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Abstract— This paper studies event-triggered consensus con-
trol for heterogenous nonlinear multi-agent systems. We present
a new distributed nonlinear event-triggered control algorithm
integrating basic radial basis function neural network with
event-based control. We show that it can handle any unknown
dynamics linear in the control input, achieving practical consen-
sus without Zeno behaviour. A numerical example is provided
to highlight the effectiveness of the proposed algorithm in terms
of learning the unknown nonlinear dynamics.

I. INTRODUCTION

The consensus problem [1, 2], where a group of agents
in the same network collectively seek to reach a mutually
agreeable state, is not robust to nonlinearity, such as ma-
licious agents or external disturbances [3, 4]. To overcome
this, Rehan et al. [5] presented a modified consensus control
protocol under one-sided Lipchitz nonlinearity. Ma et al. [6]
adopted a feedback controller to handle stochastic nonlinear
disturbances. These algorithms, however, require at least
partial, if not full, information about the nonlinearity, such
as Lipchitz constants and boundedness. It could be a strong
assumption in physical systems as we often do not have
sufficient knowledge or exact model of the dynamics. This
motivates the use of learning techniques, specifically neural
networks, to compensate the influence of the nonlinearity
which has shown promising capabilities of estimating un-
known dynamics [7–11]. In particular, Zhang et al. [12]
proposed a continuous-time consensus algorithm with radial
basis function neural network as an estimator of the unknown
dynamics.

The learning-based consensus algorithms, similar to clas-
sical consensus algorithms [13], require continuous infor-
mation exchange between the neighbours, which is often
impractical in reality. In view of this, self-triggered and
event-triggered control were introduced to mitigate such
connection in control systems in general [14, 15]. Event-
triggered consensus control problems have also been widely
investigated [16–20]. Yi et al. [21] proposed a dynamic
event-triggering law that drastically reduces communication
amongst agents without the need for a heavy computation
overhead. Tsang et al. [20] designed a stochastic trigger
based on existing deterministic counterparts to achieve even
lower communication rate. Exponential convegence to con-
sensus can be achieved and require much less communication
than time-triggered approaches.

This work is supported by the Swedish Strategic Research Foundation, the
Swedish Research Council, and the Knut and Alice Wallenberg Foundation.

Kam Fai Elvis Tsang and Karl Henrik Johansson are with the Division of
Decision and Control Systems and Digital Futures, KTH Royal Institute of
Technology, Stockholm, Sweden {kfetsang, kallej}@kth.se

In this paper, we consider the event-triggered consensus
problem for nonlinear multi-agent systems linear in the
control input. The main contributions are as follows: we in-
troduce a novel nonlinear event-based distributed control law,
integrating radial basis function neural networks with event-
triggered control. We only assume that the nonlinear agent
dynamics is given by nonlinear continuous function without
any further knowledge. We prove that the closed-loop multi-
agent system executing the proposed algorithm is able to
reach practical consensus with bounded consensus error,
while excluding the existence of Zeno behaviour. In addition,
we show through numerical example that the algorithm is
able to learn and compensate the unknown nonlinearities in
the agents’ dynamics. It outperforms the standard consensus
algorithm (without adaptive control) significantly regarding
both consensus performance and communication rate as well
as some state-of-the-art consensus algorithms.

The rest of this paper is organised as follows. Section II
defines the problem and objective. Section III presents the
proposed algorithm to solve the problem. Section IV contains
the main result on consensus and Zeno behaviour. Section V
provides a numerical simulation to illustrate the effectiveness
of the proposed algorithm and compare it with other research
in consensus control algorithms. Section VI concludes the
paper at last with potential future directions.

Notation. The norm ||· ||p denotes the p-norm for any vector
or the induced p-norm for any matrix. Unless otherwise spec-
ified, || · || represents the 2-norm for vectors and Frobenius
norm for matrices. A vector of dimension n with all entries
being 1 is denoted by 1n. The i-th eigenvalue of a matrix
M in ascending order is λi(M).

II. PROBLEM FORMULATION

Consider a multi-agent system with N agents interacting
over an undirected connected graph G = (V, E). Each agent
i ∈ V has the following nonlinear dynamics:

ẋi(t) = fi(xi(t)) + ui(t) (1)

where xi(t) ∈ Rn, ui(t) ∈ Rn are the state and control input
of agent i respectively, and fi : Rm 7→ Rm is an unknown
continuous function. Let Ni denote the neghbours of agent
i: Ni = {j ∈ V : (i, j) ∈ E}, for i = 1, . . . , N .

Each agent is equipped with an event-triggered learning-
based controller, as shown in Fig. 1. It consists of a control
law (C), neural network (NN) and event-trigger (ET). They
will all be introduced in next section. The dashed lines
represent communication with other agents. Here γi(t) is an
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∫
dt

fi

xi

ET

{x̂j}j∈Ni

C

NN

x̂i

γi

ẋi+ui

Fig. 1: Block diagram of the control system of agent i

impulse train representing the event that agent i broadcasts
its state to its neighbours at time t, i.e.,

γi(t) =

{
1, Agent i broadcasts to neighbours
0, Otherwise

.

Let KN = IN − 1
N 1N1TN and the global consensus error

ε(t) = 1
N x(t)T (KN ⊗ In)x(t) = 1

N

∑N
i=1 ||xi(t) − x̄(t)||2.

We adopt the following definition of practical consensus as
in [22]:

Definition 1. The multi-agent system reaches practical con-
sensus if there exists χ ≥ 0 such that

lim
t→∞

ε(t) ≤ χ.

The objective of this work is to design the event-triggered
learning-based controller in Fig. 1 such that the multi-agent
system reaches practical consensus without exhibiting Zeno
behaviour.

III. DISTRIBUTED EVENT-TRIGGERED
LEARNING-BASED CONTROL ALGORITHM

The control system of each agent in Fig. 1 will be
described in detail in this section. We start with the control
law followed by the event-triggering mechanism, and the
neural network.

A. Control Law

Each agent employs the following control law:

ui(t) = −δi(t)−Wi(t)
Tφi(xi(t)) (2)

δi(t) =
∑
j∈Ni

Lij x̂j(t) (3)

where

x̂i(t) =

{
xi(t), γi(t) = 1

xi(τi(t)), γi(t) = 0
, (4)

τi(t) = max{k < t : γi(k) = 1}. (5)

The second term of the control law is the output of the
neural network described below estimating the nonlinearity
fi(xi(t)). The events γi(t) are given by the event-trigger. The
first term is the standard event-triggered consensus control
proposed in [21].

B. Event-Trigger

The event-triggered broadcast of agent i is given by

γi(t) =

{
1, ρi(t) > 0

0, otherwise
(6)

with the threshold function

ρi(t) = ei(t)
T ei(t)−

αi
Lii

(exp(−βit) + ε0) . (7)

where ei(t) = x̂i(t)−xi(t) is the difference between the last
broadcast state and its current value. The scalars αi, βi, ε0 >
0 are design parameters. This event-triggering law is inspired
by [14, 20, 21].

C. Neural Network

The neural network in the control architecture in Fig. 1 is a
radial basis function neural network, that is, a neural network
with precisely one hidden layer. It is used to approximate the
unknown function fi. The network, with n-dimensional input
and m-dimensional output, is given by

f̂i(z) = WT
i φi(z),

where Wi ∈ Rp×n is the weight matrix, p the number of
neurons and φi(z) the radial basis function vector with l-th
entry being

φli(z) = exp

(
− (z − µl)T (z − µl)

2σl
2

)
where µl ∈ Rn, σl ∈ R, l = 1, . . . , p, are the centres and
widths of the Gaussian radial basis functions, respectively.
The neural network can arbitrarily well compensate the effect
of the nonlinear term fi(xi(t)), because of the following
classical result.

Lemma 1 (Universal Approximation Theorem [23]). Given
any continuous function fi(z) and positive constant εfi ,
there exists a neural network f∗i (z) = W ∗i

Tφi(z) that can
approximate fi(z) arbitrarily well on a compact domain
Xi ⊂ Rn such that ||εi(z)|| ≤ εfi ,∀z ∈ Xi, where εi(z) =
fi(z)− f∗i (z).

In Lemma 1, W ∗i is referred to as the optimal weight
matrix, because it minimises the approximation error. Fur-
thermore, we pose the following optimisation problem:

max
Wi

(
f̂i(xi(t))− fi(xi(t))

)T
δi(t)︸ ︷︷ ︸

Correlation

− σi
2
||Wi||2F︸ ︷︷ ︸

Regularisation

.
(8)

The first term can be interpreted as the correlation between
the estimation error of fi and the local consensus error
δi, while the second term is a regularisation term to avoid
overfitting. By taking the gradient of (8) with respect to Wi,
we have the update rule

Ẇi(t) = η
(
φi(t)δi(t)

T − σiWi(t)
)
, (9)

which is inspired by Zhang et al. [12].
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Fig. 2: State evolution for the standard consensus algorithm (A3) (a-c) and the proposed algorithm (d-f)

IV. MAIN RESULTS

In this section, we show that the distributed event-triggered
learning-based control algorithm in Section III is able to
drive the multi-agent system to practical consensus without
exhibiting Zeno behaviour. The following theorem is the
main result of this paper.

Theorem 1. Consider a multi-agent system with dynamics
(1) and the event-triggered learning-based control (2)-(7)
and (9). This closed-loop system does not exhibit Zeno be-
haviour and achieves practical consensus with the following
asymptotic upper bound on the consensus error:

lim
t→∞

ε(t) ≤
N∑
i=1

k1σi
(
||W ∗i ||2F − ||W̄i||2F

)
+ k2ε̄

2
f + k3ε0

for some constants k1, k2, k3 > 0, ε̄f =
√∑N

i=1 ε
2
fi

and

||W̄i||2F = lim sup
t→∞

||Wi(t)||2F .

Proof. See Appendix B.

Note that Theorem 1, together with Lemma 1, implies that
there exists a set of neural networks {f̂i(z) : i ∈ V} such
that the asymptotic consensus error can be made arbitrarily
small because σi, ε̄f and ε0 can all be arbitrarily small, as
follows from the proof.

V. SIMULATION RESULTS

Consider a group of N = 4 agents over a complete undi-
rected graph network, each controlling the angular velocity

of a rigid body rotating in a weightless environment with
air resistance by providing an external torque. The objective
is for all agents to synchronise the angular velocities. The
dynamics of each agent is represented by the model:

ẋi(t) =

aix2i (t)x3i (t)bix
1
i (t)x

3
i (t)

cix
1
i (t)x

2
i (t)


︸ ︷︷ ︸

fi(xi(t))

+ui(t)

where xji is the j-th element of xi and represents the angular
velocty along the j-th principle axis. The values of ai, bi and
ci are listed in Table I.

TABLE I: Dynamics parameters for each agent

i 1 2 3 4
ai −0.737 −0.728 −0.5875 −0.700
bi 0.667 0.764 0.767 0.936
ci 0.138 0.193 0.138 0.344

The design parameters of the event-triggering algorithm
are chosen as follows: αi = 21Lii, βi = 2.5, ε0 = 10−4,
σi = 10−2, η = 10. The neural network of each agent
has 113 = 1331 neurons. The centres µli of the Gaussian
basis functions are evenly spaced in [−25, 30]× [−25, 20]×
[−25, 30] with widths of σli = 3. The initial state of
the agents are randomly sampled from U(−50, 50). The
simulation was executed with a sampling time of 5× 10−3.
The following algorithms are used as a comparison with our
algorithm:
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Fig. 3: Performance metrics for the proposed adaptive algorithm versus state-of-the-art algorithms

1) Time-Triggered Adaptive Control

ui(t) = −δi(t)−Wi(t)
Tφi(xi(t))

γi(t) =

{
1, t = kT

0, otherwise

(A1)

for k ∈ N0 and period T = 0.03.
2) Non-Triggered Adaptive Control [12]

ui(t) = −δi(t)−Wi(t)
Tφi(xi(t))

γi(t) = 1, ∀t ≥ 0
(A2)

3) Event-Triggered Consensus Control without Adaptive
Control [21]

ui(t) = −δi(t)

γi(t) =

{
1, ρi(t) > 0

0, otherwise

(A3)

4) Event-Triggered Proportional-Integral Consensus Con-
trol without Adaptive Control [24]

ui(t) = −aδi(t) + vi(t)

v̇i(t) = −bδi(t)

γi(t) =

{
1, ρ̃i(t) ≥ 0

0, otherwise

ρ̃i(t) = ||ei(t)||2 + ci

N∑
j=1

Lij ||x̂j(t)− x̂i(t)||2

(A4)

with a = b = 1 and ci = 0.24L−1ii for all i ∈ V .
5) Finite-Time Second-Order Consensus Algorithm with-

out Event-Triggered and Adaptive Control [25]

ui(t) = vi(t)

v̇i(t) = −ag(δi(t)− b
N∑
j=1

(vi(t)− vj(t)))−
1

b
vi(t)

g(x) = [|x1|csign(x1), . . . , |xn|csign(xn)]
T

γi(t) = 1, ∀t ≥ 0
(A5)

with a = 5, b = 0.2 and c = 0.5.

Apart from the consensus error ε(t), we introduce two
more evaluation metrics: the local neural network estimation
error

εfi(t) = ||fi(xi(t))− f̂i(xi(t))|| (10)

and the average communication rate

Γ(t) =
1

Nt

∫ t

0

N∑
i=1

γi(t) dt, t > 0 (11)

with the convention Γ(0) = 0.
The state evolutions of the agents for the event-triggered

algorithms with and without adaptive control are shown in
Fig. 2. It can be observed that from Fig. 2a-c that the system
failed to reach equilibrium, despite the seemingly practi-
cal consensus, while the proposed algorithm successfully
stabilised and reached practical consensus with negligible
error at t = 8 in Fig. 2d-f. The neural network is able
to estimate and compensate the unstable nonlinearity in the
agent dynamics accurately.

To allow more detailed insights into the simulation results,
the overall consensus error ε(t) is plotted in Fig. 3a in
semi-log scale. The multi-agent system with the proposed
algorithm converged in ε(t) asymptotically with exponential
rate. It can be more readily observed from Fig. 3a that
the systems executing consensus algorithms without adaptive
control (A3-A5) were in fact gradually diverging while the
proposed algorithm continue to converge within the finite
time horizon. The remaining two algorithms also showed
exponential convergence in ε(t) as well. Inspite of the error
gap between the proposed algorithm and the time-triggered
or the non-triggered variants for t ≤ 15, the proposed method
has a more consistent convergence rate and outperforms the
variants at t = 15.

The dynamics estimation errors εfi(t) for each agent are
plotted in Fig. 3b in semilog scale. The convergence re-
sembles piecewise linear function with noticeable flutuations
across all agents. Nonetheless, the fluctuations gradually
diminishes as time goes without compromising the conver-
gence rate. The error for all agents diminishes to below 10−2

for t ≥ 17 and seem to continue to convergence. This shows
that the proposed algorithm is able to learn the unknown
system dynamics well.
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The average communication rate Γ(t) is shown in Fig. 3c.
Compared with the standard consensus algorithm without
adaptive control, the proposed algorithm in this paper con-
sistently required significantly lower average communication
rate for t ≥ 2. The asymptotic average communication for
the proposed algorithm is approximately 79.7% lower than
the time-triggered variant.

The simulation results showed that the proposed algorithm
is able to learn the unknown nonlinear dynamics of the
agent exponentially fast, and is capable of achieving practical
consensus with performance comparable with other variants
of the learning-based adaptive control law at a significantly
lower average communication rate.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an adaptive event-triggered
control algorithm with radial basis function neural network
for the multi-agent consensus problem under unknown non-
linear state-dependent disturbances. It was proved that arbi-
trarily small consensus error can be achieved asymptotically
without Zeno behaviour. The simulation results showed that
the algorithm is able to estimate the nonlinear functions fi
well enough to stabilise an otherwise unstable system while
reaching consensus.

The most paramount future works include the hyperparam-
eters design of the neural network, particularly on the size
of hidden layer, as well as the application on other multi-
agent control systems. In addition, experimental evaluation
would also be conducive to showing the effectiveness of the
proposed algorithm in reality.

APPENDIX

A. Useful Lemmas

Lemma 2 ([21]). For an undirected graph G,

0 ≤ λ2KN ⊗ In ≤ L⊗ In.

Lemma 3. For any matrix P ∈ Rp×m,

Tr
[
φi(t)

TPPTφi(t)
]
≤ pTr

[
PTP

]
.

Proof. From [26], we have

Tr
[
φi(t)

TPPTφi(t)
]

= Tr
[
PPTφi(t)φi(t)

T
]

≤ λN
(
φi(t)φi(t)

T
)

Tr
[
PTP

]
= max
v∈Rp

{
vTφi(t)φi(t)

T v : ||v|| = 1
}

Tr
[
PTP

]
≤ max
v∈Rp

{(
1T v

)2
: ||v|| = 1

}
Tr
[
PTP

]
= pTr

[
PTP

]
.

The last inequality holds because φi(t) ∈ [0, 1]p.

B. Proof of Theorem 1

Let W̃i(t) = Wi(t) −W ∗i . Consider the following Lya-
punov candidate:

V (t) =
1

2
x(t)T (L⊗ In)x(t)︸ ︷︷ ︸

V1(t)

+
1

2η

N∑
i=1

Tr
[
W̃i(t)

T W̃i(t)
]

︸ ︷︷ ︸
V2(t)

.

Due to the event-triggering law, xi(t) and ẋi(t) are not
necessarily Lipchitz continuous. However, xi(t) is still con-
tinuous and differentiable while ẋi(t) is Riemann integrable
and piecewise in t, albeit possibly discontinuous. Therefore
V̇1(t) is well-defined as follows:

V̇1(t) =

N∑
i=1

N∑
j=1

Lijxj(t)
T ẋi(t)

=

N∑
i=1

N∑
j=1

Lij(x̂j(t)− ej(t))T ẋi(t)

=

N∑
i=1

δi(t)
T
(
W ∗i

Tφi(t) + εi(xi(t))− δi(t)

−Wi(t)
Tφi(t)

)
−

N∑
i=1

N∑
j=1

Lijej(t)
T
(
W ∗i

Tφi(t)

+ εi(xi(t))− δi(t)−Wi(t)
Tφi(t)

)
≤

N∑
i=1

δi(t)
T
(
W ∗i

Tφi(t) + εi(xi(t))− δi(t)

−Wi(t)
Tφi(t)

)
+

N∑
i=1

N∑
j=1

Lijej(t)
T δi(t)

+

N∑
i=1

N∑
j=1

Lijej(t)
T
(
W̃i(t)

Tφi(t)
)

−
N∑
i=1

N∑
j=1

Lijej(t)
T εi(xi(t))

By Young’s inequality, for some ν1, ν2, ν3, ν4 > 0,

V̇1(t) ≤
N∑
i=1

δi(t)
T
(
W ∗i

Tφi(t) + εi(xi(t))− δi(t)

−Wi(t)
Tφi(t)

)
+

1

2ν1

N∑
i=1

Liiδi(t)
T δi(t)

+
1

2ν2

N∑
i=1

Liiφi(t)
T W̃i(t)W̃i(t)

Tφi(t)

+
1

2ν3

N∑
i=1

Liiεi(xi(t))
T εi(xi(t))

+
ν1 + ν2 + ν3

2

N∑
i=1

Liiei(t)
T ei(t)

≤
N∑
i=1

δi(t)
T
(
W ∗i

Tφi(t) + εi(xi(t))− δi(t)
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−Wi(t)
Tφi(t)

)
+

1

2ν1

N∑
i=1

Liiδi(t)
T δi(t)

+
p

2ν2

N∑
i=1

Tr
[
W̃i(t)

T W̃i(t)
]

+
ε2f∆

2ν3

+
ν1 + ν2 + ν3

2

N∑
i=1

(αi exp(−βit) + ε0)

≤
N∑
i=1

(
∆

2ν1
+
ν4
2
− 1

)
δi(t)

T δi(t) +
pη∆

ν2
V2(t)

−
N∑
i=1

δi(t)
T W̃i(t)

Tφi(t) +

(
∆

2ν3
+

1

2ν4

)
ε̄2f

+
ν1 + ν2 + ν3

2

N∑
i=1

(αi exp(−βit) + ε0) .

In addition,

V̇2(t) =
1

η

N∑
i=1

Tr
[
W̃i(t)

T Ẇi(t)
]

=

N∑
i=1

Tr
[
W̃i(t)

T
(
φi(t)δi(t)

T − σiWi(t)
)]

=

N∑
i=1

(
δi(t)

T W̃i(t)
Tφi(t)− σiTr

[
W̃i(t)

TWi(t)
])

≤
N∑
i=1

(
δi(t)

T W̃i(t)
Tφi(t)−

σi
2

Tr
[
W̃i(t)

T W̃i(t)
]

+
σi
2

Tr
[
W ∗i

TW ∗i −Wi(t)
TWi(t)

] )
≤

N∑
i=1

(
δi(t)

T W̃i(t)
Tφi(t)

+
σi
2

Tr
[
W ∗i

TW ∗i −Wi(t)
TWi(t)

] )
− ησmV2(t),

where σm = mini σi. Combining the analysis above,

V̇ (t) ≤−
(

1− ∆

2ν1
− ν4

2

) N∑
i=1

δi(t)
T δi(t)

+
ν1 + ν2 + ν3

2

N∑
i=1

(αi exp(−βit) + ε0)

− η
(
σm −

p∆

ν2

)
V2(t) +

(
∆

2ν3
+

1

2ν4

)
ε̄2f

+

N∑
i=1

σi
2

Tr
[
W ∗i

TW ∗i −Wi(t)
TWi(t)

]
.

There exists a matrix M ∈ RN×N such that L =
MTΛM and Λ = diag{λ1, λ2, . . . , λN}. From [12], we
have

∑N
i=1 δi(t)

T δi(t) ≥ 2V1(t)/λN (MT Λ̄−1M) where
Λ̄ = diag{λ2, λ2, λ3, . . . , λN}. In addition, ν1, ν2, ν4 are
chosen such that 

∆

2ν1
+
ν4
2
< 1,

ν2 >
p∆

σm
.

Then, we can write

V̇ (t) ≤− ϕV (t) + ω(t) (12)

where ϕ = min{ϕ1, ϕ2} > 0,

ϕ1 =

(
1− ∆

2ν1
− ν4

2

)
2

λN (MT Λ̄−1M)
,

ϕ2 = η

(
σm −

p∆

ν2

)
,

ω(t) =
ν1 + ν2 + ν3

2

N∑
i=1

(αi exp(−βit) + ε0)

+

N∑
i=1

σi
2

Tr
[
W ∗i

TW ∗i −Wi(t)
TWi(t)

]
,

+

(
∆

2ν3
+

1

2ν4

)
ε̄2f .

Solving the differential inequality (12) yields

V (t) ≤ V (0) exp(−ϕt) + exp(−ϕt)
∫ t

0

exp(ϕτ)ω(τ) dτ.

(13)

Since we have shown the boundedness of V (t), and thus of
xi and Wi, there exists a constant U > 0 such that ||ui(t)|| ≤
U . Let tik be the k-th triggering time for agent i. Consider
t ∈ [tik, t

i
k+1) and some ς > 0. Then,

d

dt
||ei(t)||2 = −2ei(t)

Tui(t)

≤ ς||ei(t)||2 + ς−1||ui(t)||2
≤ ς||ei(t)||2 + ς−1U2,

so that

||ei(t)||2 ≤ ||ei(tik)||2eς(t−tik) + ς−1U2

∫ t

tik

eς(t−τ) dτ

= (ς−1U)2
(
eς(t−t

i
k) − 1

)
,

because ei(tik) = 0 for any k. In order for agent i to trigger
at tik+1, a necessary condition is

||ei(ti−k+1)||2 > αi
Lii

(e−βit
i
k+1 + ε0).

By setting ς = 1,

tik+1 − tik > ln

[
1 +

αi
LiiU2

(
e−βit

i
k+1 + ε0

)]
> 0,

which means there is a strictly positive lower bound on the
inter-communication interval. Therefore, Zeno behaviour is
excluded. Following from (13), since ε(t) ≤ 2

Nλ2
V1(t) ≤

2
Nλ2

V (t),

lim
t→∞

ε(t) ≤ lim sup
t→∞

2ω(t)

Nλ2ϕ

=

N∑
i=1

σi
Nλ2ϕ

Tr
[
W ∗i

TW ∗i − W̄T
i W̄i

]
+

(
ν4∆ + ν3
Nλ2ν3ν4ϕ

)
ε̄2f +

ε0(ν1 + ν2 + ν3)

λ2ϕ
,

which completes the proof.

3404

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:19:53 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” in Proceedings of the
IEEE, vol. 95, no. 1, 2007, pp. 215–233.

[2] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control
via local information exchange,” International Journal of Robust and
Nonlinear Control, vol. 17, no. 10, pp. 1002–1033, 2007.

[3] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
via linear iterative strategies in the presence of malicious agents,” IEEE
Transactions on Automatic Control, vol. 56, no. 7, pp. 1495–1508,
2011.

[4] K. F. E. Tsang, M. Huang, K. H. Johansson, and L. Shi, “Sparse
linear injection attack on multi-agent consensus control systems,”
IEEE Control Systems Letters, vol. 5, no. 2, pp. 665–670, 2020.

[5] M. Rehan, A. Jameel, and C. K. Ahn, “Distributed consensus control of
one-sided Lipschitz nonlinear multiagent systems,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 48, no. 8, pp. 1297–
1308, 2018.

[6] L. Ma, Z. Wang, and Y. Yuan, “Consensus control for nonlinear
multi-agent systems subject to deception attacks,” in International
Conference on Automation and Computing, 2016, pp. 21–26.

[7] H. Zhang and F. L. Lewis, “Adaptive cooperative tracking control of
higher-order nonlinear systems with unknown dynamics,” Automatica,
vol. 48, no. 7, pp. 1432–1439, 2012.

[8] S. Jagannathan, Neural Network Control of Nonlinear Discrete-Time
Systems, Boca Raton, 2006.

[9] R. Moghadam, P. Natarajan, and S. Jagannathan, “Multilayer neural
network-based optimal adaptive tracking control of partially uncertain
nonlinear discrete-time systems,” in IEEE Conference on Decision and
Control, 2020.

[10] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network
Control of Robot Manipulators and Nonlinear Systems, London, 1999.

[11] F. L. Lewis and K. G. Vamvoudakis, “Neural control and approximate
dynamic programming,” in Encyclopedia of Systems and Control,
2014, pp. 1–9.

[12] G. Zhang, Q. Ma, J. Qin, Y. Kang, and W. X. Zheng, “Adaptive neural
network control for consensus of nonlinear multi-agent systems with
actuator faults,” in International Conference on Information Science
and Technology, 2018, pp. 409–414.

[13] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in American Control Conference, 2003, pp. 951–
956.

[14] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in IEEE Conference on
Decision and Control, 2012.

[15] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, sep 2007.

[16] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[17] X. Yi, K. Liu, D. V. Dimarogonas, and K. H. Johansson, “Dynamic
event-triggered and self-triggered control for multi-agent systems,”
IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3300–
3307, 2019.

[18] C. Nowzari and J. Cortés, “Distributed event-triggered coordination for
average consensus on weight-balanced digraphs,” Automatica, vol. 68,
pp. 237–244, 2016.

[19] W. Xu, D. W. Ho, J. Zhong, and B. Chen, “Event/self-triggered
control for leader-following consensus over unreliable network with
dos attacks,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13, 2019.

[20] K. F. E. Tsang, J. Wu, and L. Shi, “Zeno-free stochastic distributed
event-triggered consensus control for multi-agent systems,” in Ameri-
can Control Conference, Philadelphia, PA, 2019, pp. 778–783.

[21] X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Distributed event-
triggered control for global consensus of multi-agent systems with
input saturation,” Automatica, vol. 100, pp. 1–9, 2019.

[22] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson,
“Cloud-supported formation control of second-order multi-agent sys-
tems,” IEEE Transactions on Control of Network Systems, 2017.

[23] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Computation, vol. 3, no. 2, pp. 246–
257, 1991.

[24] M. Li, L. Su, and T. Liu, “Distributed optimization with event-
triggered communication via input feedforward passivity,” IEEE Con-
trol Systems Letters, vol. 5, no. 1, pp. 283–288, 2021.

[25] K. Qian and Z. Xiang, “Finite-time event-triggered consensus of
second-order multi-agent systems,” in Chinese Control and Decision
Conference, 2018, pp. 154–159.

[26] Y. Fang, K. A. Loparo, and X. Feng, “Inequalities for the trace of
matrix product,” IEEE Transactions on Automatic Control, vol. 39,
no. 12, pp. 2489–2490, 1994.

3405

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 20:19:53 UTC from IEEE Xplore.  Restrictions apply. 


