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a b s t r a c t

This paper develops a robust self-triggered control algorithm for time-varying and uncertain systems
with constraints based on reachability analysis. The resulting piecewise constant control inputs achieve
communication reduction and guarantee constraint satisfactions. In the particular case when there is
no uncertainty, we propose a control design with minimum number of samplings over finite time
horizon. Furthermore, when the plant is linear and the constraints are polyhedral, we prove that the
previous algorithms can be reformulated as computationally tractable mixed integer linear programs.
The method is compared with the robust self-triggered model predictive control in a numerical
example and applied to a robot motion planning problem with temporal constraints.
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1. Introduction

Control for constrained systems has been extensively studied
for over four decades in the literature, see e.g. Gutman and
Hagander (1985) and Mayne, Rawlings, Rao, and Scokaert (2000).
It is well-known that model predictive control (MPC) (Mayne
et al., 2000) is a prime example of such a method. If one restricts
the attention to networked control systems (NCS) subject to con-
straints, how to jointly design a controller and a communication
protocol which can efficiently utilize network resources is a more
recent challenge. In order to handle this problem, recent research
efforts have been devoted to self-triggered control (Dai, Gao, Xie,
Johansson, & Xia, 2018; Heemels, Johansson, & Tabuada, 2012),
in which the next sampling time is determined in advance by the
controller according to the received information.

One intuitive idea is to incorporate the self-triggered con-
trol into an MPC framework. Many results have been obtained
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for deterministic constrained systems (Barradas Berglind, Gom-
mans, & Heemels, 2012; Henriksson, Quevedo, Sandberg, & Jo-
hansson, 2012). A self-triggered MPC scheme is proposed in
Barradas Berglind et al. (2012) for constrained linear
time-invariant systems and the inter-sampling time is maximized
subject to the constraints on the cost function. For systems with
uncertainty, some results of robust self-triggered MPC have been
reported in Brunner, Heemels, and Allgöwer (2014, 2016). In
Brunner et al. (2016), the tube MPC method is utilized to guar-
antee constraint satisfactions despite the presence of a bounded
additive disturbance and the principle of Barradas Berglind et al.
(2012) is followed to obtain the next sampling instant. In addi-
tion, the effect of the uncertainty is made use of in the design of
the self-triggered mechanism.

Despite recent developments, some fundamental issues re-
main for self-triggered MPC. The incorporation of the
self-triggered scheme into MPC does not immediately preserve
the conventional recursive feasibility and closed-loop stability of
MPC. In order to guarantee these two properties, the price of
more computational effort at the sampling instants is paid to
satisfy the constraints on the cost function when maximizing the
inter-sampling time.
Other than MPC, only a few work address the self-triggered con-

trol for constrained systems. For example, the focus of Lehmann,
Kiener, and Johansson (2012), Seuret, Prieur, Tarbouriech, and Za-
ccarian (2013) and Wu, Reimann, and Liu (2014) is on the design
of an event-triggered controller when the systems are subject
to actuator saturation. One recent work (Hashimoto, Adachi, &
Dimarogonas, 2018) provides a contractive set-based approach to
design self-triggered control for linear deterministic constrained
systems.
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0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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Different from the above results, this paper aims at proposing
a robust self-triggered control framework for time-varying and
uncertain systems with constraints. To the best of our knowledge,
this topic has not been explored up to now and cannot be han-
dled by the previous mentioned methods, such as self-triggered
MPC. The main challenges are: (1) how to guarantee recursive
feasibility in a time-varying setup by self-triggered control; (2)
how to ensure constraint satisfaction for any disturbance real-
ization. In this work, we make full use of reachability analysis
to handle these issues. Although reachability has been widely
studied (Bertsekas & Rhodes, 1971; Lygeros, Tomlin, & Sastry,
1999; Raković, Kerrigan, Mayne, & Lygeros, 2006), the incorpora-
tion of reachability into self-triggered control is novel. One recent
work (AlKhatib, Girard, & Dang, 2017) uses reachability-based
self-triggered control to design the variable sampling period for
sampled-data linear systems. However, neither constraints nor
uncertainties are considered in AlKhatib et al. (2017).

The use of reachability analysis in this paper provides a ge-
ometric interpretation for the self-triggered control from a set
theoretical point of view. Available geometry software tools fa-
cilitate the implementation of our algorithms. Some practical ap-
plications of our algorithm include control of hybrid systems and
robot motion planning (see Example 2). The main contributions
are summarized below.

• We propose a novel robust self-triggered control algorithm
(Algorithm 1) for time-varying and uncertain systems with
constraints. Constraint satisfactions and recursive feasibility
are shown to be guaranteed based on reachability anal-
ysis. We calculate the maximum inter-sampling time by
solving the corresponding optimization problem (P1

[ki,N]
(xki ))

only once at each sampling instant, which avoids the repet-
itive computation required in the self-triggered MPC. In
the particular case when there is no uncertainty, we de-
velop a control method with minimum number of samplings
over a finite time horizon. This is achieved by solving the
optimization problem (P2

[0,N]
(x0)) only once.

• When the plant is linear and the constraints are polyhedral,
we prove that all the optimization problems (P1

[ki,N]
(xki )

and P2
[0,N]

(x0)) can be reformulated as mixed integer lin-
ear programming (MILP) problems, which are, in our cases,
computationally tractable (Theorems 4.1 and 4.2). The nu-
merical comparisons (Example 1) show that our algorithm
achieves a better communication reduction and faster online
computation than the robust self-triggered MPC in Brunner
et al. (2014) without much loss in performance.

The remainder of the paper is organized as follows. The prob-
lem statement is given in Section 2. Section 3 presents the ro-
bust self-triggered control algorithm. The specialization to linear
plants with polyhedral constraints is provided in Section 4. Two
examples in Section 5 illustrate the effectiveness of our approach.
Finally, Section 6 concludes this paper.

Notation. Let N be the set of nonnegative integers. For some
q, s ∈ N and q < s, let N[q,s] denote the set {r ∈ N | q ≤ r ≤

s}, respectively. When ≤, ≥, <, and >, are applied to vectors,
they are interpreted element-wise. A column vector of ones with
appropriate dimension is denoted by 1. The Minkowski sum of
two sets is denoted by A ⊕ B = {a + b | ∀a ∈ A, ∀b ∈ B}.
The Minkowski difference of two sets is denoted by A ⊖ B =

{c | ∀b ∈ B, c + b ∈ A}. For a vector x ∈ Rn, define ∥x∥∞ =

maxi |xi|. For a polyhedron P = {x ∈ Rn
| Px ≤ p}, define

∥P∥∞ = maxx∈P{∥Px − p∥∞}. For X ⊆ Rn and A ∈ Rn×n, define
A−1X = {x ∈ Rn

| Ax ∈ X}. For xl ∈ Rn, l ∈ N, define
∑j

l=k xl = 0
if k > j. For Xl ⊆ Rn and Al ∈ Rn×n, l ∈ N, define

j⨁
l=k

Xl =

{
∅, k > j,
Xk ⊕ Xk+1 ⊕ . . .Xj, k ≤ j,

j∏
l=k

Al =

{
I, k > j,
AjAj−1 . . . Ak, k ≤ j.

Given two sets X and X̃, define

1X(x) =

{
1, x ∈ X,

0, x /∈ X,
and 1X(X̃) =

{
1, X̃ ⊆ X,

0, X̃ ̸⊆ X.

2. Problem statement

Consider a discrete-time dynamic control system

xk+1 = fk(xk, uk) + wk, (1)

where xk ∈ Rnx and uk ∈ Rnu , wk ∈ Rnx , and fk : Rnx ×Rnu → Rnx .
The control input uk at time k is constrained by a set Uk ⊂

Rnu . The additive disturbance wk at time instant k belongs to
a compact set Wk ⊂ Rnx . The initial state x0 is contained in
a given set X0 ⊂ Rnx . In addition, given a finite time horizon
N ∈ N, the system (1) is subject to a target tube, denoted by
{(Xk, k), k ∈ N[1,N]}, where Xk ⊆ Rnx , ∀k ∈ N[1,N]. It is assumed
that the function fk and the disturbance set Wk are known for all
k ∈ N[0,N−1].

Assumption 2.1. The function fk(x, u), ∀k ∈ N[0,N−1], is continu-
ous in x and u, respectively.

Assumption 2.2. The sets Uk, ∀k ∈ N[0,N−1], and Xk, ∀k ∈ N[0,N],
are compact.

The objective of this paper is to develop a self-triggered con-
trol algorithm for the system (1), thereby yielding a sequence of
piecewise constant control inputs. More specifically, we aim to
determine a sequence of sampling instants {k0, k1, . . . , kT } with
k0 = 0, ki+1 = ki + Mi, and kT = N such that uj = ul, ∀j, l ∈

N[ki,ki+1−1] and all the constraints are satisfied at each time instant
k ∈ N[0,N]. Here, T + 1 is the total number of samplings within N
time instants, which quantifies the communication consumption,
and Mi denotes the inter-sampling time between ki and ki+1.

3. Self-triggered control for constrained systems via reacha-
bility analysis

In this section, we will provide a reachability-based self-
triggered control algorithm for the uncertain constrained system
(1). Furthermore, a control method with minimum number of
samplings will be designed when the system (1) is reduced to
be deterministic, i.e., Wk = {0}.

3.1. Robust self-triggered control

3.1.1. Computation of reachable sets

Definition 3.1. The target tube {(Xk, k), k ∈ N[1,N]} of the system
(1) is reachable from the initial state x0 ∈ X0 if there exists a
sequence of control inputs uk ∈ Uk, ∀k ∈ N[0,N−1], such that the
state xk ∈ Xk, ∀k ∈ N[1,N], for all possible disturbance sequences
wk ∈ Wk, ∀k ∈ N[0,N−1].

Let X∗

N = XN . For k ∈ N[0,N−1], the backward reachable set X∗

k
for the system (1) is recursively computed by:

Pk = {z ∈ Rnx | ∃uk ∈ Uk, fk(z, uk) ⊕ Wk ⊆ X∗

k+1}, (2a)

X∗

k = Pk ∩ Xk. (2b)

Proposition 3.1 (Bertsekas & Rhodes, 1971). The target tube {(Xj, j),
j ∈ N[k+1,N]} of the system (1) is reachable from xk if and only
if xk ∈ Pk. Furthermore, the target tube {(Xk, k), k ∈ N[1,N]} is
reachable from the initial state x0 ∈ X0 if and only if x0 ∈ X∗

0.
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According to Raković et al. (2006), Assumptions 2.1 and 2.2
make the resulting reachable sets compact. Proposition 3.1 indi-
cates that if the state xj ∈ X∗

j , the recursive feasibility and the
constraint satisfactions can be guaranteed.

Remark 3.1. There exist some methods to compute the
reachable sets for a nonlinear system (1), e.g., Chen, Herbert,
Vashishtha, Bansal, and Tomlin (2018) and Raković et al. (2006).
In addition, there are results on the inner approximations of the
reachable sets X∗

k , e.g., Althoff and Krogh (2014) and Mitchell
(2011). Note that these inner approximations are applicable also
for the following algorithms, since they provide constraint satis-
faction and recursive feasibility guarantees.

Remark 3.2. Given the initial state x0, one can choose the
minimal horizon N such that {(Xj, j), j ∈ N[0,N]} is reachable from
x0.

3.1.2. Algorithm
Define the self-triggered condition for the system (1) as

ki+1 = max{k | ki < k ≤ N such that uj = u ∈ Uj,

j ∈ N[ki,k−1], and the target tube
{(Xj, j), j ∈ N[ki,N]} of (1) is reachable}.

Recall that ki+1 = ki + Mi. The following lemma provides the
formulation to compute Mi.

Proposition 3.2. Given the state xki ∈ X∗

ki
, ki ∈ N[0,N−1], the inter-

sampling time Mi is obtained by solving the following optimization
problem, denoted by P1

[ki,N]
(xki ):

max
u

N∑
j=ki+1

rj (3a)

subject to
X̃[ki,ki] = {xki}, (3b)

∀j ∈ N[ki,N−1] : X̃[ki,j+1] = fj(X̃[ki,j], u) ⊕ Wj, (3c)
∀j ∈ N[ki+1,N] :

rj =

{
1X∗

ki+1
(X̃[ki,ki+1])1Uki

(u), j = ki + 1,

rj−11X∗
j
(X̃[ki,j])1Uj−1 (u), j > ki + 1,

(3d)

where fj(X, u) = {z ∈ Rnx | z = f (x, u), ∀x ∈ X}. That is,
Mi =

∑N
j=ki+1 r

∗

j , where r∗

j corresponds to the optimal solution of
P1

[ki,N]
(xki ).

Proof. The definition of rj characterizes the successive con-
straint satisfactions from time ki for all possible disturbances
wl ∈ Wl, ∀l ∈ N[ki,j−1]. Then, the proof directly follows from
Proposition 3.1 and the objective function of P1

[ki,N]
(xki ).

The geometric interpretation of the optimization problem
P1

[ki,N]
(xki ) is to seek a fixed control input u such that starting

from time ki, the time length, during which the state constraints
and the control input constraints are satisfied for all possible
disturbances, is maximized.

We denote by u∗ the optimal solution to the optimization
problem P1

[ki,N]
(xki ). The following Algorithm 1 presents the ro-

bust self-triggered control for the uncertain constrained system
(1).

3.2. Control with minimum number of samplings

This subsection will provide a control method with minimum
number of samplings, denoted by T ∗

+ 1, over a given finite

Algorithm 1 Robust self-triggered control

Offline:
Determine a sequence of backward reachable sets {(X∗

j , j), j ∈

N[0,N]} by (2).
Online:

1: Initialize i = 0. If x0 ∈ X∗

0, continue. Else, stop.
2: Sample the state xki , solve P1

[ki,N]
(xki ) to obtain u∗ and Mi.

3: Set ki+1 = ki + Mi. Implement uj = u∗, ∀j ∈ N[ki,ki+1−1] to
system (1) for some realizations wj ∈ Wj, j ∈ N[ki,ki+1−1].

4: Set i = i + 1.
5: If ki < N , go to step 2. Else, stop.

horizon for the system (1). Without loss of generality, we assume
that N ≥ 2.

Proposition 3.3. The minimum number of samplings T ∗
+ 1 is

obtained by solving the following optimization problem, denoted by
P2

[0,N]
(x0),

min
u0,∆j

N−2∑
j=0

(1 − 1{0}(∆j)) (4a)

subject to
∀j ∈ N[0,N−1] : xj+1 = fj(xj, uj), (4b)

∀j ∈ N[0,N−1] : uj =

{
u0, j = 0
uj−1 + ∆j−1, j ≥ 1,

(4c)

∀j ∈ N[1,N] : xj ∈ X∗

j , (4d)

∀j ∈ N[0,N−1] : uj ∈ Uj. (4e)

That is, T ∗
=

∑N−2
j=0 (1 − 1{0}(∆∗

j )), where ∆∗

j corresponds to the
optimal solution of P2

[0,N]
(x0).

Proof. In (4c), ∆j−1 denotes the difference between uj and
uj−1. The objective function of P2

[0,N]
(x0) aims at maximizing the

number of zero (i.e., ∆j = 0) over the time interval N[0,N−1]. Thus,
the optimal solution generates a sequence of piecewise constant
control inputs with minimum number of switching times.

Note that Algorithm 1 is applicable for deterministic systems.
In this case, the difference is that Algorithm 1 cannot guar-
antee the achievement of minimum number of samplings for
deterministic systems.

Remark 3.3. For uncertain constrained systems, it is difficult
to design the control with minimum number of samplings since
at each sampling instant ki, the exact executions of the future
disturbance wj, ∀j ∈ N[ki,N−1], are unknown.

4. Self-triggered control for linear systems with polyhedral
constraints

The development of geometry software allows us to compute
the sets X∗

k exactly and efficiently if the system is linear and the
constraint sets are polyhedral (Herceg, Kvasnica, Jones, & Morari,
2013). This section will specialize the systems (1) to be linear and
the constraint sets to be polyhedral. We can reformulate the opti-
mization problems P1

[ki,N]
(xki ) and P2

[0,N]
(x0) to be computationally

tractable MILP problems.
If the model fk is linear, the system (1) becomes

xk+1 = Akxk + Bkuk + wk. (5)
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Here Ak and Bk are deterministic real matrices with appropriate
dimensions at each time k ∈ N[0,N−1]. The control input sets Uk,
k ∈ N[0,N−1], are compact polyhedra. Each set Xk of the target tube
{(Xk, k), k ∈ N[1,N]} is a compact polyhedron. The disturbance sets
Wk, k ∈ N[0,N−1], are compact polyhedra.

Now, the computation of the sets X∗

k in (2) is given as follows.
Note that the following equations involve only set operations and
the corresponding sets can be well-defined even if the matrix Ak
is not invertible. Hence, we do not impose any assumption on Ak.

Lemma 4.1 (Bertsekas & Rhodes, 1971). For the uncertain linear
system (5) with polyhedral constraints, the set X∗

k in (2) evolves as

Qk = X∗

k ⊖ Wk, (6a)

Pk = A−1
k (Qk+1 ⊕ (−BkUk)), (6b)

X∗

k = Pk ∩ Xk, X∗

N = XN . (6c)

Remark 4.1. Since the sets Xk, k ∈ N[0,N], are compact, the sets
X∗

k , k ∈ N[0,N], are also compact even when the matrices Ak are
not invertible.

The polyhedral sets Uk and X∗

k in (6) are written as

Uk = {z ∈ Rnu | Ekz ≤ ek},
X∗

k = {z ∈ Rnx | Fkz ≤ fk},

where Ek and Fk (or ek and fk) are matrices (or vectors) with
appropriate dimensions.

4.1. Robust self-triggered control

Before providing the main result, we need some preliminary
lemmas.

Lemma 4.2. The set X̃[ki,j] in (3c) can be written as

X̃[ki,j] = (G[ki,j]xk + H[ki,j]u) ⊕ Z[ki,j], j ∈ N[ki,N], (7)

where G[ki,j] =
∏j−1

l=ki
Al, H[ki,j] =

∑j−1
m=ki

∏j−1
l=m+1 AlBm, Z[ki,j] =⨁j−1

m=ki

∏j−1
l=m+1 AlWm. Furthermore, the set Z[ki,j] is a closed poly-

hedron.

Proof. When j = ki, (7) implies that X̃[ki,ki] = {xki}. According
to the definition of X̃[ki,j], j ∈ N[ki+1,N], in (3c), by induction, it
follows

X̃[ki,j+1]

= AjX̃[ki,j] ⊕ Bju ⊕ Wj

= Aj(G[ki,j]xki + H[ki,j]u ⊕ Z[ki,j]) ⊕ Bju ⊕ Wj

= (Aj

j−1∏
l=ki

Alxki + (Aj

j−1∑
m=ki

j−1∏
l=m+1

AlBm + Bj)u)

⊕(Aj

j−1⨁
m=ki

j−1∏
l=m+1

AlWm ⊕ Wj)

= (
j∏

l=ki

Alxki +
j∑

m=ki

j∏
l=m+1

AlBm) ⊕ (
j⨁

m=ki

j∏
l=m+1

AlWm)

= (G[ki,j+1]xki + H[ki,j+1]u) ⊕ Z[ki,j+1].

Since the sets Wm are compact polyhedra, we have that the sets
Z[ki,j] are closed polyhedra.

Lemma 4.3 (Blanchini & Miani, 2007). Given two polyhedra P =

{z ∈ Rn
| Pz ≤ p} and Q = {z ∈ Rn

| Qz ≤ q}, P ⊆ Q holds if and
only if there exists a non-negative matrix S such that SP = Q and
Sp ≤ q.

Assume now that Z[ki,j] = {z ∈ Rnx | V[ki,j]z ≤ v[ki,j]},
j ∈ N[ki+1,N], where the matrix V[ki,j] and vector v[ki,j] can be
computed offline according to Z[ki,j] =

⨁j−1
m=ki

∏j−1
l=m+1 AlWm. By

Lemma 4.3, we derive the following result.

Lemma 4.4. For the sets X̃[ki,j] and X∗

j , X̃[ki,j] ⊆ X∗

j holds if and
only if there exists a non-negative matrix S[ki,j] such that

S[ki,j]V[ki,j] = Fj, (8)

S[ki,j](v[ki,j] + V[ki,j](G[ki,j]xki + H[ki,j]u)) ≤ fj. (9)

Proof. This directly follows from Lemmas 4.2–4.3.

Since u is the decision variable, the constraints (9) are nonlin-
ear. To remedy this, we can calculate the nonnegative matrices
S[ki,j] offline to satisfy (8) by an LP (Fleming, Kouvaritakis, &
Cannon, 2013):

(S[ki,j])l = argmin
aT

{1Ta | aTV[ki,j] = (Fj)l, a ≥ 0}, (10)

where a is a vector with appropriate dimension and (S)l denotes
the lth row of the matrix S.

Remark 4.2. The LP in (10) admits a nonnegative matrix solution
with minimum infinity norm, which could lead to a larger fea-
sible region for the optimization problem P1

[ki,N]
(xki ) than other

nonnegative solutions to (8).

The next theorem shows that the robust self-triggered control
for the system (5) with polyhedral constraints can be designed by
solving a computationally tractable MILP.

Theorem 4.1. For the uncertain linear system (5) with polyhedral
constraints, the problem P1

[ki,N]
(xki ) can be reformulated as an MILP,

denoted by P3
[ki,N]

(xki ),

max
u,δj

N∑
j=ki+1

(1 − δj) (11a)

subject to
∀j ∈ N[ki+1,N] :

S[ki,j](G̃[ki,j]xki + H̃[ki,j]u) ≤ f̃[ki,j] + δjΓ 1, (11b)

∀j ∈ N[ki,N−1] : Eju ≤ ej + δjΓ 1, (11c)

∀j ∈ N[ki+1,N−1] : δj ≤ δj+1, (11d)

∀j ∈ N[ki+1,N] : δj ∈ {0, 1}, (11e)

where G̃[ki,j] = V[ki,j]G[ki,j], H̃[ki,j] = V[ki,j]H[ki,j], f̃[ki,j] = fj−S[ki,j]v[ki,j],
and Γ is a positive constant satisfying

Γ > max{ max
j∈N[ki,N−1]

∥Uj∥∞,

max
j∈N[ki+1,N]

max
u∈Uj

∥S[ki,j](G̃[ki,j]xki + H̃[ki,j]u) − f̃[ki,j]∥∞}. (12)

Proof. Recall the definition of rj in (3d). Let us introduce a
sequence of 0–1 variables δj, j ∈ N[ki+1,N]. By setting rj = 1 − δj,
we have⎧⎨⎩

∀l ∈ N[ki+1,j] :

S[ki,l](G̃[ki,l]xki + H̃[ki,l]u) ≤ f̃[ki,l] + δlΓ 1,
∀l ∈ N[ki,j−1] : Elu ≤ el + δlΓ 1,

where Γ is a positive number satisfying (12). Furthermore, ∀j ∈

N[ki+1,N−1], rj ≥ rj+1 can be rewritten as δj ≤ δj+1. Then, we get
the problem P2

[ki,N]
(xki ).
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Remark 4.3. The computational complexity of the MILP (11)
can be analyzed as follows. Considering the constraint (11d) on
δj, it is easy to construct an enumeration tree with at most
N − ki nodes, each of which is in the form of δj = 0, ∀j ∈

N[ki+1,k], and δj = 1, ∀j ∈ N[k+1,N], for some k ∈ N[ki+1,N]. This
construction avoids the combinatorial explosion issue. By fixing
the enumeration sequence {δj}

N
ki+1, the constraints (11b)–(11c)

become linear in the decision variable u and in particular are
redundant for j ∈ N[k+1,N]. Hence, the MILP (11) can be solved
through several LPs by increasing k until the LP is infeasible. The
computational complexity of the original MILP (11) is at most
N − ki times the computational complexity of the LP. Note that
the number of constraints in the LP is at most the total number
of the inequalities in (11b)–(11c) over j ∈ N[0,N], denoted by L.
From Megiddo (1984), we conclude that the problem (11) can
be solved in O(NL) time. In addition, several software tools have
been developed to solve large MILPs in the past few years, e.g.,
Linderoth and Lodi (2010), also allowing us to solve our problem
online efficiently.

Remark 4.4. Following similar operations as for the linear case,
the previous optimization problem P1

[ki,N]
(xki ) can be reformu-

lated as an integer program with a constraint like (11d). The
resulting integer program can be iteratively cast as a classic
constrained robust nonlinear control problem.

Remark 4.5. In general, Γ can be arbitrarily chosen to be a
sufficiently large positive constant. The lower bound on Γ defined
in (12) aims at quantifying how large Γ should be, which can be
calculated by solving a linear program (LP) since the sets Uj are
compact polyhedra and the norm is the ℓ∞−norm.

4.2. Control with minimum number of samplings

When the disturbance set Wk = {0}, ∀k ∈ N[0,N−1], we
can also reformulate the optimization problem P2

[0,N]
(x0) as a

computationally tractable MILP.

Theorem 4.2. For the deterministic linear system (5) with poly-
hedral constraints, the problem P2

[0,N]
(x0) can be reformulated as an

MILP, denoted by P4
[0,N]

(x0),

max
u0,∆j,δj,cj

J[0,N](x0) =

N−2∑
j=0

(1 − δj)

subject to
∀j ∈ N[0,N−1] : xj+1 = Ajxj + Bjuj,

∀j ∈ N[0,N−1] : uj =

{
u0, j = 0
uj−1 + ∆j−1, j ≥ 1,

∀j ∈ N[1,N] : Fjxj ≤ fj,
∀j ∈ N[0,N−1] : Ejuj ≤ ej,

∀j ∈ N[0,N−2] :

⎧⎪⎪⎨⎪⎪⎩
∆j ≤ Γ δj1,
∆j ≥ −γ δj1,
∆j ≤ cj + γ (1 − δj)1,
∆j ≥ cj − Γ (1 − δj)1,

∀j ∈ N[0,N−2] : −γ 1 ≤ cj ≤ Γ 1,
∀j ∈ N[0,N−2] : δj ∈ {0, 1},

where γ and Γ are two large positive constants satisfying

γ , Γ > max
j∈N[0,N−2]

max
u∈Uj,v∈Uj+1

∥u − v∥∞. (13)

Proof. By introducing new variables cj ∈ Rnu and 0–1 variables
δj, j ∈ N[k+2,N], we define ∆j = δjcj, i.e., ∆j = 0 if δj = 0 and
∆j = cj if δj = 1. And it follows that ∀j ∈ N[k+1,N] :

∆j = δjcj ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆j ≤ δjΓ 1,
∆j ≥ δjγ 1,
∆j ≤ cj + (1 − δj)γ 1,
∆j ≥ cj − (1 − δj)Γ 1,
−γ 1 ≤ cj ≤ Γ 1,

where Γ and γ are two positive numbers satisfying (13). Then,
we get the optimization problem P4

[0,N]
(x0).

Remark 4.6. The statements in Remark 4.5 also apply with γ

and Γ in (13). In addition, the optimization problem P4
[0,N]

(x0) is
equivalent to P2

[0,N]
(x0), while the optimal solution to P3

[ki,N]
(xki )

is a suboptimal solution to P1
[ki,N]

(xki ).

5. Examples

This section provides three examples to illustrate the effec-
tiveness of our proposed algorithms. The following numerical ex-
periments were run in Matlab R2016a with MPT toolbox (Herceg
et al., 2013) on a Dell laptop with Window 7, Intel i7-6600U CPU
2.80 GHz and 16.0 GB RAM.

Example 1. Compare the proposed robust self-triggered algo-
rithm with the robust self-triggered MPC in Brunner et al. (2014).
Consider the same model as in Brunner et al. (2014), where A =

[1 1; 0 1] , B = [0.5 0]T . The constraint sets are X = {z ∈ R2
|

[−20 − 8]T ≤ z ≤ [20 8]T },U = {z ∈ R | −4.5 ≤ z ≤ 4.5},W =

{z ∈ R2
| [−0.25 − 0.25]T ≤ z ≤ [0.25 0.25]T }. The initial state

is [10 6]T .

Let Q = [1 0; 0 1] and R = 0.1 be the weight matrices in the
objective function. By solving the discrete-time algebraic Riccati
equation, we obtain the matrix P = [2.0599 0.5916; 0.5916
1.4228] and the corresponding optimal feedback gain K =

[−0.6167 − 1.2703]. The control objective is to steer the state to
the robust invariant set, denoted by Ω (the red region in Fig. 1),
which is computed by the method in Mayne, Seron, and Raković
(2005). The implementation will stop if the state enters the robust
invariant set.

For the robust self-triggered control in this paper, the terminal
set of the target tube is Ω . For the robust self-triggered MPC
in Brunner et al. (2014), we choose the maximal inter-sampling
time Mmax = 4. The state trajectories for 100 realizations of the
uncertainty sequence are depicted in Fig. 1. We compare the two
different methods for several indexes, of which the average is
taken over 500 realizations.

• Average inter-sampling time: The average inter-sampling
time is M̄ = 1.2045 under the robust self-triggered MPC
of Brunner et al. (2014) while it is M̄ = 1.3333 under
the self-triggered scheme of this paper. Thus, our control
scheme achieves an average communication reduction by
9.66% more than that of the self-triggered MPC.

• Average online computation time: The average online com-
putation time at each sampling instant is 0.5758 s for the
robust self-triggered MPC while it is 0.1964 s for our control
method despite the presence of integer variables.

• Average performance: The performance measure is defined
by J =

∑Trun
k=0(∥xk∥

2
Q + ∥uk∥

2
R) where Trun is the time when

the state enters the robust invariant set. The robust self-
triggered MPC achieves a slightly better average perfor-
mance than our scheme. The performance measure is
591.9191 for MPC while it is 621.4552 for our scheme.
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Fig. 1. State trajectories under Algorithm 1 and robust self-triggered MPC
(Brunner et al., 2014) for 100 realizations of the uncertainty sequence. (a)
Algorithm 1; (b) Robust self-triggered MPC. The algorithms terminate when the
state enters the robust invariant set (the red region) . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. State trajectory and control input trajectory under Algorithm 1 for one
realization of the uncertainty sequence . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Scenario.

Example 2. Consider a time-varying linear system (5), where
Ak = [1 1; 0 1] , Bk = [1; 0.5] , k ∈ N[0,5] and Ak =

[1 0; 1 0] , Bk = [1; 0.5] , k ∈ N[6,10]. Note that Ak, k ∈ N[6,10], are
singular. Let N = 10. The input constraints are |uk| ≤ 1, k ∈ N[0,5],
and |uk| ≤ 0.2, k ∈ N[6,9]. The terminal constraint set is XN = {z ∈

R2
| [−0.01; −0.01] ≤ z ≤ [0.01; 0.01]}. And the state constraint

set is Xk = {z ∈ R2
| [−10; −2] ≤ z ≤ [10; 2]}, k ∈ N[0,9].

The disturbance set is Wk = {z ∈ R2
| [−0.03; −0.03] ≤ z ≤

[0.03; 0.03]}, k ∈ N[0,10].

Algorithm 1 is implemented for the system with the initial
state [10 −2]T . Fig. 2 depicts the state trajectory and the control
input trajectory under Algorithm 1 for one realization of the
disturbance sequence. In subfigure (a), the red square is the target
set and the yellow and light green regions are the sets X∗

k , k ∈

N[0,9]. The black dotted lines in subfigure (b) are the constraint
bounds on the control input. From subfigure (b), 3 updates for
control inputs are needed to tolerate the disturbances as well as
guarantee the constraints satisfaction.

Example 3. Consider a mobile robot with dynamics (5), where
Ak = [1 0; 0 1] , Bk = [0.1 0; 0 0.1] , ∀k ∈ N. The input
constraint set is Uk = {z ∈ R2

| [−0.6 − 0.6]T ≤ z ≤ [0.6 0.6]T },
k ∈ N. The robot moves in a closed workspace, as shown in Fig. 3,
in which there are some obstacles (the black rectangles). The
robot should achieve collision avoidance with the obstacles and
the boundaries of the workspace. We set the safe distance as 0.1.
In addition, the robot can exchange the information (the position
and the control input) with the control center via a bandwidth-
limited communication network. At each time, the robot can only
receive one control input from the control center. The initial
position is [0.15 2]T . The target set 1 is {z ∈ R2

| [2.7 2.4]T ≤

z ≤ [2.8 2.5]T } and the target set 2 is {z ∈ R2
| [0.4 0.4]T ≤

z ≤ [0.5 0.5]T }. A sequence of temporal constrained tasks for the
mobile robot are

• stage 1: the robot should arrive at the target set 1 before
k = 60;

• stage 2: the robot should stay in target set 1 for at least 10
time steps after arrival.

• stage 3: the robot should arrive at the target set 2 before
k = 140.

To save the communication recourses, our self-triggered con-
trol strategies are implemented. We choose the convex inner
approximations of the backward reachable sets (which are the
intersection between the predecessor sets and the safe regions).
As mentioned in Remark 3.1, these approximations still respect
the feasibility and the constraint satisfactions.

In the first case, assume that the disturbance set is Wk = {z ∈

R2
| [−0.01 − 0.01]T ≤ z ≤ [0.01 0.01]T }. Subfigures (a)–(b)

of Fig. 4 depict the state trajectories for stages 1 and 3 under
Algorithm 1. The yellow and light green regions are the sets X∗

k .
The control input trajectory is shown in subfigure (c) of Fig. 4
with the times of control update being 15.

In the second case, assume that Wk = [0 0]T , ∀k ∈ N.
Subfigures (a)–(b) of Fig. 5 depict the state trajectories for stage 1
and 3 by using the control with minimum number of samplings.
The yellow and light green regions are the convex approximations
of the sets X∗

k . The control input trajectory is shown in subfigure
(c) of Fig. 5 with the times of control update being 6.

6. Conclusion

In this paper, we proposed a robust self-triggered control
algorithm for time-varying uncertain systems with constraints.
By using reachability analysis, the constraint satisfactions and
recursive feasibility were guaranteed. The proposed algorithm
provided us a geometric interpretation for self-triggered control.
The problem of control with minimum number of samplings
was investigated for deterministic constrained systems. For linear
systems with polyhedral constraints, the proposed methods were
reformulated as computationally tractable MILP problems. In sim-
ulations, the results were compared with robust self-triggered
MPC and applied to the robot motion planning.
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Fig. 4. State trajectories of stages 1 and 3 and control input trajectories under Algorithm 1 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. State trajectories of stages 1 and 3 and control input trajectories by using control with minimum number of samplings . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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