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Abstract: This paper studies sampled-data implementation of event-triggered PI control
for time-delay systems with parametric uncertainties. The systems are given by continuous-
time linear systems with parameter uncertainty polytopes. We propose an event-triggered PI
controller, in which the controller transmits its signal to the actuator when its relative value goes
beyond a threshold. A state-space formulation of the Smith predictor is used to compensate the
time-delay. An asymptotic stability condition is derived in the form of LMIs using a Lyapunov-
Krasovskii functional. Numerical examples illustrate that our proposed controller reduces the
communication load without performance degradation and despite plant uncertainties.
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1. INTRODUCTION

Control of process plants using wireless sensors and actu-
ators is of growing interest in process automation indus-
tries (Isaksson et al. (2017); Park et al. (2018); Ahlén et al.
(2019)). Wireless process control offers advantages through
massive sensing, flexible deployment, operation, and effi-
cient maintenance. However, there remains an important
problem, which is how to limit the amount of information
that needs to be exchanged over the network, since the sys-
tem performance is critically affected by network-induced
delay, packet dropout, and sensor energy shortage.

In this context, event-triggered control has received a lot of
attention from both academia and industry as a measure
to reduce the communication load in networks (Åström
and Bernhardsson (1999); Årzén (1999)). Various event-
triggered control architectures appeared recently (see the
survey in Heemels et al. (2012) and the references therein).
Event-triggered PID control for industrial automation sys-
tems is considered in some studies. For example, stability
conditions of PI control subject to actuator saturation are
derived by Kiener et al. (2014); Moreira et al. (2016). Set-
point tracking using the PIDPLUS controller (Song et al.
(2006)) is discussed in Tiberi et al. (2012). Experimental
validation is carried out in Kiener et al. (2014); Lehmann
and Lunze (2011). Implementations on a real industrial
plant is presented in Norgren et al. (2012); Lindberg and
Isaksson (2015); Blevins et al. (2015).

In process control systems, there are several control archi-
tectures, such as feedforward control, cascade control and
decoupling control (Åström and Hägglund (2006); Seborg

⋆ This work was supported in part by the VINNOVA PiiA project
“Advancing System Integration in Process Industry,” the Knut
and Alice Wallenberg Foundation, the Swedish Strategic Research
Foundation, and the Swedish Research Council.

et al. (2010)). Event-triggered control for these architec-
tures has also been proposed. In Iwaki et al. (2018), event-
triggered feedforward control is discussed. Event-triggered
cascade control and feedforward control where the con-
trollers are switched according to the event generation is
proposed in Iwaki et al. (2019). Time-delay compensation
is important for process control applications. The Smith
predictor (Seborg et al. (2010)) is a widely-used technique
for this purpose. The Smith predictor compensates large
time-delay by predicting the plant output using a simple
plant model. Since its development in Smith (1959), mod-
ifications were proposed to apply the predictor to integra-
tor systems (Åström et al. (1994)) and unstable systems
(Majhi and Atherton (1999); Sanz et al. (2018)). State
predictor-based controllers are also studied in more general
settings. In Najafi et al. (2013), the authors propose a
sequence of subpredictors to stabilize the plant with a long
time-delay. Uncertain time-varying delays are investigated
in Léchappé et al. (2018).

In this paper, we investigate event-triggered PI control
for time-delay systems. We consider continuous-time lin-
ear systems with parametric uncertainties. We introduce
sample-data PI control with a predictor, as a state-space
formulation of the Smith predictor. A stability condi-
tion is derived using a Lyapunov-Krasovskii functional
via Wirtinger’s inequality (Liu and Fridman (2012)) in
the form of Linear Matrix Inequalities (LMIs). An event-
triggered controller which updates its signal based on a
relative threshold (Heemels and Donkers (2013); Selivanov
and Fridman (2018)) is considered. The event threshold
synthesis is also proposed. Numerical examples show how
our proposed controller reduces the communication load
without performance degradation compared to conven-
tional sampled-data PI control.



The remainder of the paper is organized as follows. Sec-
tion 2 describes the sampled-data PI control system with
the predictor. An asymptotic stability conditions are de-
rived. In Section 3, we propose an event-triggered PI
controller and derive a stability condition. We provide nu-
merical examples in Section 4. The conclusion is presented
in Section 5.

Notation Throughout this paper, N and R are the sets
of nonnegative integers and real numbers, respectively.
The set of n by n positive definite (positive semi-definite)
matrices over Rn×n is denoted as Sn++ (Sn+). For simplicity,
we write X > Y (X ≥ Y ), X,Y ∈ Sn++, if X − Y ∈ Sn++
(X − Y ∈ Sn+) and X > 0 (X ≥ 0) if X ∈ Sn++ (X ∈ Sn+).

Symmetric matrices of the form

[

A B

B⊤ C

]

are written as
[

A B
∗ C

]

with B⊤ denoting the transpose of B.

2. TIME-TRIGGERED PI CONTROL OF
TIME-DELAY SYSTEMS

In this paper, we consider a time-invariant linear plant
with a process time-delay. The plant is controlled by
a sampled-data PI controller with the Smith predictor
(Fig. 1). In this section, we introduce the plant with
uncertain parameters, the predictor, and the sampled-data
PI controller. A stability condition for the closed-loop is
derived.

2.1 System description

Consider a plant with a constant process time-delay given
by

ẋp(t) = Apxp(t) +Bpu(t− η), (1)

y(t) = Cpxp(t), (2)

where xp(t) ∈ Rn, u(t) ∈ R, and y(t) ∈ R are the state,
input, and output, respectively, and the constant η > 0,
a process time-delay. We assume that the sensor samples
and transmits its measurement every h time interval. Let
tk, k = 0, 1, 2, . . . , be the time of transmission k of the
sensor, i.e., tk+1 − tk = h for all t > 0. A sampled-data
implementation of a predictor, which updates its state
every h time interval, is given by

˙̂xp(t) = Âpx̂p(tk) + B̂pu(t) t ∈ [tk, tk+1), (3)

ŷ(t) = Cpx̂p(tk), (4)

where x̂p(t) ∈ Rn and ŷ(t) ∈ R are the predictions of the
plant state and the output. A PI controller is given by

ẋc(t) = r − e(tk)− ŷ(tk), t ∈ [tk, tk+1), (5)

u(t) = Kixc(tk) +Kp(r − e(tk)− ŷ(tk)), (6)

where xc(t) ∈ R is the controller state, r ∈ R the constant

reference signal, e(t) , y(t)− ŷ(t−η) the prediction error.

We make the following assumptions on the uncertainty of
the plant.

Assumption 1. The system matrix Ap and the vector Bp

reside in the uncertain polytopes

Ap =

N
∑

i=1

λiA
(i)
p , Bp =

N
∑

i=1

µiB
(i)
p ,

ZOH

Plant
PI

Controller

Event

generator

Controller

Predictor

Fig. 1. Event-triggered PI control with the Smith predic-
tor. The event-generator is introduced in Section 3.

where A(i) and B(i), i ∈ N are the vertex matrices and
vector, respectively, and λi, µi ∈ [0, 1], are constants with
∑N

i=1 λi = 1 and
∑N

i=1 µi = 1.

Assumption 2. The system (1)–(2) with the uncertain

polytopes is (A
(i)
p , B

(i)
p ) controllable and (Cp, A

(i)
p ) observ-

able for all i = 1, . . . , N .

By augmenting the state x(t) , [x⊤p (t+ η), x̂
⊤
p (t), x

⊤
c (t)]

⊤,
we have the following closed-loop system description

ẋ(t) = Ax(t) +A1x(tk)

+A2x(tk − η) +BRr, t ∈ [tk, tk+1) (7)

with

A =

[

Ap 0 0
0 0 0
0 0 0

]

, A1 =





0 −BpKpCp BpKi

0 Âp − B̂pKpCp B̂pKi

0 −Cp 0



 ,

A2 =





−BpKpCp BpKpCp 0

−B̂pKpCp B̂pKpCp 0
−Cp Cp 0



 , BR =





BpKp

B̂pKp

1



 .

Remark 3. Suppose that Assumption 1 holds. Then the
matrix A,A1, A2, and BR reside in the uncertain polytope

A =
∑

i∈N

λiA
(i), 0 ≤ λi ≤ 1,

∑

i∈N

λi = 1,

A1 =
∑

i∈N

µiA
(i)
1 , 0 ≤ µi ≤ 1,

∑

i∈N

µi = 1,

A2 =
∑

i∈N

µiA
(i)
2 , 0 ≤ µi ≤ 1,

∑

i∈N

µi = 1,

BR =
∑

i∈N

µiB
(i)
r , 0 ≤ µi ≤ 1,

∑

i∈N

µi = 1,

where

A(i) =





A
(i)
p 0 0
0 0 0
0 0 0



 , A
(i)
1 =





0 −B
(i)
p KpCp B

(i)
p Ki

0 Âp − B̂pKpCp B̂pKi

0 −Cp 0



 ,

A
(i)
2 =





−B
(i)
p KpCp B

(i)
p KpCp 0

−B̂pKpCp B̂pKpCp 0
−Cp Cp 0



 , B
(i)
R =





B
(i)
p Kp

B̂pKp

1



 .

2.2 Stability condition of time-triggered PI control

Now, we derive the stability condition of the system (7).

Theorem 4. Consider the system (7). Suppose that As-
sumption 1 holds. Given Kp, Ki ∈ R, and decay rate

α > 0, assume that there exist P,R1, R2,W1,W2 ∈ S
2n+1
++ ,

such that

Φ(i) = Φ(i)⊤ = {Φ
(i)
ℓm} < 0, ℓ,m = 1, . . . , 5, (8)

where



Φ
(i)
11 = P (A(i) +A

(i)
1 ) + (A(i) +A

(i)
1 )⊤P

+ 2αP +R1 − e−2αηR2,

Φ
(i)
12 = PA

(i)
2 + e−2αηR2, Φ

(i)
13 = PA

(i)
1 , Φ

(i)
14 = PA

(i)
2

Φ
(i)
15 = (A(i) +A

(i)
1 )⊤Q, Φ

(i)
22 = −e−2αη(R1 +R2),

Φ
(i)
23 = 0, Φ

(i)
24 = 0, Φ

(i)
25 = A

(i)⊤
2 Q,

Φ
(i)
33 = −

π2

4
W1, Φ

(i)
34 = 0, Φ

(i)
35 = A

(i)⊤
1 Q,

Φ
(i)
44 = −

π2

4
e−2αηW2, Φ

(i)
45 = A

(i)⊤
2 Q, Φ

(i)
55 = −Q.

andQ , η2R2+h
2e2αh(W1+e−2αηW2) for all i = 1, . . . , N .

Then the system (7) with r = 0 is exponentially stable
with decay rate α.

Proof. See Appendix A.

3. EVENT-TRIGGERED CONTROL OF
TIME-DELAY SYSTEMS

In this section, we discuss the event-triggered control
introduced in Heemels and Donkers (2013); Selivanov and
Fridman (2018) for a time-delay system with parametric
uncertainties. We derive a stability condition and propose
how to design the event-triggering condition with given
control parameters.

3.1 System model of event-triggered PI control

Consider the system

ẋp(t) = Apxp(t) +Bpũ(t− η)

where ũ(t) is the event-triggered control signal. We assume
that ũ(t) is updated by checking the event condition

(u(tk)− ũ(tk−1))
2 > σu2(tk) (9)

at every sampling time tk, k = 0, 1, . . ., where σ ∈ [0, 1)
is a relative threshold. Thus, the event-triggered control
signal is given by

ũ(t) =

{

u(tk), t ∈ [tk, tk+1), if (9) is true,
ũ(tk−1), t ∈ [tk, tk+1) if (9) is false,

with ũ0 = u(t0). Define the control signal error as

v3(t) , ũ(t)− u(t)

= ũ(tk)− u(tk), t ∈ [tk, tk+1).

Then the closed-loop system is given by

ẋ(t) = Ax(t)+A1x(tk)+A2x(tk−η)+Bv3(t)+BRr (10)

where

B =





Bp

B̂p

0



 .

Remark 5. Suppose that Assumption 1 holds. Then B
resides in the uncertain polytope

B =

N
∑

i=1

µiB
(i), 0 ≤ µi ≤ 1,

N
∑

i=1

µi = 1,

where

B(i) =





B
(i)
p

B̂p

0



 .

3.2 Stability condition of event-triggered PI control

We have the following stability condition.

Theorem 6. Consider the system (10). Suppose that As-
sumption 1 holds. Given Kp, Ki ∈ R, and decay rate

α > 0, assume that there exist P,R1, R2,W1,W2 ∈ S
2n+1
++ ,

w > 0, and σ > 0, such that

Ψ(i) =



















PB(i) wσK⊤
1

0 wσK⊤
2

Φ(i) 0 wσK⊤
1

0 wσK⊤
2

QB(i) 0
∗ ∗ ∗ ∗ ∗ −w 0
∗ ∗ ∗ ∗ ∗ 0 −wσ



















< 0, (11)

for all i = 1, . . . , N , where

K1 = [0 −KpCp Ki] , K2 = [−KpCp KpCp 0] .

Then the system (10) with r = 0 is exponentially stable
with decay rate α.

Proof. See Appendix B.

Remark 7. For r 6= 0, we need to apply a coordinate
transformation x̃(t) = x(t) − xe where xe = −(A + A1 +
A2)

−1BRr is the equilibrium point. Note that A+A1+A2

is invertible when the continuous controller (i.e., h = 0)
stabilizes the system and therefore A+A1+A2 is Hurwitz.
The event condition (9) is replaced by

(u(tk)− ũ(tk−1))
2 > σ(u(tk)− ue)

2

where ue = (K1 +K2)xe is the steady-state input signal.
Thus, Theorem 6 can be applied if we know the exact
model Âp = Ap and B̂p = Bp. Otherwise, we use

the prediction of A,A1, A2, BR denoted as Â, Â1, Â2, B̂R.
The prediction matrices are given by replacing Ap, Bp

of A,A1, A2, BR by Âp, B̂p. The event condition (9) is
replaced by

(u(tk)− ũ(tk−1))
2 > σ(u(tk)− ûe)

2

where ûe = −(K1 +K2)(Â + Â1 + Â2)
−1B̂Rr is the pre-

diction of steady-state input. In this case, the prediction
error eu , ûe − ue leads to oscillation of y(t) around r.

Using (11), we can tune the event threshold σ to give a
minimum communication load satisfying a given stability
margin α.

Corollary 8. Suppose that Assumption 1 holds. Given
Kp,Ki ∈ R, w > 0, and α > 0, if the semi-definite
programming problem (SDP):

σ∗ ,max σ (12a)

s.t. Ψ(i) < 0, i = 1, . . . , N, (12b)

is feasible, then the closed-loop system (10) under the
event condition (9) with σ∗ is exponentially stable with
decay rate α.

4. NUMERICAL EXAMPLE

In this section, we provide numerical examples to illustrate
our theoretical results. Consider a first-order linear system

ẋp(t) = axp(t) + bũ(t− η), (13)

y(t) = xp(t), (14)



Comm.
until t = 50

Comm.
Reduction

IAE

EBS (η = 1) 285 43.0% 3.39
SDS (η = 1) 500 0% 3.52
SPI (η = 1) 500 0% 4.52

EBS (η = 3) 316 36.8% 5.37
SDS (η = 3) 500 0% 5.43
SPI (η = 3) 500 0% +∞

Open-loop – – 18.94

Table 1. Number of communications, their
reductions, and the IAE for each strategy with

η = 1 and η = 3.
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Fig. 2. Responses to the initial state x(t) = [1, 0, 0],
t ∈ [−1, 0] (top: y(t), middle: u(t)) of the four cases
with time-delay η = 1: Sampled-data event-triggered
PI control with Smith predictor (EBS: red solid line),
Sampled-data PI control with Smith predictor (SDS:
blue dashed line), Sampled-data PI control without
Smith predictor (SPI: green dash-dot line), and open
loop system (black dot line). The below plot shows
the event generation at the controller.

where the system parameters take their values in a ∈
[−0.055,−0.045] and b ∈ [0.45, 0.55]. We use a plant model

˙̂xp(t) = −0.05x̂p(t) + 0.5ũ(t− η).

The LMI 8 guarantees the asymptotic stability of the
system (13)–(14) with the time-triggered PI control with
Kp = 0.816, Ki = 0.293, the sampling interval h = 0.2,
the decay rate α = 0.04 for the time-delay η ≤ 3.4.

Initial response. We first see the responses of two differ-
ent time delays η = 1 and η = 3 with reference r = 0
and the initial state x(t) = [1, 0, 0], t ∈ [−3, 0]. By solving
SDP (12), we obtain the event thresholds σ∗ = 0.245 and
σ∗ = 0.014 for η = 1 and η = 3, respectively. The SDP can
be solved effectively by YALMIP toolbox (Löfberg (2004)).
To evaluate the system performance, we use the Integral
of the Absolute Error (IAE) which is calculated as

IAE =

∫ +∞

0

|r − y(t)|dt.

The results for three strategies: the sampled-data event-
triggered PI control with Smith predictor (EBS), the
sampled-data PI control with Smith predictor (SDS),
and the conventional sampled-data PI control (SPI) are
summarized in Table 1. The responses for η = 1 and η = 3

0 5 10 15 20 25 30 35 40 45 50
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-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
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-0.5

0
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0

1

0 5 10 15 20 25 30 35 40 45 50
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SDS
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Open-loop

Fig. 3. Responses to the initial state x(t) = [1, 0, 0],
t ∈ [−3, 0] (top: y(t), middle: u(t)) of the four cases
with time-delay η = 3. The below plot shows the event
generation at the controller.
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Fig. 4. Responses to the setpoint tracking r(t) = 1, ∀t ≥ 0
of the three cases with time-delay η = 1 of two
The below plot shows the event generation at the
controller.

are shown in Fig. 2 and Fig. 3, respectively, where we
assume that the unknown system parameters are given by
a = −0.048 and b = 0.52. It can be found that the EBS and
the SDS well compensate the time-delay and the outputs
converge to the origin. However, the SPI is more oscillative
in Fig. 2 (η = 1) and does not stabilize the system in
Fig. 3 (η = 3). In fact, the IAE for the EBS and the SDS
are close as in Table 1, while those for the SPI is larger
or diverges. The third plot in Fig. 2 and Fig. 3 show the
time instances of the control signal updates. We can see,
as well as Table 1, that the communications between the
controller and the actuator are performed only 35 times
and 66 times until t = 50. Including the communications
between the sensor and the controller, the EBS reduces
the communications by 43.0% and 36.8% compared to the
SDS.

Setpoint tracking. Next, we show the responses with r =
1. The results are shown in Fig. 4. In setpoint tracking, we
need to apply a coordinate transformation x̃(t) = x(t)−xe
as in Remark 7. In Fig. 4, the EBS has similar response as
the SDS with only 30 samplings until t = 50, even though
there remains very small oscillation due to inexact ûe.



5. CONCLUSION

In this paper, we investigated the sampled-data implemen-
tation of PI control with the Smith predictor. The Smith
predictor was formulated as a form of a state predictor.
We derived the stability condition under the assumption
that the system parameters resided in uncertain polytopes.
Furthermore, event-triggered control was introduced and
the stability condition was derived. Numerical examples
showed that our proposed controller reduces the commu-
nication load with slight performance degradation. Future
work will consider uncertain time-delays and other types
of predictors.

Appendix A. PROOF OF THEOREM 4

Before presenting the proof, we introduce the following
lemma.

Lemma 9. (Selivanov and Fridman (2016)) Let z : [a, b] →
Rn be an absolutely continuous function with a square
integrable first order derivative such that z(a) = 0 or
z(b) = 0. Then for any α > 0 and W ∈ Sn++, the following
inequality holds:

∫ b

a

e2αξz⊤(ξ)Wz(ξ)dξ

≤ e2|α|(b−a) 4(b− a)2

π2

∫ b

a

e2αξ ż⊤(ξ)Wż(ξ)dξ.

Now, we derive the stability condition of the system (7).
Consider the functional

V = V0 + VR + VW1
+ VW2

(A.1)

where

V0 , x⊤(t)Px(t)

VR ,

∫ t

t−η

e2α(s−t)x⊤(s)R1x(s)ds

+ η

∫ 0

−η

∫ t

t+θ

e2α(s−t)ẋ⊤(s)R2ẋ(s)dsdθ,

VW1
, h2e2αh

∫ t

tk

ẋ⊤(s)W1ẋ(s)ds

−
π2

4

∫ t

tk

e2α(s−t)[x(s) − x(tk)]
⊤W1[x(s) − x(tk)]ds,

VW2
, h2e2αh

∫ t

tk−η

ẋ⊤(s)W2ẋ(s)ds−
π2

4

∫ t−η

tk−η

e2α(s−t)

× [x(s) − x(tk − η)]⊤W2[x(s) − x(tk − η)]ds.

Using Lemma 9 and t − tk ≤ h, we have VW1
≥ 0 and

VW2
≥ 0. We take the derivatives of each term:

V̇0 + 2αV0 = x⊤(t)P ẋ(t) + ẋ⊤(t)Px(t) + 2αx⊤(t)Px(t),

= x⊤(t)
(

P (A+A1) + P (A+A1)
⊤ + 2αP

)

x(t)

+ x⊤(t)PA2x(t− η) + x⊤(t)PA1v1(t)

+ x⊤(t)PA2v2(t) + x⊤(t− η)A⊤
2 Px(t)

+ v⊤1 (t)A⊤
1 Px(t) + v⊤2 (t)A

⊤
2 Px(t),

and

V̇W1
+ 2αVW1

= h2e2αhẋ⊤(t)W1ẋ(t)−
π2

4
v⊤1 (t)W1v1(t),

V̇W2
+ 2αVW2

= h2e2αhẋ⊤(t)W2ẋ(t)−
π2

4
e−2αηv⊤2 (t)W2v2(t),

where v1(t) , x(tk)−x(t) and v2(t) , x(tk−η)−x(t−η).
For VR, by Jensen’s inequality (Fridman (2014)), we have

V̇R + 2αVR

= x⊤(t)R1x(t) − e−2αηx⊤(t− η)R1x(t− η)

+ η2ẋ⊤(t)R2ẋ(t)− η

∫ t

t−η

e−2α(t−s)ẋ⊤(s)R2ẋ(s)ds

≤ x⊤(t)R1x(t) − e−2αηx⊤(t− η)R1x(t− η)

+ η2ẋ⊤(t)R2ẋ(t)− e−2αη

∫ t

t−η

ẋ⊤(s)dsR2

∫ t

t−η

ẋ(s)ds

= x⊤(t)(R1 − e−2αηR2)x(t) + e−2αηx⊤(t)R2x(t− η)

+ e−2αηx⊤(t− η)R2x(t) + η2ẋ⊤(t)R2ẋ(t)

− e−2αηx⊤(t− η)(R1 +R2)x(t − η).

Thus,

V̇ + 2αV ≤ φ⊤













Φ̄11 Φ̄12 Φ̄13 Φ̄14

∗ Φ̄22 Φ̄23 Φ̄24

∗ ∗ Φ̄33 Φ̄34

∗ ∗ ∗ Φ̄44







+







Φ̄15

Φ̄25

Φ̄35

Φ̄45






Φ̄−1

55

[

Φ̄51 Φ̄52 Φ̄53 Φ̄54

]






φ < 0

where φ , [x⊤(t), x⊤(t− η), v⊤1 (t), v⊤2 (t)]⊤ and

Φ̄11 = P (A+A1) + (A+A1)
⊤P

+ 2αP +R1 − e−2αηR2,

Φ̄12 = PA2 + e−2αηR2, Φ̄13 = PA1, Φ̄14 = PA2,

Φ̄15 = (A+A1)
⊤Q, Φ̄22 = −e−2αη(R1 + R2),

Φ̄23 = 0, Φ̄24 = 0, Φ̄25 = A⊤
2 Q,

Φ̄33 = −
π2

4
W1, Φ̄34 = 0, Φ̄35 = A⊤

1 Q,

Φ̄44 = −
π2

4
e−2αηW2, Φ̄45 = A⊤

2 Q, Φ̄55 = −Q.

The proof completes by Schur complements and since
Φ̄ = {Φ̄ℓm}, ℓ,m = 1, . . . , 5, is affine in A, A1, and A2.

Appendix B. PROOF OF THEOREM 6

First, note that by the event condition (9), for some
w ≥ 0, we have wσu2(tk) − wv23(t) ≥ 0. Introducing the
functional (A.1) gives

V̇ + 2αV ≤ φ⊤Φ̄1:4φ+ x⊤(t)PBv3(t) + v⊤3 (t)B
⊤Px(t)

+ ẋ⊤(t)Qẋ(t) + wσu2(tk)− wv23(t)

= ψ⊤











Φ̄1:4

PB
0
0
0

B⊤P 0 0 0 −w











ψ + ẋ⊤(t)Qẋ(t) + wσu2(tk),

where ψ = [x⊤(t), x⊤(t−η), v⊤1 (t), v⊤2 (t), v⊤3 (t)]⊤ and Φ̄1:4

is the submatrix obtained by omitting the 5-th row and



column vectors from Φ̄. Since u(tk) = K1x(tk)+K2x(tk −
η) and by Schur complements, we have that V̇ + 2αV < 0
if

Ψ̄ ,



















PB wσK⊤
1

0 wσK⊤
2

Φ̄ 0 wσK⊤
1

0 wσK⊤
2

QB 0
∗ ∗ ∗ ∗ ∗ −w 0
∗ ∗ ∗ ∗ ∗ 0 −wσ



















< 0.

The proof completes since Ψ̄ is affine in A, A1, A2, and B.
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Åström, K.J. and Bernhardsson, B. (1999). Comparison
of periodic and event based sampling for first-order
stochastic systems. In Proc. IFAC World Congr., vol-
ume 11, 301–306.
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