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Abstract: This paper investigates the stability as well as communication properties of sampled-
data control and two event-triggered control schemes: deadband control and model-based event-
triggered control. After proposing a uniform representation, these schemes are compared by
deriving approximation error bounds with respect to the behavior of the continuous-time state-
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show that, under the conditions derived in this paper, the model-based approach guarantees the
best stability and communication properties which is also demonstrated by a numerical example.
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1. INTRODUCTION

1.1 Event-triggered control

Traditionally, continuous controllers are implemented on
digital hardware by sampling continuous-time signals at
equidistant instants of time (sampled-data control). One of
the main reasons for applying this approach is a well estab-
lished theory for the analysis and the design of sampled-
data systems. However, to meet certain application re-
quirements, for example the reduction of computational
power, energy consumption or the information exchange
in networked control systems (Nair et al. [2007]), event-
triggered sampling has been investigated as a suitable
alternative to the time-driven paradigm. Event-triggered
control aims at adapting the communication among the
components of the feedback loop to the current needs.
By reducing the information exchange to the minimum
communication that is necessary to ensure the required
system performance, an overload of the digital communi-
cation network should be avoided.

In the literature, there are several approaches which show
that event-triggered control is able to significantly reduce
the computational and communication effort while only
slightly degrading the control performance, see e.g. Anta
and Tabuada [2010], Årzén [1999], Åström and Bern-
hardsson [2002], Cervin and Henningsson [2008], Heemels
et al. [2008], Wang and Lemmon [2009]. Although the
basic idea of all these approaches is the same, namely,
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”Control Theory of Digitally Networked Dynamical Systems”. The
first and third author were supported by the VINNOVA project
WiComPI, the Knut and Alice Wallenberg Foundation, the Swedish
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to sample a system only if certain event conditions are
satisfied, their implementations vary. However, as an event
usually forces a jump in certain continuous state vari-
ables, event-triggered control can be generally character-
ized as a hybrid, in particular, impulsive system (Lunze
and Lamnabhi-Lagarrigue [2009], Donkers and Heemels
[2010]).

This paper considers two different implementations which
have been published as deadband control and model-based
event-triggered control and compares these schemes with
sampled-data control by using a continuous-time control
loop as a common reference system.

Deadband control has been proposed by Otanez et al.
[2002]. Here, the event generating mechanism compares
the current plant state x(t) with the plant state x(tk)
sent over the network at the previous event time tk. A
communication is invoked, whenever the difference x(t)−
x(tk) reaches an event threshold ē:

‖x(t)− x(tk)‖ = ē. (1)

At the new event time t := tk+1, the current measurement
x(t) is transmitted and a new deadband is established
around the value x(t). A similar scheme has been studied
by Donkers and Heemels [2010], where besides a deadband
for the output y(t), an additional deadband for the input
u(t) has been used.

Åström [2008], Lunze and Lehmann [2010], and Garcia
and Antsaklis [2011] presented a model-based approach to
event-triggered control. In contrast to the previous scheme,
the event generator evaluates the current plant state x(t)
in comparison with the state xs(t) that a model of the
continuous-time state-feedback loop has according to

‖x(t)− xs(t)‖ = ē (2)
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with t := tk. Thus, an event does not indicate a large
evolution of the system variables but a large deviation of
the plant state from a desired reference behavior.

1.2 Contribution of this paper

In order to elaborate the relations between sampled-
data control and the two event-triggered control schemes
considered, this paper

(1) proposes a uniform representation of sampled-data
control (SDC), deadband control (DBC) and model-
based event-triggered control (MBETC), and

(2) uses this representation to derive and compare the
respective bounds on the approximation error with
respect to the behavior of the continuous-time state-
feedback loop and on the minimum inter-sampling
time (Theorems 1, 2, 3 and Corollary 4).

The paper is organized as follows. The uniform repre-
sentation is proposed in Sec. 2. Section 3 presents the
analytical results which are evaluated in Sec. 4 by means
of a numerical example.

1.3 Preliminaries

The plant is given by the linear state-space representation

ẋ(t) =Ax(t) +Bu(t) +Ed(t), x(0) = x0, (3)

where the state x ∈ IRn is assumed to be measurable. The
input is denoted by u ∈ IRm and the unknown disturbance
by d ∈ IRl, which is assumed to be bounded according to

‖d(t)‖ ≤ dmax,

where ‖ · ‖ is an arbitrary vector norm or the induced
matrix norm. With the state-feedback controller u(t) =
−KCTx(t), the continuous-time state-feedback loop

ẋCT(t) = (A−BKCT)
︸ ︷︷ ︸

¯A

xCT(t) +Ed(t), x(0) = x0(4)

results, where xCT(t) denotes the state of the continuous-
time control loop. If Ā is Hurwitz, the state xCT(t) is
bounded according to ‖xCT(t)‖ ≤ xCTmax with

xCTmax=max
t

∥
∥
∥e

¯At
∥
∥
∥ · ‖x0‖+

∫ ∞

0

∥
∥
∥e

¯AτE

∥
∥
∥ dτdmax. (5)

The discrete-time model of plant (3) subject to the distur-
bance d(t) = d(k) = d̄ is given by

x(k + 1) =ADx(k) +BDu(k) +EDd(k), x(0) = x0

with tk = kTs, Ts the fixed sampling period, and

AD = eATs , BD =

∫ Ts

0

eAαB dα, ED =

∫ Ts

0

eAαE dα.

Applying controller u(k) = −KDTx(k), the closed-loop
system

xDT(k + 1)= (AD −BDKDT)
︸ ︷︷ ︸

ĀD

xDT(k) +EDd(k) (6)

results (xDT(0) = x0) with xDT(k) denoting the state of
the discrete-time control loop.

In the following, it is assumed that K = KCT = KDT

holds and K is designed so that the continuous-time
control loop (4) is stable (Ā is Hurwitz) which likewise
holds for the discrete-time control loop (6). Moreover,
the continuous-time state-feedback loop (4) is used as a
reference system to evaluate the sampled-data and the
event-triggered control schemes and, therefore, should
have the desired disturbance attenuation properties.

2. UNIFORM REPRESENTATION FOR SYSTEMS
WITH SAMPLING

2.1 Structure

Event
generator

Control input
generator

Plant
u( )t

d( )t

x( )t

x( )t
k

Fig. 1. Uniform structure

In order to compare sampled-data control, deadband con-
trol and model-based event-triggered control, this section
firstly proposes a uniform representation for these three
schemes. The structure is depicted in Fig. 1 which consists
of the

• the plant,
• the event generator (EG) which invokes a sampling
event whenever certain event conditions (see e.g.
Eqs. (1), (2)) are satisfied,

• and the control input generator (CIG) which pro-
duces the control input u(t) by means of a model
description of the controller function.

Only at event times (sampling times) tk (k = 0, 1, 2, ...)
determined by the event generator, the state information
x(tk) is sent from the event generator towards the control
input generator. This is indicated by the dashed lines
whereas the solid lines indicate continuous-time signals.

Second, the behavior of each scheme is described by an
impulsive system of the form

ẋ(t) = Ax(t) +Ed(t) if h(x, t) 6= 0 (7)

x(t+k ) = Gx(tk) if h(x, t) = 0. (8)

The flow equation (7) holds between the event times tk and
the jump equation (8) describes the state jumps which
occur whenever the event condition h(x, t) = 0, which
implicitly defines the event times tk, is satisfied. Here,
x(t+k ) is used to indicate the jump of the state x(t) by
defining the limit from above at event time tk according
to x(t+k ) = lims↓tk x(s).

2.2 Sampled-data control

Sampled-data control with periodic sampling is the tra-
ditional control implementation on digital hardware. It
generally consists of the plant, a sampler, a controller and
a zero-order hold. In order to meet the structural require-
ments shown in Fig. 1, the controller and the zero-order
hold have to be merged in the control input generator. The
components can be described as follows.
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Control input generator. Between two consecutive
sampling times (t ∈ [tk, tk+1)), the control input generator
produces the control input u(t) by means of the following
controller model

ẋs(t) = 0, xs(t
+
k ) = x(tk) (9)

u(t) =−Kxs(t) (10)

with xs the state of the control input generator. At event
time tk, the state xs is updated with the current plant
state x(tk) which is communicated over the network by the
event generator. As the model state xs(t) is held constant
between two consecutive events, the control input u(t) is
constant as well.

Event generator. For periodic sampling, a clock invokes
a sampling whenever

t− tk = Ts (11)

holds (t > tk). The time t, at which this happens, denotes
the new event time tk+1. This is depicted in Fig. 2, where
the dashed line indicates the behavior of the model state
xs(t). The model state is updated at the sampling instants
tk (k = 0, 1, 2, ...) with the current state information x(tk)
and is held constant between two consecutive sampling
times.

x t( )0

x

x t( )1 x t( )2

t

x t( )3

x t( )4 x t( )6

x t( )5

xs

6

{

Ts

Fig. 2. Periodic sampling

Behavior of sampled-data control. In the time in-
terval [tk, tk+1), plant (3) and control input generator (9),
(10) lead to the state-space model

(
ẋ(t)

ẋs(t)

)

=

(
A −BK

O O

)(
x(t)

xs(t)

)

+

(
E

O

)

d(t)

(

x(tk)

xs(t
+

k )

)

=

(
xk

xk

)

,

where xk is used to denote the plant state x at event
time tk. Next, this behavior is used to get an impulsive
system description of the form (7), (8). By introducing
the difference state

x∆(t) = x(t)− xs(t) (12)

and by applying the state transformation
(
x∆(t)

xs(t)

)

=

(
I −I

O I

)(
x(t)

xs(t)

)

, (13)

the impulsive system model
(
ẋ∆(t)

ẋs(t)

)

=

(

A Ā

O O

)(
x∆(t)

xs(t)

)

+

(
E

O

)

d(t), if t− tk 6= Ts

(14)
(

x∆(t
+

k )

xs(t
+
k )

)

=

(
O O

O I

)(
0

xk

)

, if t− tk−1 = Ts

is obtained (k = 0, 1, 2, ...; t−1 := −Ts) which holds for all
times t ≥ 0.

2.3 Deadband control

Deadband control as proposed by Otanez et al. [2002]
uses the event condition (1) for invoking a communication
between the event generator and the control input genera-
tor. Moreover, it uses a zero-order hold for producing the
continuous-time input u(t) between two consecutive event
times which leads to the following system description.

Control input generator. Due to applying a zero-
order hold strategy, the control input generator can be
described by the same controller model (9), (10) as applied
by sampled-data control.

Event generator. Due to the fact that x(tk) = xs(t
+

k ) =
xs(t) holds (Eq. (9)), event condition (1) can be rewritten:

‖x(t)− xs(t)‖ = ē. (15)

The time t, at which this condition is satisfied, denotes the
new event time tk+1. Note that, in general, this sampling
does not occur equidistantly in time as shown in Fig. 3.
The corresponding deadbands, which depend on the state
information x(tk), are indicated by the grey regions.

x t( )0

x t( )1

x t( )2

x t( )5
{e- xs

x

Fig. 3. Deadband sampling

Behavior of deadband control. The deadband control
loop can be described by the impulsive system model
(
ẋ∆(t)

ẋs(t)

)

=

(

A Ā

O O

)(
x∆(t)

xs(t)

)

+

(
E

O

)

d(t), if ‖x∆(t)‖6=ē

(16)
(

x∆(t
+

k )

xs(t
+

k )

)

=

(
O O

O I

)(
0

xk

)

, if ‖x∆(t)‖ = ē ∨ t0 = 0,

where t0 denotes the time instance of the initial event
(k = 0).

2.4 Model-based event-triggered control

An alternative event-triggering scheme has been proposed
by Lunze and Lehmann [2010] which extends deadband
control by incorporating a more involved model in the
control input generator. The next paragraphs summarize
the components of this scheme.

Control input generator. The control input generator
produces the control input u(t) by means of a model of
the undisturbed continuous-time state-feedback loop (4)
according to

ẋs(t) = Āxs(t), xs(t
+

k ) = x(tk) (17)

u(t) =−Kxs(t), t ∈ [tk, tk+1). (18)
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Event generator. The event generator determines the
event times tk (k = 1, 2, 3, ...) by comparing the measured
state x(t) with the model state xs(t), see Eq. (2). However,
in contrast to deadband control, the model state xs(t)
refers to a desired system behavior (Eq. (17)) which
generally varies between two consecutive event times as
depicted in Fig. 4 by the dashed lines.

x t( )0

x t( )1
x t( )2

x t( )3{

e-
xs

x t( )4 x t( )5
x

Fig. 4. Model-based event-triggered sampling

Note that event condition (2) requires a continuous-time
access to the time-varying model state xs(t). In order not
to send this information continuously from the control
input generator to the event generator, the event generator
has to include a copy of model (17). This makes the scheme
computationally more demanding compared to deadband
control which simply stores the previous state information
x(tk) until the next event time.

Behavior of model-based event-triggered control.
In the time interval [tk, tk+1), plant (3) and control input
generator (17), (18) result in the state-space model

(
ẋ(t)

ẋs(t)

)

=

(

A −BK

O Ā

)(
x(t)

xs(t)

)

+

(
E

O

)

d(t)

(

x(tk)

xs(t
+

k )

)

=

(
xk

xk

)

.

By applying state transformation (13), this model leads to
the impulsive system of the form
(
ẋ∆(t)

ẋs(t)

)

=

(

A O

O Ā

)(
x∆(t)

xs(t)

)

+

(
E

O

)

d(t), if ‖x∆(t)‖6=ē

(

x∆(t
+

k )

xs(t
+

k )

)

=

(
O O

O I

)(
0

xk

)

, if ‖x∆(t)‖ = ē ∨ t0 = 0.

In contrast to the previous schemes, the state x∆(t) is
only affected by the exogenous disturbance d(t) and does
not depend on the model state xs(t) of the control input
generator.

2.5 Discussion

The previous investigation shows some remarkable analo-
gies of the control schemes considered:

(1) Deadband control can be seen as an event-triggered
realization of sampled-data control.

(2) Model-based event-triggered control extends dead-
band control by generating exponential inputs instead
of piecewise constant input signals.

The components of these schemes are summarized in
Tab. 1.

Table 1. Components of sampled-data control
and the event-triggered control schemes

Scheme CIG EG

SDC
Eqs. (9), (10)

t− tk = Ts

DBC
‖x(t) − xs(t)‖ = ē

MBETC Eqs. (17), (18)

3. STABILITY AND COMMUNICATION
PROPERTIES

3.1 Comparison to the behavior of the continuous-time
control loop

The stability analysis is carried out in this section by com-
paring the behavior of sampled-data control, deadband
control and model-based event-triggered control with the
behavior of the continuous-time state-feedback loop (4).
The analysis exploits the fact that both the sampled-data
and the event-triggered control schemes can be described
by the state-space model

ẋ(t) =Ax(t)−BKxs(t) +Ed(t), x(0) = x0

(see Eqs. (3), (10)), where the model state xs(t) is gen-
erated in different ways by the respective control input
generator (Tab. 1). Using relation (12), the model can be
rewritten as

ẋ(t) = Āx(t) +BKx∆(t) +Ed(t), x(0) = x0. (19)

Hence, the difference

e(t) = x(t)− xCT(t)

between the state x(t) of control loop (19) and the state
xCT(t) of the continuous-time state-feedback loop (4) is
given by

ė(t) = ẋ(t)− ẋCT(t) = Āe(t) +BKx∆(t), e(0) = 0.

Since Ā is assumed to be Hurwitz, the approximation error
e(t) is bounded according to

‖e(t)‖=

∥
∥
∥
∥

∫ t

0

e Ā(t− τ)BKx∆(τ) dτ

∥
∥
∥
∥

≤

∫ ∞

0

∥
∥
∥e ĀτBK

∥
∥
∥ dτ ·max

t
‖x∆(t)‖ (20)

if the difference state x∆(t) is bounded by

max
t

‖x∆(t)‖ ≤ x∆max. (21)

Consequently, as the continuous-time state-feedback loop
is assumed to be stable, a bounded approximation error
also implies the stability of the sampled control loops. In
the next sections, the upper bound x∆max is derived for
the three schemes considered.

3.2 Sampled-data control

Theorem 1. Under the assumption ‖ĀD‖ < 1, the dif-
ference e(t) = x(t) − xCT(t) between the state x(t) of
the sampled-data control loop (3), (9)–(11) and the state
xCT(t) of the continuous-time state-feedback loop (4) is
bounded from above by

‖e(t)‖ ≤ emax,SDC = x∆max ·

∫ ∞

0

∥
∥
∥e ĀτBK

∥
∥
∥ dτ (22)
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with

x∆max =

∫ Ts

0

∥
∥
∥eAτ

∥
∥
∥ dτ · (‖Ā‖xDTmax + ‖E‖dmax) (23)

and

xDTmax = max
k

∥
∥Āk

D

∥
∥ · ‖x0‖+

‖ED‖ dmax

1− ‖ĀD‖
.

Proof. Assuming that ‖ĀD‖ < 1 holds, an upper bound
xDTmax of the state x(tk) can be determined by means of
the discrete-time evolution of xDT(k) given by

‖xDT(k)‖=

∥
∥
∥
∥
∥
∥

Āk
Dx0 +

k−1∑

j=0

Ā
k−1−j
D

EDd̄

∥
∥
∥
∥
∥
∥

≤max
k

∥
∥Āk

D

∥
∥ · ‖x0‖+

∞∑

j=0

‖ĀD‖
j‖ED‖dmax

=max
k

∥
∥Āk

D

∥
∥ · ‖x0‖+

‖ED‖ dmax

1− ‖ĀD‖
= xDTmax

(Eq. (6)). Using this state bound, an upper bound on
maxt ‖x∆(t)‖ can be determined by considering the so-
lution of Eq. (14) leading to

max
t

‖x∆(t)‖=max
t

∥
∥
∥
∥

∫ t

tk

eA(t− τ)(Āx(tk) +Ed(τ)) dτ

∥
∥
∥
∥

which can be overapproximated by Eq. (23). 2

Note that the upper bound on the approximation error
depends implicitly on the disturbance d(t) and the sam-
pling period Ts since the bound x∆max depends on these
variables. The theorem shows that the sampled-data con-
troller is capable of emulating the continuous-time state
feedback with arbitrary precision by accordingly choosing
the sampling period Ts.

3.3 Deadband control

Using deadband control, the state x∆(t) is bounded ac-
cording to event condition (15):

‖x∆(t)‖ ≤ ē = x∆max.

However, in contrast to sampled-data control which op-
erates with a fixed inter-sampling time Ts (Eq. (11)), a
minimum inter-sampling time

Tmin = min
k

{tk+1 − tk} = argmin
t

{‖x∆(t)‖ = ē} (24)

has to be specified when dealing with event-triggered
control schemes.

Theorem 2. The deadband control loop (3), (9), (10), (15)
has the following properties:

• The difference e(t) = x(t) − xCT(t) between the
state x(t) of the deadband control loop and the state
xCT(t) of the continuous-time state-feedback loop (4)
is bounded from above by

‖e(t)‖ ≤ emax,DBC = ē ·

∫ ∞

0

∥
∥
∥e ĀτBK

∥
∥
∥ dτ. (25)

• The minimum inter-sampling time Tmin ≥ T̄DBC is
bounded from below by T̄DBC given by

T̄DBC = argmin
t

(26)
{∫ t

0

∥
∥
∥eAτ

∥
∥
∥dτ=

ē

‖Ā‖(xCTmax+emax,DBC)+‖E‖dmax

}

.

Proof. The first property follows directly from Eq. (20)
and the fact that event condition (15) holds.

The second property results from the fact that the mini-
mum inter-sampling time is given by

Tmin=argmin
t

{∥
∥
∥
∥

∫ t

tk

eA(t− τ)(Āx(tk) +Ed(τ))dτ

∥
∥
∥
∥
=ē

}

(cf. Eqs. (16), (24)). If the upper bound

∫ t

0

∥
∥
∥eA(t− τ)

∥
∥
∥ dτ·(‖Ā‖(xCTmax+emax,DBC)+‖E‖dmax)

≥

∥
∥
∥
∥

∫ t

tk

eA(t− τ)(Āx(tk) +Ed(τ)) dτ

∥
∥
∥
∥

is set to ē, with xCTmax given by Eq. (5), then the lower
bound T̄DBC ≤ Tmin can be obtained by Eq. (26). 2

This theorem shows that deadband control is likewise able
to mimic a continuous-time state feedback with arbitrary
precision. However, instead of the sampling period Ts, the
event threshold ē has to be chosen accordingly.

Moreover, it shows how the communication depends on
the disturbance magnitude dmax which contrasts with
sampled-data control, where the sampling frequency is
chosen with respect to the time constants of the plant.
Note that the bound T̄DBC on the minimum inter-sampling
time can also be chosen arbitrarily by accordingly choosing
the event threshold ē.

3.4 Model-based event-triggered control

Theorem 3. (Lunze and Lehmann [2010]) The model-
based event-triggered control loop (2), (3), (17), (18) has
the following properties:

• The difference e(t) = x(t)−xCT(t) between the state
x(t) of the model-based event-triggered control loop
and the state xCT(t) of the continuous-time state-
feedback loop (4) is bounded from above by

‖e(t)‖ ≤ emax,MBETC = ē ·

∫ ∞

0

∥
∥
∥e ĀτBK

∥
∥
∥ dτ. (27)

• The minimum inter-sampling time Tmin is bounded
from below by T̄MBETC given by

T̄MBETC = argmin
t

{∫ t

0

∥
∥
∥eAτ

∥
∥
∥ dτ =

ē

‖E‖dmax

}

.

(28)

Interestingly, the approximation error bounds (25) and
(27) are identical. This shows that the approximation
guarantee emax obtained by using event-triggered control is
not affected by the way of producing the control input u(t)
between two consecutive event times and only depends on
the event threshold ē.

However, the input generation affects the inter-sampling
times. Comparing bound (28) with bound (26), it can be
seen that deadband control always has a smaller bound
on the minimum inter-sampling time than model-based
event-triggered control.
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3.5 Summary

Corollary 4. The comparison of sampled-data control,
deadband control and model-based event-triggered control
brings about the following relations:

(1) Model-based event-triggered control is superior to
deadband control in terms of providing a larger bound
on the minimum inter-sampling time T̄MBETC >
T̄DBC while guaranteeing the same approximation
error bound.

(2) Whenever the condition

argmin
t

{∫ t

0

∥
∥
∥eAτ

∥
∥
∥ dτ =

emax,SDC

h̄‖E‖dmax

}

> Ts

is satisfied with

h̄ =

∫ ∞

0

∥
∥
∥e ĀτBK

∥
∥
∥ dτ, (29)

model-based event-triggered control is superior to
sampled-data control as it provides a larger bound on
the minimum inter-sampling time T̄MBETC > Ts while
guaranteeing the same approximation error bound.

Proof. The first property follows directly by comparing
Eqs. (25), (27) with Eqs. (26), (28).

The second property can be obtained by assuming that
the sampling time Ts and the event threshold ē have been
chosen, so that emax,SDC = emax,MBETC holds. Inserting
Eq. (27) into relation (28) yields

T̄ = argmin
t

{∫ t

0

∥
∥
∥eAτ

∥
∥
∥ dτ =

emax,SDC

h̄‖E‖dmax

}

with h̄ given by Eq. (29). As long as T̄ > Ts holds, model-
based event-triggered control guarantees a less frequent
communication while guaranteeing the same approxima-
tion error bound. This analysis can be simply adopted to
deadband control by replacing Eq. (28) by Eq. (26). 2

4. NUMERICAL EXAMPLE

To illustrate the results, the stable scalar system

ẋ(t) = −0.5x(t) + u(t) + d(t) (30)

is considered. With the controller u(t) = −1.5x(t), the
continuous-time state-feedback loop ẋCF(t) = −2xCF(t)+
d(t) results. The disturbance d(t) affecting system (30) is
assumed to be bounded according to |d(t)| < dmax = 1,
the sampling period Ts is set to Ts = 0.25 s and the
event-threshold ē has been varied in order to adapt the
properties of the event-triggered control to the sampled-
data situation.

Consider first the sampled-data control loop (3), (9)–(11),
where Eqs. (22), (23) yield |e(t)| < emax,SDC = 0.35.
Using event-triggered control, the same approximation
error bound results for the event threshold ē = 0.47 (see
Eqs. (25), (27)). However, the resulting minimum inter-
sampling times differ, i.e. T̄DBC = 0.18 s, T̄MBETC =
0.54 s. This shows that model-based event-triggered con-
trol has the same bound on the maximum approximation
error as sampled-data control while guaranteeing a larger
bound on the minimum-inter sampling time. In contrast,
deadband control might even cause more sampling events
compared to sampled-data control.

Similar results are obtained by considering the same
bounds on the minimum inter-sampling time, i.e. Ts =

T̄DBC = T̄MBETC = 0.25 s, which are obtained by us-
ing the event thresholds ēDBC = 0.72, ēMBETC = 0.24.
The results are summarized in Tab. 2 which bring about
that, in this example, model-based event-triggered control
guarantees the best bounds on the approximation error
and the minimum inter-sampling time whereas the worst
guarantees are provided by deadband control.

Table 2. Approximation error bounds and min-
imum inter-sampling times

Sampling scheme ē emax T̄

SDC – 0.35 0.25 s
DBC 0.47 0.35 0.18 s
DBC 0.72 0.54 0.25 s
MBETC 0.47 0.35 0.54 s
MBETC 0.24 0.18 0.25 s

5. CONCLUSIONS

This paper was focussed on analyzing and comparing
sampled-data control, deadband control and model-based
event-triggered control. The analysis was carried out
by, firstly, proposing a uniform representation of these
schemes and by, secondly, deriving stability and com-
munication properties for each scheme. The results show
that model-based event-triggered control always provides
better guarantees than deadband control. This likewise
holds compared to sampled-data control as long as certain
conditions are satisfied.
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