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ABSTRACT
This paper studies periodic event-triggered actuation applied to PID, cascade, and decoupling control. We
propose an event-triggered output feedback controller, in which the control command is actuated only
when it exceeds its previous value by a certain threshold. An exponential stability condition is derived in
the form of LMIs using a Lyapunov–Krasovskii functional based on Wirtinger’s inequality. It is shown that
an observer-based controller can reject an unknown step disturbance. Using this result, we propose a way
to tune the event threshold subject to a given stability margin. We apply the proposed framework to PID,
cascade, and decoupling control to illustrate how the event thresholds can be tuned in practice. Numer-
ical examples show for these three control architectures how controller–actuator communication can be
reduced without performance degradation.
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1. Introduction

Process control over wireless communication is of growing
interest with the recent development of wireless technol-
ogy (Ahlén et al., 2019; Isaksson et al., 2017; Park et al., 2018;
Samad et al., 2007). A key to realizing wireless process con-
trol is to guarantee control performance under limited sensor
and actuator communications. In this context, event-triggered
control has attracted much attention (Heemels et al., 2012).
The main purpose of this paper is to develop and apply event-
triggered actuation to PID, cascade, and decoupling control,
which are frequent architectures for process control systems.

1.1 Motivation

Process plants are complex systems producing a wide variety of
industrial products, such as oil, gas, chemical, steel, paper, and
food. Since these products are essential to our society, process
plants need to operate properly to satisfy economic, environ-
mental, and safety requirements. Process control systems enable
such operations by regulating process variables such as temper-
ature, pressure, level, and flow rate often through multiple PID
control loops. For example, consider the Swedish paper plant
in Iggesund (Ahlén et al., 2019). It includes a subunit called a
starch cooker to produce starch pastes used to coat the papers.
The starch cooker is controlled by seven PID control loops to
obtain the starch pastes with the desired concentration. Another
example is a distillation column, the main subunit of oil and
gas refinery plants (Seborg et al., 2010). It separates a mixture
into light and heavy components. To properly separate the mix-
ture, the temperatures at the top and bottom of the column are
regulated by adjusting the reflux and boiler steam flow rate. A
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distillation control system mainly consists of two PID control
loops. In these two examples, PID controllers often indepen-
dently regulate the corresponding process variables to make the
subunits function properly.

In process control systems, feedforward control is used
together with PID control to compensate for external dis-
turbances when they can be measured explicitly. Using the
information from the disturbance sensor, the controller takes
corrective action before the controlled variable deviates too
much from its setpoint. Multi-loop control architectures, such
as cascade and decoupling control, are also often introduced to
enhance the control performance (Åström & Hägglund, 2006;
Seborg et al., 2010). If disturbances cannot be measured and
are associated with a control signal, cascade control can be con-
sidered. Cascade control employs another controller so that it
provides a tighter inner control loop. Decoupling control is
introduced between two independent PID control loops when
their control signal variations interact with each other. They
adjust the corresponding control signals so that the interactions
are mitigated proactively.

Two wireless communication standards that have been pro-
posed for process control systems are WirelessHART (HART
Communication Foundation, 2014) and ISA-100 (International
Society of Automation, 2009). Both employ a mesh-structured
multi-hop network, in which the network nodes consist of wire-
less sensors, actuators, and gateways (Figure 1).Wireless process
control offers advantages through potentially massive sensing,
flexible deployment and operation, and efficient maintenance.
However, there remains the problem how to limit the amount of
information that needs to be exchanged over the network since
system performance is critically affected by network-induced
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Figure 1. Architecture of wireless process control systems.

delay, packet dropout, communication outages, and battery
shortage of wireless devices. Resource-aware communication
and control strategies, therefore, need to be investigated.

1.2 Relatedwork

Aperiodic control systems have been investigated as a mea-
sure to reduce the communication load of wireless networks.
In Araújo et al. (2014), aperiodic sampling strategies under the
wireless medium access control (MAC) protocol are proposed.
The framework is experimentally evaluated on a double-tank
system, which mimics typical industrial process control loops.
In Di Girolamo and D’Innocenzo (2019), the authors focus on
how to design a controller and scheduler for WirelessHART. A
co-design framework of a controller and scheduler is proposed
by formulating an optimal control problem under multi-hop
network communication.

In event-triggered control, sensor measurements or control
signals are transmitted to the corresponding network nodes
only when a given condition is satisfied so that the usage of com-
munication can be significantly reduced (Årzén, 1999; Åström
& Bernhardsson, 1999). Many event-triggered control strate-
gies have been proposed and investigated (Heemels et al., 2012).
To suit for practical implementation, periodic event-triggered
control is proposed in Heemels et al. (2012) and Heemels
and Donkers (2013). Since the event trigger only needs to check
the event-triggering condition periodically, a minimum event
time is guaranteed.

Many researchers have studied event-triggered control for
industrial processes. Most studies focus on analyzing and
designing event-triggered PI or PID control since PID con-
trol is still the first choice for process control. Stability condi-
tions for PI control subject to actuator saturation are derived
in Kiener et al. (2014) andMoreira et al. (2019). Event-triggered
PI control for first-order systems using the PIDPLUS implemen-
tation (Song et al., 2006) is discussed in Tiberi et al. (2012).
In Selivanov and Fridman (2018), a time-delay approach is
used to derive a stability condition of periodic event-triggered
PID control, where the control signal is updated when its rel-
ative value goes beyond a given threshold. Experimental val-
idation is carried out in Kiener et al. (2014) and Lehmann
andLunze (2011). Implementations on a real industrial plant are
presented in Blevins et al. (2015), Lindberg and Isaksson (2015)
and Norgren et al. (2012).

The objective of PID control is in most cases setpoint track-
ing or disturbance rejection (Åström&Hägglund, 2006). These
properties of event-triggered PID control have been investi-
gated. For setpoint tracking, it is shown that the output con-
verges to a constant when the setpoint value and the controller
state are available at the sensor (Reimann et al., 2015; Tiberi
et al., 2012). In Lehmann and Johansson (2012), the authors
show that event-triggered PI control has bounded responses
for setpoint tracking and disturbance rejection. Observer-based
event-triggered control for disturbance rejection is proposed
in Garcia and Antsaklis (2014) and Wang et al. (2017). In
these studies, it is required to have the capability to imitate
the controller or to implement an observer at the wireless sen-
sors, which is intrinsically difficult to realize if the controller
uses measurements frommultiple sensors generated at different
locations. For example, this is the case in cascade control and
decoupling control, where the measurements from two sensors
need to be used to implement the controller and observer. In
wireless process control systems, the sensors are typically dis-
tributed over an area, and the measurements are transmitted to
the controller through a multi-hop wireless network (Figure 1).
The controller is the only place where all the information is
available. In Tiberi et al. (2012), a self-triggered control strategy
is introduced where the event trigger is located at the con-
troller. While both setpoint tracking and disturbance rejection
are investigated, the application is limited to first-order systems.

1.3 Contribution

This paper proposes an event-triggered actuation framework
for PID control, cascade, and decoupling control. We consider
event-triggered output feedback control for a continuous-time
linear system, where the plant state is measured periodically by
multiple sampled-data sensors. The control signal is sent to the
actuator in a periodic event-triggered fashion. Since the control
signal is transmitted through a multi-hop network, the sen-
sors and actuators consume energy as relay nodes. Our strategy
effectively reduces the communication load in the network but
also the number of control command changes. The controller
updates the signal to the actuator when its value goes beyond a
given threshold.

The main contributions of this paper are outlined as
follows:

• We introduce a general event-triggered output feedback con-
trol system with delayed sampling. An exponential stability
condition is derived using a Lyapunov–Krasovskii functional
based on Wirtinger’s inequality (Theorem 3.1).

• By modifying the event-triggering condition and intro-
ducing an observer, we show that the proposed controller
achieves setpoint tracking and disturbance rejection (Theo-
rems 3.2 and 3.3).

• A tuning procedure is provided for the event threshold under
a given stability margin (Corollary 3.1). The optimal thresh-
old is obtained by solving a semi-definite programming
(SDP) problem.

• We apply this framework to PID control as well as cascade
and decoupling control. Numerical examples for each case
are presented to illustrate how to tune the event thresholds.
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The examples show that our proposed framework reduces
the communication loads without performance degradation.

1.4 Outline

The remainder of this paper is organized as follows. Section 2
introduces the plant model and formulates the problem con-
sidered. In Section 3, we derive the stability condition of the
proposed event-triggered control. Setpoint tracking and distur-
bance rejection properties are also investigated. Applications to
PID, cascade, and decoupling control are discussed in Section 4.
Numerical examples for each controller are also provided. The
conclusion is presented in Section 5.

1.5 Notation

Throughout this paper, N, N0, and R are the sets of inte-
gers larger than zero, nonnegative integers, and real numbers,
respectively. The set of n by n positive definite (positive semi-
definite) matrices over R

n×n is denoted as S
n++ (Sn+). For sim-

plicity, we write X>Y (X ≥ Y), X,Y ∈ S
n++, if X − Y ∈ S

n++
(X − Y ∈ S

n+) and X> 0 (X ≥ 0) if X ∈ S
n++ (X ∈ S

n+). Sym-
metric matrices of the form

[
A B
B� C

]
are written as

[ A B∗ C
]
with

B� denoting the transpose of B.

2. Systemmodel and problem formulation

In this section, we formulate the problem considered. We first
introduce a plant model given by a continuous-time linear sys-
tem. A PID controller is then introduced together with cascade
and decoupling controllers. Finally, the event trigger problem
studied in this paper is formulated.

2.1 Systemmodel

Consider a continuous-time linear plantmeasured byN sensors
given by

ẋp(t) = Apxp(t) + Bpũ(tk) + Bdd(t), t ∈ [tk, tk+1), (1)

yi(t) = Ci
pxp(t), i ∈ N � {1, . . . ,N}, (2)

where xp(t) ∈ R
np , ũ(t) ∈ R

m, d(t) ∈ R
nd and yi(t) ∈ R are the

state, event-triggered control signal applied to the actuator, dis-
turbance, and output of sensor i, respectively. We assume that
the controller updates its state and control signal (defined below
for each controller) every h0 time interval, and let tk be the time
of update k ∈ N0 of the controller, i.e. tk = kh0 for all k ∈ N0.
Sensor i samples and transmits its measurement every hi time
interval. The control signal is computed based on the measure-
ments from sensor yi(si(tk)), i ∈ N and r(tk) where si(tk) is the
last transmission time of sensor i at time tk. That is, we have
si(tk) = �ihi where �i = �tk/hi�.

We especially consider three controllers: PID, cascade, and
decoupling controllers. Their state-space formulations are given
as follows.

PID control
The block diagram of event-triggered PID control is shown in
Figure 2(a). Note that PID control includes a single sensor, i.e.

N = 1. A standard PID controller can be written as

ẋc(t) = r(tk) − y1(s1(tk)), t ∈ [tk, tk+1), (3)

u(t) = Kp(br(tk) − y1(s1(tk))) + Kixc(tk)

+ Kd(c�r(tk) − �y1(s1(tk))), (4)

whereKp,Ki,Kd are proportional, integral, and derivative gains,
respectively, and b, c, weight parameters. For the derivative
term, we use the backward Euler method, i.e.

�yi(si(tk)) = 1
hi

(
yi(si(tk)) − yi(si(tk) − hi)

)
, i ∈ N ,

�r(tk) = 1
h0

(r(tk) − r(tk − h0)) .

The derivative term is usually implemented with a first-order
filter (Åström & Hägglund, 2006). In this case, the controller
state, consisting of the integrator and derivative filter, is given by

ẋc,1(t) = r(tk) − y1(s1(tk)), (5)

ẋc,2(t) = − 1
T1

xc,2(tk) + 1
T1

(c�r(tk) − �y1(s1(tk))), (6)

u(t) = Kp(br(tk) − y1(s1(tk))) + Kixc,1(tk) + Kdxc,2(tk),
(7)

where xc,1(t), xc,2(t) is the integrator and the filter states, respec-
tively, of the PID controller, and T1 is the filter’s time constant.

Cascade control
In cascade control (Figure 2(b)), the outer PID controller com-
putes its control signal for reference of the inner controller. The
inner controller sends its signal to the actuator, i.e.

ẋc,1(t) = r(tk) − y1(s1(tk)),

ẋc,2(t) = − 1
T1

xc,2(tk) + 1
T1

(c�r(tk) − �y1(s1(tk))),

ẋc,3(t) = v(tk) − y2(s2(tk)),

ẋc,4(t) = − 1
T2

xc,4(tk) − 1
T2

�y2(s2(tk)),

v(t) = bK1
p(r(tk) − y1(s1(tk))) + K1

i xc,1(tk) + K1
dxc,2(tk),

u(t) = K2
p(v(tk) − y2(s2(tk))) + K2

i xc,3(tk) + K2
dxc,4(tk),

where xc,1(t), xc,2(t) are the integrator and filter states, respec-
tively, of the outer PID controller, xc,3(t), xc,4(t) those of the
inner PID controller,Ki

p,K
i
i ,K

i
d,Ti, i = 1, 2, are the correspond-

ing proportional, integral, and derivative gains, and the filter’s
time constants.

Remark 2.1: The inner controller is given by setting b = 1 and
c = 0 in PID control (5)–(7). This form is suitable for rejecting
input disturbance.

Decoupling control
In decoupling control (Figure 2(c)), two PID controllers are
interconnected. The controller dynamics is given by

ẋc,1(t) = r1(tk) − y1(s1(tk)),
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Figure 2. Block diagrams of event-triggered PID, cascade, and decoupling control. (a) PID control (b) Cascade control (c) Decoupling control .

ẋc,2(t) = − 1
T1

xc,2(tk) + 1
T1

(c1�r(tk) − �y1(s1(tk))),

ẋc,3(t) = r2(tk) − y2(s2(tk)),

ẋc,4(t) = − 1
T2

xc,4(tk) + 1
T2

(c2�r(tk) − �y2(s2(tk))),

v1(t) = K1
p(r1(tk) − y1(s1(tk))) + K1

i xc,1(tk) + K1
dxc,2(tk),

v2(t) = K2
p(r2(tk) − y2(s2(tk))) + K2

i xc,3(tk) + K2
dxc,4(tk),

u1(t) = v1(tk) + K1
gv2(tk),

u2(t) = v2(tk) + K2
gv1(tk),

where xc,1(t), xc,2(t) are the integrator and filter states, respec-
tively, of PID controller 1, xc,3(t), xc,4(t) those of controller 2.
The parameters Ki

p,K
i
i ,K

i
d,K

i
g,Ti, bi, ci, i = 1, 2, are the corre-

sponding proportional, integral, derivative, decoupler gains,
time constants, and weights, respectively.

2.2 Problem formulation

Next, we formulate the problem considered in this paper. Con-
sidering a plant given by (1)–(2), together with PID, cascade, or
decoupling control, this paper aims to obtain an event-triggered
actuation framework based on periodic event-triggered control.
The event-triggering condition is given by

(u(tk) − ũ(tk−1))
��(u(tk) − ũ(tk−1)) > σu�(tk)�u(tk) + ρ

(8)

where σ≥ 0 is a relative threshold, � ∈ S
m++ a matrix, and ρ >

0 a constant, all to be determined. The event-triggered control
signal is given by

ũ(t) =
{
u(tk), t ∈ [tk, tk+1), if (8) is true,
ũ(tk−1), t ∈ [tk, tk+1), if (8) is false, (9)

with ũ0 = u(t0).

Remark 2.2: The positive constant ρ excludes Zeno behavior
for continuous event-triggered control (Donkers & Heemels,
2012). For periodic event-triggered control, we can derive an
exponential stability condition when ρ = 0. A small ρ can
reduce the event generation.

To handle all controllers introduced above in a general form,
we introduce an output feedback controller given by

ẋc(t) = Acxc(tk) +
∑
i∈N

Bicyi(si(tk)) +
∑
i∈N

B̄icyi(si(tk) − hi)

+ Brr(t) + B̄rr(tk − h0), t ∈ [tk, tk+1), (10)

u(t) = Ccxc(tk) +
∑
i∈N

Di
cyi(si(tk)) +

∑
i∈N

D̄i
cyi(si(tk) − hi)

+ Drr(tk) + D̄rr(tk − h0), (11)

where xc(t) ∈ R
nc is the controller state. By augmenting the

state x(t) = [x�
p (t), x�

c (t)]� ∈ R
n with n � np + nc, we have
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the following closed-loop system description

ẋ(t) = Ax(t) + A0x(tk) +
∑
i∈N

Aix(si(tk))

+
∑
i∈N

Āix(si(tk) − hi)

+ Bξ(t) + BDd(t) + BRr(tk) + B̄Rr(tk − h0) (12)

where

ξ(t) � ũ(t) − u(t)

= ũ(tk) − u(tk), t ∈ [tk, tk+1),

is the control signal error due to event-triggered actuation, and
the matrices are given by

A =
[
Ap 0
0 0

]
, A0 =

[
0 BpCc
0 Ac

]
, Ai =

[
BpDi

cCi
p 0

BicCi
p 0

]
,

Āi =
[
BpD̄i

cCi
p 0

B̄icCi
p 0

]
, B =

[
Bp
0

]
, BD =

[
Bd
0

]
,

BR =
[
BpDr
Br

]
, B̄R =

[
BpD̄r
B̄r

]
.

We formulate the problem as follows: Consider the system (12)
under PID, cascade, or decoupling control. How to design the
event trigger (8)–(9) such that the closed-loop system (12)
is exponentially stable with a given convergence rate and has
setpoint tracking and disturbance rejection capabilities?

Remark 2.3: This paper studies the event-triggered actuation.
While the sensor measurements are still periodically sampled
and transmitted, we can expect to reduce the communication
load since we mainly focus on the multi-hop wireless network
(Figure 1) introduced in the process control application. In
multi-hop networks, the control signals are also transmitted
through some intermittent wireless network nodes such as wire-
less sensors and actuators. Thus, reducing controller–actuator
communication results in saving the energy consumption of the
intermittent nodes between the controller and the correspond-
ing actuator.

3. Main results

In this section, we present the main results of this paper. First,
we derive a stability condition of time-triggered output feed-
back control in Lemma 3.1. We then discuss event-triggered
control. Next, setpoint tracking and disturbance rejection prop-
erties are considered. We also discuss how to tune the event
trigger parameters.

3.1 Stability analysis

We first derive the stability condition of the time-triggered
control system given by system (12) with ξ(t) ≡ 0. Define the

following matrices:

Ā � A + A0 +
∑
i∈N

Ai, Ã � Ā +
∑
i∈N

Āi,

K0 �
[
0 Cc

]
, Ki = [

Di
cCi

p 0
]
, K̄i �

[
D̄i
cCi

p 0
]
,

K̄ � K0 +
∑
i∈N

Ki, K̃ � K̄ +
∑
i∈N

K̄i, KR = Dr , K̄R = D̄r .

Lemma 3.1: Consider the closed-loop system (12) with ξ(t) ≡
d(t) ≡ r(t) ≡ 0. Assume that there exist P,W0,Wi, W̄i,Qi,Ri ∈
S
n++, i ∈ N , and α > 0, such that 	 = 	� = {	j�} < 0 where

	11 = PĀ + Ā�P + 2αP +
∑
i∈N

[
Qi − e−2αhiRi

]
,

	1(i+1) = PĀi + e−2αhiRi, i = 1, . . . ,N,

	1(i+N+2) = PAi, i = 1, . . . ,N,

	1(i+2N+2) = PĀi, i = 1, . . . ,N,

	1(3N+2) = Ā�S,

	(i+1)(i+1) = −e−2αhi(Qi + Ri), i = 1, . . . ,N,

	(i+1)(3N+3) = Ā�
i S, i = 1, . . . ,N,

	(i+N+2)(i+N+2) = −π2

4
Wi, i = 0, 1, . . . ,N,

	(i+N+2)(3N+3) = A�
i S, i = 0, 1, . . . ,N,

	(i+2N+2)(i+2N+2) = −π2

4
e−2αhiW̄i, i = 1, . . . ,N,

	(i+2N+2)(3N+3) = −Ā�
i S, i = 1, . . . ,N,

	(3N+3)(3N+3) = −S,

with

S � h20e
−2αh0W0 +

∑
i∈N

[
(h0 + hi)2e−2α(h0+hi)

× (Wi + W̄i) + h2i Ri
]
,

and the other elements are zero matrices. Then the closed-loop
system (12) is exponentially stable with decay rate α.

Proof: See Appendix 1. �

We then have the following stability condition for the event-
triggered control systems.

Theorem 3.1: Consider the closed-loop system (12) with d(t) ≡
r(t) ≡ 0 and the event trigger (8)–(9) with ρ = 0. Assume that
there exist P,W0,Wi, W̄i,Qi,Ri ∈ S

n++, i ∈ N , w> 0, σ > 0,
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and α > 0, such that

� �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	

PB wσ K̄��

0 wσ K̄�
1 �

...
...

0 wσ K̄�
N

0 wσK�
0 �

...
...

0 wσK�
N�

0 wσ K̄�
1 �

...
...

0 wσ K̄�
N�

SB 0
∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

−w� 0
0 −wσ�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (13)

Then the closed-loop system (12) is exponentially stable with
decay rate α.

Proof: See Appendix 2. �

Remark 3.1: This paper considers the event trigger with
respect to the control signal. The event trigger for the plant
output can be considered by replacing y(si(tk)), y(si(tk − hi))
by ỹ(si(tk)) = y(si(tk)) + ei(si(tk)), ỹ(si(tk) − hi) = y(si(tk) −
hi) + ei(si(tk) − hi) in (10)–(11). This may further reduce com-
munication load but requires to introduce more terms when
considering the derivative of the Lyapunov functional. This
results inmore complicated LMIwith additional block-columns
and block-rows. In this paper, we consider only the event-
triggered actuation for simplicity.

3.2 Setpoint tracking and disturbance rejection

In the previous subsection, we provided a stability condition
of event-triggered control without reference signals or distur-
bances. In this case, the equilibrium point of the closed-loop
system (12) is the origin. However, when there is a constant ref-
erence signal or disturbance, each element of the augmented
state x(t) converges possibly to a non-zero value even if the
event-triggered controller successfully stabilizes the plant. The
steady-state control signal may also be non-zero, which causes
a tracking error even if the controller contains an integrator.
This fact imposes modification of the event-triggering condi-
tion. Considering this, we discuss setpoint tracking and distur-
bance rejection of event-triggered control. We assume that the
reference signal and disturbance changes are sufficiently slow
compared to the plant dynamics and hence can be regarded as
constants.

First, setpoint tracking is considered. We show the following
lemma.

Lemma 3.2: If � < 0, then Ã is invertible.

Proof: Let us denote

ζ = [x�, . . . , x�︸ ︷︷ ︸
N+1

, 0, . . . , 0]�

where x ∈ R
n is an arbitrary non-zero vector. Then we have

ζ��ζ

= x�
(
PÃ + Ã�P + 2αP +

∑
i∈N

[
1 − e−2αhiQi

])
x < 0.

Since 1 − e−2αhi > 0 for hi > 0, Ã is Hurwitz, and therefore,
invertible. �

Consider the updated event-triggering condition

(u(tk) − ũ(tk−1))
��(u(tk) − ũ(tk−1))

> σ(u(tk) − uc(tk))��(u(tk) − uc(tk)) + ρ (14)

where xe(tk) = −Ã−1(BRr(tk) + B̄Rr(tk − h0)) and uc(tk) =
K̃xe(tk) + KRr(tk) + K̄Rr(tk − h0). Note that Ã is invertible
when � < 0 (Lemma 3.2). The controller updates the signal
according to

ũ(t) =
{
u(tk), t ∈ [tk, tk+1), if (14) is true,
ũ(tk−1), t ∈ [tk, tk+1), if (14) is false, (15)

with ũ0 = u(t0).

Remark 3.2: The modified event trigger (14)–(15) extends the
trigger (8)–(9), by including a steady-state control signal term.

Theorem 3.2: Consider the closed-loop system (12) with d(t) ≡
0 and the event trigger (14)–(15) with ρ = 0. Assume that
there exist P,W0,Wi, W̄i,Qi,Ri ∈ S

n++, i ∈ N , w> 0, σ > 0,
and α > 0, such that � < 0. Then the equilibrium point x∗

e �
−Ã−1(BR + B̄R)r is exponentially stable with decay rate α.

Proof: By Lemma 3.2, there exists an equilibrium point x∗
e . We

apply a coordinate transformation x̄(t) = x(t) − x∗
e . Then the

system (12) can be written as

˙̄x(t) = Ax̄(t) + A0x̄(tk) +
∑
i∈N

Aix̄(si(tk))

+
∑
i∈N

Āix̄(si(tk) − hi) + Bξ(t).

By Theorem 3.1, this system is exponentially stable with the
event-triggering condition

(ū(tk) − ˜̄u(tk−1))
��(ū(tk) − ˜̄u(tk−1)) > σ ū�(tk)�ū(tk)

where ū(tk) = u(tk) − uc(tk) and

˜̄u(t) =
{
ū(tk), t ∈ [tk, tk+1), if (14) is true,
˜̄u(tk−1), t ∈ [tk, tk+1), if (14) is false,

Recall that r(t) is a step function, we have
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ū(tk) − ˜̄u(tk−1)) = u(tk) − uc(tk) − ũ(tk−1) + uc(tk−1)

= u(tk) − ũ(tk−1).

This completes the proof. �

Next, we consider disturbance rejection. We introduce an
observer to estimate the steady-state control signal, which can-
not be obtained when there is an unknown disturbance. The
block diagram of the proposed system is shown in Figure 3.
In this system, the disturbance estimation d̂(tk) is used in the
controller for feedforward compensation. Tomodel this system,
consider the augmented plant

ẋa(t) = Aaxa(t) + Baũ(t), (16)

yi(t) = Ci
axa(t), i ∈ N , (17)

where xa(t) = [x�
p (t), d�]� ∈ R

np+nd with

Aa =
[
Ap Bd
0 0

]
, Ba =

[
Bp
0

]
, Ci

a = [
Ci
p 0

]
.

For the system (16)–(17), we introduce an observer with
sampled-data implementation

˙̂xa(t) = Aax̂a(tk) + Baũ(t) +
∑
i∈N

Li(yi(si(tk)) − LCax̂(tk))

(18)
where x̂a(t) = [x̂�

p (t), d̂�(t)]� is the estimate of xa(t), Li =
[Li�p , Li�d ]� ∈ R

np+nd , L = [L1, . . . , LN], the observer gain,
andCa = [C1�

a , . . . ,CN�
a ]�. Introducing ep(t) � xp(t) − x̂p(t),

ed(t) � d − d̂(t), and

Hi
p � LipC

i
p, H̄p �

∑
i∈N

Hi
p, Hi

d � LidC
i
p, H̄d �

∑
i∈N

Hi
d,

we have the plant state estimation error dynamics

ėp(t) = Apxp(t) − (
Ap − H̄p

)
xp(tk)

−
∑
i∈N

Hi
pxp(si(tk)) + Apep(tk) + Bded(tk),

and the disturbance estimation error dynamics

ėd(t) = −H̄dxp(tk) −
∑
i∈N

Hi
pxp(si(tk)) + H̄dep(tk).

This gives the controller

ẋc(t) = Acxc(tk) +
∑
i∈N

Bicyi(si(tk)) +
∑
i∈N

B̄icyi(si(tk) − hi)

+ Brr(t) + B̄rr(tk − h0) + Bd̂d̂(tk), (19)

u(t) = Ccxc(tk) +
∑
i∈N

Di
cyi(si(tk)) +

∑
i∈N

D̄i
cyi(si(tk) − hi)

+ Drr(tk) + D̄rr(tk − h0) + Dd̂d̂(tk). (20)

By augmenting the state

x(t) �

⎡
⎢⎢⎣
xp(t)
xc(t)
ep(t)
ed(t)

⎤
⎥⎥⎦ ∈ R

n+np+nd ,

we have the following closed-loop system description

ẋ(t) = Ax(t) + A0x(tk) +
∑
i∈N

Aix(si(tk))

+
∑
i∈N

Āix(si(tk) − hi)

+ Bξ(t) + BDd(t) + BRr(tk) + B̄Rr(tk − h0) (21)

with

A =

⎡
⎢⎢⎣
Ap 0 0 0
0 0 0 0
Ap 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

A0 =

⎡
⎢⎢⎣

0 BpCc 0 −BpDd̂
0 Ac 0 −Bd̂−Ap + H̄p 0 Ap Bd
H̄d 0 −H̄d 0

⎤
⎥⎥⎦ ,

Ai =

⎡
⎢⎢⎣
BpDi

cCi
p 0 0 0

BicCi
p 0 0 0

−Hi
p 0 0 0

−Hi
d 0 0 0

⎤
⎥⎥⎦ ,

Āi =

⎡
⎢⎢⎣
BpD̄i

cCi
p 0 0 0

B̄icCi
p 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
Bp
0
0
0

⎤
⎥⎥⎦ ,

BD =

⎡
⎢⎢⎣
Bd + BpDd̂

Bd̂
0
0

⎤
⎥⎥⎦ , BR =

⎡
⎢⎢⎣
BpDr
Br
0
0

⎤
⎥⎥⎦ , B̄R =

⎡
⎢⎢⎣
BpD̄r
B̄r
0
0

⎤
⎥⎥⎦ .

Similar to (12), let us denote

Ā � A + A0 +
∑
i∈N

Ai, Ã � Ā +
∑
i∈N

Āi,

K0 �
[
0 Cc 0 0

]
, Ki = [

Di
cCi

p 0 0 0
]
,

K̄i �
[
D̄i
cCi

p 0 0 0
]
, K̄ � K0 +

∑
i∈N

Ki,

K̃ � K̄ +
∑
i∈N

K̄i, KR � Dr , K̄R � D̄r , KD � Dd̂.

We now consider the event-triggering condition

(u(tk) − ũ(tk−1))
��(u(tk) − ũ(tk−1))

> σ(u(tk) − uc(tk))��(u(tk) − uc(tk)) + ρ (22)
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Figure 3. Block diagram of the event-triggered control system for setpoint track-
ing and disturbance rejection.

where

xe(tk) � −Ã−1
(BDd̂(tk) + BRr(tk) + B̄Rr(tk − h0))

and

uc(tk) = K̃xe(tk) + KRr(tk) + K̄Rr(tk − h0) + KDd̂(tk).

Under this condition, the controller updates its signal accord-
ing to

ũ(t) =
{
u(tk), t ∈ [tk, tk+1), if (22) is true,
ũ(tk−1), t ∈ [tk, tk+1), if (22) is false, (23)

with ũ0 = u(t0). This event-triggered control systems is expo-
nentially stable, as stated next.

Theorem 3.3: Consider the closed-loop system (21) and the
event trigger (22)–(23) with ρ = 0. Assume that there exist
P,W0,Wi,Qi,Ri ∈ S

n+np+nd , w> 0, σ > 0, and α > 0, such
that  = � = {j�} < 0 where

11 = PĀ + Ā�P + 2αP +
∑
i∈N

[
Qi − e−2αhiRi

]
,

1(i+1) = PĀi + e−2αhiRi, i = 1, . . . ,N,

1(i+N+2) = PAi, i = 0, 1, . . . ,N,

1(i+2N+2) = PĀi, i = 1, . . . ,N,

1(3N+3) = Ā�S, 1(3N+4) = PB, 1(3N+5) = wσF��,

(i+1)(i+1) = −e−2αhi(Qi + Ri), i = 1, . . . ,N,

(i+1)(3N+3) = Ā�
i S, i = 1, . . . ,N,

(i+1)(3N+5) = wσ K̄�
i �, i = 1, . . . ,N,

(i+N+2)(i+N+2) = −π2

4
Wi, i = 0, 1, . . . ,N,

(i+N+2)(3N+3) = A�
i S, i = 0, 1, . . . ,N,

(N+2)(3N+5) = wσF�
0 �,

(i+N+2)(3N+5) = wσK�
i �, i = 1, . . . ,N,

(i+2N+2)(i+2N+2) = −π2

4
e−2αhiW̄i, i = 1, . . . ,N,

(i+2N+2)(3N+3) = Ā�
i S, i = 1, . . . ,N,

(i+2N+2)(3N+5) = wσ K̄�
i �, i = 1, . . . ,N,

(3N+3)(3N+3) = −S, (3N+3)(3N+4) = SB,

(3N+4)(3N+4) = −w�, (3N+5)(3N+5) = −wσ�,

with

S � h20e
−2αh0W0

+
∑
i∈N

[
(h0 + hi)2e−2α(h0+hi)(Wi + W̄i) + h2i Ri

]
,

F0 � K0 − K̃Ã−1BDE, F � K̄ − K̃Ã−1BDE with E � [0 0 0
Ind ], and the other elements are zero matrices. Then the equi-
librium point x∗

e � −Ã−1
(BDd + (BR + B̄R)r) is exponentially

stable with decay rate α.

Proof: See Appendix 3. �

In virtue of Theorem3.3, we can obtain the optimal threshold
σ ∗ for a given convergence rate α.

Corollary 3.1: Given w> 0 and α > 0, if the SDP

σ ∗ � max σ s.t.  < 0 (24)

is feasible, then the closed-loop system (21) with the event trig-
ger (22)–(23) with σ = σ ∗ is exponentially stable with decay
rate α.

Proof: If the SDP (24) is feasible, we have  < 0. Then by
Theorem 3.3, the system (21) with the event trigger (22)–(23)
with σ = σ ∗ is exponentially stable with decay rate α. �

Remark 3.3: If only setpoint tracking is considered, the
observer is not needed. The constraint  < 0 in (24) is then
simplified to 	 < 0.

Remark 3.4: The outcomeof the SDP (24)may severely depend
on the choice of w. To find the maximum threshold σ ∗ with
respect to w, one should solve the SDP (24) repeatedly with
different values of w ≥ 0.

4. Applications to PID, cascade, and decoupling
control

In this section, we apply the theoretical results of the previ-
ous section to PID, cascade, and decoupling control. Numeri-
cal examples are also provided to illustrate how the proposed
controllers and event thresholds are obtained.

4.1 PI and PID control

First, we apply the results to PI control. A PI controller is given
by (19)–(20) with Ac = 0, B1c = −1, B̄1c = 0, Br = 1, B̄r = 0,
Bd̂ = 0, Cc = Ki, D1

c = −Kp, D̄1
c = 0, Dr = Kp, D̄r = 0, and

Dd̂ = Kf, where Kf is the feedforward gain. By setting the con-
trol parameters Kp, Ki, Kf, sampling intervals h0, h1 in (3)–(4),
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Table 1. Comparison of the ETC, PIDPLUS, SOD, and TTC.

Type IAE # events until t = 500

ETC 19.5 47
PIDPLUS 34.7 73
SOD 44.0 96
TTC 27.7 1667

decay rate α, and observer gain L, the maximum threshold is
obtained by solving SDP (24).

Example 4.1: We first illustrate an example of PI control for
a first-order linear system and compare the proposed event-
triggered control (ETC) with three different strategies: event-
triggered PIDPLUS control (PIDPLUS, Tiberi et al. (2012)),
event-triggered PI control with send-on-delta triggering (SOD,
Kiener et al. (2014)), and time-triggered control (TTC). We
assume that all the controllers are co-located at the sensor
since the event-triggered PIDPLUS control needs to have the
controller capability at the sensor.

Consider a first-order linear system

ẋp(t) = −0.7xp(t) + ũ(t) + d(t) + w(t),

y(t) = xp(t),

where w(t) ∈ R is the random process noise, which is assumed
to be Gaussian with zero-mean independent and identically
distributed with variance 0.25. The control parameters are
given with Kp = 0.23, Ki = 0.077, and Kf = −0.5. The sam-
pling intervals are set with h0 = h1 = 0.3 using the crite-
ria in Åström and Wittenmark (2013). By solving SDP (24),
we obtain σ ∗ = 2.72. The SDP can be effectively solved by
YALMIP toolbox (Löfberg, 2004). We consider the reference
signal r(t) = 1,∀t ≥ 0 and the disturbance d(t) = −0.5,∀t ≥
250. The response with ρ = 10−5 is shown in Figure 4 together
with PIDPLUS, SOD, and TTC.

To evaluate the performances, we introduce the Integral of
the Absolute Error (IAE) as

IAE =
∫ tf

0
|r(t) − y1(t)| dt (25)

with tf = 500. The IAEs and the numbers of event generations
(the average of 1000 times simulations) are shown in Table 1. It
can be found that the ETC extremely reduces communications
comparedwith the TTCwhile both controllers update each state
every h = 0.3 seconds. The ETC achieves smaller IAE than the
PIDPLUS and SOD with less samples. This is partially because
observer-based feedforward control is employed in the ETC.

Next, we consider PID control. Setting PID control parame-
ters Kp, Ki, Kd, T1, Kf, and sampling intervals h0, h1 in (5)–(7),
a PID controller can be written as the form (19)–(20) with

Ac =
[
0 0
0 −1/T1

]
, B1c =

[ −1
−1/T1h1

]
,

B̄1c =
[

0
1/T1h1

]
, Br =

[
1

c/T1h0

]
,

B̄r =
[

0
−c/T1h0

]
, Bd̂ =

[
0
0

]
,

Table 2. Obtained thresholds for thePID (includingPI-D and I-PD) controlwith and
without FF.

PID PID+FF

σ ∗ 0.19 0.40

Table 3. Comparison of the ETCs and TTCs.

Type Tr M Ts IAE # events untill Ts

ETC (PID) 0.51 6.4 2.80 1.34 21
ETC (PID+FF) 0.49 5.8 2.73 0.94 16
TTC (PID) 0.53 7.7 3.04 1.37 299
ETC (PI-D) 0.59 11.1 2.98 1.46 18
ETC (PI-D+FF) 0.59 11.4 2.96 1.07 14
TTC (PI-D) 0.56 9.1 3.08 1.40 303
ETC (I-PD) 1.15 4.5 3.54 1.90 31
ETC (I-PD+FF) 1.18 4.6 3.41 1.50 25
TTC (I-PD) 1.14 3.3 3.54 1.85 340

Cc = [
Ki Kd

]
, D1

c = −Kp, D̄1
c = 0,

Dr = bKp, D̄r = 0, Dd̂ = Kf.

Note that PID controllers have variations based on settings of
weight parameters b and c. We indicate the case b = c = 1 by
PID, b = 1, c = 0 by PI-D, and b = c = 0 by I-PD. Setting
decay rate α and observer gain L, the maximum threshold σ ∗
is obtained by solving SDP (24).

Example 4.2: Consider a linear system

ẋp(t) =
[−1 1
0 −10

]
xp(t) +

[
0
4

]
(ũ(t) + d(t)),

y(t) = [
2.5 0

]
xp(t),

and PID, PI-D, and I-PD controllers with the parameters:
Kp = 1.63,Ki = 2.71,Kd = 0.075, and T1 = 0.052. The control
parameters are obtained by applying MATLAB function pid-
tune. By solving SDPs (24) with intervals h0 = h1 = 0.01 and
α = 0.3 for the two cases: PID both with and without feedfor-
ward controller (FF,Kf = −0.5), we find the event thresholds as
in Table 2.

We consider the reference signal r(t) = 1,∀t ≥ 0 and dis-
turbance d(t) = −2,∀t ≥ 10. Numerical results with ρ = 10−5

for ETC with and without FF, compared to TTC, are shown in
Figure 5 and Table 3.

As performance metrics, we introduce the rise time Tr
1,

overshootM 2, settling time Ts
3, and the IAE (25) with tf = 20.

It can be found from Figure 5 that the ETCs compensate for the
step disturbances as we showed in Theorem 3.3. Thanks to feed-
forward controllers, the effects of the disturbances are reduced
more efficiently. The IAEs of the ETCs with FF are smaller than
those of the ETCs without FF and TTCs as in Table 3. The
response of each ETC (blue solid line) are similar to the TTC
(orange dash-dotted line) in Figure 5.We can see that the event-
triggered controllers can track their setpoints as well as the
time-triggered controllers without performance degradation. In
fact, the quantities such as rise time, overshoot, and settling time
for the ETCs and TTCs are almost same (Table 3). We also indi-
cate the number of event generations until t = Ts. It can be seen
that event generations are extremely reduced compared to the
TTCs while keeping the control performance.
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Figure 4. Responses of the proposed event-triggered PI control (ETC, blue), PIDPLUS (red), SOD (orange), and TTC (purple). The top plot describes the outputs, themiddle
control signals, and the bottom event generations.

4.2 Cascade control

With given control and sampling parameters, a cascade con-
troller (19)–(20) is given by

Ac =

⎡
⎢⎢⎣

0 0 0 0
0 −1/T1 0 0
K1
i K1

d 0 0
0 0 0 −1/T2

⎤
⎥⎥⎦ ,

B1c =

⎡
⎢⎢⎣

−1
−1/T1h1

−K1
p

0

⎤
⎥⎥⎦ , B2c =

⎡
⎢⎢⎣

0
0

−1
−1/T2h2

⎤
⎥⎥⎦ ,

B̄1c =

⎡
⎢⎢⎣

0
1/T1h1

0
0

⎤
⎥⎥⎦ , B̄2c =

⎡
⎢⎢⎣

0
0
0

1/T2h2

⎤
⎥⎥⎦ , Br =

⎡
⎢⎢⎣

1
c/T1h0
bK1

p
0

⎤
⎥⎥⎦ ,

B̄r =

⎡
⎢⎢⎣

0
−c/T1h0

0
0

⎤
⎥⎥⎦ , Bd̂ =

⎡
⎣ 0
0
Kf

⎤
⎦ ,

Cc = [
K2
pK1

i K2
pK1

d K2
i K2

d
]
, D1

c = −K1
pK

2
p,

D2
c = −K2

p, D̄
1
c = 0, D̄2

c = 0, Dr = bK1
pK

2
p,

D̄r = 0, Dd̂ = K2
pKf.

The block diagram of event-triggered cascade control with an
observer is shown in Figure 6.

Example 4.3: Consider the system illustrated by Figure 6,
where plant 1 is given by

ẋp,1(t) =
⎡
⎣−1 1 0

0 −1.2 1
0 0 −1.5

⎤
⎦ xp,1(t) +

⎡
⎣00
4

⎤
⎦ y2(t),

y1(t) = [
2.5 0 0

]
xp,1(t),

and plant 2 by

ẋp,2(t) = −2xp,2(t) + 2
(
ũ(t) + d(t)

)
,

y2(t) = 1.5xp,2(t).

We apply event-triggered cascade control (CAS) with a PID–PI
pair:K1

p = 0.18,K1
i = 0.0791,K1

d = 0.0439,T1 = 0.0175 for the
outer controller and K2

p = 0.244,K2
i = 1.82 for the inner con-

troller, with and without feedforward control Kf = −0.5. We
compare this to PI control with Kp = 0.109,Ki = 0.0488. Solv-
ing SDPs (24) with intervals h0 = 0.02, h1 = 0.04, h2 = 0.02,
and α = 0.1, the event thresholds are obtained as summarized
in Table 4.

We consider the disturbance signal d(t) = 0.05,∀t ≥ 0.
Numerical results with ρ = 10−8 are shown in Figure 7 and
Table 5. It can be found from Figure 7 that the proposed event-
triggered cascade controller compensates for the disturbance.
Compared to the event-triggered PI control, the effect of the
disturbance is significantly reduced. The maximum value of
output y1(t) is about 0.05 (without FF), while that of the PI
control is more than 0.25. The IAE of the cascade control are
around 0.3, while that of the PI control are around 1.0. We can
also see that the disturbances are effectively compensated by the
feedforward control in both cascade and PI controllers.We indi-
cate the number of event generations of each event-triggered
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Figure 5. Responses of the event-triggered control (ETC without FF: blue, with FF: red) and the time-triggered control (TTC: orange). In each figure, three plots show the
outputs, control signals, and event generations of the ETCs from the top. (a) PID control (b) PI-D control (c) I-PD control.

Table 4. Obtained thresholds for the cascade and PI control.

CAS CAS+FF PI PI+FF

σ ∗ 0.79 0.80 0.07 0.18

Table 5. Numerical results of the event-triggered and time-triggered cascade/PI
control.

Type y1,max IAE # events untill t = 20

ETC (CAS) 0.055 0.296 41
ETC (CAS+FF) 0.027 0.176 32
TTC (CAS) 0.048 0.177 1000
ETC (PI) 0.257 1.058 73
ETC (PI+FF) 0.132 0.547 65
TTC (PI) 0.241 1.025 1000

controller until t = 20 in Table 5. It can be seen that event gen-
erations are extremely reduced compared to the time-triggered
cascacde control with slight performance degradation, which
can be further reduced by introducing feedfoward control.

Figure 6. Event-triggered cascade control with an observer.

4.3 Decoupling control

A decoupling controller can be written by the form of (19)–(20)
with

Ac =

⎡
⎢⎢⎣
0 0 0 0
0 −1/T1 0 0
0 0 0 0
0 0 0 −1/T2

⎤
⎥⎥⎦ , B1c =

⎡
⎢⎢⎣

−1
−c1/T1h1

0
0

⎤
⎥⎥⎦ ,
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Figure 7. Responses of the event-triggered cascade control (ETC (CAS)), time-triggered cascade control (TTC (CAS)), event-triggered PI control (ETC (PI)), and time-
triggered PI control (TTC (PI)). The top plot describes the outputs, the middle control signals, and the bottom the event generations of ETCs.

Figure 8. Event-triggered decoupling control with an observer.
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Figure 9. Responses of the event-triggered decoupling control (ETC (Decoup.)), time-triggered decoupling control (TTC (Decoup.)), event-triggered PI control (ETC (PI)),
and time-triggered PI control (TTC (PI)). From the top, each plot describes the outputs y1(t) and control signal ũ1(t) of one control loop, outputs y2(t) and control signal
ũ2(t) of another, and the event generations of ETCs.

B2c =

⎡
⎢⎢⎣

0
0

−1
−c2/T2h2

⎤
⎥⎥⎦ , B̄1c =

⎡
⎢⎢⎣

0
c1/T1h1

0
0

⎤
⎥⎥⎦ ,

B̄2c =

⎡
⎢⎢⎣

0
0
0

c2/T2h2

⎤
⎥⎥⎦ , Br =

⎡
⎢⎢⎣

1 0
c1/T1h0 0

0 1
0 c2/T2h0

⎤
⎥⎥⎦ ,

B̄r =

⎡
⎢⎢⎣

0 0
−c1/T1 0

0 0
0 −c2/T2

⎤
⎥⎥⎦ ,

Cc =
[

K1
i K1

d K1
gK2

i K1
gK2

d
K2
gK1

i K2
gK1

d K2
i K2

d

]
,

D1
c =

[ −K1
p

−K2
gK1

p

]
, D2

c =
[−K1

gK2
p

−K2
p

]
, D̄1

c = D̄1
c =

[
0
0

]
,

Dr =
[

b1K1
p b1K1

gK2
p

b2K2
gK1

p b2K2
p

]
, D̄r =

[
0 0
0 0

]
,

Dd =
[

K1
f K1

gK2
f

K2
gK1

f K2
f

]
,

where K1
f and K2

f are the feedforward gains of controllers 1
and 2, respectively.

The block diagram of event-triggered decoupling control
with an observer is shown in Figure 8.

Example 4.4: Consider the distillation column (Seborg et al.,
2010), which state-space formulation is given by

ẋp(t) =

⎡
⎢⎢⎣

−0.0599 0 0 0
0 −0.0476 0 0
0 0 −0.0917 0
0 0 0 −0.0694

⎤
⎥⎥⎦ xp(t)

+

⎡
⎢⎢⎣
1 0
0 1
1 0
0 1

⎤
⎥⎥⎦ ũ(t) +

⎡
⎢⎢⎣
1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ d(t),

y1(t) = [
0.767 0.90 0 0

]
xp(t),

y2(t) = [
0 0 0.605 1.347

]
xp(t).

We introduce decoupling control consisting of two PI con-
trollers K1

p = 0.0537,K1
i = 0.0112,K2

p = 0.0814,K2
i = 0.0146,

K1
f = K2

f = 0, and decouplers [K1
g ,K2

g ] = [−1.0336,−0.2381].
We compare this to non-decoupled PI control, i.e. [K1

g ,K2
g ] =
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Table 6. Obtained thresholds for the decoupling control and PI control.

Decoup. PI

σ ∗ 0.097 0.14

Table 7. Numerical results of the event-triggered and time-triggered decou-
pling/PI control (disturbance rejection).

Type y1max IAE (y1)

ETC (Decoup.) 0.17 5.56
TTC (Decoup.) 0.15 4.96
ETC (PI) 0.49 13.07
TTC (PI) 0.44 12.26

Table 8. Numerical results of the event-triggered and time-triggered decou-
pling/PI control (setpoint tracking).

Type Tr M Ts IAE (y2) # events untill Ts

ETC (Decoup.) 12.67 15.4 54.66 14.03 19
TTC (Decoup.) 12.46 12.7 57.42 13.55 115
ETC (PI) 9.89 3.9 80.56 11.06 20
TTC (PI) 9.43 2.5 74.38 10.54 149

[0, 0]. By solving SDPs (24) with intervals h0 = h1 = h2 = 0.5,
and α = 0.025, event thresholds are obtained (Table 6).

We consider the step reference signal r(t) = [0, 1]�,∀t ≥
0. Numerical results with ρ = 10−6 are shown in Figure 9,
Tables 7, and 8. It can be found from Figure 9 and Table 7
that the proposed event-triggered decoupling controller com-
pensates well for the disturbance. The number of events until
the settling time of y2(t) is extremely reduced compared to
the time-triggered decoupling control with slight performance
degradation as shown in Table 8.

5. Conclusion

This paper studied periodic event-triggered PID, cascade, and
decoupling control. The controllers update their commands
when the values went beyond given thresholds. We formu-
lated an output feedback control system as a general form of
the three systems, and derived an exponential stability condi-
tion. Furthermore, it was shown that the proposed controller
has a capability of setpoint tracking and disturbance rejection.
Event threshold tuning was also proposed. We then applied
the framework to PI, PID, cascade, and decoupling control.
The numerical examples showed that the proposed controllers
reduced the communication load while maintaining the con-
trol performance. Future work will focus on the experimental
validation of the proposed controllers.

Notes

1. Time that the step response y1(t) takes to rise from 10% to 90%.
2. Percentage overshoot compared to the setpoint.
3. Time that error |r − y(t)| to fall with in 2% of the setpoint.
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Appendices

Appendix 1. Proof of Lemma 3.1
Before presenting the proof, we introduce the following lemma.

Lemma A.1 (Selivanov and Fridman (2016): Let z : [a, b] → Rn be an
absolutely continuous function with a square integrable first order deriva-
tive such that z(a) = 0 or z(b) = 0. Then for any α > 0 and W ∈ Sn++, the
following inequality holds:∫ b

a
e2αtz�(t)Wz(t) dt ≤ e2|α|(b−a) 4(b − a)2

π2

∫ b

a
e2αt ż�(t)Wż(t) dt.

Now, we derive the stability condition of the system (12) with ξ(t) ≡ 0.
Consider the functional

V = V0 + VW0 +
∑
i∈N

VWi +
∑
i∈N

VW̄i
+
∑
i∈N

VRi (A1)

where

V0 � x(t)�Px(t),

VW0 � h20e
2αh0

∫ t

tk
e−2α(t−s)ẋ(s)�W0ẋ(s) ds

− π2

4

∫ t

tk
e−2α(t−s)δ�

0 (s)W0δ0(s) ds,

VWi � (h0 + hi)2e2α(h0+hi)
∫ t

si(tk)
e−2α(t−s)ẋ(s)�Wiẋ(s) ds

− π2

4

∫ t

si(tk)
e−2α(t−s)δ�

i (s)Wiδi(s) ds,

VW̄i
� (h0 + hi)2e2α(h0+hi)

∫ t

si(tk)−hi
e−2α(t−s)ẋ(s)�W̄iẋ(s) ds

− π2

4

∫ t

si(tk)−hi
e−2α(t−s)δ̄�

i (s)W̄iδ̄i(s) ds,

VRi �
∫ t

t−hi
e−2α(t−s)x�(s)Rix(s) ds

+ hi
∫ 0

−hi

∫ t

t+θ

e−2α(t−s)ẋ�(s)Riẋ(s) ds dθ ,

with δ0(t) � x(tk) − x(t), δi(t) � x(si(tk)) − x(t) and δ̄i(t) � x(si(tk) −
hi) − x(t). Using Lemma A.1, we have

(t − tk)2e2α(t−tk)
∫ t

tk
e−2α(t−s)ẋ�(s)W0ẋ(s) ds

− π2

4

∫ t

tk
e−2α(t−s)(x(s) − x(tk))�(t)W0(x(s) − x(tk)) ds ≥ 0.

Then t − tk ≤ h0 gives

h20e
2αh0

∫ t

tk
e−2α(t−s)ẋ�(s)W0ẋ(s) ds

− π2

4

∫ t

tk
e−2α(t−s)(x(s) − x(tk))�(t)W0(x(s) − x(tk)) ds ≥ 0,

which leads toVW0 ≥ 0. In the same way, we haveVWi ≥ 0 andVW̄i
≥ 0 as

t − si(tk) = t − tk + (tk − si(tk)) ≤ h0 + hi.

We take the derivatives of each term

V̇0 + 2αV0 = x�(t)(PĀ + Ā� + 2αP)x(t) + 2
∑
i∈N

x�(t)PAix(t − hi)

+ 2
N∑
i=0

x�(t)PAiδ(t) + 2
∑
i∈N

x�(t)PĀiδ̄(t),

V̇W0 + 2αVW0 = h20e
2αh0 ẋ�(t)W0ẋ(t) − π2

4
δ�
0 (t)W0δ0(t),

V̇Wi + 2αVWi = (h0 + hi)2e2α(h0+hi)ẋ�(t)Wiẋ(t) − π2

4
δ�
i (t)Wiδi(t),

V̇W̄i
+ 2αVW̄i

= (h0 + hi)2e2α(h0+hi)ẋ�(t)W̄iẋ(t)

− π2

4
e−2αhi δ̄�

i (t)W̄iδ̄i(t).

By Jensen’s inequality (Fridman, 2014), we have

−
∫ t

t−hi
ẋ�(s)R0ẋ(s) ds ≤ 1

hi

∫ t

t−hi
ẋ�(s) dsR0

∫ t

t−hi
ẋ(s) ds.

Then

V̇Ri + 2αVRi ≤ x�(t)(Qi − e−2αhiRi)x(t) + 2e−2αhi x�(t)Rix(t − hi)

− e−2αhi x�(t − hi)(Qi + Ri)x(t − hi) + h2i ẋ
�(t)Riẋ(t).
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Taking

φ(t)�(t) � [x�(t), x�(t − h1), . . . , x�(t − hN), δ�
0 (t), δ�

1 (t), . . . , δ�
N (t),

δ̄�
1 (t), . . . , δ̄�

N (t)],

we have
V̇ + 2αV = φ�(t)	′φ(t) + ẋ�(t)Sẋ(t)

where

	′ �

⎡
⎢⎢⎢⎢⎣

	11 · · · · · · 	1(3N+2)

∗ . . .
...

...
. . .

. . .
...

∗ · · · ∗ 	(3N+2)(3N+2)

⎤
⎥⎥⎥⎥⎦ .

By Schur complements, we have that V̇ + 2αV < 0 if 	 < 0.

Appendix 2. Proof of Theorem 3.1
First, note that by the event-triggering condition (8), for some w ≥ 0, we
have

wσu�(t)�u(t) − wξ�(t)�ξ(t) ≥ 0. (A2)
Introducing the functional (A1) gives

V̇ + 2αV ≤ V̇ + 2αV + wσu�(tk)�u(tk) − wξ�(t)�ξ(t).

Then

V̇ + 2αV ≤ φ�(t)	′φ(t) + x�(t)PBξ(t) + ξ�(t)B�Px(t)

+ ẋ�(t)Sẋ(t) + wσu�(tk)�u(tk) − wξ�(t)�ξ(t)

= [
φ�(t) ξ�(t)

]
⎡
⎢⎢⎢⎢⎢⎣

	′

PB
0
...
0

∗ ∗ · · · ∗ −w�

⎤
⎥⎥⎥⎥⎥⎦
[
φ(t)
ξ (t)

]

+ ẋ�(t)Sẋ(t) + wσu�(tk)�u(tk).

Substitutingu(tk) = K0x(tk) + Kix(si(tk)) + K̄ix(si(tk) − hi) into this, and
applying Schur complements, we have V̇ + 2αV < 0 if � < 0.

Appendix 3. Proof of Theorem 3.3
We apply a coordinate transformation x̄(t) = x(t) − x∗

e . Then the sys-
tem (21) can be rewritten as

˙̄x(t) = Ax̄(t) + A0x̄(tk) +
∑
i∈N

Aix̄(si(tk)) +
∑
i∈N

Āix̄(si(tk) − hi) + Bξ(t).

(A3)
Consider the functional

V = V0 + VW0 +
∑
i∈N

VWi +
∑
i∈N

VW̄i
+
∑
i∈N

VRi (A4)

where V0,VW0 ,VWi ,VW̄i
, and VRi are given by replacing P,W0,Wi,Qi,Ri

in the functional (A1) by P,W0,Wi,Qi,Ri. Then

V̇ + 2αV ≤ V̇ + 2αV + wσ(u(tk) − uc(tk))��(u(tk) − uc(tk))

− wξ�(t)�ξ(t). (A5)

Using

xe(tk) − x∗
e = Ã−1BDed(tk)

= Ã−1BDEx(tk)

= Ã−1BDEx̄(tk),

where the last equality holds since Ex∗
e = 0, we have

u(tk) − uc(tk) = F0x̄(tk) +
∑
i∈N

[
Kix̄(si(tk)) + K̄ix̄(si(tk) − hi)

]
.

Substituting this into (A5) and following the proof of Theorem 3.1 for the
system (A3), we have that (21) is exponentially stable with decay rate α.
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