 of [20], it is straightforward to
show that as ζ →∞, T (aζ , b, p) satisfies (10).

One can easily generalize Lemma 1 to the decentralized
case. That is, given any non-empty Ξ and c̄m, for any (Θ, T ),
as ζ →∞, if EΘ,Ξ

∞ [T ] ≥ ζ, then

dL(Θ, T ) ≥ ln ζ∑
m∈Ξ I(gY,m||fY,m)

(1 + o(1)).

The asymptotic optimality of T (aζ , b, p) thus follows directly
from (13).

V. NUMERICAL EXAMPLES

In this section, first we illustrate the behavior of the
proposed OS-CuSum and MOS-CuSum algorithms through a
numerical example. Then we use two examples to illustrate
the asymptotic optimality of the OS-CuSum (Theorem 2) and
the MOS-CuSum (Corollary 1). Lastly, we compare the OS-
CuSum algorithm with two simple heuristic schemes: one
periodic scheme and one stochastic scheme.
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Fig. 4: Typical evolution of the MOS-CuSum algorithm. The
top three plots are plotted as in Fig. 3: the black curve
represents the observation Xm,k, the blue one represents the
observation Ym,k and the red stars are used to indicate when
the observation Ym,k is sampled.

Example 1. To illustrate the OS-CuSum algorithm, it is
assumed that fX ∼ N (0, 2), gX ∼ N (0.75, 2), fY ∼ N (0, 1)
and gY ∼ N (0.75, 1). We assume that the change event
happens at k = 50 and let a = 8, b = 1, p = 0.95. For the
MOS-CuSum algorithm, it is assumed that M = 3 sensors
are deployed: for m ∈ {1, 2, 3}, fX,m ∼ N (0, 2), gX,m ∼
N (0.5, 2), for m ∈ {1, 3}, fY,m ∼ N (0, 1), gY,m ∼ N (0.5, 1)
and fY,2 ∼ N (0, 1), gY,2 ∼ N (1, 1). It is further assumed
that when the change event happens, only sensors 1 and 2
are affected. Let b = [1, 2, 1], p = [1, 1, 1] and a = 8. As
illustrated in Fig. 3 and Fig. 4, the underlying mechanism of
the observation scheduling policy can be heuristically stated
as follows: before the change event happens, at most times
the inexpensive observations Xk (or Xm,k) are sampled to
satisfy the sampling cost constraint, while after the change
event happens (this period is always quite short, since it is
just the detection delay we aim to minimize), the expensive
but informative observations Yk (or Ym,k) are sampled at
most times to minimize the detection delay. In Fig. 4, one
can also see that compared with sensor 1, sensor 2 samples
less informative observations (Y2,k) due to that b2 is larger
than b1. The detection statistic s2,k, however, eventually
dominates s1,k and s3,k as illustrated in the bottom plot.
Heuristically, it is because Y2,k contains more information than
Y1,k, i.e., I(gY,2||fY,2) > I(gY,1||fY,1). We conclude that this
example illustrates how the OS-CuSum and the MOS-CuSum
algorithms are able to automatically schedule the sampling
attention to the appropriate observations and sensors.

Example 2. We use the same fX , gX , fY and gY as in Ex-
ample 1. By simple calculation, one obtain that 2I(gX ||fX) =
I(gY ||fY ) = 9/32. The other parameters are as follows:
cX = 1, cY = 1.5, c̄ = 1.1. Given constraints on both the
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Fig. 5: Detection delay versus the ARLFA for the OS-CuSum
algorithm.

ARLFA and average cost per sample, there exist multiple
admissible parameter pairs (a, b, p) for the proposed algorithm.
Fix b = 0.68, p = 0.95 and vary a (sufficiently large) to obtain
different ARLFA and delays (as long as a is sufficiently large,
the average cost per sample remains almost the same). As
shown in Fig. 5, the experimental curve and the curve for
theoretically asymptotic lower bound of detection delay are
parallel, which indicates the asymptotic optimality of the OS-
CuSum algorithm (Theorem 2), since as ζ →∞, the delay gap
is negligible. Note that with the same ARLFA, our algorithm
has smaller detection delay than the theoretic lower bound.
This is acceptable because ln ζ/Imax can is a lower bound of
detection delay only in the asymptotic regime. One can find a
similar simulation result in Fig. 3 of [12].

Example 3. In this example, the asymptotic optimality of
the MOS-CuSuam algorithm (Corollary 1) is illustrated. It is
assumed that M = 5 identical sensors are deployed, and the
same fX,m, gX,m, fY,m and gY,m as for sensor 1 and 3 in
Example 1 are used. It is assumed that sensor 1 and sensor
2 are affected when the change event happens, but the fusion
center is not aware of this. We let pm = 1, ∀m. Note that
the value of pm only affects the average sampling cost and
does not affect the asymptotic optimality of the MOS-CuSum
algorithm. As in Example 2, we fix bm for each sensor and
vary a to obtain the curve for our algorithm, which is shown
in Fig. 6. We use the Nsum algorithm with fixed observation
mode (the observation {Ym,k} is used at each time instant
for each sensor) for comparison. Since the Nsum algorithm
is asymptotically optimal [20] and the observation {Ym,k} is
more favorable than {Xm,k}, the detection performance of
the Nsum algorithm with observation {Ym,k} is the limit of
our algorithm. Fig. 6 verifies the asymptotic optimality of our
algorithm since the two curves are parallel.

Example 4. In this example, we illustrate the detection
performance of the OS-CuSum algorithm by comparing it
with a periodic scheme and a stochastic scheme. In the
both schemes, the conventional CuSum algorithm is used
as the detection procedure and the observation scheduling
policies are independent of the realization of observations.
Note that the energy constraint in (2) can be reinterpreted as
a bound of the ratio the number of Yk to that of Xk. Suppose
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Fig. 6: Detection delay versus the ARLFA for the MOS-
CuSum algorithm.
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Fig. 7: Detection delay versus the ARLFA for the proposed
OS-CuSum algorithm and two heuristic algorithms.

that lim supn→∞ Eθ∞[
∑n
k=1 1{γk=1}]/Eθ∞[

∑n
k=1 1{γk=0}] ≤

q1/q2 (assume that q1/q2 is a simple fraction), then the
observation scheduling policy for the periodic scheme is give
by

γk =

{
0, if k mod (q1 + q2) < q2,
1, otherwise, (15)

and the observation scheduling policy for the stochastic
scheme is as follows:

γk =

{
0, if ε̃k ≤ q2/(q1 + q2),
1, otherwise, (16)

where ε̃k ∼ unif(0, 1) is uniformly distributed and indepen-
dent of the observations. Let fX , gX , fY and gY be the same
as in Example 1. Let q1/q2 = 3/7. Fig. 7 shows that the
OS-CuSum algorithm significantly outperforms the periodic
scheme and the stochastic one. It should be noted that as the
ARLFA increases, the delay difference between our algorithm
and the other two algorithms increases. This is because the OS-
CuSum algorithm is asymptotically optimal while the other
two are not. The detection difference goes to infinity as the
ARLFA goes to infinity.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have studied the quickest change detection
with observation scheduling in the minimax setting. Obser-
vation sequences with different cost and information quality
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are available at the decision maker, but the decision maker
can access only one of them due to various limitations. We
considered the Lorden’s criterion for the detection delay. An
algorithm was proposed: the observation scheduling policy
has a threshold structure and the detection procedure is a
variant of the CuSum algorithm where the detection statistic
stochastically crosses the threshold used for the scheduling
policy. We proved that the algorithm asymptotically minimizes
(as the ARLFA goes to infinity) the detection delay for any
average cost per sample constraint. We further studied the
quickest change detection with observation scheduling in the
multi-channel setting. We show that when each sensor uses the
proposed observation scheduling policy locally and the fusion
center uses the Nsum algorithm, the global detection delay
is asymptotically minimized for any average cost per sample
constraint for each sensor node and any possible combination
of the sensors that are affected by the change event.

Future work includes studying the problem in the Bayesian
setting and considering total cost of sampling constraint in-
stead of average cost.

APPENDIX A
PROOF OF LEMMA 1

Let Imax = max(I(gX ||fX), I(gY ||fY )). Before proceed-
ing, we firs give the following two supporting lemmas. In
Lemma 2, we show that for any possible scheduling policy
and realizations, the long averaged log likelihood ratio of the
available observations is bounded by the term Imax.

Lemma 2. For any ν ≥ 1, realization Zν−1
1 and scheduling

policy θ, as n→∞

1

n

ν+n−1∑
k=ν

`(Zk) ≤ Imax

holds almost surely under Pθν .

Proof: Define a sequence of random variables
{kX(i)}i∈N+

as

kX(1) = inf{k : k ≥ ν, γk = 0},
kX(i) = inf{k : k > kX(i− 1), γk = 0},∀i ≥ 2,

and let īX(n) = max{i : kX(i) < n}. Note that the
term īX(n) is the number of observations {Xk} are sampled
between time instants ν and n. The quantities {kY (i)}i∈N+

and īY (n) are defined similarly. Then one can see that for
any Zν−1

1 and θ, ZkX(i) (ZkY (i)) are i.i.d. ({Zk} of course
is not i.i.d., but the dependence of {Zk} is captured by the
values of {kX(i)} and {kY (i)}) with density gX (gY ) under
Pθν . The strong law of large number (SLLN) yields that under
Pθν ,

lim
īX(n)→∞

`(ZkX(1)) + · · ·+ `(ZkX (̄iX(n)))

īX(n)

a.s.→ I(gX ||fX),

lim
īY (n)→∞

`(ZkY (1)) + · · ·+ `(ZkY (̄iY (n)))

īY (n)

a.s.→ I(gY ||fY ).

Let αX = limn→∞
īX(n)
n and αY = limn→∞

īY (n)
n . Then by

Assumption 1, under Pθν , as n→∞

1

n

ν+n−1∑
k=ν

`(Zk)

=
īX(n)

n

1

īX(n)

īX(n)∑
i=1

ZkX(i) +
īY (n)

n

1

īY (n)

īY (n)∑
i=1

ZkY (i)

a.s.→

 I(gX ||fX), if i∞Y = 0,
I(gY ||fY ), if i∞X = 0,
αXI(gX ||fX) + αY I(gY ||fY ), otherwise.

Note that αX + αY = 1, the desired result follows easily.
For any ν ≥ 1 and given n, define

tnν = arg max
t≤n

ν+t∑
k=ν

`(Zk)

as the time that the random walk (with each step taking
`(Zk)) reaches its maximum between ν and n. Then about
the asymptotic behavior of tnν , we have the following lemma.

Lemma 3. For any ν ≥ 1, realization Zν−1
1 and scheduling

policy θ, as n→∞

tnν →∞

holds with probability one under Pθν .

Proof: Let t∆ = n− tnν . Then by definition of tnν ,

Pθν{t∆ = i} < Pθν

{ ν+tnν+i∑
k=ν+tnν+1

`(Zk) < 0

}
.

By Lemma 2, for any ν, tnν and θ, as t∆ →∞,

ν+tnν+t∆∑
k=ν+tnν+1

`(Zk)
a.s.→ ∞,

which implies that Pθν{t∆ <∞} = 1. The desired result thus
follows.

We are ready to prove Lemma 1. By theorem 1 of [29],
to obtain (6), it suffices to prove that given an arbitrary
scheduling policy θ, for any δ > 0

lim
n→∞

sup
ν≥1

ess supPθν
{

max
t≤n

ν+t∑
k=ν

`(Zk) ≥ Imax(1 + δ)n
∣∣Zν−1

1

}
= 0. (17)
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For any ν ≥ 1,

lim
n→∞

ess supPθν
{

max
t≤n

ν+t∑
k=ν

`(Zk) ≥ Imax(1 + δ)n
∣∣Zν−1

1

}
= lim
n→∞

ess supPθν
{ 1

n

ν+tnν∑
k=ν

`(Zk) ≥ Imax(1 + δ)
∣∣Zν−1

1

}
≤ lim
n→∞

ess supPθν
{ 1

tnν

ν+tnν∑
k=ν

`(Zk) ≥ Imax(1 + δ)
∣∣Zν−1

1

}
= lim
tnν→∞

ess supPθν
{ 1

tnν

ν+tnν∑
k=ν

`(Zk) ≥ Imax(1 + δ)
∣∣Zν−1

1

}
= 0,

where the second equality follows from Lemma 3 and the
last equality follows from Lemma 2. The relation (17) thus
follows.

APPENDIX B
PROOF OF THEOREM 2

This proof is done by relating our algorithm T(ln ζ,b,p) to the
classical CuSum algorithm T(ln ζ,0,p). The algorithm T(ln ζ,b,p)

is treated as a sequence of two-sided sequential probability
ratio tests (SPRTs) with two different distributions (since the
observation modes are switching).

We first show that for any switching threshold b, by ap-
propriately choosing the successful crossing probability p, the
ARLFA of our algorithm can be larger than that of the classical
CuSum algorithm with same and arbitrary stopping threshold
a. What is more, p can be chosen independent of a.

Lemma 4. For any 0 < b < a, there exists 0 < p̂ < 1 such
that p̂ only depends on b and for any p ∈ (0, p̂], Eθ∞[T(a,b,p)] ≥
Eθ∞[T(a,0,p)].

Proof: Let T c(a,b,ω) be the stopping time T c(a,b,ω) = inf{k :
sck ≥ a}, where sck starts at ω ≥ 0 and evolves as

s̃ck =
(
sck−1 + `(Yk)

)+
,

sck =

{
b, if s̃ck ≥ b, sck−1 < b,
s̃ck, otherwise.

Note that here the observations {Yk} are used at each time
instant. Let s∗k be the detection statistic of the algorithm
T(a,0,p). Note that due to the reset action when crossing b
from below and the nonegative initial value ω for sck, for any
realization Y k1 and k ≥ 1, sck ≤ s∗k, the following thus holds:

Eθ∞[T c(a,b,0)] ≥ E∞[T(a,0,p)]. (18)

Define

φ = inf{i :
i∑

k=1

`(Zk) < 0 or
i∑

k=1

`(Zk) > a− b}, (19)

ψ =

(
b+

φ∑
k=1

`(Zk)

)+

. (20)

Note that φ is a stopping time indicating how long sk stays in
[a, b] each time when it enters into this interval, and ψ is the

value sk takes when it jumps out. Let W(a,b,p,ω) be a stopping
time defined in the same manner as T(a,b,p) but with the initial
start s0 = ω ≥ 0.

Interpreting both T(a,b,p) and T c(a,b,0) as a sequence of two-
sided SPRTs and by Wald’s identity (Page 12, [28]), one
obtains that

Eθ∞[T c(a,b,0)]

= Eθ∞[T c(b,0,0)] + Eθ∞[φ]
1

P∞{ψ ≥ a}

+ Eθ∞
[
T c(b,0,ψ)

∣∣ψ < b
] 1− P∞{ψ ≥ a}

P∞{ψ ≥ a}
,

Eθ∞[T(a,b,p)]

= Eθ∞[W(b,b,p,0)] + Eθ∞[φ]
1

P∞{ψ ≥ a}

+ Eθ∞
[
W(b,b,p,ψ)

∣∣ψ < b
] 1− P∞{ψ ≥ a}

P∞{ψ ≥ a}
.

Then

Eθ∞[T(a,b,p)]− Eθ∞[T c(a,b,0)]

=Eθ∞[W(b,b,p,0)]− Eθ∞[T c(b,0,0)] +
(
Eθ∞

[
W(b,b,p,ψ)

∣∣ψ < b
]

− Eθ∞
[
T c(b,0,ψ)

∣∣ψ < b
]) 1− P∞{ψ ≥ a}

P∞{ψ ≥ a}
. (21)

Given a and b, both Eθ∞[W(b,b,p,0)] and Eθ∞
[
W(b,b,p,ψ)

∣∣ψ < b
]

monotonically go to infinity as p → 0, while the other
quantities in (21) are unrelated to p. Combining (18), we
notice that to complete the proof, it suffices to prove the
independence of p̂ on a. Obviously, both Eθ∞[W(b,b,p,0)] and
Eθ∞[T c(b,0,0)] are unrelated with a. Also one can see that

Eθ∞
[
T c(b,0,ψ)

∣∣ψ < b
]
≤ Eθ∞[T c(b,0,0)]. We then show in the

following that Eθ∞
[
W(b,b,p,ψ)

∣∣ψ < b
]

can be bounded below
by a quantity that is independent of a.

Eθ∞
[
W(b,b,p,ψ)

∣∣ψ < b
]

=Pθ∞{ψ = 0|ψ < b}Eθ∞[W(b,b,p,0)]

+

∫ b−

0+

Eθ∞
[
W(b,b,p,ω)

]
dPθ∞{ψ ≤ ω

∣∣ψ < b}

=Pθ∞{ψ = 0|ψ < b}Eθ∞[W(b,b,1,0)]
1

p
+

∫ b−

0+

(
Eθ∞

[
W(b,b,1,ω)

]
+Eθ∞[W(b,b,1,0)]

1− p
p

)
dPθ∞{ψ ≤ ω

∣∣ψ < b}

≥Eθ∞[W(b,b,1,0)]
1− p
p

, (22)

where the second equality follows from Wald’s identity. The
proof thus is complete.

As in Lemma 4, in the following lemma we prove that p
can be chosen independent of a such that the sampling cost
constraint is satisfied.

Lemma 5. For any cX < c̄ ≤ cY and b > 0, there exists
0 < p̄ < 1 such that p̄ is independent of a and T(a,b,p) with
p ∈ (0, p̄] uniformly satisfies the average sampling cost (2) for
any a ≥ b.
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Proof: Let φ̄ be the limit value φ takes as a goes to
infinity, i.e.,

φ̄ = inf{i :
i∑

k=1

`(Zk) < 0}.

As in the proof of Lemma 4, by interpreting the algorithm
as a sequence of two-sided SPRTs, one can see that for any
T(a,b,p),

lim sup
n→∞

1

n
Eθ∞

[
n∑
k=1

cZ

∣∣∣∣T(a,b,p) > n

]

≤ lim sup
n→∞

1

n− T(b,b,p)
Eθ∞

 n∑
k=T(b,b,p)+1

cZ

∣∣∣∣T(a,b,p) > n


=
cXEθ∞

[
W(b,b,p,ψ)

∣∣ψ < b
]

+ cY Eθ∞
[
φ
∣∣ψ < b

]
Eθ∞

[
W(b,b,p,ψ)

∣∣ψ < b
]

+ Eθ∞
[
φ
∣∣ψ < b

]
≤
cXEθ∞

[
W(b,b,p,ψ)

∣∣ψ < b
]

+ cY Eθ∞
[
φ̄
]

Eθ∞
[
W(b,b,p,ψ)

∣∣ψ < b
]

+ Eθ∞
[
φ̄
]

:=c̆(θ)

where the first inequality follows from the fact that γk =
0, ∀k ∈ [1, T(b,b,p)]; the first equality follows from the alter-
nating renewal process theory (Page 173, [30]); the second
inequality follows from the fact that c̆(θ) is monotonically
increasing with Eθ∞

[
φ
∣∣ψ < b

]
and Eθ∞

[
φ
∣∣ψ < b

]
↑ Eθ∞[φ̄]

as a → ∞. It is well known that E[φ̄] < ∞ (e.g., Corol-
lary 2.4, [31]). Then by (22), one completes the proof.

We shall prove Theorem 2 now. It is well known that
Eθ∞[T(ln ζ,0,p)] > ζ (e.g., Lemma 1, [27]). By Lemma 4 and 5,
to satisfy the constraint (4) and (5), one can let p∗ = min(p̄, p̂).
We then focus on (7). To highlight a = ln ζ, with a little abuse
of notation, in the remainder of this proof we rewrite φ in (19)
and ψ in (20) as φ(ln ζ) and ψ(ln ζ), respectively. Since

Eθ1
[
W(b,b,p,ψ(ln ζ))

∣∣ψ(ln ζ) < b
]
≤ Eθ1[T(b,b,p)]

and given b and p, as ζ →∞
Eθ1[T(b,b,p)]

Eθ1[φ(ln ζ)]
→ 0,

one obtains that

Eθ1[T(ln ζ,b,p)]

= Eθ1[T(b,b,p)] + Eθ1[φ(ln ζ)]
1

P1{ψ(ln ζ) ≥ ln ζ}

+ Eθ1
[
W(b,b,p,ψ(ln ζ))

∣∣ψ(ln ζ) < b
] 1− P1{ψ(ln ζ) ≥ ln ζ}

P1{ψ(ln ζ) ≥ ln ζ}

= Eθ1[φ(ln ζ)]
1

P1{ψ(ln ζ) ≥ ln ζ}
(1 + o(1)), as ζ →∞

≤ ln ζ − b
I(gY ||fY )

(1 + o(1)), as ζ →∞

≤ ln ζ

I(gY ||fY )
(1 + o(1)), as ζ →∞,

where the first inequality follows from Wald’s identity and the
well established properties of the CuSum algorithm (Page 142
and 159, [10]). The proof is complete.

APPENDIX C
PROOF OF THEOREM 3

A. Proof of equation (13)

In this section, we focus on the proof of equation (13). To
this end, we define the following:

K∗ = sup{k : ∃m ∈ Ξ such that γm,k = 0},
K∗m = sup{k : γm,k = 0},m ∈ Ξ.

Note that after the time instant K∗, all the affected sensor
nodes consistently use the expensive observations {Ym,k}. The
term K∗m has a similar meaning, but only for the sensor m.
In the following lemma, we show that for the MOS-CuSum
algorithm T(a,b,p), when a goes to infinity, the expected value
of K∗ remains finite.

Lemma 6. For any non-empty Ξ, ν <∞ and the MOS-CuSum
algorithm T(a,b,p) with any finite b and 0 ≺ p � 1, as a→∞,
there holds

EΘ,Ξ
ν [K∗] <∞.

Proof: Note that since

EΘ,Ξ
ν [K∗] =ν + EΘ,Ξ

ν [max
m∈Ξ

(K∗m − ν)]

≤ν +
∑
m∈Ξ

EΘ,Ξ
ν [K∗m − ν],

it suffices to prove that as a→∞,

EΘ,Ξ
ν [K∗m − ν] <∞, ∀m ∈ Ξ. (23)

Just like the kY (i) defined in the proof of Lemma 2, for the
sensor m ∈ Ξ, we “pick” the time instants the expensive ob-
servations {Ym,k} are sampled after time ν by the following:

Im(1) = inf{k : k > ν, γm,k = 1},
Im(i) = inf{k : k > Im(i− 1), γm,k = 1}, ∀i ≥ 2.

We then define ϕm,i as the statistic of the CuSum algorithm
of these expensive observations, i.e.,

ϕm,i = (ϕm,i−1 + `(Zm,Im(i)))
+, i ≥ 1

with ϕm,0 = 0. Then we define

I∗m = sup{i : ϕm,i ≤ 0},m ∈ Ξ.

Then by Theorem D in [32] and the finiteness assumption
of the second moment of the K–L divergences (8), using the
path-wise arguments, one obtains that

EΘ,Ξ
ν [I∗m] <∞.

Note that for K∗m, the worst case is that after ν, the detection
statistic sm,k goes below bm each time when it crosses bm
from below and updates with only one expensive observation
Ym,k. Then by Wald’s identity one obtains that

EΘ,Ξ
ν [K∗m − ν] ≤Eθ1

[
W(bm,bm,pm,ψ)

∣∣ψ < bm
]
EΘ,Ξ
ν [I∗m]

≤Eθ1
[
W(bm,bm,pm,0)

]
EΘ,Ξ
ν [I∗m]

<∞.

Recall that W(a,b,p,ω) is defined in the proof of Lemma 4. The
proof thus is complete.
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To prove (13), we define the following stopping time

T̂ = inf{k : ŝk ≥ a},

where

ŝk =
k∑
i=1

∑
m∈Ξ

ln
gY,m(Zm,i+K∗)

fY,m(Zm,i+K∗)
+
∑
m∈Ξ

bm,∀k ≥ 1.

From the definition of sm,k and K∗, one can see that ∀k ≥
1, ŝk is dominated by

∑
m∈Ξ sm,k+K∗ . What is more, since∑

m∈Ξ sm,T (a,b,p) ≤ a, the following holds:

EΘ,Ξ
ν [T (a, b, p)−K∗] ≤ EΘ,Ξ

1 [T̂ ]. (24)

By renewal theory (Page 168, [28]), as a→∞,

EΘ,Ξ
1 [T̂ ] =

a−
∑
m∈Ξ bm∑

m∈Ξ I(gY,m||fY,m)
+O(1). (25)

Thus, by Lemma 6, as a→∞,

EΘ,Ξ
ν [T (a, b, p)] =EΘ,Ξ

ν [T (a, b, p)−K∗] + EΘ,Ξ
ν [K∗]

≤ a∑
m∈Ξ I(gY,m||fY,m)

(1 + o(1)).

The proof thus is complete.

B. Proof of equation (14)
In this section, we focus on the proof of (14), which is done

using the same reasoning as in the proof of Theorem 1 of [20].
The difference is that the observations at each sensor node in
our case ceases to be i.i.d. conditioned on the change event.
We thus provide the following two lemmas.

Lemma 7. For any m ∈M, k ∈ N+ and any a ∈ R+,

PΘ,Ξ
∞ {sm,k ≥ a} ≤ e−a.

Proof: Define the quantity ŝm,k as follows:

ŝm,0 = 0,

ŝm,k = (ŝm,k−1 + `(Zm,k))
+
,

where the observation scheduling policy is the same as defined
in (12). The difference between ŝm,k and sm,k is that ŝm,k
crosses bm deterministically and ŝm,k has no reset action when
crossing bm from below. Since ŝm,k ≥ sm,k,∀k ∈ N+, then
for any a ≥ 0

PΘ,Ξ
∞ {sm,k ≥ a} ≤ PΘ,Ξ

∞ {ŝm,k ≥ a}.

Given any scheduling realization for sm,k, γ1, . . . , γk, define
the following quantities:

Ẑm,i = (1− γk+1−i)Xm,i + γk+1−iYm,i,∀1 ≤ i ≤ k

and s̆m,k =
∑k
i=1 Ẑm,i. Then it is well known that (see

Appendix 2 of [28] or Lemma 3 of [27]) that ŝm,k and
max1≤i≤k s̆m,i have the same distribution and

PΘ,Ξ
∞ {ŝm,k ≥ a} =PΘ,Ξ

∞ { max
1≤i≤k

s̆m,k ≥ a}

=PΘ,Ξ
∞ {τm(a) ≤ k}

≤PΘ,Ξ
∞ {τm(a) ≤ ∞}

≤e−a,

where τm(a) = inf{k : s̆m,k ≥ a} and the last inequality
follows from the fact that Wald’s likelihood identity (Page
10, [28]) applies even if the observations are not i.i.d. The
proof thus is complete.

Lemma 8. Let τ = inf{k : sm,k = 0, ∀m ∈ M} be the
first time that the local statistic of each sensor reaches zero
simultaneously. Then EΘ,Ξ

∞ [τ ] <∞.

Proof: Let

p∗m = PΘ,Ξ
∞ {sm,k = 0}, as k →∞.

Then as in the proof of Proposition 1 of [20], by renewal
theory one can conclude that

EΘ,Ξ
∞ [τ ] =

1∏M
m=1 p

∗
m.

It suffices to prove that p∗m > 0,∀m ∈ {1, . . . ,M}. Note that
since the observations are not i.i.d., the relation (A2) in the
proof of Proposition 1 of [20] does not hold. We prove p∗m > 0
by treating sm,k as a homogenous Markov process. Let P∗ be
the equilibrium distribution of sm,k. Since I(fX,m||gX,m) >
0, there must exist 0 < x∗ < bm such that PΘ,Ξ

∞ {`(Xk) ≤
−x∗} > 0. Then

p∗m >

∫ x∗

0

PΘ,Ξ
∞ {`(xk) ≤ −sm,k−1}dP∗(sm,k−1)

≥PΘ,Ξ
∞ {`(xk) ≤ −x∗}

∫ x∗

0

dP∗(sm,k−1)

≥PΘ,Ξ
∞ {`(xk) ≤ −x∗}(1− e−x

∗
)

>0,

where the second last inequality follows from Lemma 7. The
proof thus is complete.

The outline of the proof is as follows. By Lemma 7, as in
Lemma B1 of [20] one can easily obtain that for any k ∈ N+

and a ≥ 0, PΘ,Ξ
∞ {

∑M
m=1 sm,k ≥ a} ≤ e−a

∑M−1
m=0

am

m! .
As in Lemma B2 of [20], the whole time horizon of our
algorithm can be broken into subintervals (renewed when
sm,k = 0, ∀m ∈ {1, . . . ,M}), between which sm,k are i.i.d.
Combining Lemma 8, one can obtain that for any t > 0,
lim infa→∞ PΘ,Ξ

∞ {T (a, b, p) ≥ t ea∑M−1
m=0 a

m/m!
} ≥ e−t. Then

equation (14) follows using the same reasoning as in Theorem
1 of [20].
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