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a b s t r a c t

Self-triggered control is a recent design paradigm for resource-constrained networked
control systems. By allocating aperiodic sampling instances for a digital control loop, a self-
triggered controller is able to utilize network resources more efficiently than conventional
sampled-data systems. In this paper we propose a self-triggered sampler for perturbed
nonlinear systems ensuring uniformly ultimately boundedness of trajectories. Robustness
and time delays are considered. To reduce conservativeness, a disturbance observer for the
self-triggered sampler is proposed. The effectiveness of the proposed method is shown by
simulation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of new control and communication technologies is enabling the development of advanced applications in
health care, intelligent transportation systems, process control, smart grids, etc. A common characteristic is in the coupling
of heterogeneous systems which share common computing and network resources. Traditional control engineering seldom
addresses the problem of distribution of shared resources. However, with the advent of these new applications, resource-
sharing policies are of primary interest and must be included during the design phase. Control applications are in most
cases developed for periodic implementation platforms, which may not be the best choice for shared-resources systems.
For example, if a task running on a microprocessor is fed with the same input and it produces the same output, its periodic
instantiationwould utilize computation resourceswithout providing any benefit to the system. Such an issue becomesmore
evident in modern applications, where the number of tasks running on the same microprocessor can be large. In the case
of networked control systems (NCSs), a fixed periodicity limits the exchange rate of information. For example, a NCS in a
steady-state communicates the same amount of data as if it is in a transition phase. Such a behavior clearly wastes network
resources, as the system does not adapt to the need for the application.

A promising technique to deal with resource-constrained systems is event-triggered control [2–10].With this technique,
an action is takenwhen some information is available. A subsystem injects a packet in the network onlywhen it has relevant
information to send. It is not difficult to argue that the event-triggered paradigmallows the design ofmore efficient resource-
sharing policies compared to periodic sampling. Event-triggered control often consists of constantly monitoring the output
of the system, and to compute the new control only when a function of the output crosses a certain threshold. The selection
of the output and the threshold should produce desired behavior from the closed-loop system.

While event-triggered control reacts to the detection of an event, self-triggered control predicts its occurrence based on
a system model and the current measurement, see [11–18]. Most of the existing work on self-triggered control addresses
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linear systems, while nonlinear systems are still not greatly investigated. A preliminary attempt to design a self-triggered
sampler for nonlinear systems can be found in [19], further extended in [20]. However, such a method addresses a safety
problem, inwhich starting from an initial condition inside a ultimately bounded region, the self-triggered policy ensures the
invariance of that region. This means that there is a severe limitation on the set of initial conditions that must belong to the
ultimately bounded region. An alternative design framework is developed in [11] and extended in [21]. Such a method
applies for any smooth system sampled according to a smooth sampling rule. It requires a so-called homogenization of
both the closed-loop system and the sampling rule, and the computation of isochronous manifolds. Since in general it is
not possible to compute an isochronous manifold in closed-form, the authors provide a method to approximate it. The
conservativeness of the approach depends on the accuracy of the isochronous manifold approximation. However, although
the homogenization procedure can be applied to any smooth system and to any smooth sampling rule, the proposedmethod
to compute an isochronous manifold approximation does not always apply. Moreover, effects of external disturbances and
time delays have not been addressed in [11].

In this paper we present a simple self-triggered sampler for perturbed nonlinear systems to ensure uniformly ultimately
boundedness (UUB) of the closed-loop system. Ourmethod does not require particular restriction on the initial condition set,
and the computation of the next sampling instant is performed through a simple formula that can be easily implemented
and evaluated.We showhow the effects of external disturbances and time delay can be incorporated in the design. Amethod
based on disturbance observers to reduce the conservativeness of the approach is further discussed. The design of our
self-triggered sampler is based on a novel robust event-triggered sampling rule capable of ensuring UUB for any bounded
disturbance. Robust event-based control has been also addressed in [22], but such results only apply to exponentially stable
systems which are ISS with respect to measurement errors, which represent a quite restricted class of systems [23,24].
Our method extends the applicable cases. In the absence of disturbances and time delays, our sampling rule confines every
trajectory into arbitrary small regions. Finally, as an additional contribution, we provide a result on the robustness of the
Lebesgue sampling rule in [6] applied to a perturbed nonlinear system. We prove that under mild conditions, the Lebesgue
sampling rule ensures UUB of the trajectories for any globally stabilizable nonlinear system, independently of the chosen
sampling threshold.

The remainder of the paper is as follows: in the Section 2 some notation and preliminaries are introduced. In Section 3 the
problem formulation is stated. In Section 4 an event-triggering rule to achieve UUB of the closed-loop system is proposed,
while in Section 5 the self-triggered implementation of such an event-triggering rule is proposed. The theoretical results
are validated by simulations in Section 7. Conclusions are provided in Section 8. Appendix which contains the proofs of the
technical results is finally reported.

2. Preliminaries

We indicate with ∥v∥ the Euclidean norm of vector v ∈ Rn and with Br the closed ball center at the origin and radius
r , i.e. Br = {v : ∥v∥ ≤ r}. Given a signal s : R+

→ Rn, we denote sk its realization at time t = tk, i.e. sk := s(tk), and
with ∥s∥L∞,k := supt≥tk ∥s(t)∥. A function h : Dh → Rn, Dh ⊆ Rm, is said to be of class C0(Dh) if it is continuous over
Dh, and it is said to be Cr(Dh), r > 0 if its derivatives are of class Cr−1(Dh). A function h : Dp × Dq → Rn is said to be
Lipschitz continuous over Dp × Dq if ∥h(p1, q) − h(p2, q)∥ ≤ Lh,p∥p1 − p2∥ for some Lh,p > 0 and for all p1, p2 ∈ Dp, q ∈ Dp
and ∥h(p, q1) − h(p, q2)∥ ≤ Lh,q∥q1 − q2∥ for some Lh,q > 0 and for all q1, q2 ∈ Dq, p ∈ Dp. The constants Lh,p and Lh,q
are called Lipschitz constants of h with respect to p and Lipschitz constants of h with respect to q, respectively. A continuous
function α : [0, a) → +∞, a > 0 is said to be of class K if it is strictly increasing and α(0) = 0. If, in addition, a = ∞ and
α(r) → +∞ for r → +∞, thenα is said to be of classK∞. Given a system ẋ = f (t, x), x ∈ Rn, x(t0) = x0, f : R+

×D → Rn,
where f is Lipschitz continuouswith respect to x and piecewise continuouswith respect to t , andwhereD ⊂ Rn is a domain
that contains the origin, we say that the solutions are UUB if there exists three constants a, b, T > 0 independent of t0 such
that for all ∥x0∥ ≤ a it holds ∥x(t)∥ ≤ b for all t ≥ t0 + T , and globally UUB (GUUB) if ∥x(t)∥ ≤ b for all t ≥ t0 + T and for
arbitrarily large a. The value of b is referred as the ultimate bound.

3. Problem formulation

Consider a perturbed system of the form

ẋ = f (x, u, d), (1)

where x ∈ Dx ⊆ Rn, u ∈ Du ⊆ Rp, and d is a bounded external disturbance in a compact set Dd ⊆ Rd with bound ∥d∥ ≤ d̄.
Assume that the domains Dx, Du and Dd contain the origin and consider the following assumption.

Assumption 3.1. There exists a differentiable state feedback law κ:Dx → Du such that the origin of the unperturbed
system

ẋ = f (x, κ(x), 0), (2)

is the unique locally asymptotically stable equilibrium point in Dx. �
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Assumption 3.2. There exists a differentiable state feedback law κ:Dx → Du such that the function f (x, κ(x), d) is
C1(Dx × Du × Dd) with Lipschitz continuous derivatives over the set Dx × Du × Dd. �

We recall that from Assumption 3.1, converse theorems [25,26] ensure the existence of a Lyapunov function V (x) for the
system (1) such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥),

∂V (x)
∂x

f (x, κ(x), 0) ≤ −α3(∥x∥), (3)∂V (x)
∂x

 ≤ α4(∥x∥),

where α1, α2, α3, α4 are K-class functions.
Suppose now to sample and hold the measurements x(t) at time t = tk so that the control signal is piecewise constant

of the form u(t) = κ(xk) for t ∈ [tk, tk+1). For such a time interval, the dynamics of the sampled-data system satisfies

ẋ = f (x, κ(xk), d). (4)

The problemwe address in this paper is to design a self-triggered sampler such that the perturbed sampled-data system (4)
is UUB, and such that the ultimate bound can be arbitrarily small when d̄ = 0 and there are no time delays. This means
that without external disturbances and without time delays, all the trajectories must converge to an arbitrary small region
around the equilibrium point. The proposed self-triggered sampler is derived from a novel event-triggered sampling rule
which ensures UUB of the sampled-data system (4) and which is the argument of the next section.

4. Event-triggered sampler

In this sectionwe present a novel event-triggering rule capable to ensure UUB of the sampled-data system (4). The design
of such a sampling rule is based on the fact that the sampled-data system (4) can be rewritten as a nominal continuous-time
system subject to a perturbation as

ẋ = f (x, κ(x), d) + g(t), (5)

where

g(t) := f (x, κ(xk), d) − f (x, κ(x), d). (6)

It is then possible to resort to well-known results of perturbed nonlinear system theory to derive an event-based sampling
rule to ensure UUB of the sampled-data system (4) as shown in the next result.

Proposition 4.1. Suppose that Assumption 3.1 is satisfied and let δ be a positive constant such that

δ + Lf ,dd̄ <
ϑα3


α−1
2 (α1(r))


α4(r)

, (7)

where ϑ ∈ (0, 1) and r > 0. Then, by updating the control signal every time the triggering condition

∥g(t)∥ ≤ δ, (8)

is violated, the sampled-data system (4) is UUB. �

An illustration of the sampling rule (8) is depicted in Fig. 1. Every time the function ∥g(t)∥ hits the threshold δ, a new
measurement is picked, the control law is updated and ∥g(t)∥ is reset to zero. Thatway, the perturbation due to the sampling
is bounded, and the Lyapunov function derivative along the trajectories of the system is enforced to be strictly negative in
the region ∥x(t)∥ > µ(δ) for all t ≥ t0, where µ(·) is defined as

µ(δ) := α−1
3


α4(∥x∥L∞,0)(δ + Lf ,dd̄)

ϑ


, (9)

where ϑ ∈ (0, 1). This means that the trajectories must necessarily converge to a bounded invariant set. Although the
determination of a tight ultimate bound is in general a difficult task, by following standard arguments we can get the bound

b(δ) := α−1
1 (α2(µ(δ))). (10)

Inspection of (10) shows that the trajectories can be confined into smaller regions by decreasing the value of δ, and that
such a region can be arbitrarily small when d̄ = 0. On the other hand, since g(t) is continuous in the intervals [tk, tk+1), it is
not difficult to see that the inter-sampling times decrease as δ decreases. Thus, the value of δ establishes a tradeoff between
the number of the controller updates and the size of the ultimate bound guarantee. The limit case is obtained for d̄ = 0 and
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Fig. 1. The proposed event-triggered sampler. Every time the error function ∥g(t)∥ hits the threshold δ, then the system is sampled again, and the error
is reset. By doing that the Lyapunov derivative is strictly negative in the region ∥x∥ > µ(δ), and then the trajectories must converge into an invariant set.

δ = 0, for which we have b(δ) = 0 and tk+1 = tk for all k, which corresponds to the case of continuous feedback control
and asymptotic stability.

If Assumption 3.1 holds globally and if the right hand side of (7) is unbounded, then we can pick r so that (7) is fulfilled
for any arbitrarily large δ. This means that we do not have a limitation in the choice of δ, and UUB is always ensured, as
stated in the next result.

Theorem 4.1. Let Assumption 3.1 hold globally, and assume that the right-hand side of (7) is unbounded. Then, the sampling
rule (8) ensures GUUB of the closed-loop system for any δ > 0. �

The sampling-rule (8) requires knowledge of the system to define the function f . However, if this information is
uncertain, it is possible to upper bound the proposed sampling rule with the Lebesgue sampling rule by observing that
∥f (x, κ(xk), d) − f (x, κ(x), d)∥ ≤ Lf ,u∥κ(xk) − κ(x(t))∥ ≤ Lf ,uLκ,x∥xk − x(t)∥. However, because f and κ are substituted
with their Lipschitz constant, the utilization of the Lebesgue sampling rule would providemore conservative inter-sampling
times for a given δ, but on the other hand, it does not require an explicit knowledge of themodel. Therefore, there is a certain
analogy between the Lebesgue sampling rule and the proposed sampling rule, which relies on the conservativeness of the
inter-sampling times and on the knowledge of the system model which is required to implement (8). Such an analogy,
together with Theorem 4.1, highlights an important property of the Lebesgue sampling as shown in the next result.

Corollary 4.1. Suppose the assumptions of Theorem 4.1 hold. Then, the sampling rule implicitly defined by

h(t) = ∥xk − x(t)∥ ≤ δ, (11)

ensures GUUB of the sampled-data system (4) for any δ > 0. �

The corollary states an important property of the Lebesgue sampling: for periodic sampling, there is an upper-limit in the
choice of the sampling period after which we have instability, while in the Lebesgue sampling GUUB is achieved no matter
how big the threshold δ is. On the other hand, enlarging δ corresponds to enlarging the ultimate bound. Nevertheless, GUUB
for larger or smaller ultimate bounds is always achieved.

In the next section we show how to design a self-triggered implementation of the less conservative sampling rule (8),
although a self-triggered sampler for the Lebesgue sampling can be designed by proceeding along the same line. However,
before proceeding further, we wish to remark that the implementation of the event-triggered sampling rule (8) requires
knowledge of external perturbation d(t). Nevertheless, if this information is not available, it is possible to slightly modify
such a sampling rule and obtain an equivalent result.

Proposition 4.2. Assume that there exists a state feedback law κ:Dx → Du such that the origin of the unperturbed system
ẋ = f (x, κ(x), 0) is a locally asymptotically stable equilibrium point. Let δ be an arbitrary positive constant. Then, by updating
the control signal every time the triggering condition

∥f (x(t), κ(xk), 0) − f (x(t), κ(x(t)), 0)∥ ≤ δ, (12)

is violated, the sampled-data system (4) is UUB. �

The differentiability of the control function κ(·) and the fulfillment of Assumption 3.2 are not required. However, to
design a self-triggered sampler, both Assumptions 3.1 and 3.2 must be satisfied, as we discuss next.

5. Self-triggered sampler

In this section we present the self-triggered implementation of the sampling rule (8). Without loss of generality,
we present a self-triggered sampler assuming that Assumption 3.1 holds globally and that the right-hand side of (7) is
unbounded. However, if these assumptions are not met, it is not difficult to obtain a local result by proceeding along the
same line as we described in this section. We first analyze the case without time delays, and then we show how to include
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them in the design. In this case, we assume a sufficiently small time delay bounded by amaximum time delay τmax. The idea
of the self-triggered sampler we propose, is to predict when condition (8) is violated. To do that, we exploit an upper-bound
ĝ(x∗, d∗, xk, t − tk) of the function ∥g(t)∥.

5.1. Without time delays

Lemma 5.1. Consider the system (4) and suppose that Assumptions 3.1 and 3.2 hold. Then, for all t ∈ [tk, tk+1) the function g(t)
is upper-bounded with

∥g(t)∥ ≤
1
2
∥f (x∗, κ(xk), d∗)∥


e2L(t−tk) − 1


:= ĝ(x∗, d∗, xk, t − tk), (13)

where L = Lf ,uLκ,x and (x∗, d∗) := argmax(y1,y2)∈Rn×Dd ∥f (y1, κ(xk), y2)∥. �

A self-triggered sampler to ensure GUUB of the sampled-data system (4) is given by the next result.

Theorem 5.1. Consider the sampled-data system (4). Suppose that Assumptions 3.1 and 3.2 hold and let δ > 0. Then, the self-
triggered sampler

tk+1 = tk +
1
2L

ln

1 +

2δ
∥f (x∗, κ(xk), d∗)∥


, (14)

ensures GUUB of the closed-loop system. �

According to the self-triggered sampling paradigm, at time t = tk it is possible to predict the next time tk+1 by which the
system must be sampled to ensure GUUB.

Remark 5.1. The proposed self-triggered sampler can be used provided the values of L, d∗ and x∗ are computed, and their
computation is performed by considering the set Rn

×Dd. However, since the trajectories of the system are upper-bounded
with ∥ẋ∥ ≤ ∥f (x, κ(x), 0)∥ + δ + Lf ,dd̄, for all t ≥ t0, at every sampling time it is possible to re-compute L and x∗ over the
region B∥x∥L∞,k . In addition, since the sampled-data system (4) with the self-triggered sampler (14) is UUB, it follows that
B∥x∥L∞,k+1 ⊂ B∥x∥L∞,k outside the ultimately bounded region. Then, the sequence of sets B∥x∥L∞,k+1 is decreasing outside
the ultimately bounded region, and L and x∗ computed over such a sequence of sets is non-increasing, see Fig. 2. By doing
this adaptation, we dynamically subtract conservativeness to the computation of L and x∗, and the proposed self-triggered
samplerwould better approximate the sampling rule (8). In addition to theworst-case values of x∗ and L used in (14) another
source of conservativeness comes from the utilization of d∗. However, to reduce such a conservativeness, it is possible to
replace the component d∗ with an estimate of the disturbance dk, as we will explain in Section 6. �

The implementation of (14) requires the computation of (x∗, d∗) which is achieved by solving an online optimization
problem. Nevertheless, this can be avoided by slightly modifying the self-triggered sampler (14), as shown by the next
result.

Corollary 5.1. Suppose that the assumptions of Theorem 5.1 hold. Let (p, q) be any point in ∈ Rn
× Dd such that miny∈Rn

∥f (p, y, q)∥ > m for some m > 0. Then, the self-triggered sampler

tk+1 = tk +
1
2L

ln

1 +

2δ
∥f (p, κ(xk), q)∥


, (15)

ensures GUUB of the closed-loop system. �

Remark 5.2. From a comparison between the self-triggered samplers (14)–(15) it is easy to see that there are some points
(p, q) such that (15) provides larger inter-sampling times compared to (14). This is because the utilization of (15) would
correspond to consider the time it takes for ĝ(x∗, d∗, xk, t − tk) to go from 0 to a certain δ′ > δ, where δ′ depends on the
choice of the point (p, q). However, when the utilization of (15) provides larger inter-sampling times compared to (14), then
the ultimate bound guarantee is, in general, larger. �

Remark 5.3. By assumption, the origin is the unique equilibrium point of the system (2). Then, it follows that the inter-
sampling times provided the self-triggered samplers (15)–(14) are upper-bounded, being ∥f (x∗, y, d∗)∥ > m > 0 for all y.
Moreover, since the trajectories are ultimately bounded, then there exists a k′ such that κ(xk) is also bounded for all k ≥ k′.
This implies the existence of two constants 0 < ∆m ≤ ∆M such that ∆m ≤ tk+1 − tk ≤ ∆M for all k ≥ k′. �

Notice how the self-triggered sampler (15) does not require any numericalmethod and how it can be easily implemented
on digital platforms and can be used in all the situations in which existing self-triggered samplers are difficult to apply. It
also provides a certain degree of robustness with respect to external perturbations.
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Fig. 2. Adaptation of the operating region. The dashed-line represents the Lyapunov surface levels, the dotted-line the adapted operating region and b(δ)
denotes the ultimate bound. For t ∈ [tk, tk+1), the trajectories cannot escape from BL∞,k , while for t ∈ [tk+1, tk+2) the trajectories cannot escape from
BL∞,k+1 . Since the Lyapunov function is strictly negative outside the region delimited by b, we have B∥x∥L∞ ,k+1 ⊂ B∥x∥L∞ ,k .

In both the proposed event and self-triggered samplers there is still the open issue of finding a lower-bound of the inter-
sampling times. Indeed, it is possible to prove the existence of such a lower-bound by observing that the trajectories are
bounded with ∥x(t)∥ ≤ ∥x∥L∞,0 for all t ≥ t0. Hence, the minimum inter-sampling interval provided by the proposed self-
triggered samplers can be obtained by solving the optimization problemmax ∥f (y1, κ(y2), y3)∥ with y1, y2 ∈ B∥x∥L∞,0 and
y3 ∈ Dd. Now since f is continuous and B∥x∥L∞,0 ×B∥x∥L∞,0 ×Dd is a compact set, then the optimization problem admits a
finite maximum, and therefore a lower-bound of the inter-sampling times exists. We have then proved the following result.

Corollary 5.2. Suppose that the assumptions of Corollary 5.1 hold. Then, the inter-sampling times provided self-triggered
samplers (15) and (14) are lower-bounded with bound

tk+1 − tk ≥
1
2L

ln

1 +

2δ
c


∀k, (16)

where

c := min
y1,y2∈B∥x∥L∞,0

y3∈Dd

∥f (y1, κ(y2), y3)∥. � (17)

The self-triggered sampler (14) represents a conservative approximation of the event-triggered rule (8). This means
the inter-sampling times provided by the self-triggered implementation (14) are shorter than or equal to the inter-
sampling times provided by the event-triggered rule (8) for all k. Hence, since the inter-sampling times of the self-triggered
sampler (14) are lower-bounded, then the inter-sampling times provided by the event-triggered rule defined in (8) are also
lower-bounded by some positive constant. Thismeans that eventual Zeno behaviors of the inter-sampling times are avoided
even when the proposed event-triggered strategy is employed.

In the next section we show how to obtain an expression similar to (15) in the case of time delay.

5.2. Time delays

In this section we show how to design a self-triggered sampler when time delays are present. We assume that time
delays are smaller than the inter-sampling times. For generic time delays, we can set up the system as described in [27] and
proceed with the analysis as we describe next. If time delays are smaller than the inter-sampling times, the input applied to
the system is piecewise constant, and satisfies

u = κ(xk−1) for t ∈ [tk, tk + τk),
u = κ(xk) for t ∈ [tk + τk, tk+1),

(18)

where τk is the elapsed time between the instant when the measurement xk is picked and the instant in which the actuator
is updated. The dynamics of the sampled-data system (4) are split into

ẋ = f (x, κ(x), d) + f (x, κ(xk−1), d) − f (x, κ(x), d), (19)

for t ∈ [tk, tk + τk) and

ẋ = f (x, κ(x), d) + f (x, κ(xk), d) − f (x, κ(x), d), (20)
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for t ∈ [tk + τk, tk+1). The perturbation due to the sampling for t ∈ [tk, tk+1) is also split into two terms: the first term
depends on the measurement xk−1 and it acts for t ∈ [tk, tk + τk); the second term depends on the measurement xk and it
acts for t ∈ [tk + τk, tk+1). In both cases there is also a perturbative term due to the external disturbance. To design a self-
triggered sampler when time delays are present, it is convenient to consider time intervals of the form [tk + τk, tk+1 + τk+1).
As done in the previous section, the self-triggered sampler is designed by exploiting an upper-bound of the perturbation
term due to the sampling. By proceeding along the same line as in the proof of Lemma 5.1, we have

∥g(t)∥ ≤ ĝ(p, q, xk−1, τk)e2L(t−tk−τk) +
1
2
∥f (p, κ(xk), q)∥


e2L(t−tk−τk) − 1


, (21)

for t ∈ [tk + τk, tk+1 + τk+1). As we discussed, the underlying idea of the presented self-triggered samplers is to predict the
time needed to the function ∥g(t)∥ to go from 0 to δ. In the case without time delays, the function is reset to zero, and it
holds ∥g(t+k )∥ = 0. Since δ > 0, by exploiting the continuity of ∥g(t)∥ we have shown that the inter-sampling times are
lower-bounded. In the case with time delays, the situation is slightly different. Indeed, we should predict the time it takes
for ∥g(t)∥ to go from ∥ĝ(tk + τk)∥ to δ. However, for τk > 0, it holds ∥ĝ(tk + τk)∥ ≠ 0 which leads to tk+1 − tk ≤ 0 if
∥ĝ(tk + τk)∥ ≥ δ. Thus, in the case with time delays, we need an additional condition to ensure a finite lower-bound of the
inter-sampling times. Such a condition is given by the next result.

Corollary 5.3. Suppose that the assumptions of Corollary 5.1 hold and consider the self-triggered sampler

tk+1 = tk + τk − τmax +
1
2L

ln


2δ + ∥f (p, κ(xk), q)∥
2ĝ(p, q, xk−1, τk) + ∥f (p, κ(xk), q)∥


. (22)

If δ is chosen such that

δ > ĝ(p, q, x̄, τmax) + ε, (23)

where ε > is an arbitrary positive constant and x̄ = argmaxy∈B∥x∥L∞,0
ĝ(p, q, y, τmax), then the trajectories of the closed loop

system (19)–(20) are GUUB and there exists a constant c(ε) > 0 such that tk+1 − tk > c(ε) for all k. �

Notice that the implementation of the self-triggered sampler (22) requires the knowledge of the time delay τk. However,
if this information is not available it is possible to use a slightly more conservative implementation of (22) by replacing τk
with τmax.

Remark 5.4. Corollary 5.3 gives a tradeoff among the inter-sampling time, the size of the ultimate bound region and the
maximum allowable time delay. For example, given a maximum time delay τmax, condition (23) can be fulfilled just by
increasing the value of δ. On the other hand, an increase of δ leads to an increase of the ultimate bound region size, but it
also enlarges the inter-sampling times, since the function ĝ(p, q, xk, t − tk) would take more time to reach the triggering
threshold δ. �

In the next section we show how to reduce the conservativeness of the proposed self-triggered sampler by means of
disturbance observers.

6. Disturbance observers

In this sectionwe present amethod based on disturbance observers to reduce the conservativeness of the approximation
of the event-based strategy (8) through the proposed self-triggered samplers. All the presented observers provide a zero-
order estimate d̂k of a disturbance acting for t ∈ [tk, tk+1).

The utilization of disturbance observers is motivated as follows: in the self-triggered sampler (14), information about the
maximum disturbance d∗ explicitly appears in the formulas to compute the next sampling times. For all the times in which
there are no external disturbances acting on the systems, the computed next sampling timemay be rather conservative since
the self-triggered sampler has been devised by implicitly assuming a worst-case disturbance d∗ acting for all the times. On
the other hand, by neglecting possible disturbances, i.e. by setting d∗

= (0, . . . , 0)T , what happens in reality is that the
system is sampled when the condition ∥f (x, k(xk), d) − f (x, k(x), d)∥ ≤ δ′ is violated, where δ′ > δ, although the self-
triggered sampler ‘‘believes’’ to sample on δ. However, since the external disturbance d is assumed to be bounded, then δ′ is
also bounded. Therefore, the perturbation due to the sampling is still bounded and we can conclude that the UUB property
of the closed loop system does not change either if we consider a disturbance acting for all the time, or if we neglect it at all.
What it does change is the behavior of the system between the inter-sampling times. By neglecting external disturbances,
we achieve larger inter-sampling times but the system response may exhibit large peaks if a disturbance suddenly enters
the system between two distant sampling instants. On the other hand, such peaks can be reduced by assuming a maximum
disturbance affecting the system for all the time, but in this case the system is unnecessary over-sampled when there are
no external disturbances acting on the system.

A tradeoff between the system response performance and the conservativeness of the inter-sampling times can be
achieved by means of disturbance observers. That way, the model used by the self-triggered sampler is kept as close as
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possible to the real model of the system, and we would expect the best performance in terms of system response and
approximation of the event-triggered sampling rule. However, being the system sampled aperiodically, the design of a
disturbance observer may be a tricky task. Although we believe that the design of disturbance observers for an aperiodically
sampled nonlinear system is an interesting topic for future research, for the sake of completeness we provide here three
methods to design them. Without loss of generality, we consider the case without time delays, and, in all the presented
observers, the goal is to estimate a constant disturbance d̂k acting on the system for t ∈ [tk, tk+1), which is used in the
expressions of the self-triggered samplers instead of d∗. The estimate of d̂k is performed at time t = tk+1 based on the past
and the currentmeasurement, on an estimate of the currentmeasurement. The disturbance estimate d̂k is used to determine
the next time tk+2.

The first disturbance observer we present is the nonlinear version of the disturbance observer for linear system provided
in [5]. By discretizing the system ẋ = f (x, κ(xk), d̂k) over the time interval [tk, tk+1), we obtain the following discrete-time
system

x̃k+1 = f̃ (x̃k, κ(x̃k), d̂k), (24)

where x̃k = xk. At time t = tk+1 i.e. when the measure xk+1 is available, we can pick d̂k such that xk+1 = x̃k+1. Notice that to
obtain an expression of the observer in closed form, we need to discretize the nonlinear system ẋ = f (x, κ(xk), d̂k) and to
compute the inverse of f̃ , and, with exception of few lucky cases, such computations require numerical methods.

Another method is to jointly use the sensitivity function [26] and the triggering rule. A first-order disturbance observer
is given by

d̂k = d̂k−1 + S−1(tk+1)(xk+1 − x̂k+1), (25)

where x̂k+1 is an estimate of the state at time t = tk+1 and S(tk+1) is the realization of the sensitivity function at time
t = tk+1, whose dynamics satisfies

Ṡ(t) = A(x(t))S(t) + F(x(t)), S(tk) = 0, (26)

where

A(x(t)) :=
∂ f (x, κ(xk), d)

∂x

 x=x(t−tk,xk)

d=d̂k−1

, (27)

and

F(x(t)) :=
∂ f (x, κ(xk), d)

∂d

 x=x(t−tk,xk)

d=d̂k−1

, (28)

where x(t − tk, xk) is the solution of (4) with initial condition xk. To design the observer (25), we need the estimate
x̂k+1. Nevertheless, such an estimate can be obtained by picking x̂k+1 such that ∥f (xk, κ(xk), 0) − f (x̂k+1, κ(xk), 0)∥ = δ.
Unfortunately, we have infinity values of x̂k+1 which satisfy the previous condition. To guess which is the closest value x̂k+1

to the real state xk+1, we linearize the system ẋ = f (x, κ(xk), d̂k) around xk and d̂k−1, and we compute the value of the state
at time t = tk+1 of the linearized system ẋℓ

= f (xk, κ(xk), dk−1) + A(xk)(xℓ
− xk).

Therefore, to design the observer (25), it is enough solve the following optimization problem

min
x̂k+1

∥x̂k+1 − xℓ
k+1∥

s.t. ∥f (xk, κ(xk), 0) − f (x̂k+1, κ(xk), 0)∥ = δ,

xℓ
k+1 = Ad(xk)xℓ

k + Bd(xk),

(29)

where

Ad(xk) = exp(A(xk)(tk+1 − tk)), (30)

and

Bd(xk) =

 tk+1

tk
exp(A(xk)(tk+1 − σ))


f (xk, κ(xk), dk−1) − A(xk)xk


dσ . (31)

Unfortunately, this method requires the solution x(t − tk, xk) of the system (4), which is in general unknown.
Finally, a last method to design a disturbance observer resorts to Lyapunov analysis. By taking a look at the proof of

Proposition 4.1, it is not difficult to get the inequality V̇ ≤ Φ(V , d̄), where the function Φ depends on the comparison
functions α1,...,4. Let us now consider the differential equation, for t ∈ [tk, tk+1)

˙̃V = Φ(Ṽ , ∥d̂k∥), (32)
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and let φ(Ṽ (tk), ∥d̂k∥, t − tk) be a solution of the previous differential equation with initial condition Ṽ (tk) = V (tk). At
time t = tk+1 we take ∥d̂k∥ such that |V (tk+1) − φ(Ṽ (tk), ∥d̂k∥, tk+1 − tk)| = 0. The advantage of this method is that the
computation the solution of (32) may be easier than the computation of the solution of ẋ = f (x, κ(xk), d̂k). The drawback of
this method is that it provides only an estimate of the magnitude ∥dk∥ of the disturbance d. However, since ∥f (x, u, d)∥ ≤

∥f (x, u, 0)∥ + Lf ,dd̄, we can replace the terms ∥f (x∗, κ(xk), d∗)∥ and ∥f (p, κ(xk), q)∥ with ∥f (x∗, κ(xk), 0)∥ + Lf ,d∥d̂k∥ and
∥f (p, κ(xk), 0)∥ + Lf ,d∥d̂k∥ in the self-triggered samplers (14) and (15), respectively, and exploit information about the
estimate ∥d̂k∥ obtainedwith this last presented approach. However, depending on the Lipschitz constant Lf ,d and the quality
of estimations ∥d̂k∥, wemay achieve amore or less accurate approximation of the sampling rule (8)whenusing this observer.
The quality of the estimations ∥d̂k∥ with this last method depends on how tight the inequalities (3) are.

Notice that using the values dk = 0, dk = d∗ or using any other estimate of the disturbance in the self-triggered sampler
expressions, does not change the stability properties of the sampled-data system, but it changes the accuracy of the model
used by the self-triggered sampler.

7. Simulation results

7.1. Perturbed system

In this example we borrow the system used in [23] for which a controller is used that renders the closed-loop system
globally asymptotically stable, but does not render the closed-loop ISS with respect to measurement errors. Moreover, we
add an external disturbance andwe compare the resultswhen a disturbance observer is used or not, andwe further compare
our self-triggered sampler with a continuous-time implementation of the controller. The dynamics of the perturbed system
are given by

ẋ =


I + 2Θ

π

2


xxT


Θ(xT x) ·


−1 0
0 xT x


Θ(−xT x)x +


0
1


(u + d)


, (33)

where

Θ(θ) :=


cos θ − sin θ
sin θ cos θ


.

By considering the coordinate transformation z = Θ(−xT x)x, system (33) in the z-coordinates becomes

ż1 = −z1,

ż2 = (z21 + z22)z2 + u + d.
(34)

By using such a coordinate transform, a stabilizing control for (33) is given by

u = H(Θ(−xT x)x), (35)

where the function H : R2
→ R is given by

H(z) := −(1 + z21 + z22)z2. (36)

Since the coordinate transformation is a diffeomorphism, and since ∥x∥ = ∥z∥, if we achieve UUB for the system in the new
coordinate, then the original system is UUB. Hence, we design the self-triggered sampler to ensure UUB of (34) to determine
when to update the control (35) for the system (33).

A Lyapunov function for the system (34) with the control (35), is given by V (z) = 0.5zT z. Then, we get α1(∥z∥) =

αs(∥z∥) = 0.5∥z∥2 and α4(∥z∥) = ∥z∥ which implies ∥z(t)∥L∞,0 = ∥z0∥ and then ∥z(t)∥L∞,k ≤ max{∥zk∥, b}. Then,
at each sampling instant we adapt z∗ with z∗

= (∥z(t)∥L∞,k , ∥z(t)∥L∞,k)
T . By considering an operating region Br , where

r = 5, we get Lf ,u = Lf ,d = 1 and , Lκ,x ≤


16∥z(t)∥4

L∞,k
+ 12∥z(t)∥2

L∞,k
+ 1 for all t ≥ tk, and then we adapt the Lipschitz

constant Lκ,x at each sampling instant accordingly. The simulation is performed by considering x0 = (4, −3)T as initial
condition, and we considered an external disturbance of d = d̄ = 0.4 acting for t ∈ [5.3, 8] s and d = 0 otherwise. By
choosing δ = 0.25 and ϑ = 0.999 we get the ultimate bound b = 0.5/ϑ(δ + d̄) = 0.325.

Due to the simplicity of the Lyapunov function V (z), we designed a disturbance observer by exploiting such a V (z). Using
standard arguments we get V̇ ≤ −2V +

√
2V (∥d∥ + δ). Now let ˙̃V = −2Ṽ +


2Ṽ (∥d∥ + δ) and let W =


Ṽ . It holds

Ẇ = −1/2W +
√
2/2(∥d∥ + δ), and then we get the disturbance observer

∥d̂k∥ = min


d̄,

2
√
2

W (tk+1) − W (tk) exp

−

1
2 (tk+1 − tk)


1 − exp


−

1
2 (tk+1 − tk)

 − δ




. (37)
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Fig. 3. State evolution with the self-triggered and with the continuous execution of the controller.

Fig. 4. State evolution with the periodic implementation of the controller with period 170 ms.

Finally we compare the number of the controller updates with a quadratic performance index J given by

J =

 tsim

0
∥x(σ )∥2

+ |u(σ )|2 dσ .

The simulation result is depicted in Figs. 3–5 and some numerical values are summarized in Table 1 for a simulation time
tsim = 10 s. For all the self-triggered implementations we have roughly the same performance of the closed-loop system,
which is surprisingly lower compared to the continuous-time case. However, the number of controller updates changes
between the self-triggered samplers. As expected, we have the largest number of updates when ∥dk∥ = d̄ and the smallest
when ∥dk∥ = 0. The same happens for the overshoot when the disturbance enters the system. A tradeoff is achieved when
the disturbance observer is employed. The behavior of both the inter-sampling times and the system response when d̂k = d̄
or when ∥d̂k∥ is observed is similar because of the conservativeness of the disturbance observer (37). Finally, note that the
inter-sampling times provided by both the self-triggered samplers with ∥dk∥ = d̄ and with ∥dk∥ observed converge to a
steady-state value of tk+1 − tk of ∼170 ms. However, by using a periodic implementation of the controller with period 170
ms the closed-loop system is unstable, as shown in Fig. 4.
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Fig. 5. Inter-sampling times obtained with the self-triggered and with the periodic implementation of the controller.

Table 1
The table shows the number of controller updates and the value of J for all the considered cases for a
simulation time of 10 s.

Continuous ∥d̂k∥ = 0 ∥d̂k∥ = d̄ ∥d̂k∥obsv.

Ctrl. updates – 12803 12907 12891
J 1525.2 1503.6 1503.6 1503.6

7.2. Unperturbed system — comparison with [21]

Now, we apply the method in [21] to design a self-triggered implementation of the proposed sampling rule and we
comparewith our self-triggered implementation in the disturbance-free case. In the disturbance-free case, the application of
our self-triggered sampler gives an ultimate bound b = 0.125. In order to apply [21], we have to render both the continuous-
time closed-loop system and the sampling rule homogeneous. The closed-loop system with continuous control is given by

ż1 = −z1,
ż2 = −z2.

(38)

To render (38) homogeneous, it is enough to add a state variable ẇ = 0, with w(t0) = 1. The homogeneous system
associated to (38) satisfies

ż1 = −wz1,
ż2 = −wz2,
ẇ = 0.

(39)

The sampling function ∥g(t)∥ for the system to (34) is given by ∥H(zk) − H(z)∥ which is not homogeneous. However,
by defining Γ (z1, z2) := ∥H(zk) − H(z)∥ − δ we have the sampling rule implicitly defined by Γ̃ (z1, z2, w) ≤ 0, where
Γ̃ (z1, z2, w) = wΓ (w−1z1, w−1z2) is homogeneous. By computing the Lie derivative of Γ̃ (z1, z2, w) along the trajectories
of (39) it holds

∂Γ̃

∂z
∂Γ̃

∂w

T


−wz1
−wx2

0


=

H(zk) − H(z)
|H(zk) − H(z)|


2w−2z1z2 3w−2z22

T −wz1
−wx2


(40)

= sign(H(zk) − H(z))(−2w−1z1z2 − 3w−1z32). (41)

Hence, there does not exist a finite value of χ0 which satisfies

sign(H(zk) − H(z))(−2w−1z1z2 − 3w−1z32) ≤ χ0w|H(zk) − H(w−1z)| − wδ, (42)

for any z, and then we cannot use the method proposed in [21] to compute an isochronous manifold. However, we can
consider a ball as an approximation of the isochronousmanifold, which is themethod proposed in [11]. For any point z ∈ B1,



U. Tiberi, K.H. Johansson / Nonlinear Analysis: Hybrid Systems 10 (2013) 126–140 137

Fig. 6. State evolution with the proposed and the self-triggered in [11].

Fig. 7. Inter-sampling times obtained with the proposed self-triggered and with the self-triggered sampler [11].

a lower bound of the inter-sampling times provided by the sampling rule implicitly defined by Γ̃ (z1, z2, w) ≤ 0 is t∗ = 17.5
ms, which has been found by using our self-triggered sampler. Then, the self-triggered sampler with the method proposed
in [11] is given by

tk+1 = tk +
t∗

∥(z1,k, z2,k, 1)∥
. (43)

Finally, the ultimate bound provided when using our self-triggered sampler in the disturbance free case is b = 0.125.
The simulation results are depicted in Figs. 6 and 7. At the beginning the self-triggered sampler (43) provides large inter-

sampling times, but after t ≃ 1.4 swe have the opposite situation.Moreover, the proposed self-triggered sampler converges
to a sampling period which is larger compared to the self-triggered sampler (43). Regarding the number of updates and the
system performance, we get 12786 and 736 updates and J = 1502.94 and J = 2545 with the proposed self-triggered
sampler and with the self-triggered sampler (43), respectively. This means that the utilization of proposed self-triggered
sampler provides a better system response with respect to (43), but, on the other hand, it requires a larger number of
samples. However, this is true only during the transient phase, since in steady-state the proposed self-triggered sampler
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converges to a larger value. Finally, note how the system response with our self-triggered sampler is closer to the system
response with continuous control, for which we obtained J ≃ 1524.

Note that a source of conservatism of the self-triggered sampler (43) is due because of the homogenization procedure of
the closed-loop system, which enforces mink ∥(z1,k, z2,k, 1)∥ = 1. Better results can be achieved by exploiting isochronous
manifolds, but, to the best of our knowledge, the only method to approximate an isochronous manifold is given in [21],
which unfortunately does not apply to our case.

8. Conclusions

In this paper we presented a simple self-triggered sampler for perturbed nonlinear systems subject to bounded
external disturbances and small time delay. To reduce the conservativeness of the proposed approach, techniques based
on disturbance observers are discussed, and different disturbance observers have been proposed. Finally, a discussion about
the proposed sampling rule has been performed, and a result related to the robustness of thewell-known Lebesgue sampling
has been provided. Simulation results showed the effectiveness of the proposed method.
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Appendix

Proof of Proposition 4.1. Let V (x) be a Lyapunov functionwhich satisfies (3). The time derivative of V along the trajectories
of the sampled-data system (4), for t ∈ (tk, tk+1), satisfy

V̇ =
∂V
∂x

f (x, κ(x), 0) +
∂V
∂x


f (x, κ(xk), d) − f (x, κ(x), d)


(44)

+
∂V
∂x


f (x, κ(x), d) − f (x, κ(x), 0)


(45)

≤ −α3(∥x∥) + α4

∥x∥)(∥g∥ + Lf ,dd̄


. (46)

By using the triggering rule (8), and since α4 is increasing it holds

V̇ ≤ −α3(∥x∥) + α4(∥x∥L∞,k)(δ + Lf ,dd̄)

= −(1 − ϑ)α3(∥x∥) + ϑα3(∥x∥) + α4(∥x∥L∞,k)(δ + Lf ,dd̄),

for any ϑ ∈ (0, 1). Then, we have V̇ ≤ −(1 − ϑ)α3(∥x∥) if

∥x∥ ≥ α−1
3


α4(∥x∥L∞,k)(δ + Lf ,dd̄)

ϑ


, (47)

and the system is UUB provided that the perturbative term δ + Lf ,dd̄ is sufficiently small to satisfy (7). By observing that at
each sampling time t = tk it holds V̇ ≤ −α3(∥xk∥) + α4(∥xk∥)Lf ,dd̄ or, if (47) is satisfied, it holds V̇ ≤ −(1 − ϑ)α3(∥xk∥),
and that ∥g(t)∥ is continuous over [tk, tk+1), then by triggering accordingly to (8) it follows that the system is UUB over the
set Dx. �

Proof of Proposition 4.2. It is enough to rewrite f (x, κ(xk), d) as f (x, κ(xk), d) = f (x, κ(x), 0) + f (x, κ(xk), 0) −

f (x, κ(x), 0) + f (x, κ(xk), d) − f (x, κ(xk), 0) and proceed analogously as in the proof of Proposition 4.1. �

Proof of Lemma 5.1. Let g(t) = f (x(t), uk, d(t)) − f (x(t), u(t), d(t)), where u(t) = κ(x(t)). It holds
d
ds

g(s) =
d
ds

f (x(t), u(s), d(t)) = −
∂

∂u
f (x(t), uk, d(t))

∂κ(x(s))
∂x

ẋ(s)

= −
∂

∂u
f (x(t), u(s), d(t))

∂κ(x(s))
∂x

f (x(s), uk, d(s)),

g(sk) = 0.

(48)

The solution of the previous differential equation is given by

g(s) =

 s

sk
−

∂ f
∂u

∂κ

∂x
f (x(σ ), uk, d(σ ))dσ . (49)
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By adding and subtracting the term
 s
sk

∂ f
∂u

∂κ
∂x f (x(σ ), u(σ ), d(σ ))dσ and by taking the norm of both sides it holds:

∥g(s)∥ ≤

 s

sk
L∥f (x(σ ), uk, d(σ )) − f (x(σ ), u(σ ), d(σ ))∥dσ +

 s

sk
L∥f (x(σ ), u(σ ), d(σ ))∥dσ

≤

 s

sk
L∥f (x(σ ), uk, d(σ )) − f (x(σ ), u(σ ), d(σ ))∥dσ

+

 s

sk
L∥f (x(σ ), uk, d(σ )) − f (x(σ ), u(σ ), d(σ ))∥dσ +

 s

sk
L∥f (x(σ ), uk, d(σ ))∥dσ

=

 s

sk
2L∥g(σ )∥dσ +

 s

sk
L∥f (x(σ ), uk, d(σ ))∥dσ . (50)

By using the Leibniz Theorem, we get

d
ds

∥g(s)∥ ≤ 2L∥g(s)∥ + L∥f (x(s), uk, d(s))∥

≤ 2L∥g(s)∥ + L∥f (x∗, uk, d∗)∥, (51)

and then

∥g(s)∥ ≤
1
2
∥f (x∗, uk, d∗)∥


e2L(s−sk) − 1


, (52)

for all s ∈ [sk, sk+1). �

Proof of Theorem 5.1. By considering the Lyapunov function (3), we have, for t ∈ (tk, tk+1)

V̇ ≤ −α3(∥x∥) + α4(∥x∥)(∥g∥ + Lf ,dd̄)

≤ −α3(∥x∥) + α4(∥x∥L∞,k)(ĝ(x∗, d∗, xk, t − tk) + Lf ,dd̄).

Since ĝ(x∗, d∗, xk, t − tk) is continuous and it is strictly increasing with t , then there exists a time tk+1 satisfying

ĝ(x∗, d∗, xk, tk+1 − tk) = δ.

Hence, the Lyapunov derivative is further bounded with

V̇ ≤ −α3(∥x∥) + α4(∥x∥L∞,k)(δ + Lf ,dd̄).

By following the same line as in the proof of Proposition 4.1, it is easy to prove uniformly ultimate boundedness. Hence, the
next triggering time is given by the inverse of ĝ(x∗, d∗, xk, tk+1 − tk), which gives (14). �

Proof of Corollary 5.1. It is enough to observe that, for t ∈ (tk, tk+1), the Lyapunov derivative can be rewritten as

V̇ ≤ −α3(∥x∥) + α4(∥x∥L∞,k)(∥g∥ + Lf ,dd̄)

≤ −α3(∥x∥) + α4(∥x∥L∞,k)

ĝ(p, q, xk, t − tk) + Lf ,dd̄ + ĝ(x∗, d∗, xk, t − tk) − ĝ(p, q, xk, t − tk)


.

By using the sampling rule (15), it holds

ĝ(x∗, d∗, xk, tk+1 − tk) − ĝ(p, q, xk, tk+1 − tk) ≤ δ


∥f (x∗, κ(xk), d∗)∥

∥f (p, κ(xk), q)∥
− 1


.

Thus, the Lyapunov derivative can be bounded in the time interval (tk, tk+1) with

V̇ ≤ −α3(∥x∥) + α4(∥x∥L∞,k)


δ
∥f (x∗, κ(xk), q)∥
∥f (p, κ(xk), q)∥

+ Lf ,dd̄


. (53)

Now, since it holds

∥f (x∗, κ(xk), d∗)∥

∥f (p, κ(xk), q)∥
≤ 1 +

∥f (x∗, κ(xk), d∗) − f (p, κ(xk), q)∥
∥f (p, κ(xk), q)∥

≤ 1 +
Lf ,x∥x∗

− p∥ + Lf ,d∥d∗
− q∥

m
:= M,

the Lyapunov derivative can be further upper-bounded with

V̇ ≤ −α3(∥x∥) + α4(∥x∥L∞,k)(δ
′
+ Lf ,dd̄),

where δ′
= δM , and then GUUB can be proved by following the same steps as in the proof of Theorem 5.1.
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Finally, since it holds that f (x, u, d) = 0 if, and only if x = u = d = 0 and since f is continuous in the origin, it is enough
to take (p, q) ∈ Rn

\ Sx × Dd \ Sd, where Sx × Sd is a non-empty compact set which contains the origin, to ensure the
existence ofm > 0 such that ∥f (p, y, q)∥ > m > 0 for all y ∈ Rp. �

Proof of Corollary 5.3. Since the GUUB property by using the self-triggered sampler (22) can be proved by using the same
argument as in the proof of Corollary 5.1, hereweprove only the existence of a lower-boundof the inter-sampling times. First
of all, notice that to achieve tk+1 − tk > 0, the argument of the logarithm in (22) must be greater than 1, and this happens
if, and only if δ > ĝ(p, xk−1, τk), ∀k. Since it holds that ĝ(p, x̄, τmax) ≥ ĝ(p, x̄, τk) ≥ ĝ(p, xk−1, τk) for all k, a sufficient
condition to have tk+1 − tk > 0 for all k is δ > ĝ(p, x̄, τmax). Finally, since the sampling rule (22) is an increasing continuous
function of δ, it follows that if δ > ĝ(p, x̄, τmax) + ε, ε > 0, then there exists a c(ε) such that tk+1 − tk > c(ε) for all k. �
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