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Abstract— This paper presents a distributed event-based
control approach to cope with communication delays and packet
losses affecting a networked dynamical system consisting of
N linear time-invariant coupled systems. Two communication
protocols are proposed to deal with these communication
effects. It is shown that both protocols preserve the system
stability in the sense that the state of every subsystem converges
to a small region around the origin if the delay and the number
of packet losses are bounded. Analytical expressions for the
delay bound and the maximum number of consecutive packet
losses are derived. Simulations illustrate the results.

I. INTRODUCTION

Event-triggered control has been developed to reduce
the need for feedback while guaranteeing certain levels of
performance and it has been proposed in Networked Control
Systems (NCS) for allowing a more efficient usage of the
limited network bandwidth [1]-[5]. There is a natural interest
in applying these techniques to decentralized NCS since the
design of a centralized controller is inappropiate for a large
number of subsystems due to the overload of the network by
requesting and sending information from/to each node.

There are some recent contributions on distributed event-
triggered control, see [6]-[12]. The basic idea is that each
subsystem (also called agent or node) decides when to
transmit the measurements based only on local information.
Different approaches can be found in the literature such as
deadband control [2], Lyapunov approaches to event-based
control [3],[13] or self-triggered control [14], [15].

Even though the problem of limited bandwidth can be
faced by reducing the communication due to event-based
control, network delays and packet losses cannot be avoided
[16]. However, up to now, only few papers have considered
the effect of these issues on event-based control and even
less on its decentralized implementation. Early papers [1],
[4] study simple stochastic systems and investigate the event-
based control performance in dependence upon the medium
access mechanism applied.

In [17], delays are compensated by a control input gen-
erator and an event generator both of which emulate the
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continuous-time state feedback controller, and by measuring
the delay. However, this scheme is difficult to implement
in a distributed scheme since measuring transmission delays
between two nodes requires clock synchronization in the
entire network. Another paper that studies the delay effect
combining model-based and event-triggered control in a
single loop is [18].

In [8], a thorough study of event triggering in distributed
NCS subject to delays and packet losses is carried out.
The design of the event triggering threshold is based on
Lyapunov methods. The main drawback of this work is that
a lower bound for the broadcasting period, i.e., the difference
between successive broadcasting times, cannot be guaranteed
when the system approaches the origin. This might cause
severe problems since it would require the detection of events
and transmission of data infinitely fast.

In this paper the effect of network delays and packet losses
is analyzed by considering a distributed event-based control
design for interconnected linear systems. It extends the previ-
ous paper [10] in which the stability of the proposed trigger
mechanism in an ideal network is investigated. The analysis
is focussed on determining bounds for the delay and the num-
ber of successive packet dropouts that ensure stability and
guarantee a certain level of performance. Moreover, a lower
bound for the inter-event times is derived. Two different
transmission protocols are proposed. The first one preserves
state consistency [8], which means that a broadcasted state
is updated synchronously in each neighboring agent. This
restriction is relaxed by the second protocol allowing the
neighbors to use different versions of the broadcasted states.

The remainder of the paper is organized as follows.
Section II provides the system desciption. The proposed com-
munication protocols are described in Section III. Section
IV analyzes the system performance and provides the main
results of the paper. The simulation results are presented in
Section V, and finally, the conclusions and the future works
conclude the paper.

II. PRELIMINARIES

A. System description

Consider a system of N linear time-invariant subsystems.
The dynamics of each subsystem are given by:

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t), (1)

∀i = 1, ..., N , where Ni is the set of neighbors of subsystem
i, i.e., subsystems with which it can communicate, and Hij is
the interaction term between agent i and agent j. We assume



that neighboring is a symmetric relation, and therefore Hij =
Hji. The state xi of the ith agent has dimension ni, ui is
the mi-dimensional local control signal of agent i, and Ai,
Bi and Hij are matrices of appropriate dimensions.

Let us assume that the state xi is measurable. Each agent
i sends its state through the network to its neighbors when
an event is triggered. The time instances at which the agent i
broadcast its state are denoted by {tik}∞k=0, where tik < tik+1

for all k, and x̃i is the broadcasted state.

B. Ideal network

Considering an ideal network scenario, the time instances
at which the event is generated, the state x̃i is sent in one
node and received in all neighboring nodes are the same.
Thus, the control given by

ui(t) = Kix̃i(t) +
∑
j∈Ni

Lij x̃j(t), ∀i = 1, ..., N (2)

where Ki is the feedback gain for the nominal subsystem
i and Lij is a set of decoupling gains, x̃i is a piecewise
constant function in the inter-event times since x̃i(t) =
xi(t

i
k), ∀t ∈ [tik, t

i
k+1) and ∀i = 1, . . . , N .

By defining the error between the current state xi and the
latest broadcasted state x̃i as ei(t) = x̃i(t)−xi(t), denoting
AK,i = Ai+BiKi and assuming that the matching condition
(BiLij = Hij) is satisfied, (1) can be rewritten according
to ẋi(t) = AK,ixi(t) + BiKiei(t) +

∑
j∈Ni BiLijej(t).

Because x̃i(t) is piecewise constant between events, it holds

ėi(t) = −AK,ixi(t)−BiKiei(t)−
∑
j∈Ni

BiLijej(t) (3)

in each interval t ∈ [tik, t
i
k+1).

Assumption 1: We assume that AK,i, i = 1, . . . , N is
diagonalizable so that the Jordan form of AK,i is diagonal
and its elements are the eigenvalues of AK,i, λk(AK,i) k =
1, . . . , n. This assumption facilitates the calculations, but the
extension to general Jordan blocks is straightforward.

Finally, let us denote by λmax(AK,i) the maximum real
part of the eigenvalues of AK,i, and let k0,i be the positive
constant k0,i = ‖Vi‖‖V −1

i ‖, where Vi is the matrix of the
eigenvectors of AK,i and ‖ · ‖ is the Euclidian norm.

C. Trigger function

The occurrence of an event is defined by trigger functions
fi which only depend on local information of agent i and
take values in R. The sequence of broadcasting times tik
are determined recursively by the event trigger function as
tik+1 = inf{t : t > tik, fi(t) > 0}.

We consider static trigger functions defined by

fi(ei(t)) = ‖ei(t)‖ − c, c > 0. (4)

III. TRANSMISSION PROTOCOL

This section discusses the protocol requirements that pre-
serve a certain level of performance when network delays and
packet losses occur in the transmission of data. Assuming an
ideal network and according to (4), the error in the subsystem
i is upper bounded by ‖ei(t)‖ ≤ c in each subsystem

i ∈ Ni with j ∈ Ni. As this property cannot be guaranteed
when dealing with delays or packet losses, it forces the
consideration of reasonable assumptions for the analysis in
the non-ideal network scenario.

Let us first introduce some notation.
Definition 2: We denote by τ i→jk the delay in the tranmis-

sion of the state xi(tik) of agent i to its neighbor j, j ∈ Ni,
at time tik, and τ̄ ik = max

{
τ i→jk , j ∈ Ni

}
.

Definition 3: We denote by P ki→j the number of sucessive
packet losses in the tranmission of the state xi(tik) of agent i
to its neighbor j, j ∈ Ni, at time tik, and by P ki the maximum
of P ki→j for all j ∈ Ni.

We next introduce the basic assumption that imposes
constraints on delays and packet dropouts.

Assumption 4: We assume that the maximum delay and
the number of successive packet dropouts which occur in the
tranmission of information from subsystem i to its neighbors
j ∈ Ni, denoted by (τ?)i and P ?i respectively, are such
that no event is generated before all the neighbors have
successfully received the broadcasted state x̃i.

The second important consideration is that the sender i
knows that the data has been successfully received by j by
getting an acknowledgment signal (ACK). If an ACK is not
received before a waiting time denoted by T iW , the packet
is discarded. How to determine T iW is analyzed later, but
it seems logical to set this value larger than the maximum
delay. If agent i has not received an ACK of the reception
of all the neighbors after the waiting time T iW , we propose
two alternatives that we denote Protocol 1 and Protocol 2.

1) Protocol 1: The state at tik+T iW is broadcasted again to
all the neighbors. If after waiting T iW an ACK is not received
from all j ∈ Ni, the retranmission takes place again, and so
on. This process can occur at most P ?i + 1 times. Once all
the neighbors have successfully received the data, agent i
sends a permission signal (PERM) so that the previously
transmitted data can be used to update the control law (2).
Both signals ACK and PERM are assumed to be delivered
with a delay approximated by zero over a reliable channel. A
very similar protocol is presented in [8]. As stated there, the
reason to the use a PERM signal and to retransmit the state to
all the neighbors instead of only retransmitting to those from
which an ACK signal has not been received, is to preserve
the state consistency mentioned in the introduction. Since the
broadcasted data is not valid until a PERM signal is received
from agent i, all the neighboring agents update the value at
the same time and therefore, the value of the error ei is the
same in all nodes. This allows to define stack vectors for the
state and the error signal so that the stability of the overall
system can be studied as in the ideal network case [10].

2) Protocol 2: The previous protocol simplifies the anal-
ysis but it has some drawbacks. First, all nodes in the
neighborhood have to wait for the slower connection (larger
delay) to process the received data. Secondly, Protocol 1
may involve unnecessary transmission, since even if an agent
j received a measurement, if other neighbor did not, the
broadcast takes place with an updated measurement ∀j ∈ Ni.
Finally, the ACK signal is vastly used in network protocols



to guarantee reliability of packet transfers, but the PERM
demands a more involved communication protocol. In order
to overcome these drawbacks, in the new protocol:

• Agent i waits T iW to get acknowledgements from the
neighbors. To those agents j ∈ Ni from which it did not
receive the ACK signal, it sends the state xi(tik + T iW )
at time tik + T iW . Agent i may transmit before the next
event at most P ?i + 1 times.

• Let us denote by Ni(t) ⊆ Ni the agents to which the
subsystem i transmits information at time t. In contrast
to Protocol 1, agent i only transmit a new measurement
to those agents from which it has not received the ACK
signal. If the last event occurred at time tik and t ∈
[tik, t

i
k+1), thus

∀j ∈ Ni, /∈ Ni(t) ∃ti→jk : tik ≤ t
i→j
k < t,

where ti→jk is the time of the successful broadcast to
agent j. Hence if at time t the node j is not in Ni(t)
it means that it has correctly received a broadcasted
state after the occurrence of the last event and it has
confirmed this reception with an ACK signal.

• The number of consecutive packet losses and the
network delay are upper-bounded for each agent i,
according to Assumption 4. Thus, it must hold that
Ni((tik+1)−) = ∅, where (tik+1)− refers to the instant
time before tik+1. I.e., all neighbors have successfully
received xi before the next event occurance.

In order to clarify the difference between both protocols, a
simple example is given in Fig. 1. A system with two agents
is depicted. Assume that Agent 1 detects an event at time
t1k and broadcast its state x1(t1k) to its neighbor Agent 2.
The tranmission is delayed by τ1

k and Agent 2 sends then
the ACK signal. In the scenario of Protocol 1 (Fig. 1a), the
PERM signal is sent after receiving ACK (both assumed to be
sent and received instantaneously) and both agents update the
broadcasted state in the control law at the same time t1k+τ1

k .
Thus, x̃1 takes the same value at any time in both agents and,
hence, e1(t) is the same in the dynamics of Agent 1 and 2.
For the Protocol 2 (Fig. 1b), the update in Agent 1 is applied
inmediately at time t1k, whereas the receiver updates the state
information at time t1k + τ1→2

k (τ1
k and τ1→2

k are the same).
Thus, in the interval [t1k, t

1
k + τ1→2

k ) the broadcasted state
x̃1 has different values in the two nodes and consequently
the error e1 considered in Agent 1 differs from the error
affecting the dynamics of Agent 2. Note that Agent 2 does
not monitor e1 since it only knows the state of Agent 1 at
event times. It is drawn in the figure to clarify the difference
between the two protocols.

IV. PERFORMANCE ANALYSIS

We firstly investigate the performance of the event-based
control obtained by using Protocol 1. After that, we extend
the results to the situation which uses Protocol 2. Finally,
we discuss an extension to time-dependent trigger functions.

Fig. 1. Update mechanism of a) Protocol 1 and b) Protocol 2

A. Properties of event-triggered control using Protocol 1

Let us first assume that the communication can only
experience delays but no packet dropouts.

1) Communication with delays:
Proposition 5: Let us consider trigger functions of the

form (4) and Protocol 1. If Assumption 4 holds, the error of
any subsystem i is upper bounded by ‖ei(t)‖ < 2c.

Proof: Assume that the last event occurred at time tik
and that the maximum transmission delay to its neighbors is
τ̄ ik. From Assumption 4, it follows that

‖
∫ tik+τ̄ ik

tik

ėi(s)ds‖ = ‖ei(tik + τ̄ ik)− ei(tik)‖ < c, (5)

has to be satisfied (see (4)) because no event is generated in
the time interval [tik, t

i
k+1). Since an event has occurred at

time tik ‖ei(tik)‖ = c holds and, thus, ‖ei(tik + τ̄ ik)‖ < 2c
has to hold, which is valid for any time t.

Theorem 6: If the network delay is upper bounded by

(τ?)i =
c

‖AK,i‖k0,i‖xi(0)‖+µi
(

1+
‖AK,i‖k0,i

|λmax(AK,i)|

)
2c
, (6)

where µi = ‖BiKi‖+
∑
j∈Ni ‖BiLij‖, then any broadcasted

state x̃i of any subsystem i ∈ 1, . . . , N is successfully
received by the neighbors j ∈ Ni before a new event occurs.
Hence, the inter-event times are lower bounded tik+1− tik ≥
(τ?)i. Moreover, for all initial conditions xi(0) and t > 0 it
holds

‖xi(t)‖ ≤k0,i

(
µi2c

|λmax(AK,i)|
+ e−|λmax(AK,i)|t

(
‖xi(0)‖

− µi2c

|λmax(AK,i)|

))
. (7)

Proof: In order to prove the theorem, let us assume
that Assumption 4 holds.

The analysis will derive an upper bound for the delay
which preserves this assumption. The error in the time
interval [tik, t

i
k+τ̄ ik) is given by ei(tik+τ̄ ik)−ei(tik) = xi(t

i
k)−



xi(t
i
k + τ̄ ik), since the broadcasted state x̃i is not updated

in any agent before the time instance tik + τ̄ ik according to
Protocol 1, so that x̃i(tik + τ̄ ik) = x̃i(t

i
k) = xi(t

i
k−1) holds.

This yields ei(tik + τ̄ ik) − ei(tik) =
(
I − eAK,iτ̄ ik

)
xi(t

i
k) +∫ τ̄ ik

0
eAK,is

(
BiKiei(s) + Bi

∑
j∈Ni Lijej(s)

)
ds, based on

which the upper bound for the delay τ̄ ik can be de-
rived as (τ?)ik = arg min

τ̄ ik≥0

{
‖
(
I − eAK,iτ̄

i
k

)
xi(t

i
k) +∫ τ̄ ik

0
eAK,is

(
BiKiei(s) +Bi

∑
j∈Ni Lijej(s)

)
ds‖ = c

}
.

Note that this bound depends on xi(tik). In order to guaran-
tee the existence of the bound for the delay, we need to prove
that the state is bounded for any tik. The state at any time is
given by xi(t) = eAK,itxi(0) +

∫ t
0
eAK,i(t−s)

(
BiKiei(s) +

Bi
∑
j∈Ni Lijej(s)

)
ds. The error is bounded by ‖ei(t)‖ <

2c, ∀i by Proposition 5. Thus, a bound on xi(t) can be
calculated following the methodology of [10] as (7).

Note that (7) is upper bounded by ‖xi(t)‖ ≤
k0,i

(‖BiKi‖2c+(
∑
j∈Ni

‖BiLij‖)2c
|λmax(AK,i)| + ‖xi(0)‖

)
, for any t.

In order to derive an upper bound for the delay for any t,
we recall that (3) holds in the interval t ∈ [tik−1 + τ̄ ik−1, t

i
k+

τ̄ ik) for any two consecutive events tik−1, t
i
k, and, hence, it

particular holds in the subinterval [tik, t
i
k + τ̄ ik) ⊂ [tik−1 +

τ̄ ik−1, t
i
k + τ̄ ik). With ‖ėi(t)‖ = ‖AK,ixi(t) + BiKiei(t) +∑

j∈Ni BiLijej‖ ≤ ‖AK,i‖‖xi(t)‖ + ‖BiKi‖‖ei(t)‖ +∑
j∈Ni ‖BiLij‖‖ej‖, the bound on the state xi(t) given by

(7) and Proposition 5, it follows from (5) that

‖ei(tik + τ̄ ik)− ei(tik)‖ ≤
(
‖AK,i‖k0,i

(
‖xi(0)‖+

(‖BiKi‖+
∑
j∈Ni

‖BiLij‖)2c

|λmax(AK,i)|

)
+ (‖BiKi‖+

∑
j∈Ni

‖BiLij‖)2c
)
τ̄ ik.

If the delay for any event k in the agent i is upper bounded
by (6), Assumption 4 holds, which proves the theorem.

Remark 7: Note that the lower bound on the inter-event
times is always smaller than in the case of ideal communi-
cation derived in [10], which is given by

τ i =
c

‖AK,i‖k0,i‖xi(0)‖+µi
(

1+
‖AK,i‖k0,i

|λmax(AK,i)|

)
c
.

2) Communication with delays and packet losses: The
previous paragraph was exclusively focussed on the effect
of delays. However, in practice, delays and packet losses
generally occur simultaneously.

Corollary 8: Assume that the maximum number of con-
secutive packet losses is upper bounded by P ?i , that the
transmission delay τ ik of the state xi of the agent i, i ∈
1, . . . , N to its neighbors j ∈ Ni is upper bounded by a
constant τ̄ i according to

τ̄ i =
(τ?)i

P ?i + 1
, (8)

where (τ?)i is given by (6), and that the waiting time T iW
is set to τ̄ i. Then, there is a successful broadcast before the
occurrence of a new event, and the state of each agent i is
bounded by (7).

Proof: The accumulated error after P ?i consecutive
packet losses and a transmission delay τ̄ ik ≤ τ̄ i, assuming

that an event was triggered at time tik, is

(ei(t
i
k + T i

W ) − ei(t
i
k)) + (ei(t

i
k + 2T i

W ) − ei(t
i
k + T i

W )) + ...︸ ︷︷ ︸
P?i times

+ (ei(t
i
k + P ?

i T
i
W + τ̄ ik) − ei(t

i
k + P ?

i T
i
W ))

= ei(t
i
k + P ?

i T
i
W + τ̄ ik) − ei(t

i
k). (9)

Since P ?i T
i
W + τ̄ ik ≤ P ?i T iW + τ̄ i = (P ?i +1)τ̄ i = (τ?)i, and

(τ?)i is also the minimum inter-event time for the system, an
event cannot occur before (τ?)i, which implies that ‖ei(tik+
P ?i T

i
W + τ̄ ik)− ei(tik)‖ < c. Hence, ‖ei(t)‖ < 2c holds and

so does the bound (7).
Remark 9: Note that the maximum number of consecutive

packet dropouts P ?i and the maximum tolerable delay τ̄ i are
correlated. A large value of P ?i implies small values of τ̄ i and
vice versa. So there is a trade-off between both parameters.

B. Properties of event-triggered control using Protocol 2

Using Protocol 2, the main issue is to keep track of
the different versions of the broadcasted states. Therefore,
some definitions are firstly introduced to adapt the previous
analysis to this new scenario.

Definition 10: We denote {ti→jk } the successful broad-
casting times from agent i to agent j, and the error

ei→j(t) = x̃i→j(t
i→j
k )− xi(t), t ∈ [ti→jk , ti→jk+1), (10)

where x̃i→j(t
i→j
k ) is the last broadcasted state from agent i

to agent j, j ∈ Ni.
With this definition, the dynamics of agent i are given by

ẋi(t) = AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

BiLijej→i(t) (11)

with ei(t) the version of the error that agent i has of itself.
We assume that agent i automatically updates its broadcasted
state in its control law and does not need to wait to receive an
acknowledgment of successful reception from its neighbors.

With these prerequisites the following theorem is obtained.
Theorem 11: If Protocol 2 is used, the network delay is

upper bounded by

τ̄ i =
(τ?)i

P ?i + 1
, (12)

where P ?i is the maximum number of consecutive packet
losses and

(τ?)i =
c

‖AK,i‖k0,i‖xi(0)‖+µ̄i
(

1+
‖AK,i‖k0,i

|λmax(AK,i)|

)
2c
, (13)

with µ̄i = 1
2‖BiKi‖ +

∑
j∈Ni ‖BiLij‖, and the waiting

time T iW is set to τ̄ i, then any broadcasted state x̃i of any
subsystem i, i ∈ 1, . . . , N to the neighbors j ∈ Ni is
successfully received before a new event occurs, the local
inter-event times tik+1 − tik are lower bounded by (13), and
for any initial condition xi(0) and for any t > 0, it holds

‖xi(t)‖ ≤k0,i

(
µ̄i2c

|λmax(AK,i)|
+ e−|λmax(AK,i)|t

(
‖xi(0)‖

− µ̄i2c

|λmax(AK,i)|

))
. (14)



Proof: According to Protocol 2, ‖ei(t)‖ ≤ c holds and
ei(t) 6= ei→j(t), in general. However, since Assumption 4
applies, ‖ei→j(ti→jk )− ei(tik)‖ < c yields ‖ei→j(t)‖ < 2c.

According to that, a bound on the state can be derived
from (11) in a similar way as in Theorem 6 and (14) holds.
The proof of the first part of the theorem can be obtained
by following the proof of Theorem 6, since in the interval
[tik, t

i→j
k ) the state information x̃i→j remains constant in the

agent j, so that ėi→j(t) = −ẋi(t) holds. If th error ei→j(t)
is integrated in the interval [tik, t

i→j
k ), the state is bounded

by (14), and the error is bounded as discussed above, (13)
is derived. Finally, (12) can be derived as in Corollary 8.

Remark 12: Note that the delay bound for Protocol 1 and
Protocol 2 (see (6), (13)) are different. Since µ̄i < µi, under
the same initial conditions Protocol 2 allows larger delays.

C. Discussion of time-dependent trigger functions

Let us define trigger functions of the form

fi(ei(t)) = ‖ei(t)‖ − ce−αt (15)

where c is a positive constant and α < 0.
The motivation of trigger functions of the form (15) was

discussed in [10]. There is trade-off between the performance
and the minimum inter-event in the choice of the parameter
c for static trigger functions. A small c yields the generation
of a lot of events, and large value of c may give a bad
performance when the system approaches the origin. Time-
dependent trigger functions provide larger inter-event times
for small t of time and good performance for large values
of t, if the parameter α is adequately selected.

In [10], it has been proved graphically that the inter-
event time is lower bounded if α < |λmax(AK)|, where
AK = diag(AK,1, · · · , AK,N ). Hence, under Assumption
4, similar conclusions could be derived to upper bound
the delay allowing less conservative results. The simulation
results in the next section will illustrate the benefits of using
trigger functions of the form (15).

V. SIMULATION RESULTS

A. System description

The system considered is a collection of N inverted
pendulums of mass m and length l coupled by springs with
rate k. Each subsystem can be described by

ẋi =

(
0 1

g
l −

aik
ml2 0

)
xi +

(
0
1
ml2

)
ui +

∑
j∈Ni

(
0 0
hijk
ml2 0

)
xj

where xi =
(
xi1 xi2

)T
, ai is the number of springs

connected to the ith pendulum and hij = 1,∀j ∈
Ni and 0 otherwise. Ki and Lij gains are designed to de-
couple the system and place the poles at -1, -2. Therefore,
Ki =

(
−3ml2 aik − ml2

4 (8 + 4g
l )
)

and Lij =
(
−k 0

)
.

The same system has been used in [10] to demonstrate the
event-based control strategy assuming an ideal network.

TABLE I
DELAYS FOR DIFFERENT VALUES OF C

c 0.01 0.02 0.05 0.1
(τ?)i(6)(ms) 0.362 0.636 1.170 1.624

(τ?)i(13)(ms) 0.379 0.693 1.378 2.054

B. Performance

To illustrate the theoretical results, the system behavior
is investigated in three situations: 1) Ideal communication
channel 2) Non-ideal network using Protocol 1 3) Non-ideal
network using Protocol 2.

Consider that the number of subsystems is
N = 4 and the initial conditions are x(0) =(
−0.9425 0 1.0472 0 0.6283 0 −1.4137 0

)T
.

The upper bounds on the delay are computed for Protocol
1 (6) and Protocol 2 (13) and for different values of the
parameter c of the trigger function (4). The results illustrated
in Table I correspond to one of the inner pendulums (i = 2).
Note that the difference between the value of (τ?)i given
by the two protocols increases with c and that Protocol 2
always allows larger (less conservative) values on the delay.
Consider now c = 0.05 and a delay generated randomly
between zero and the corresponding upper bound specified
in Table I. The state of subsystem 2, the events time and
the control input u(t) are depicted in Fig. 2 for the three
situations stated above. The behavior of the subsystem is
similar in the three cases as the effect of delays in the
performance of the system is mitigated by means of the two
protocols proposed. Note that even though the delay does
not significantly affect in the performance, it has an impact
on the sequence of events. This is an interesting property of
event-based control, because the delay in one tranmission
will affect the occurrence of future events.

Fig. 2. Behavior of the system with Protocol 1 (dotted line), Protocol 2
(dashed line) and a ideal network (solid line)

C. Protocol 1 vs. Protocol 2

In order to illustrate the difference between Protocol 1
and Protocol 2 in more detail, Fig. 3 extracts a short time
interval showing how the broadcasted state x̃ of Agent 2 is
used in the system. Since Agent 2 is an inner pendulum, it
has two neighbors. For Protocol 1 the three copies of x̃ (one
in Agent 2, one in Agent 1 and the third in Agent 3) are



identical since all the neighbors wait for the last reception
(here x̃2→3) at time t = 1.668 s to update the value of x̃
(Fig. 3a), which is depicted by the solid line. In contrast,
using Protocol 2 (Fig. 3b), whenever an event is triggered in
Agent 2, its state is broadcasted and inmediatelly updated in
Agent 2.The neighbors also update as soon as they received
the broadcasted state. Note that the events times are not the
same in the two protocols because the time of one update
affects the generation of future events, as mentioned before.

Fig. 3. Difference between a) Protocol 1 and b) Protocol 2 in updating
the state information. Only the first component of the state is depicted.

D. Time-dependent trigger function

If we consider time-dependent trigger functions of the
form (15) with parameters c = 0.5 and α = 0.8 and if we
compute a lower bound for the minimum inter-event time τ
as discussed in [10] assuming an ideal network scenario, we
obtain τ ∈ [0.0072, 0.0109) s.

The performance of the system under the time-dependent
trigger functions is compareed with the behavior using the
static-trigger functions for (τ?)i = 3.6 ms. The results are
shown in Fig. 4. The state of agent 2 (x21

, x22
) is depicted in

Fig. 4a, and Fig. 4b shows the broadcasted states (x̃21
, x̃22

).
Note that the number of updates in the broadcasted state

Fig. 4. Behavior of the system with trigger functions (4) (c = 0.05) and
(15) (c = 0.5, α = 0.8), and delay bound set to 3.6 ms

(number of events) decreases with trigger functions (15) and
the performance around the equilibria is better with respect
to (4). Moreover, the minimum and mean inter-event times
have been computed according for these simulation results,
resulting in 3.9 ms and 353 ms, respectively, for (15), and
1.2 ms, which agrees with the results of Table I, and 215 ms
for (4). Hence, the time-dependent trigger functions seem an
interesting alternative in non-ideal networks.

VI. CONCLUSIONS AND FUTURE WORK

The performance of distributed event-triggered control of
interconnected linear systems for a non-ideal communication
network inducing delays and packet losses has been analyzed
in this paper. Upper bounds on the delay and the maximum
number of consecutive packet dropouts are derived consid-
ering two different communication protocols both of which
guarantee a stable behavior. The first protocol preserves state
consistency which is relaxed by the second protocol leading
to less conservative upper bound on the delay. The theoret-
ical results are illustrated through simulations, showing the
stability of the system under the proposed schemes.

Future works will include the analytical extension of the
scheme to deal with time-dependent trigger functions show-
ing promising results in the simulations and the extension to
considering exogenous disturbances.
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