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Abstract— This paper presents a distributed event-based
control strategy for a networked dynamical system consisting
of N linear time-invariant interconnected subsystems. Each
subsystem broadcasts its state over the network according
to some triggering rules which depend on local information
only. The system converges to an adjustable region around
the equilibrium point under the proposed control design, and
the existence of a lower bound for the broadcasting period is
guaranteed. The effect of the coupling terms over the region of
convergence and broadcasting period lower bound is analyzed,
and a novel model-based approach is derived to reduce the
communications. Simulation results show the effectiveness of
the proposed approaches and illustrate the theoretical results.

I. INTRODUCTION

Event-based methods invoke a communication between
the components of a control loop only when something
significant occurred in the system [1], [2]. In recent work,
event- and self-triggered policies have been proposed to use
more efficiently the limited bandwith available in networked
control [3]-[8]. When the number of systems increases, the
bandwidth saving becomes more important.

The centralized control of large-scale systems would re-
quire an accurate knowledge of the interaction between the
subsystems, also called ”agents”, and the consumption of a
lot of network resources. On the other hand, in a distributed
control approach, each agent could collect information from
its neighboring nodes and trigger controller updates accord-
ing to some rules. The limitations imposed by the network
renders the frequency at which the system communicates an
important issue. A reduction in the transmission frequency
implies bandwidth saving but a certain level of performance
must be guaranteed. A more natural choice is to transmit only
when a certain condition depending on the state is satisfied,
that is, when an event occurs.

Distributed event-triggered control for multi-agent sys-
tem has already been examined in [9]. In [10], distributed
event-based control for average consensus problems for
both single- and double-integrator multi-agent systems is
proposed. We extend here this event-based control strategy
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to interconnected linear systems, with symetric intercon-
nections. The agents communicate through a network and
the overall system converges to non-cooperative equilibrium
points, whereas in [10] the equilibria are cooperative.

Thus our contribution sums up to a novel distributed event-
based control design for interconnected linear systems. A
neighboring relationship is defined in the sense of dynamical
interaction between the nodes. The distributed control of
interconnected dynamical systems has been discussed in the
past [11]. However, the timing issue imposed by the network
makes necessary a redesign of the control structure. A similar
idea was presented in [7]. Each subsystem broadcasts its
state to its neighbors only at event times. With regards to
[7], the main contribution of this work is that the triggering
mechanism does not continuously depend on the state of
the system but on the error between the current and the
latest broadcasted state. In a first approach, the control law is
updated whenever the agent sends or receives a new measure-
ment value, and so both the control law and the broadcasted
states are piecewise constant functions. In a second approach,
the broadcasted states are used by each agent to generate the
control signal according to a local model of its neighborhood.
This leads to substantial reduction in the number of events if
the model is accurate enough. Different triggering conditions
are proposed to guarantee the convergence of the system
to an arbitrary small region around the equilibrium and the
existence of a state independent strictly positive lower bound
for the broadcast period.

The rest of the paper is organized as follows: Section II
contains the problem statement for this work. The event-
based control strategy is presented in Section III. The effect
of the coupling terms over the system stability is analyzed
in Section IV. Section V presents the model-based extension
of the work. Numerical simulations in Section VI show the
efficiency of the proposed strategy with respect to previous
results. The conclusions in Section VII end the paper.

II. PROBLEM STATEMENT

Consider a system of N linear time-invariant subsystems.
The dynamics of each subsystem are given by:

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t) (1)

∀i = 1, . . . , N , where Ni is the set of “neighbors” of
subsystem i and Hij is the interaction term between agent
i and agent j. We assume that neighboring is a symmetric
relation, and so Hij = Hji. The state xi has dimension ni,
ui is the mi-dimensional local control signal of agent i, and
Ai, Bi and Hij are matrices of appropriate dimensions.
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A digital communication network is used, and so every
subsystem can only broadcast its state to its neighbors in a
discrete-time manner. The control law is given by:

ui(t) = Kix̃i(t) +
∑
j∈Ni

Lij x̃j(t), ∀i = 1, ..., N (2)

where Ki is the feedback gain for the nominal subsystem
i, i.e., we assume that Ai + BiKi is Hurwitz, Lij is a set
of decoupling gains, and x̃j(t) is the latest state broadcasted
by agent j at time t. The times at which the agents broad-
cast their state generates a sequence of broadcasting times

{tik}∞k=0, where tik < tik+1 for all k. Let also n =
N∑
i=0

ni.

Let us define the error ei as ei = x̃i − xi, and rewrite (1)
in terms of ei and the control law (2):

ẋi(t) = AK,ixi(t)+BiKiei(t)+
∑
j∈Ni

(
∆ijxj(t)+BiLijej

)
(3)

∀i = 1, ..., N , where AK,i = Ai + BiKi, and ∆ij =
BiLij + Hij . We first assume that the perfect decoupling
condition ∆ij = 0 ∀i, j holds. In this case, (3) becomes
ẋi(t) = AK,ixi(t) +BiKiei(t) +

∑
j∈Ni BiLijej .

We also define AK = diag(AK,1, AK,2, ..., AK,N ),
B = diag(B1, B2, ..., BN ), M =
B1K1 −H12 · · · −H1N

−H21 B2K2 · · · −H2N

...
...

. . .
...

−HN1 −HN2 · · · BnKN

 and K̂ =


K1 L12 · · · L1N

L21 K2 · · · L2N

...
...

. . .
...

LN1 LN2 · · · KN

.

Note that M = BK̂. Define the stack vectors x =
(xT1 , x

T
2 , ..., x

T
N )T and e = (eT1 , e

T
2 , ..., e

T
N )T as the state and

error vectors of the overall system, respectively. Thus

ẋ(t) = AKx(t) +Me(t) = AKx(t) +BK̂e(t). (4)

As the broadcasted states x̃i remain constant between
consecutive events, ė(t) in each interval is given by:

ė(t) = −AKx(t)−Me(t) = −AKx(t)−BK̂e(t) (5)

III. EVENT-BASED CONTROL STRATEGY

The occurrence of an event is defined by trigger functions
fi which depend on local information of agent i only and
take values in R. The sequence of broadcasting times tik are
determined recursively by as tik+1 = inf{t : t > tik, fi(t) >
0}. The next subsections present some results for the problem
stated above under different trigger functions.

A. Static trigger function

In this subsection, we first propose a set of static trigger
functions as follows

fi(ei(t)) = ‖ei(t)‖ − c (6)

where c is a positive constant. Note that the trigger function
for each subsystem only depends on its state.

The following theorem proves that system (4) with trigger
functions (6) asymptotically converges to a region around
the equilibrium point which, without loss of generality, is
assumed to be (0, . . . , 0)T . The functions (6) bound the
errors by c, since an event is triggered as soon as the norm
of ei becomes larger than c.

Assumption 1: We assume that AK,i, i = 1, . . . , N is
diagonalizable so that the Jordan form of AK,i is diagonal
and its elements are the eigenvalues of AK,i, λk(AK,i) k =
1, . . . , n. This assumption facilitates the calculations, but the
extension to general Jordan blocks is straightforward.

Theorem 2: Consider the closed-loop system (4) and trig-
ger functions of the form (6). Then, for all initial conditions
x(0) ∈ Rn, and t > 0, it holds

‖x(t)‖ ≤k0

( ‖M‖√Nc
|λmax(AK)|

+

e−|λmax(AK)|t(‖x(0)‖ − ‖M‖
√
Nc

|λmax(AK)|
)
)

(7)

where λmax(AK) denotes the maximum real part of the
eigenvalues of AK , and k0 is a positive constant k0 =
‖V ‖‖V −1‖, where V is the matrix of the eigenvectors of
AK . Furthermore, the closed-loop system does not exhibit
Zeno behavior.

Proof: The analytical solution of (4) is given by x(t) =

eAKtx(0) +
t∫

0

eAK(t−τ)Me(τ)dτ.

Remark 3: The integrability of e(t) is justified by the
definition of fi(ei(t)), which guarantees that ei(t) cannot
be updated to zero immediately after it had done so. Thus
there is an arbitrarily small, yet positive lower bound on
the interexecution times. Thus the right hand side of (4) is
piecewise continuous.

Then, the state is bounded by ‖x(t)‖ ≤

‖eAKtx(0)‖ + ‖
t∫

0

eAK(t−τ)Me(τ)dτ‖ ≤ ‖eAKtx(0)‖ +

t∫
0

‖eAK(t−τ)Me(τ)dτ‖ ≤ ‖eAKt‖‖x(0)‖ +

t∫
0

‖eAK(t−τ)‖‖M‖‖e(τ)‖dτ .

The matrix AK is diagonalizable by construction. Thus

AK = V DV −1 =⇒ eAK = V eDV −1 (8)

where D is the diagonal matrix of the eigenvalues
of AK and V is the matrix with the corresponding
eigenvectors as its columns. Denote as λmax(AK) the
maximum real part of the eigenvalues of AK . Thus
we can bound ‖eAKt‖ ≤ ‖V ‖‖V −1‖eλmax(AK)tand
the state as ‖x(t)‖ ≤ ‖V ‖‖V −1‖(eλmax(AK)t‖x(0)‖ +
t∫

0

eλmax(AK)(t−τ)‖M‖‖e(τ)‖dτ).

The trigger condition fi(ei(t)) > 0 enforces ‖ei(t)‖ ≤ c
so that ‖e(t)‖ ≤

√
Nc. Defining k0 = ‖V ‖‖V −1‖, we have

‖x(t)‖ ≤ k0

(
eλmax(AK)t‖x(0)‖ + ‖M‖

√
Nc

λmax(AK) (eλmax(AK)t −

1)
)

, which can be rewritten as (7) since the eigenvalues of
AK all have negative real part (λmax(AK) < 0).
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In order to prove that Zeno behavior is excluded, let’s
assume that agent i’s latest event trigger occurs at t =
t∗ > 0. Then ‖ei(t∗)‖ = 0, and so fi(0) = −c < 0.
Therefore agent i cannot trigger at the same time instant.
Between two consecutive events it holds that ėi(t) = −ẋi(t).
From definition of the error ‖ei(t)‖ ≤ ‖e(t)‖, and from
(5) we derive ‖ė(t)‖ ≤ ‖AK‖‖x(t)‖ + ‖M‖‖e(t)‖ ≤
‖AK‖‖x(t)‖+ ‖M‖

√
Nc.

From (7) it follows that the state is bounded by ‖x(t)‖ ≤
k0

(
‖M‖

√
Nc

|λmax(AK)| + ‖x(0)‖
)
,∀t ≥ t∗. Denote this bound

as xmax,1. Then for any t between t∗ and the next event

time for agent i, ‖ei(t)‖ ≤ ‖e(t)‖ ≤
t∫
t∗
‖ė(τ)‖dτ ≤

t∫
t∗

(‖AK‖‖x(τ)‖ + ‖M‖
√
Nc)dτ ≤ (‖AK‖xmax,1 +

‖M‖
√
Nc)(t−t∗). From (8), it is also derived that ‖AK‖ ≤

‖V ‖‖D‖‖V −1‖ ≤ k0|λmin(AK)|, where λmin(AK) is the
eigenvalue of AK with largest modulus. If all eigenvalues
are real, λmin(AK) is the minimum eigenvalue of AK .

The next event is not triggered before ei(t) reaches the
value of c. Thus a lower bound on the inter-event times is

τ =
c

k20|λmin(AK)|‖x(0)‖+‖M‖
√
Nc

(
k2

0
|λmin(AK)|
|λmax(AK)| + 1

) (9)

which is strictly positive. Thus Zeno behavior is excluded.

Remark 4: The norm of AK is computed as the spectral
norm. Since AK is diagonalizable, the norm of D can be
bounded by the largest modulus of the eigenvalues (‖D‖ ≤
|λmin(AK)|). If they are all real, the largest modulus of the
eigenvalues is the minimum eigenvalue since they all have
negative real part.

B. Time-dependent trigger condition

This subsection presents a set of time-dependent trigger
functions defined as

fi(ei(t)) = ‖ei(t)‖ − (c0 + c1e
−αt) > 0, α > 0 (10)

where c0 ≥ 0, c1 > 0. When the parameters α and c1
are adequately selected, the time-dependency can decrease
the number of events without degrading the performance,
meanwhile c0 guarantees the convergence to an arbitrary
small region. The following theorem holds:

Theorem 5: Consider the closed-loop system (4) and
the trigger functions of the form (10), with 0 < α <
|λmax(AK)|. Then, for all initial conditions x(0) ∈ Rn and
t > 0, it holds

‖x(t)‖ ≤ k0

( ‖M‖√Nc0
|λmax(AK)|

+ e−|λmax(AK)|t(‖x(0)‖−

‖M‖
√
N(

c0

|λmax(AK)|
+

c1

|λmax(AK)|−α
)
)

+
e−αt‖M‖

√
Nc1

|λmax(AK)|−α

)
(11)

and the closed-loop system does not exhibit Zeno behavior.
Proof: Proceeding as before we get ‖x(t)‖ ≤

k0

(
‖x(0)‖eλmax(AK)t

t∫
0

eλmax(AK)(t−τ)‖M‖‖e(τ)‖dτ
)

.

Note that now we can compute ‖e(τ)‖ ≤
√
N(c0 +c1e

−ατ ),
by the definition of the trigger function. Thus

‖x(t)‖ ≤ k0

( t∫
0

eλmax(AK)(t−τ)
√
N(c0 + c1e

−ατ )‖M‖dτ +

eλmax(AK)t‖x(0)‖
)

= k0

(
‖M‖

√
Nc0

|λmax(AK)| (1 −

e−|λmax(AK)|t) + ‖M‖
√
Nc1

|λmax(AK)|−α (e−αt − e−|λmax(AK)|t) +

‖x(0)‖e−|λmax(AK)|t
)

, which by reordering terms proves
the first part. We next show that broadcasting period is
lower bounded. Specifically, (11) can be bounded by

‖x(t)‖ ≤k0

(
‖x(0)‖e−|λmax(AK)|t+

‖M‖
√
Nc0

|λmax(AK)|
+

‖M‖
√
Nc1

|λmax(AK)| − α
e−αt

)
. (12)

Denote this bound as xmax,2(t).
Let’s prove now that the Zeno behavior is excluded, that is,

there exists a positive lower bound for the inter-event times.
Proceeding as before, it holds that ‖ė(t)‖ ≤ ‖AK‖‖x(t)‖+
‖M‖‖e(t)‖ ≤ ‖AK‖‖x(t)‖ + ‖M‖

√
N(c0 + c1e

−αt) ≤
k2

0|λmin(AK)|
(
‖M‖

√
Nc0

|λmax(AK)| + ‖x(0)‖e−|λmax(AK)|t +

‖M‖
√
Nc1

|λmax(AK)|−αe
−αt
)

+‖M‖
√
N(c0+c1e

−αt). Denoting k1 =

k2
0|λmin(AK)|‖x(0)‖, k2 = ‖M‖

√
Nc1

( k20|λmin(AK)|
|λmax(AK)|−α +

1
)

and k3 = ‖M‖
√
Nc0

(k20|λmin(AK)|
|λmax(AK)| + 1

)
, it follows that

‖ė(t)‖ ≤ k1e
−|λmax(AK)|t + k2e

−αt + k3. (13)

Assume that c0 6= 0. Then, k3 6= 0 and ‖ė(t)‖ ≤ k1+k2+k3.
The fact that ‖ei(t)‖ ≤ ‖e(t)‖ allows to bound the error of

agent i as ‖ei(t)‖ ≤ ‖e(t)‖ ≤
t∫
t∗
‖ė(τ)‖dτ ≤

t∫
t∗

(k1 + k2 +

k3)dτ = (k1 + k2 + k3)(t− t∗). The trigger condition is not
fulfilled before ‖ei(t)‖ = c0 ≤ c0 + c1e

−αt. Thus a lower
bound τ on the inter-execution time is given by

τ = c0/(k1 + k2 + k3). (14)

This is a positive quantity, and so, the inter-event times are
lower bounded.

Let’s assume now the case c0 = 0. In that
case k3 = 0. Then, the state is bounded by
‖x(t)‖ ≤ k0

(
‖x(0)‖e−|λmax(AK)|t + ‖M‖

√
Nc1

|λmax(AK)|−α (e−αt −

e−|λmax(AK)|t)
)
, and so the overall system converges

asymptotically to the equilibrium point. In order to determine
the lower bound of the inter-event times for this case, let us
bound (13) with k3 = 0 as ‖ė(t)‖ ≤ k1e

−|λmax(AK)|t +
k2e
−αt ≤ k1e

−|λmax(AK)|t∗ + k2e
−αt∗ , since t∗ < t.

With that bound and considering that ‖ei(t)‖ ≤ ‖e(t)‖, it

follows that ‖ei(t)‖ ≤
t∫
t∗
k1e
−|λmax(AK)|t∗ + k2e

−αt∗dτ =

(k1e
−|λmax(AK)|t∗ + k2e

−αt∗)(t − t∗). According to (10)
with c0 = 0, the next event will not be triggered before
‖ei(t)‖ = c1e

−αt. Thus, a lower bound on the inter-event
intervals is given by(

k1
c1
e(α−|λmax(AK)|)t∗ + k2

c1

)
τ = e−ατ . (15)
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Fig. 1. Graphical solution of (15)

The right hand side of (15) is always positive. Moreover,
for α < |λmax(AK)| the left hand side is strictly positive as
well, and the term in brackets is upper bounded by k2+k1

c1
and lower bounded by k2/c1, and this yields to a positive
value of τ for all t∗ ≥ 0. The existence of the solution τ can
also be depicted graphically (see Figure 1). The solution is
given by the intersection of the exponential curve and the
straight line between the two bounds whose slope depends
on t∗. Thus, there is no Zeno behavior.

IV. COUPLING STABILIZATION

At the beginning of Section II, it has been assumed that for
each i, AK,i is Hurwitz. The motivation of this section is to
relax the previous condition. Specifically, the case when the
design of the nominal control law makes the system closed-
loop stable due to the interconnections but each isolated
subsystem can still be unstable, is presented.

Consider (1). This initial set of equations can be rewritten
in terms of the state of the overall system as ẋ(t) =
Âx(t) + Bu(t), where u = (uT1 , u

T
2 , . . . , u

T
N ) and Â =

A1 H12 · · · H1N

H21 A2 · · · H2N

...
...

. . .
...

HN1 HN2 · · · AN

 .

Assume that we can design a state-feedback controller
based on the latest broadcasted state x̃, that is u(t) = K̂x̃(t).

Now K̂ is defined as K̂ =


K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN


that renders the nominal system given by ẋ(t) = (Â +
BK̂)x(t) = ÂKx(t) stable and ÂK diagonalizable. How-
ever, Ai + BiKii is not necessarily Hurwitz in this case.
Then we have

ẋ(t) = ÂKx(t) +BK̂e(t). (16)

The following can then be stated:
Theorem 6: The state norm of (16) with trigger functions

(10), and for all initial conditions x(0) ∈ Rn and t > 0,
fulfills the following condition

‖x(t)‖ ≤ k̂0

(‖BK̂‖√Nc0
|λmax(ÂK)|

+ e−|λmax(ÂK)|t(‖x(0)‖−

‖BK̂‖
√
N(

c0

|λ̂max(ÂK)|
+

c1

|λ̂max(ÂK)|−α
)
)

+
e−αt‖BK̂‖

√
Nc1

|λ̂max(ÂK)|−α

)

where λ̂max(ÂK) represents the maximum real part of the
eigenvalues of ÂK . Furthermore, the closed-loop system
does not exhibit Zeno-behavior.

Proof: The solution of (16) is x(t) = eÂKtx(0) +
t∫

0

eÂK(t−τ)BK̂e(τ)dτ. Using similar calculations as in the

previous sections, the state norm can be bounded as ‖x(t)‖ ≤

‖eÂKtx(0)‖+ ‖
t∫

0

eÂK(t−τ)BK̂e(τ)dτ‖. The matrix ÂK is

stable and thus all its eigenvalues have negative real part.
Moreover, ÂK is diagonalizable and can be decomposed as
ÂK = V̂ D̂V̂ −1, where D̂ is the diagonal matrix and V̂ con-
tains the eigenvectors. Then, by defining k̂0 = ‖V̂ −1‖‖V̂ ‖
we get that ‖eÂKt‖ ≤ k̂0e

−|λ̂max(ÂK)|t, where λ̂max(ÂK)
is maximum real part of the eigenvalues of ÂK .

Thus, assuming trigger functions as in (10) with

c0, c1 6= 0, we have ‖x(t)‖ ≤ k̂0

(
e−|λ̂max(ÂK)|t‖x(0)‖ +

t∫
0

e−|λ̂max(ÂK)|(t−τ)‖BK̂‖
√
N(c0 + c1e

−αt)dτ

)
.

Solving the integral and grouping terms, it follows that

‖x(t)‖ ≤ k̂0

(
‖BK̂‖

√
Nc0

|λ̂max(ÂK)|
+ e−|λ̂max(ÂK)|t

(
‖x(0)‖ −

‖BK̂‖
√
N
(

c0
|λ̂max(ÂK)|

+ c1
|λ̂max(ÂK)|−α

))
+

e−αt‖BK̂‖
√
Nc1

|λ̂max(ÂK)|−α

)
, which proves the first part of the

theorem.
Similar calculations to the previous sections

yield a lower bound for the broadcasting period
of τ = c0/(k̂1 + k̂2 + k̂3), where k̂1 =

k̂2
0|λ̂min(ÂK)|‖x(0)‖, k̂2 = ‖BK̂‖

√
Nc1

( k̂20|λ̂min(ÂK)|
|λ̂max(ÂK)|−α

+

1
)

and k̂3 = ‖BK̂‖
√
Nc0

( k̂20|λ̂min(ÂK)|
|λ̂max(ÂK)|

+ 1
)
. Hence, the

system does not exhibit Zeno-behavior.
Remark 7: The case c0 = 0 can be studied as in Section

III-B. In that case, k̂3 = 0 and the lower bound on the
broadcasting period is the solution of(

k̂1
c1
e(α−|λ̂max(AK)|)t∗ + k̂2

c1

)
τ = e−ατ . (17)

The existence of a positive solution in (17) can be proved
graphically as in Figure 1.

V. MODEL-BASED CONTROL

The event-based strategy analyzed previously is based
on a control law which maintains its value between two
consecutive events and is based on the latest broadcasted
state. One alternative to this control law can be achieved in
the event that each agent has knowledge of the dynamics of
its neighborhood.

In particular, let us define the control law for each agent
based on a model as ui(t) = Kix̃i(t) +

∑
j∈Ni Lij x̃j(t),

where x̃i now represents the state estimation of xi given by
the model (Ãi, B̃i) of each isolated agent ˙̃xi(t) = ÃK,ix̃i(t),
where ÃK,i = Ãi + B̃iKi. Let us also define ÃK =
diag(ÃK,1, . . . , ÃK,n). The error ei is defined as previously
and is also reset at events’ occurrence. Let’s introduce a
sequence of functions x̂k,i : R → Rni supported over the
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time interval between two consecutive events for agent i.
Let’s denote this interval as [tik, t

i+1
k ). The value of x̂k,i at

time t ∈ R is xi(tik)eÃK,i(t−t
i
k) if t ∈ [tik, t

i+1
k ) and zero

otherwise. With this notation, the state estimation ∀t is

x̃i(t) =

∞∑
k=0

x̂k,i(t). (18)

In this approach, if the difference between the system state
and the model differs from a given quantity, which depends
on the trigger function, an event is triggered and the model
is updated to the state at the event time

If we consider the trigger function defined in (10), the state
will be also bounded by (11). However, the lower bound for
the inter-event time will have a different expression.

Assumption 8: Let be ĀK = ÃK −AK be the difference
between the model and the real plant closed loop dynamics.
We assume that the following is satisfed:

√
N(c0 + c1)/k0

‖x(0)‖+ ‖M‖
√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α

<
‖AK‖ − ‖ĀK‖
‖ÃK‖

.

(19)
Theorem 9: If assumptions 8 holds, the lower bound of

the broadcasting period for the system (4) when the control
law for each agent is based on state estimations of the form
(18), with triggering functions (10), 0 < α < |λmax(AK)|,
is greater than (14).

Proof: Define the overall system state estimation as
x̃(t) = (x̃T1 , . . . , x̃

T
N ). Let’s prove that the bound for the

inter-events time is larger in the model-based approach. We
have ė(t) = ˙̃x(t)− ẋ(t) = ÃK x̃(t)− (AKx(t) +Me(t)) =
(ÃK − AK)x(t) + (ÃK − M)e(t) = ĀKx(t) + (ÃK −
M)e(t). Then, ‖ė(t)‖ ≤ ‖ĀK‖‖x(t)‖+‖ÃK−M‖‖e(t)‖ ≤
‖ĀK‖‖x(t)‖+ ‖ÃK −M‖

√
N(c0 + c1e

−αt).

Assume that the last event occurred at a time t∗ ≤ t
and consider the case when c0, c1 6= 0. It follows that
c0 + c1e

−αt ≤ c0 + c1e
−αt∗ ≤ c0 + c1. Moreover, the state

norm can be bounded as in (12), and so:

‖x(t)‖ ≤ k0

(
‖x(0)‖+

‖M‖
√
Nc0

|λmax(AK)|
+

‖M‖
√
Nc1

|λmax(AK)| − α

)
.

Then ‖ei(t)‖ ≤ ‖e(t)‖ ≤
t∫
t∗
‖ė(τ)‖dτ ≤(

‖ĀK‖k0

(
‖x(0)‖ + ‖M‖

√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α
)

+

‖ÃK −M‖
√
N(c0 + c1)

)
(t− t∗).

The next event will not occur before ‖ei(t)‖ ≤ c0 ≤
c0 + c1e

−αt. This condition gives a lower bound for the
broadcasting period τ ′ that will be larger than (14) if
‖ĀK‖k0

(
‖x(0)‖ + ‖M‖

√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α

)
+ ‖ÃK −

M‖
√
N(c0 + c1) < ‖AK‖k0

(
‖x(0)‖ + ‖M‖

√
Nc0

|λmax(AK)| +

‖M‖
√
Nc1

|λmax(AK)|−α

)
+‖M‖

√
N(c0 +c1), or equivalently (‖ÃK−

M‖ − ‖M‖)
√
N(c0 + c1) < (‖AK‖ − ‖ĀK‖)

(
‖x(0)‖ +
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‖M‖
√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α

)
. After some manipulations

√
N(c0 + c1)

‖x(0)‖+ ‖M‖
√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α

< k0
‖AK‖−‖ĀK‖

‖ÃK−M‖−‖M‖
.

(20)
The denominator on the right hand side is bounded as ‖ÃK−
M‖−‖M‖ ≤ ‖ÃK‖+‖M‖−‖M‖ = ‖ÃK‖. If Assumption
8 holds, (20) is fulfilled, and the broadcasting period lower
bound is larger for the model-based approach.

Remark 10: Assumption 8 is not a strong assumption
since when ‖ĀK‖ goes to zero, ‖ÃK‖ ' ‖AK‖, and the
right hand side of (19) can be approximated to one. For
initial conditions satisfying k0‖x0‖ >

√
N(c0 + c1), it holds√

N(c0+c1)
k0

< ‖x(0)‖+ ‖M‖
√
Nc0

|λmax(AK)| + ‖M‖
√
Nc1

|λmax(AK)|−α .

VI. SIMULATION RESULTS

This section presents some simulation results in order to
demonstrate the event-based control strategy. The system
considered is a collection of N inverted pendulums of
mass m and length l coupled by springs with rate k. Each
subsystem can be described as follows:

ẋi =

(
0 1

q
l −

aik
ml2 0

)
xi +

(
0
1
ml2

)
ui +

∑
j∈Ni

(
0 0
hijk
ml2 0

)
xj

where xi =
(
xi1 xi2

)T
, ai is the number of springs

connected to the ith pendulum and hij = 1,∀j ∈
Ni and 0 otherwise. Ki and Lij gains are designed to de-
couple the system and place the poles at -1, -2. This yields
the control law ui =

(
−3ml2 aik − ml2

4 (8 + 4g
l )
)
x̃i +∑

j∈Ni

(
−k 0

)
x̃j , where x̃i =

(
x̃i1 x̃i2

)T
. In the fol-

lowing, the system parameters are set to g = 10,m = 1, l =
2 and k = 5, as in [7].

A. Static trigger function

The output of the system and the sequence of
events for N = 4 with trigger functions (6) with
c = 0.05 is shown in Figure 2 for initial conditions
x(0) =

(
π/2 0 π/3 0 −π/2 0 −π/4 0

)
. The

lower graph shows the generation of events for each agent,
whereas the upper graph depicts their output.
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Fig. 3. Simulation result with trigger functions (10), c0 = 0.01, c1 =
0.5 and α = 0.7

Fig. 4. Simulation result with trigger functions (10) for the approaches of
the sections III-B and V

B. Time-dependent trigger function

Figure 3 shows the system response under the previously
described conditions but with trigger functions (10) with
parameters c0 = 0.01, c1 = 0.5 and α = 0.7. The conver-
gence of the system to the equilibrium point is guaranteed
whereas the number of events generated (see the lower graph)
decreases significantly, especially for small values of time.

C. Model based control

In Section V a model-based approach was presented as a
means of improving the event-based control of Section III.
Figure 4 compares the output of agent 1 when a simulation
under the conditions of the previous section is performed
for both approches. Additionally, a disturbance is induced to
the agent at t = 25s. The lower graph shows the evolution
of the broadcasting period. We observe how the model
based approach gives larger values, especially around the
equilibrium point.

Table I extends this study for a larger N . Several simula-
tions were performed for different initial conditions for each
value of N . Mininum and mean values of the inter-event
times (τ ik) were calculated for the set of the simulations with
the same number of agents. We see that the model-based
approach gives around 50% larger broadcasting periods,
remaining almost constant when N increases. If we compare
these results to [7], we see that the proposed scheme can
provide around six times larger τ ik. For example, for N =
100, trigger functions of the form (10) give mean values

TABLE I
INTER-EVENT TIMES FOR DIFFERENT N . VALUES GIVEN IN SECONDS

Trig. cond. (10), Trig. cond. (10), Trig. cond.
approach III-B approach V of [7]

N {τ ik}min {τ ik}mean {τ ik}min {τ ik}mean {τ ik}mean
10 0.263 0.688 0.185 0.900 0.1149
50 0.205 0.620 0.184 0.903 0.1175

100 0.185 0.627 0.211 0.978 0.1152
150 0.184 0.664 0.210 0.975 0.1180
200 0.183 0.650 0.181 0.967 0.1177

of τ ik of 0.627 and 0.978 for the approaches of sections
III-A and V, respectively, while the trigger functions in [7]
gives 0.1152. Though the approach in [7] ensures asymptotic
stability, we guarantee the convergence to an arbitrary small
region around the origin with c0 6= 0. Alternatively, one can
choose c0 = 0 to get rid of this drawback.

VII. CONCLUSIONS

We presented a novel distributed event-based control strat-
egy for linear interconnected subsystems. The events are
generated by the agents based on local information only,
broadcasting their state over the network. The proposed
trigger functions preserve the desired convergence properties
and guarantee the existence of a strictly positive lower bound
for the broadcast period, excluding the Zeno behavior. A
model-based approach was also presented as a means of
reducing the number of events. The contribution of the
current paper with respect to previous work are verified
through computer simulations.

The inclusion in the formalism of network problems as
time-delays and dropouts, the consideration of the used
protocol, and the application to discrete-time systems are
part of the future work.
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