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Abstract— This paper presents an approach to event-
triggered model predictive control for discrete-time linear sys-
tems subject to input and state constraints as well as exogenous
disturbances. Stability properties are derived by evaluating the
difference between the event-triggered implementation and the
conventional time-triggered scheme. It is shown that the event-
triggered implementation, in stationarity, is able to keep the
state in an explicitly computable set given by the disturbance
bound and the event threshold. Simulation results underline the
effectiveness of the proposed scheme in terms of reducing the
communication and computational effort while guaranteeing a
desired performance.

I. INTRODUCTION

Model predictive control (MPC) is a control scheme which

at every sampling instant solves a finite horizon open-

loop optimal control problem and applies the first part of

the optimal input trajectory. By considering input and/or

state constraints in the on-line optimization this procedure

provides a well suited method for overcoming the potential

performance degradation or stability problems imposed by

these constraints [6], [19], [21], [24].

Considering networked control systems (NCS) [3] the use

of predictive controllers has recently gained popularity [7],

[16], [27], [33]. However, conventional time-triggered MPC is

known to be computationally demanding and requires a pe-

riodic sampling. This is conflicting with the communication

limitations and use of low-energy components in wireless

networks [32].

A sampling scheme that solves these problems is given

by event-triggered control. Event-triggered control aims at

reducing the communication in NCS by only sending infor-

mation if certain event conditions are satisfied [1], [2], [12],

[18], [31]. As an unsatisfied event condition indicates that

the actual plant behavior sufficiently coincides with a desired

behavior, it also indicates that a re-calculation of the control

input is not needed. Hence, the computational effort can be

reduced significantly. Especially in the context of MPC this

effect becomes obvious. In fact, as long as the behavior of the

model used in the MPC scheme sufficiently coincides with

the actual behavior of the plant a re-optimization at each

discrete-time step is not required.

Adaptive sampling MPC has previously been proposed

in [4], [9], [13], [23], [26], [29], [30] for the case of
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event-triggered sampling and in [17] for the case of asyn-

chronous measurements. Here, [9], [23], [29] and [30] con-

sider continuous-time nonlinear systems that are affected by

exogenous disturbances [9], [29] or network delays [23],

[30]. In these papers the feasibility and convergence of

the MPC has been proven by means of a Lyapunov based

analysis. The focus of [26] lies in combining an event-

triggered state estimator and MPC. It has been shown that

the resulting MPC closed-loop system is input-to-state stable

with respect to the estimation error. In the context of wireless

sensor networks a robust event-triggered MPC scheme for

discrete-time systems has been proposed in [4], which is

based on a min-max optimization. In [13] a self-triggered

implementation has been developed. Here, at each sampling

instant, the next sampling time is determined in advance and,

hence, no monitoring of an event condition is required.

The approach proposed in this paper considers an event-

triggered implementation of MPC for systems subject to input

and state constraints as well as exogenous disturbances. The

novelty of the approach lies in the comparison of the stability

behavior of the event-triggered scheme with the behavior of

the conventional time-triggered implementation. An upper

bound on the maximum stationary set-point deviation is

derived for both of the sampling schemes. It turns out that

this bound directly depends on the event threshold as well

as indirectly on the disturbance characteristics. The effective-

ness of the proposed scheme is illustrated by simulations.

The outline of the paper is as follows. Section II introduces

the conventional time-triggered MPC which serves as an

underlying system used to evaluate the performance of the

event-triggered MPC scheme. The event-triggered implemen-

tation and its stability properties are discussed in Section III.

Simulation results are presented in Section IV.

Notation: Throughout this paper a scalar is denoted by

italic letters (x ∈ IR), a vector by bold italic letters (x ∈
IRn), a matrix by upper-case bold italic letters (A ∈ IRn×n)
and a signal at discrete time k ∈ IN by x(k), where x0

is defined as the initial signal value at time k = 0. The

absolute value of a scalar x is denoted by |x| and ‖x‖ and

‖A‖ are used to denote an arbitrary vector norm or induced

matrix norm. x̂(k|k′) denotes an estimate of x(k), given all

available measurements up until time k′ with k ≥ k′. A > 0
and A ≥ 0 mean that the matrix A is positive definite or

positive semi-definite, respectively.
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II. TIME-TRIGGERED MPC

Throughout the paper the plant is described by the

discrete-time linear state-space model

x(k + 1) = Ax(k) +Bu(k) +Ed(k), x(0) = x0 (1)

with state x ∈ IRn, input u ∈ IRm and disturbance d ∈ IRr.

Further it is assumed that the state, input and disturbance

belong to the compact sets

x ∈ X , u ∈ U , d ∈ D.

At each sampling time k, the time-triggered MPC solves

minimize
U(k)

J(x(k),U(k)) = minimize
U(k)

‖x̂(k +N |k)‖2QN

+

N−1
∑

l=0

(

‖x̂(k + l|k)‖2Q + ‖û(k + l|k)‖2R

)

(2)

subject to

x̂(k + l + 1|k) = Ax̂(k + l|k) +Bû(k + l|k),

x̂(k|k) = x(k), x ∈ X , u ∈ U (3)

U(k) = {û(k|k), û(k + 1|k), . . . , û(k +N − 1|k)}

and l ∈ IN.

The weighting matrices 0 ≤ QN, 0 ≤ Q and 0 < R as

well as the horizon length N are design variables. At each

discrete-time instant k the optimization is repeated and the

first control input u(k) = û(k|k) of the computed optimal

control signal sequence U(k) is applied to the plant. For

further reference the control signal u(k) is denoted by the

nonlinear map

u(k) = û(k|k) = G(x̂(k|k)) = G(x(k)). (4)

The following result can be derived.

Lemma 1: Suppose that:

1) The optimization problem (2)–(3) is feasible for all

d(k) ∈ D, k ≥ 0.

2) ∃K s.t. limk→∞ ‖G(x̂(k|k)) − Kx̂(k|k)‖ = 0 and

A+BK is Schur.

Then, the closed-loop system is stable. Further it holds that

lim
k→∞

x(k) ∈ R = {x : ‖x‖ < r}

where

r = sup
d∈D

∥

∥

∥

∥

∥

∥

∞
∑

j=0

(A+BK)jEd

∥

∥

∥

∥

∥

∥

. (5)

Proof: According to assumption 1 the problem is

feasible, so the MPC is able to keep (1) within its specified

constraints. With u(k) = G(x̂(k|k)) and x̂(k|k) = x(k) at

each sampling instant k, the closed-loop system is given by

x(k + 1) = Ax(k) +BG(x̂(k|k)) +Ed(k)

= Ax(k) +BKx̂(k|k) +Ed(k)

+B(G(x̂(k|k))−Kx̂(k|k))

= (A+BK)x(k) +Ed(k) (6)

+B(G(x̂(k|k))−Kx̂(k|k)).

In stationarity, the state x(k) is given by

lim
k→∞

‖x(k)‖ = lim
k→∞

∥

∥

∥

∥

∥

∥

Ākx0 +
k−1
∑

j=0

Āk−1−jEd(j)

+

k−1
∑

j=0

Āk−1−jB∆(j, j)

∥

∥

∥

∥

∥

∥

with ∆(j, j) = G(x̂(j|j)) − Kx̂(j|j) and Ā = A +
BK. Using assumption 2, limk→∞

∥

∥Āk
∥

∥ = 0 and

limk→∞ ‖∆(k, k)‖ = 0, this equation can be rewritten as

lim
k→∞

‖x(k)‖ = lim
k→∞

∥

∥

∥

∥

∥

∥

k−1
∑

j=0

Āk−1−jEd(j)

∥

∥

∥

∥

∥

∥

.

The right-hand side can be upper bounded by (5), leading to

the conclusion of the lemma.

In the case that the constraints are not active, the following

well known result applies.

Lemma 2: As long as no constraints are active, it holds

that

G(x̂(k|k)) = K∗x̂(k|k), ∀k

where K∗ = −(BTP0B +R)−1BTP0A and

PN =QN

Pk =ATPk+1A+Q

−ATPk+1B(BTPk+1B +R)−1BTPk+1A.

Proof: See, e.g., [5].

Remark 1: Lemma 2 implies that if the MPC is able to

drive the system into a region where the constraints are no

longer active, the first part of assumption 2 in Lemma 1 is

guaranteed to hold. However, it does not guarantee that A+
BK is Schur. This property may be inferred by restricting

QN to fulfill certain properties, c.f., Lemma 4.

The results provide a basis for comparing the performance

of the event-triggered implementation in relation to the

performance of the time-triggered one.

Remark 2: For robust MPC the reader is referred to [8],

[14], [15], [20], [22], [25], [28], where the convergence

analysis is primarily carried out by showing that a Lyapunov

function decreases over time despite the influence of un-

known disturbances.

III. EVENT-TRIGGERED MPC

Fig. 1. Event-triggered model predictive control loop.
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The control architecture for the event-triggered MPC is

depicted in Fig. 1. It consists of the plant, a smart sensor

incorporating the event condition, a MPC and a smart actu-

ator. Information is sent over the feedback link only if the

event condition, which is discussed next, is satisfied. The

discrete-time instants at which this happens are denoted by

kℓ, where ℓ ∈ IN is the event counter. In the following it is

assumed that the first event ℓ = 0 occurs at time k0 = 0.

An event is generated at time kℓ+1 whenever either the

difference between the plant state x(k) and the state x̂(k|kℓ)
predicted by the MPC exceeds a certain threshold, or the

prediction horizon N has expired, i.e., when

‖x(k)− x̂(k|kℓ)‖ ≥ ē (7)

or k ≥ kℓ +N,

where ē ≥ 0 is the threshold parameter. At event times kℓ
the MPC state predictions are recalculated such that

x̂(kℓ|kℓ) = x(kℓ). (8)

Introducing a change of variable k = kℓ + q with q ∈
{0, 1, . . . , N} the prediction error between two event times

is given by

e(q, kℓ) = x(kℓ + q)− x̂(kℓ + q|kℓ) (9)

which in turn is bounded according to the following theorem.

Theorem 1: The prediction error e(q, kℓ) in (9) is

bounded as

e(q, kℓ) ∈ E = {e : ‖e‖ ≤ emax}, ∀kℓ, q ∈ {0, 1, . . . , N}

with

emax = ‖A‖ē+ ‖E‖max
d∈D

‖d‖. (10)

Proof: The evolution of the prediction error is given

by

e(q + 1, kℓ) = x(kℓ + q + 1)− x̂(kℓ + q + 1|kℓ)

= Ae(q, kℓ) +Ed(kℓ + q)

with e(0, kℓ) = 0 according to (8) and (9). Consider a given

time instant k′ = kℓ + q′ such that no event is generated

and, hence, ‖e(q′, kℓ)‖ < ē. There always exists such a k′

as q′ = 0 is allowed. Consequently, the maximum possible

prediction error at the next sampling instant can be bounded

by

max ‖e(q′ + 1, kℓ)‖ = max ‖Ae(q′, kℓ) +Ed(kℓ + q′)‖

≤ emax

with emax given by (10).

At each event time kℓ, the optimization problem (2)–(3)

is executed and the control sequence

U(kℓ) = {û(kℓ|kℓ), û(kℓ + 1|kℓ), . . . , û(kℓ +N − 1|kℓ)}

is sent to the actuator. The sequence of predicted states

X̂(kℓ) = {x̂(kℓ|kℓ), x̂(kℓ + 1|kℓ), . . . , x̂(kℓ +N |kℓ)}

is sent to the sensor. In the following let û(k|kℓ) be denoted

by the non-linear operator

û(k|kℓ) = G(x̂(k|kℓ)), k ≥ kℓ.

The principle of the event generator is illustrated in Fig. 2

for N = 3. Here, the first and third event are triggered

by the difference between the predicted and measured state

exceeding the event threshold ē, whereas the second event

results from an expired prediction horizon N .

Fig. 2. Working principle of the event generator.

A. Event-triggered MPC subject to large disturbances

Considering large persistent disturbances d the following

result can be obtained.

Lemma 3: Suppose that the disturbance d(k) satisfies

‖Ed(k)‖ ≥ ē, ∀k. (11)

Then the event-triggered implementation of the MPC (2)–(3)

using event condition (7) gives the same control sequence

U(k) as the time-triggered implementation.

Proof: Assume that an event has been generated at time

kℓ and hence x̂(kℓ|kℓ) = x(kℓ). A new event is detected at

the next sampling instant kℓ + 1 if

‖x(kℓ + 1)− x̂(kℓ + 1|kℓ)‖ = ‖Ed(kℓ)‖ ≥ ē

holds. If d(kℓ) satisfies this condition for all k ∈ IN, an

event is generated at each sampling instant. Therefore, the

event-triggered implementation uses the same state infor-

mation for the optimization as the time-triggered MPC and,

consequently, produces the same input sequence U(k).
Remark 3: Note that instead of considering sufficiently

large disturbances d(k) the same effect can be obtained by

considering sufficiently small event thresholds ē. For ē = 0,

the event-triggered model predictive controller always has

the same behavior as its time-triggered counterpart.

B. Event-triggered MPC subject to small disturbances

In the case that the disturbance d is small there is a

trade-off between the event threshold ē and the control

performance, as stated in the following result.

Theorem 2: Suppose that:

1) The disturbance d(k) satisfies

‖Ed(k)‖ ≤ ē, ∀k. (12)

2) The optimization problem (2)–(3) using event condi-

tion (7) is feasible for all d(k) ∈ D, k ≥ 0 and keeps

e(k) ∈ E , k ≥ 0.
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3) ∃K s.t. limk→∞ ‖G(x̂(k|kℓ)) −Kx̂(k|kℓ)‖ = 0 and

A+BK is Schur.

Then the closed-loop system is stable. Further it holds

lim
k→∞

x(k) ∈ Re = {x : ‖x‖ < re}

where

re = r +
∞
∑

j=0

∥

∥(A+BK)jBK
∥

∥ emax = r + rδ(ē) (13)

and

r = sup
d∈D

∥

∥

∥

∥

∥

∥

∞
∑

j=0

(A+BK)jEd

∥

∥

∥

∥

∥

∥

.

Proof: According to assumption 2 the problem is

feasible and the controller is able to keep the system within

its specified constraints. The closed-loop system is given by

x(k + 1) = Ax(k) +BG(x̂(k|kℓ)) +Ed(k)

= Ax(k) +B(G(x̂(k|kℓ))−Kx̂(k|kℓ))

+BKx̂(k|kℓ) +Ed(k). (14)

Using the change of variables k = kℓ + q and the prediction

error (9), this may be written as

x(k + 1) = (A+BK)x(k)

+B(G(x̂(k|kℓ))−Kx̂(k|kℓ))

−BKe(q, kℓ) +Ed(k).

Hence,

lim
k→∞

‖x(k)‖ = lim
k→∞

∥

∥

∥

∥

∥

∥

Ākx0 +

k−1
∑

j=0

Āk−1−jB∆(j, kℓ)

−

k−1
∑

j=0

Āk−1−jBKe(j − kℓ, kℓ)

+
k−1
∑

j=0

Āk−1−jEd(j)

∥

∥

∥

∥

∥

∥

which with ∆(j, kℓ) = G(x̂(j|kℓ)) − Kx̂(j|kℓ) can be

rewritten, using assumption 3, as

lim
k→∞

‖x(k)‖ = lim
k→∞

∥

∥

∥

∥

∥

∥

−
k−1
∑

j=0

Āk−1−jBKe(j − kℓ, kℓ)

+

k−1
∑

j=0

Āk−1−jEd(j)

∥

∥

∥

∥

∥

∥

.

By using (10) in Theorem 1, the right-hand side of this

equation can be bounded by

lim
k→∞

‖x(k)‖ ≤ r + lim
k→∞

k−1
∑

j=0

∥

∥Āk−1−jBKe(j − kℓ, kℓ)
∥

∥

≤ r + lim
k→∞

k−1
∑

j=0

∥

∥Āk−1−jBK
∥

∥ emax.

Hence, as k → ∞, x(k) ∈ Re.

The theorem shows how the event-triggered MPC approxi-

mates the time-triggered implementation through the param-

eter emax in (10) depending on the event threshold ē. By

increasing ē the bound rδ(ē) becomes larger leading to an

increase of the approximation error rδ . Note that a small

ē generally violates assumption 1. In that case Lemma 3

applies instead.

Remark 4: Methods to analyze the feasibility and conver-

gence properties of event-triggered MPC subject to exogenous

disturbances can be found in [4], [9].

Lemma 4: Assumption 3 of Theorem 2 holds, as long as

no constraints are active, the pair (A,B) is controllable, QN

in (2)–(3) is chosen to satisfy the Algebraic Riccati Equation

QN =ATQNA+Q

−ATQNB(BTQNB +R)−1BTQNA,

and K is chosen as

K = −(BTQNB +R)−1BTQN.

In fact it then holds that

G(x̂(k|kℓ)) = Kx̂(k|kℓ), ∀k, kℓ (k ≥ kℓ).

Proof: See, e.g., [5].

C. Relations to model-based event-triggered control

Without constraints the optimal control problem (2)–(3),

is equivalent to a state-feedback controller which can be

explicitly determined, see Lemma 2.

By incorporating the MPC component on the actuator node

this method shows some interesting relations to existing

event-triggered control schemes denoted model-based event-

triggered control, see [10], [18] for the continuous-time case

and [11] for the discrete-time scenario. In fact by considering

no constraints, the input provided by the MPC is the same as

the input provided by a time-triggered state-feedback loop

when the controller matrix K has been obtained from the

optimal control problem (2)–(3).

IV. SIMULATION EVALUATION

Let the plant be described by the second-order linear

discrete-time model

x(k + 1) =

(

1 −0.5
0.5 0

)

x(k)

+

(

0.5
0

)

u(k) +

(

0.5
0

)

d(k), x(0) = x0

subject to the following constraints:

−10 < xi < 10, i = 1, 2

−2 < u < 2

−2 < d < 2.

The prediction horizon is chosen to be N = 10 with the

weights

Q =

(

1 0
0 1

)

, R = 0.1.
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The final state weight QN is chosen, according to Lemma 4,

as

QN =

(

1.554 −0.151
−0.151 1.080

)

with the corresponding state-feedback gain

K =
(

1.513 −0.795
)

.

The event threshold for the event-triggered implementation is

set to ē = 0.5. Considering these parameters the assumptions

of Lemma 1 and Theorem 2 are satisfied.

A. Plant subject to large disturbances

Fig. 3. Behavior of event-triggered and time-triggered MPC for a large
disturbance; xET,1, xTT,1, uET: solid line; xET,2, xTT,2, uTT: dashed
line.

Fig. 3 shows the behavior of the event-triggered MPC

(first plot) and the time-triggered MPC (second plot) for the

disturbance

d(k) = 2, ∀k

which satisfies condition (11) at each sampling instant and

x0 =
(

5 5
)T

.

The subscript ET is used to indicate the event-triggered

implementation whereas TT indicates the time-triggered

scheme. As expected from Lemma 3, the behavior of both

schemes coincide as shown in the fourth plot with

x∆(k) = xET(k)− xTT(k)

because at each time instant k an event is generated. These

generated events are indicated by the circles in the upper

plot.
The third plot shows the control inputs uET and uTT

which likewise are identical for both schemes. It is shown

that due to the large initial state the input is saturated which,

however, does not affect the stability.

B. Plant subject to small disturbances

The behavior of both control schemes for the disturbance

d(k) =

{

0, for 0 ≤ k ≤ 20
0.5, for k > 20

and

x0 =
(

1 1
)T

is depicted in Fig. 4. For k ≤ 20 the disturbance is zero and,

hence, xET(k) and xTT(k) coincide as the model state and

the measured state are the same. The two events generated

in the event-triggered scenario during this period, at k1 = 10
and k2 = 20, are due to that the prediction horizon of the

MPC expires. At k = 21, the magnitude of the disturbance

changes and the following events are caused by the deviation

of the model and the measured state, which occurs every six

discrete-time steps. Consequently, the inputs uET and uTT

also deviate (third plot).

Nevertheless, the difference between the states xET(k)
and xTT(k) remains bounded and with max|d| = 0.5 it holds

‖xET(k)− xTT(k)‖ ≤ rδ(0.5) = 0.44

which is illustrated in the lower plot.

Fig. 4. Behavior of event-triggered and time-triggered MPC for a small
disturbance; xET,1, xTT,1, uET: solid line; xET,2, xTT,2, uTT: dashed
line.

V. CONCLUSIONS

The paper investigated the stationary behavior of event-

triggered MPC and evaluated the difference to a conventional

time-triggered implementation. It was shown how the event-

triggered approach is affected by the event condition as well

as the disturbance magnitude. The analytical results were

illustrated by simulations.

Future work will include the evaluation of the transient

behavior and the incorporation of integral action in the MPC.
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