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Abstract— Event-triggered control aims at reducing the com-
munication load over the feedback link in networked control
systems by adapting the information exchange to the current
needs. This paper investigates the consequences of actuator
saturation on the behavior of event-triggered PI control. Sta-
bility properties are derived using linear matrix inequalities
(LMIs) which show how the stability of the event-triggered
control loop depends on the selection of the event threshold.
In order to overcome the potential performance degradation
due to integrator windup caused by actuator saturation, the
proposed scheme is extended by incorporating a static anti-
windup mechanism. The results are illustrated by simulations.

I. INTRODUCTION
A. Event-triggered control

In the context of networked control systems [13], event-
triggered control has gained attention by considering this
control strategy as a means to reduce the communication
load of the network ([2], [3], [5], [17]). The main aim to be
reached by this feedback structure is the adaptation of the
communication among the components of the feedback loop
to the current needs. In fact, by reducing the information
exchange to the minimum communication that is necessary
to ensure the required system performance, an overload of
the digital communication network can be avoided.

The event-triggered control loop as considered in this
paper is depicted in Fig. 1. It consists of

• the plant with state x(t), exogenous disturbance d(t)
and input ũ(t) subject to actuator limitations,

• an event generator which invokes a communication
whenever the state x(t) satisfies a certain event con-
dition,

• and a PI controller which gets the reference input w(t)
and continuously produces the control input u(t).

The controller and the sensor node are connected by means
of a digital network. Only at event times tk (k = 0, 1, 2, ...)
determined by the event generator, the measured state x(tk)
is sent from the sensor node towards the controller which
is indicated by the dashed lines. The solid lines indicate
continuous-time signals.

B. Literature
Up to now, most of the approaches dealing with event-

triggered control, e.g., [1], [6], [8], [12], [19], consider
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Fig. 1. Event-triggered PI-control loop.

a simple proportional controller. The analysis is primarily
concentrated on showing the stability as well as the commu-
nication properties of the event-triggered control loop.

However, in order to apply event-triggered control in prac-
tice further requirements become important especially set-
point tracking for constant reference and disturbance signals.
In this context, [2], [14], [18] showed by simulations that
event-triggered PID control is able to significantly reduce the
computational and communication effort while only slightly
degrading the control performance.

A model-based approach to event-triggered PI control has
been presented in [10]. It provides a theoretical framework to
analyze the stationary behavior of the event-triggered control
loop for constant and time-varying reference and disturbance
signals. However, the scheme proposed is computationally
demanding as it requires to run the model used for producing
the control input u(t) both on the actuator and on the sensor
node.

In [7] a very general dynamical event-triggered controller
has been considered. By using an extended event-generating
mechanism which simultaneously monitors the evolution of
the measured output y(t) and the control input u(t), the
behavior of the event-triggered control loop was analyzed
in terms of its stability and L∞ properties resulting in LMI
conditions.

Two general problems of event-triggered PI control in
terms of setpoint tracking are the sticking effect and large
stationary oscillations (see [2], [18]). To overcome these
problems a modified integrator part of the event-triggered
PI controller has been introduced in [16]. It has been shown
that for stable first-order systems setpoint tracking can be
guaranteed by using the proposed scheme.

Additionally, it is well known from continuous-time con-
trol that by using a PI controller the closed-loop behavior
might be significantly deteriorated whenever the actuators
saturate due to physical or safety constraints (see [4], [15],



[20]). Even though actuator saturation almost always occurs
in practical applications, its effect on event-triggered PI
control has only been studied in [9]. There, it has been
shown by simulations that actuator saturation has severe
consequences with respect to the behavior of the event-
triggered PI-control loop which depend on the selection of
the event threshold.

C. Contributions of this paper

This paper extends the work in [9] by providing a theo-
retical framework for dealing with event-triggered PI control
subject to actuator saturation. The contributions of this paper
are the following:

1) It derives a continuous-time state-space model which
shows how event-triggered PI control is affected by
actuator saturation.

2) It presents a stability condition based on a sector
nonlinearity model approach (proposed in [15] for
continuous-time systems) which provides stability re-
gions for the event-triggered PI-control loop by means
of LMI conditions (Theorem 1).

3) It is shown that Zeno behavior can be excluded as a
lower bound on the minimum inter-event time can be
determined (Theorem 2).

4) To overcome a potential performance degradation
caused by actuator saturation, it extends the event-
triggered control loop by incorporating a static anti-
windup mechanism (Corollaries 1, 2).

5) It is shown by simulations how the stability regions
are affected by the event threshold and how the anti-
windup mechanism improves the results.

The remainder of this paper is organized as follows. Sec-
tion II introduces some basic notations. The effect of actuator
saturation is investigated in Sec. III. The extension by
incorporating a static anti-windup mechanism is discussed
in Sec. IV. Section V presents a numerical example.

II. PRELIMINARIES
Throughout this paper a scalar is denoted by italic letters

(x ∈ IR), a vector by bold italic letters (x ∈ IRn), a matrix
by upper-case bold italic letters (A ∈ IRn×n) and a signal
at time t ∈ IR+ by x(t), where x0 is defined as the initial
signal value at time t = 0. The i-th element of a vector x is
denoted by xi and the i-th row or column of a matrix A by
Ai. The absolute value of a scalar x is denoted by |x| and
∥x∥ and ∥A∥ are used to denote the Euclidean vector norm
or induced matrix norm. Symmetric matrices of the form(

A B
BT C

)
are written as

(
A B
⋆ C

)
with ()T denoting

the transpose of a vector or a matrix. A > 0 and A ≥ 0 mean
that the matrix A is positive definite or positive semidefinite,
respectively. Accordingly, A < 0 and A ≤ 0 mean that
the matrix A is negative definite or negative semidefinite,
respectively.

The plant is assumed to be given by the linear state-space
representation

ẋ(t) = Ax(t) +Bũ(t) +Ed(t), x(0) = x0 (1)

where x ∈ IRn denotes the state of the plant which is
assumed to be measurable and ũ ∈ IRm is the input of
the plant given by ũ(t) = sat(u(t)) which represents a
symmetric saturation nonlinearity according to

sat(ui(t)) =

 u0i, ui(t) > u0i;
ui(t), −u0i ≤ ui(t) ≤ u0i;
−u0i, ui(t) < −u0i,

(2)

for i = 1, 2, ...,m. The disturbance d ∈ IRl is assumed to
be an amplitude bounded exogenous signal belonging to the
set

d ∈ D = {d : dTHd ≤ β−1}

with H = HT > 0 and β > 0. The pair (A,B) is assumed
to be controllable.

III. EVENT-TRIGGERED PI CONTROL SUBJECT
TO ACTUATOR SATURATION

A. Components of the event-triggered PI-control loop
Event generator: The event generator uses extended

deadband sampling (see [14]). A new communication event
is invoked whenever the state error e(t) defined as

e(t) = x(t)− x(tk), (3)

reaches the boundary of the set

E = {e : eTRe ≤ δ−1},

i.e., t := tk+1 if

e(t) ∈ ∂E = {e : eTRe = δ−1}

with δ−1 > 0 the event threshold and R = RT > 0.
PI controller: The controller gets new information

about the current plant state x(t) only at event times tk
(k = 0, 1, 2, ...). It can be described in the time interval
[tk, tk+1) by

ẋI(t) = x(tk)−w(t), xI(tk) = xIk

u(t) = KIxI(t) +KP(x(tk)−w(t)), t ∈ [tk, tk+1)

with xI ∈ IRn the controller (integrator) state. By replac-
ing x(tk) according to (3), the equivalent continuous-time
representation

ẋI(t) = x(t)− e(t)−w(t), xI(0) = xI0 (4)
u(t) = KIxI(t) +KP(x(t)− e(t)−w(t)) (5)

(t ≥ 0) is obtained.

B. Model of the closed-loop system

With plant (1) and controller (4), (5) and by introducing
the augmented state vector

xa(t) =

(
x(t)
xI(t)

)
the event-triggered PI-control loop is described by the state-
space model

ẋa(t) = Aaxa(t) +Basat(u(t)) +Daw(t)

+Fae(t) +Ead(t), xa(0) = xa0 (6)
u(t) = Kxa(t)−KPe(t)−KPw(t) (7)
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Fig. 2. Continuous-time representation of the event-triggered PI-control
loop with augmented plant.

with

Aa =

(
A O
I O

)
, Ba =

(
B
O

)
, Ea =

(
E
O

)
Da = Fa =

(
O
−I

)
, K =

(
KP KI

)
.

Note that analogously to the controller (4), (5), the state-
space model (6), (7) provides a continuous-time representa-
tion of the event-triggered PI-control loop (Fig. 1). Here,
the augmented plant additionally includes the controller
dynamics and both the augmented plant and the controller
depend on the state error signal e(t) which is illustrated in
Fig. 2. Moreover, the saturation is directly affected by the
state error e(t) through the input u(t) according to (7).

C. Deadzone nonlinearity

By transforming the saturation nonlinearity sat(u) ac-
cording to

ϕ(u) = sat(u)− u (8)

the deadzone nonlinearity ϕ(u) is introduced. The main ben-
efit of this transformation is that it allows to use a modified
sector condition. This condition specifically applies to dead-
zone nonlinearities potentially resulting in less conservative
results compared to using classical sector conditions [15].

Lemma 1: [15] If v ∈ IRm and z ∈ IRm are elements of
the set

RS(∥v − z∥) = {v,z : |vi − zi| ≤ u0i, ∀i = 1, 2, ....m},

then the nonlinearity ϕ(u) satisfies the inequality

ϕ(v)TT (ϕ(v) + z) ≤ 0

for any positive definite diagonal matrix T ∈ IRm×m.
Replacing the saturation nonlinearity sat(u) by the dead-
zone nonlinearity according to (8) and with u(t) given by (7)
the transformed state-space model

ẋa(t) = Āaxa(t) +Baϕ(Kxa(t)−KPe(t)−KPw(t))

+D̄aw(t) + F̄ae(t) +Ead(t), xa(0) = xa0 (9)

results with

Āa =

(
A+BKP BKI

I O

)
D̄a = F̄a =

(
−BKP

−I

)
.

This model is used in the following stability analysis. More-
over, it is assumed that KP and KI are designed such that
the matrix Āa is Hurwitz.

D. Stability

For the sake of simplicity, in the following, the signals
w(t) and d(t) are considered to be zero.

Theorem 1: Suppose w(t) = d(t) = 0,∀t. If there exist
a symmetric positive definite matrix W ∈ IRn×n, a positive
definite diagonal matrix S ∈ IRm×m, a matrix Z ∈ IRm×n,
a positive scalar η and two a priori fixed positive parameters
τ1, τ2 satisfying[

WĀT
a +ĀaW+τ1W BaS−WKT−ZT F̄a

⋆ −2S −KP

⋆ ⋆ −τ2R

]
< 0 (10)

−τ1δ + τ2η < 0 (11)[
W ZT

i

⋆ ηu2
0i

]
≥ 0, i ∈ 1, ...,m (12)

then for any e ∈ E = {e : eTRe ≤ δ−1} and xa(0) ∈ RE
with

RE = {xa : xT
a Pxa ≤ η−1} (13)

and P = W−1, the trajectories of system (9) do not leave
the ellipsoid RE .

Proof: The proof follows the procedure introduced in
[15]. Consider the quadratic function

V (xa) = xT
a Pxa.

It has to be proven that V̇ (xa) < 0 for any xa /∈ intRE with
intRE = {xa : xT

a Pxa < η−1} and any e ∈ E . According
to the S-procedure, the condition

V̇ (xa) + τ1(x
T
a Pxa − η−1) + τ2(δ

−1 − eTRe) < 0

has to be verified which can be split into

V̇ (xa) + τ1x
T
a Pxa − τ2e

TRe < 0

−τ1η
−1 + τ2δ

−1 < 0

the latter of which leads to the second condition (11) of the
theorem.

By choosing

v = Kxa +KPe

z = Kxa +KPe+Gxa,

the nonlinearity ϕ(u) satisfies the sector condition

ϕ(u)TT (ϕ(u) + u+Gxa) ≤ 0

with u = Kxa −KPe in the set

RS(∥G∥) = {x : |Gix| ≤ u0i, ∀i = 1, 2, ....m}

according to Lemma 1. As the LMI (12) ensures that the
ellipsoid RE is included in the set RS(∥G∥) the following
inequalities hold:

V̇ (xa) + τ1x
T
a Pxa − τ2e

TRe

≤ V̇ (xa) + τ1x
T
a Pxa − τ2e

TRe

−2ϕ(u)TT (ϕ(u) + u+Gxa) < 0.

By using the system equation (9) and introducing the change
of variables W = P−1, S = T−1 and Z = GW , finally
inequality (10) is obtained. �



Depending on the objective, the result can be used for both
• determining the maximum stability region RE for a

fixed event threshold δ−1 and
• determining the maximum event threshold δ−1 for

which the inequalities (10)-(12) are feasible.
Note that the size of the ellipsoid RE might severely depend
on the selection of the parameters τ1, τ2. Therefore, in order
to obtain the maximum region of stability, a grid using
different pairs τ1, τ2 needs to be defined based on which
an optimization (see Sec. V) has to be carried out for every
grid point.

E. Minimum inter-event time

The minimum time interval between two consecutive
events (minimum inter-event time) is given by

Tmin = min
k

{tk+1 − tk}, k = 0, 1, 2, ... .

The next theorem shows that there exists a lower bound on
the minimum inter-event time and, hence, Zeno behavior can
be excluded.

Theorem 2: Assume that the event-triggered PI-control
loop (9) with w(t) = d(t) = 0 satisfies the inequalities (10)-
(12), then for xa(0) ∈ RE the minimum inter-event time
Tmin is lower bounded by

Tmin ≥ T̄ = argmin
t

{
ẽ(t) =

√
1

δ∥R∥

}
(14)

with

ẽ(t) = max
t

∥∥∥eAt − In

∥∥∥xmax

+

∫ t

0

∥∥∥eA(t− τ)
∥∥∥ dτ∥B∥u0 (15)

and
xmax = max

x∈RE
∥x∥. (16)

Proof: The behavior of the plant is given by

ẋ(t) = Ax(t) +Bũ(t) +Ed(t), x(0) = x0

(see (1)) with ũ(t) a saturation nonlinearity according to (2).
For d(t) = 0, the solution of this differential equation is
given by

x(t) = eAtx0 +

∫ t

0

eA(t− τ)Bũ(τ) dτ .

The norm of the state error

∥e(t)∥ = ∥x(t)− x(tk)∥

introduced by considering the over-approximation

eTRe ≤ ∥e∥2∥R∥

can be upper bounded by

∥e(t)∥ =

∥∥∥∥(eAt − In)x0 +

∫ t

0

eA(t− τ)Bũ(τ) dτ

∥∥∥∥
≤ ẽ(t)
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Fig. 3. Static anti-windup control.

(tk = 0) with ẽ(t) given by (15). As an event is generated
whenever the equation eTRe = δ−1 holds, ẽ(t) can be used
to derive a lower bound on the minimum inter-event time by
means of relation (14). �

IV. ANTI-WINDUP CONTROL

A. Modification of the components
In order to compensate the potential performance degra-

dation due to saturating actuators, anti-windup techniques
have been developed (see [4], [20]). This section applies
a static anti-windup mechanism to the event-triggered PI-
control loop and investigates how the event-triggered control
is affected by this extension.

The anti-windup mechanism is illustrated in Fig. 3. It uses
the difference between the saturated input ũ(t) and the input
signal u(t) produced by the controller, i.e., ϕ(u) = sat(u)−
u (see (8)), to affect the integrator state xI(t) through the
feedback matrix KS ∈ IRn×m. Hence, only the first equation
of controller (4), (5) has to be modified:

ẋI(t)=x(t)− e(t)−w(t) +KSϕ(u(t)),xI(0) = xI0(17)
u(t)=KIxI(t) +KP(x(t)− e(t)−w(t)). (18)

B. Model of the extended control loop
With plant (1) and controller (17), (18) and by using the

deadzone nonlinearity according to (8), the event-triggered
PI-control loop with anti-windup compensation is described
by the state-space model

ẋa(t) = Āaxa(t) + B̄aϕ(Kxa(t)−KPe(t)−KPw(t))

+D̄aw(t) + F̄ae(t) +Ead(t),xa(0) = xa0. (19)

The only difference to model (9) is given by replacing Ba

by B̄a with

B̄a =

(
B
KS

)
. (20)

C. Stability
As the anti-windup extension only replaces the matrix Ba

by B̄a the result stated in Theorem 1 can be simply adopted
to the anti-windup scenario.

Corollary 1: Suppose w(t) = d(t) = 0, ∀t. If there exist
a symmetric positive definite matrix W ∈ IRn×n, a positive
definite diagonal matrix S ∈ IRm×m, a matrix Z ∈ IRm×n,
a positive scalar η and two a priori fixed positive parameters
τ1, τ2 satisfying[

WĀT
a +ĀaW+τ1W B̄aS−WKT−ZT F̄a

⋆ −2S −KP

⋆ ⋆ −τ2R

]
< 0 (21)



−τ1δ + τ2η < 0 (22)[
W ZT

i

⋆ ηu2
0i

]
≥ 0, i ∈ 1, ...,m (23)

then for any e ∈ E = {e : eTRe ≤ δ−1} and xa(0) ∈ RE
with RE given by (13) and P = W−1, the trajectories of
system (19) do not leave the ellipsoid RE .
Note that KS now introduces additional degrees of freedom
by affecting B̄a according to (20) which can be used to
improve the behavior of the event-triggered control loop, e.g.,
by increasing the size of the region of stability as shown later
in the simulation.

Moreover, the anti-windup scheme does not directly affect
the bound on the inter-event time as the bound is derived
by means of the bound u0 on the control input ũ. Hence,
Theorem 2 holds in the anti-windup case as well.

Corollary 2: Assume that the event-triggered control
loop (19) with w(t) = d(t) = 0 satisfies the inequali-
ties (21)-(23), then for xa(0) ∈ RE the minimum inter-event
time Tmin is lower bounded by T̄ given by (14).
However, as the extension might increase the ellipsoid RE
it indirectly affects the bound through a potentially larger
parameter xmax (see (16)).

V. NUMERICAL EXAMPLE

A. Plant description

In [9] is has been shown by simulation that actuator
saturation might significantly affect the behavior of the event-
triggered PI-control loop which, moreover, strongly depends
on the selection of the event threshold. This section considers
the same scalar plant model which is given by

ẋ(t) = 0.1x(t) + ũ(t), x(0) = 0.

The plant input is affected by the actuator saturation

ũ(t) = sat(u(t)) =

 0.4, for u(t) > 0.4;
u(t), for − 0.4 ≤ u(t) ≤ 0.4;
−0.4, for u(t) < −0.4,

and the PI controller is given by

ẋI(t) = x(t), xI(0) = xI0

u(t) = −xI(t)− 1.6x(t)

with w(t) = 0. An event is generated whenever (e(t))2 =
δ−1 holds (r = 1) which, by setting δ−1 = ē2, corresponds
to the original deadband sampling rule [14], i.e.,

|x(t)− x(tk)| = ē

with ē the event threshold.

B. Consequences of actuator saturation

Figure 4 shows the stability regions for different values
of the event threshold ē. The regions have been obtained by
solving the optimization problem

max trace(W )

subject to inequalities (10) − (12)

x

x
I

e=0

e=0.05

e=0.15

Fig. 4. Stability regions for different event thresholds; ē = 0 indicates the
region for the corresponding continuous-time PI-control loop.

time (s)

u~

xIxI

x

Fig. 5. Behavior of the event-triggered PI-control loop for: 1. ē = 0.15,
x0 ∈ RE(0.15) (solid line), 2. ē = 0.9, x0 ∈ RE(0.15) (dashed line), 3.
ē = 0.15, x0 /∈ RE(0.15) (dotted line).

with the YALMIP toolbox [11]. The figure indicates that
the size of the region decreases by increasing the event
threshold, where ē = 0.15 denotes the maximum threshold
for which inequalities (10)-(12) yield a feasible solution. The
region obtained for ē = 0.15 is denoted in the following by
RE(0.15).

The behavior of the event-triggered PI-control loop is
depicted in Fig. 5. Here, the upper plot shows the plant state
x(t). The integrator state xI(t) is depicted in the middle plot.

Three different scenarios are considered. The behavior
using ē = 0.15 with x0 ∈ RE(0.15) is drawn by the solid
lines. As expected the behavior remains stable. The dashed
lines indicate the behavior obtained by starting from the same
initial condition but with an increased event threshold (ē =
0.9). The behavior becomes unstable. The same holds by
choosing an admissible event threshold ē = 0.15 but consid-
ering an initial state x0 /∈ RE(0.15) (x0 =

(
1.9 0.5

)T)
depicted by the dotted lines. In the latter two cases the
instability results from the fact that the input signal ũ(t) is
kept almost always in its saturation bounds (see lower plot
of the figure) which is caused by a large integrator state xI.
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Fig. 7. Behavior the event-triggered PI-control loop with (dotted lines)
and without (solid lines) anti-windup compensation.

C. Anti-windup control

Figure 6 shows how the anti-windup extension affects the
region of stability. The region is significantly increased and
even includes the region obtained for continuous-time PI
control without compensation which is depicted for

KS = −2.

Moreover, Fig. 7 compares the resulting trajectories obtained
without and with anti-windup control (KS = −2) for x0 ∈
RE(0.15) and ē = 0.15. It is shown that the overshoot with
anti-windup control is much smaller compared to the scheme
without compensation (upper plot) as the integrator state is
much smaller (second plot). This leads to a significant shorter
period in which the actuator is saturated which can be seen
at the beginning of the simulation (third plot). The lower
plot of Fig. 7 shows the event times. The anti-windup control
(AW) decreases the overall number of events (9 instead of 13
events in the time interval considered) primarily by reducing
the communication during the transient behavior.

VI. CONCLUSIONS

In this paper, the influence of actuator saturation on
event-triggered PI control has been investigated. As a main
result LMI conditions have been derived which allow to
determine regions of stability for the event-triggered closed-
loop system. Simulations have shown that by incorporating
a static anti-windup mechanism the region of stability and
the overall performance of the event-triggered PI control can
be significantly improved.

Future work will include alternative methods for deriving
the stability regions and the design of event-triggered anti-
windup mechanisms.
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