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Abstract— Novel event-triggered sensing and actuation
strategies are presented for networked control systems with
limited communication resources. Two architectures are con-
sidered: one with the controller co-located with the sensor and
one with the control co-located with the actuator. A stochastic
control problem with an optimal stopping rule is shown to
capture two interesting instances of these architectures. The
solution of the problem leads to a parametrization of the control
alphabet as piecewise constant commands. The execution of
the control commands is triggered by stopping rules for the
sensor. In simple situations, it is possible to analytically derive
the optimal controller. Examples illustrate how the new event-
based control and sensing strategies outperform conventional
time-triggered schemes.

I. INTRODUCTION

This paper studies the problem of adaptive sensor sam-
pling and switching control. In a networked control problem,
the controller is remotely located to the sensor, or the
actuator, or sometimes, to both.

When the sensor is remote to the controller (see figure
(1)), continuous transmission of the sensor measurements to
the controller are impossible; only a sampled version of the
measurements can be forwarded to the controller. The control
signal is generated with some compressed information about
the state process. It is generated based on the samples
received, and is forced to be piecewise deterministic. For
the actuator, even though it is co-located with the controller,
for the sake of ease of actuation, it is sometimes useful to
further restrict the control signal to be piece-wise constant.

If, on the other hand, the controller is co-located with
the sensor (see figure (2)), the actuator would be remotely
located and the control signal can only be updated at instants
the actuator receives information from the controller. Thus
the control signal is again forced to be piece-wise determin-
istic. For the sake of ease of implementation, again, we are
led to consider piece-wise constant control.

Thus, on a given finite interval, the control signal can
change values no more than a prescribed number of times.
The control task is to obtain good stabilization performance
while not exceeding the limits on switching rate.

A. Problem Formulation

We now formulate the Optimal control problem of choos-
ing sample and hold controls with a fixed number of allowed
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Fig. 1. Schematic of Control station being co-located with the Sensor. The
dashed blue link represents restricted communication.
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Fig. 2. Schematic of Control station being co-located with the Actuator.
The dashed blue link represents restricted communication.

samples. On the time interval [0, T ], consider a scalar con-
trolled diffusion process xt governed by the SDE:

dxt = µ (xt, t, ut) dt + σ (xt, t, ut) dBt, (1)

where, Bt is a standard Brownian motion process, the func-
tions µ, σ are Lipshitz continuous, and the control process
ut, satisfies the usual causality property of being measurable
w.r.t the x-process, thus ensuring existence and uniqueness
of the state process xt [3], [9]. In this paper, we will assume
that a sensor measures the state signal continuously and with
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negligible measurement noise. This and the the causality of
the ut process means that the times of discontinuity have to
be stopping times with respect to the x-process.

ut = UN · 1{τN≤t<T} +
N−1∑
i=0

Ui · 1{τi≤t<τi+1},

where the times τi are the sensor sampling times, or equiv-
alently, the control level switch times. We seek a feedback

T

•

τ
Xt
Ut

0

Fig. 3. Piece-wise constant control with one allowed switch

control policy UN : Fx
t → ut that meets the restrictions

described above and minimizes the objective function:

JGeneral = E

[∫ T

0

c (xs) ds

]
, (2)

where the function c (·) is non-negative.

B. Relation to previous work

Kushner [7] has considered a variation of the finite horizon
LQG control problem where the measurement sampling
instants are also decision variables which are to be chosen
offline. But in his formulation, only the terminal state and
the control energy are being optimized. In our work where
we permit an online choice of sampling times, we attack
the harder problem of minimizing the deviation of the state
at all times, not just the deviation of the terminal state.
We however, do not penalize the control energy, because,
although there are some qualitative differences from the
version penalizing the control effort also, our methods of
analysis and design can be extended to cover that situation
as well.

Åström and Bernhardsson [2] treat a problem of minimum
variance stabilization of a scalar linear plant using state-
resetting impulse controls. They provides a comparison of
periodic impulse control and impulse control triggered by
∆-excursions of the state from the origin. By explicit calcu-
lations, it shows that for the same average rate of impulse in-
vocation, the level-triggered scheme provides lower average

stabilization error. This article provides a similar comparison
when the control is not of impulse type, but is piecewise
continuous. In fact the class of control signals considered
is piecewise constant, these being natural candidates for
situations in networked control.

The problem of jointly optimal sampling and control is
much more difficult than the jointly optimal sampling and
filtering problem tackled in earlier work [10], [11]. In the
estimation problem, the error signal is reset to zero at sam-
pling times. In the control problem however, the state signal
does not get reset to zero like the error signal does for the
estimation problem. Thus, no reduction to repeating the same
sampling policy is possible. In practical terms, this means
that the feedback control signal as well as the sampling
policy should be ‘aggressive’ when the state wanders away
from the origin.

This problem differs in its information pattern from similar
ones addressed in the Stochastic Control literature. The
works [6], [5], [8] seek combined control and stopping
policies with both of these adapted to the same signal
process, namely the state process. In our problem on the
other hand, the stopping policy is allowed to depend on
the x-signal process while the control signal is adapted to
the sampled sequence. The work of [1] discusses the LQG
control performance under Poisson sampling. A deterministic
version of control for event-triggered sampling is presented
in [4].

II. SPECIAL CASE: BROWNIAN MOTION STARTING AT
THE ORIGIN

In this section, we will describe a special case for which
the optimal control and its performance can be explicitly
computed in closed form.

Specialize equation (1) of state evolution to the case of
controlled Brownian motion on the interval [0, T ]:

dxt = dBt + utdt; x0 = 0.

We are able to provide explicit computations because of
the manageable statistics of the model, the quadratic per-
formance criterion as well as the special initial condition.
Consider the problem of using zero order hold control to
keep the state as close to the origin as possible with exactly
one switch allowed. Because of the Markov property of
diffusions, the control levels depend only on the last received
sample. Then, the control waveform has the precise form:

ut =

{
U0 = U0 (x0, T ) if 0 ≤ t < τ,

U1 = U1 (xτ , T − τ) if τ ≤ t ≤ T,

where, the switch time τ is a stopping time [9] w.r.t. the
x-process, one which is restricted to fall inside the interval
[0, T ]. The mechanism that determines this control waveform
comprises of policies which determine the combination of
variables U0, U1, and τ .

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC14.3

3608



We will choose the control objective function introduced
in Equation (2) to be quadratic in the state, and hence,

J = E

[∫ T

0

x2
sds

]
. (3)

A. Choice of terminal control

We will now decompose this aggregate quadratic cost as
follows:

J = E

[∫ T

0

x2
sds

]
,

= E
[∫ τ

0

x2
sds

]
+ E

[∫ T

τ

x2
sds

]
.

The last term of the expression above represents the part of
the control error incurred from the switch time τ up to the
end time T , and, it can be expressed as a terminal cost for
a combined optimal control and stopping problem. Let,

L
(
xτ , U1 (xτ , T − τ) , T − τ

)
= E

[∫ T

τ

x2
sds

∣∣∣∣∣xτ , U1, τ

]
.

We will now express this quantity as a terminal cost incurred
upon stopping at τ . Adopting the notation δ := T − τ for
the duration of the terminal stage, and, suppressing some
arguments of functions for the sake of convenience, we can
write,

E [L] = E

[
E

[∫ T

τ

x2
sds

∣∣∣∣∣τ, xτ , U1

]]
,

= E
[
x2

τδ + U2
1

δ3

3
+ xτU1δ

2 +
δ2

2

]
,

= E

1
4
x2

τδ + δ ·

(
δU1√

3
+

xt

√
3

2

)2

+
δ2

2

 .

In the last expression above, we have completed squares and
this allows us to see that, the optimal choice of terminal
control level U∗

1 is always the linear feedback law:

U∗
1 (xτ , T − τ) = − 3xτ

2(T − τ)
. (4)

The optimal choice of U0 on the other hand, is closely
tied with the the choice of τ . In fact, for the best control
performance, these two variables have to be picked jointly.
In view of the expression for optimal U1 given by equation
(4), minimizing the quadratic objective function (3) is now
achieved by minimizing the objective function

J0 = E
[∫ τ

0

x2
sds

]
+ E

[
1
4
x2

τ (T − τ) +
(T − τ)2

2

]
. (5)

Next, we will describe the optimal combined choice if the
switch time is restricted to be deterministic.

B. Optimal deterministic switching

Recall that the optimal choice of τ is event-triggered and
hence causally dependent on the x-process. However, in this
part of the section, we will present an easy calculation of the
optimal deterministic choice of switching time. We will use
the computed performance for comparisons with the event-
triggered counterpart.

Denote the candidate deterministic switch time by θ. Like
the random variable τ , the time θ is required to fall within
the interval [0, T ].

We know now that the optimal choice of U∗
1 , is the linear

law given by equation (4). What remains of the optimal
control problem is to choose the pair (U0, θ) to minimize
the objective function J0. Taking into account the zero initial
condition, Equation (5) can be rewritten as follows:

J0 = U2
0

θ3

3
+

θ2

2
+
(
U2

0 θ2 + θ
) T − θ

4
+

(T − θ)2

2
.

Since the variables θ T − θ, and, U2
0 are all nonnegative,

every term on the RHS of the last equation is non-negative.
This means that for any choice of θ, the optimal choice of
U0 is zero. This choice gives the following quadratic form
of the performance:

J0 (U0 = 0, θ) =
θ2 + (T − θ)2

2
+

θ (T − θ)
4

,

from which, we can see that the optimal deterministic switch
time θ∗ is T/2. The corresponding control performance cost
is 2.5T 2

8 .

C. Optimum switching

Now, we will compute the optimal choice of the pair
(U0, τ), one which will involve an event-triggered choice
for τ . We will also see that the optimal choice of U0 will be
zero just like in the case of deterministic switch times.

The optimization problem has no restriction on τ except
the requirement of causal dependence on the state trajectory.
It is a combined optimal control and stopping problem which
seeks an admissible pair (U0, τ) that minimizes the cost:

J0 = E
[∫ τ

0

x2
sds + L

(
xτ , U∗

1 (xτ , T − τ) , T − τ
)]

,

= E
[∫ τ

0

x2
sds

]
+ E

[
1
4
x2

τ (T − τ) +
(T − τ)2

2

]
,

=
T 2

2
+

U2
0 T

3

3
− E

(xτ

√
3

2
+

U0 (T − τ)√
3

)2

(T − τ)

 .

This cost captures the aggregate squared deviation of the
state process away from the origin. When the initial state is
exactly zero, it makes intuitive sense to set the initial control
level U0 to be zero. This is because the standard Brownian
motion process is a martingale with zero mean; it is costly to
steer the mean of the process using nonzero U0, away from
the origin.

We will now sketch a more rigorous way of showing
that for a zero initial condition, the optimal pair of the
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initial control level and the switch time is such that the
initial control level is zero. Firstly we need the uniqueness
of optimal U0. This result can actually be obtained from
the considerations of the next section. But we can also
view the optimization problem as a nested sequence of an
optimal stopping problem and an optimal control problem
which involves only U0. Essentially because of the well-
behavedness of the quadratic cost function and the tame
dynamics of the Brownian motion process, we have a unique
solution to the optimal control problem.

On the other hand, if (U∗
0 , τ) is an optimal choice, then

the pair (−U∗
0 , τ) provides exactly the same performance

because the x-process posesses even-symmetry. However,
if U∗

0 is unique, then U∗
0 = −U∗

0 , which leads us to the
conclusion that U∗

0 = 0.
This further reduces the expression for the objective func-

tion as below:

J0 =
T 2

2
− 3

4
E
[
x2

τ (T − τ)
]
.

Thus we have reduced the optimization task to a stopping
problem with a time-varying terminal reward. This problem
can be solved explicitly using standard methods of optimal
stopping as has been carried out for some closely related
estimation problems [11], [10].

D. An explicit solution for the Optimal stopping problem

We seek an admissible stopping time τ that maximizes the
expected reward function:

E
[
x2

τ (T − τ)
]
. (6)

Suppose that we can find a smooth function g (x, t) for which{
g(x, t) ≥ x2(T − t),
1
2gxx + gt = 0,

(7)

where, the inequality is tight in the sense that for every T−t,
there exists at least one x for which the inequality becomes
an equality. Then, by the Itô change of variable formula
[9], we have that for every stopping time τ with bounded
expectation and satisfying

0 ≤ t ≤ τ ≤ T,

we get,

E
[
x2

τ (T − τ)
∣∣∣Fx

t

]
≤ E

[
g (xτ , τ)

∣∣∣Fx
t

]
,

= g (xt, t) + E
[∫ τ

t

dg (xτ , τ)
]

,

= g (xt, t) + E
[∫ τ

t

{
1
2
gxx + gt

}
dt

]
,

= g (xt, t) .

Thus at any time t on the interval [0, T ], we have g (xt, t)
as an upper bound for the expected reward for stopping at
a later time. Moreover, as we will see shortly, this bound is
achievable so that it is also the maximum achievable expected

reward. This process is called the Snell envelope (St) for the
optimal stopping problem:

St = g (xt, t) .

The inequality in (7) connecting the instantaneous reward
function and the function g is tight. Hence, there exists a
stopping time with bounded expectation which will achieve
this upper bound for the maximum expected reward. It is
precisely the earliest instant when the reward collected by
stopping equals the Snell envelope process:

τ∗ = inf

{
t ≤ ν ≤ T

∣∣∣∣∣g (xν , ν) = x2
ν (T − ν)

}
.

We will now furnish an explicit solution to the sufficiency
conditions (7). Consider as the candidate solution, the fourth
Hermite polynomial [9] of the ratio xt√

δ
, multiplied by the

scaling factor Aδ2. Hermite polynomials are solutions to the
PDE in the equation group (7). So, we have:

g (xt, t) = Aδ2

(
1
6

(
xt√
δ

)4

+
(

xt√
δ

)2

+
1
2

)
.

This provides the following expression for the Snell enve-
lope:

St = A

(
x4

t

6
+ x2

t (T − t) +
(T − t)2

2

)
.

We require the inequality:

St = g (xt, t) ≥ x2
t (T − t) ,

to be tight. Indeed the choice A =
√

3
1+
√

3
makes the quantity

h = g − x2 (T − t) a perfect square, thus providing the
desired tightness:

h (xt, t) =
1

2
(
1 +

√
3
) · (x4

t

3
− 2

xt√
3

2
(T − t) + (T − t)2

)
Thus the optimal stopping rule is the symmetric quadratic
envelope:

τ∗ = inf

{
t

∣∣∣∣∣x2
t ≥

√
3 (T − t)

}
.

The expected control performance cost incurred by the
optimal switching scheme is then T 2/8, which is nearly a
third of the the cost of using deterministic switching.

III. NON-ZERO INITIAL CONDITION

In the preceding section, under the assumption of starting
the state process at the origin, we were able to present
explicit calculations of the performance the optimal switch-
ing and control strategies. We were also able to describe
analytically the containment envelope for the state process
used to determine the switching time.

In this section, we will relax the requirement that the
initial condition should be zero and otherwise attack the
same optimization problem. However, there is no longer the
symmetry effected by starting at the origin. We will see that,
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like in the previous case, the optimal switching time is the
first exit tim from an envelope for the x-process. We will
be able to determine a structural property of this envelope
- at all times, its two arms are on different sides of the
origin. But the obtained description of the envelope itself
is not analytic. It is computed numerically using backward
dynamic programming.

The optimal value of the initial control level is non-trivial
to determine. The provision of optimal switch times still a
step forward in itself, because, one could use a simple linear
rule or another heuristic for the choice of initial control level.

A. Optimum deterministic switching

First we restrict the switch time to be deterministic. Recall
that the best choice of U1 is still provided by equation (4).
This leads us to pick the pair (U0, θ) that minimizes the cost:

J0 = x2
0T + x0U0T

2 +
U2

0 T
3

3
+

T 2

2

− E

(xθ

√
3

2
+

U0 (T − θ)√
3

)2

(T − θ)

 .

As an optimization problem this is quite straightforward.
However, the solution for the optimal control strategy is not
linear. First, we freeze U0 and pick the best sampling time θ.
This choice can be made by minimizing a cubic polynomial
in θ. Equating the derivative of this cubic polynomial to zero,
we get a quadratic equation whose roots if real and within the
interval [0, T ] are also candidates for the optimal θ. However,
the end points of the intervals themselves are candidates for
the optimal choice of θ. In computations with MATLAB, a
lot of effort is saved by actually performing a line search
along the interval [0, T ] for the optimum θ.
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Fig. 4. Optimal choice of initial control level as a function of the initial
condition.

For choosing the best values of U0 corresponding to
x0, we perform another line search. The outcome of this
computation is depicted in figure (4). Notice that the law for
U∗

0 is not linear ! In fact, the value of U∗
0 rapidly escapes to

infinity. The reason is that the objective function penalizes
the magnitude of the state process but does not directly
prohibit large amplitudes of the control signal. Hence, if
the initial condition is too large, the efficient control and
sampling strategy is to use a large amplitude control signal
for a very short time. This brings the state close to zero very
quickly. In fact when a large amplitude control waveform is
used, to prevent adverse effects of overshoot on the other
side of the origin, it must be used only for a relatively short
period. This is indeed the idea that figures (4, 5) convey.
This also affects the dependence of the performance on the
initial condition as shown in figure (6).
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Fig. 5. Optimal choice of deterministic switch time as a function of the
initial condition.
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Fig. 6. Optimal choice of deterministic switch time as a function of the
initial condition.

B. Optimum sampling

Now we turn our attention to the problem of optimal
switching of the control signal. For a fixed nonzero U0, we
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seek a stopping time which minimizes the expected cost:

E

[(
xτ +

2U0 (T − τ)
3

)2

(T − τ)

]
.

As before we seek a sufficiency condition for the Snell
envelope process. We are thus seeking a smooth function
g such thatg(x, t) ≥

(
xτ + 2U0(T−τ)

3

)2

(T − τ) ,

1
2gxx + gt = 0,

(8)

where, we require the inequality to be tight. This validity of
this set of conditions for sufficiency can be proved in exactly
the same manner as for those of (7).

To find candidate Snell envelopes, we need to resort to
backward dynamic programming. Because of the Markov
property of the controlled process, we obtain an optimal
stopping time which is a first exit time from a envelope for
the x-process. This envelope represents a time-varying set of
thresholds for triggering the sensor sampling. We carried out
the backward dynamic program numerically. In figure (7), we
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Fig. 7. Optimal time-varying thresholds for the triggering of the switch
time for different values of U0.

see some shapes for the optimal envelopes. The results of
numerical computations show some notable features. Firstly,
for very large values of the initial control level, the optimal
envelope becomes a triangular wedge with the time axis
(x = 0) being one of the boundaries of the wedge. Secondly,
the two branches of the envelope are always on either side of
the origin. and lastly, we want to point out that neither of the
branches has to be a monotonic function of time; the lower
branch of the envelope corresponding to U0 = 0 increases
first and then decreases.

The brute force search of the optimal initial control
given the initial condition is numerically intensive. We are
currently searching for an efficient solution for it.

IV. CONCLUSIONS

We have formulated the problem of dynamic sensor sam-
pling and choice of switching control as a combined optimal
control and stopping problem. In a rather special case, we
have furnished a complete solution. When we generalize the
situation further, even the deterministic sampling problem
displays interesting nonlinear solutions. The optimal sensor
sampling time is a first crossing time of a time-varying
envelope. The event-triggered sampling and control strategies
we have designed offer promising efficiency gains over their
counterparts with deterministic scheduling.

We should firstly complete the design process by devising
an efficient procedure for finding optimal U0. Then the
extension to multiple switches and to other models for the
state should be straightforward. We should also investigate
the situations where piecewise deterministic waveforms are
allowed for the control signal instead of merely piece-wise
constant ones.
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