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Abstract— We study the probabilistic sampling of a random
variable, in which the variable is sampled only if it falls outside
a given set, which is called the silence set. This helps us to
understand optimal event-based sampling for the special case
of IID random processes, and also to understand the design of
a sub-optimal scheme for other cases. We consider the design
of this probabilistic sampling for a scalar, log-concave random
variable, to minimize either the mean square estimation error,
or the mean absolute estimation error. We show that the optimal
silence interval: (i) is essentially unique, and (ii) is the limit of
an iterative procedure of centering. Further we show through
numerical experiments that super-level intervals seem to be
remarkably near-optimal for mean square estimation. Finally
we use the Gauss inequality for scalar unimodal densities, to
show that probabilistic sampling gives a mean square distortion
that is less than a third of the distortion incurred by periodic
sampling, if the average sampling rate is between 0.3 and
0.9 samples per tick.

I. INTRODUCTION

Consider a sensor and a tracking station, that are connected
by an ideal, analog communication link from the sensor to
the tracking station. The sensor takes perfect observations of
a discrete-time random process. At times of its choice, the
sensor sends its current samples. The sensor is allowed to
choose these times on the fly, based upon the causal record
of its transmission decisions and transmitted messages up
till the previous time instant. At times when the sensor does
not send samples, it sends a special SILENCE symbol. This
scheme is called Event-based sampling [1].

A. Previous results

Broadly speaking, two approaches can be seen in the
literature - a deterministic one [2], [3], and a stochastic
one [4], [5]. In the deterministic approach, silence set design
is posed as a problem of ensuring that a candidate Lya-
punov function decreases over time, or a suitable objective
function of the state and control signals is minimized. In
the stochastic approach, silence set design is posed as a
networked sequential design problem [6], [7], with two or
more decision agents. Within the stochastic approach, a
variety of communication limitations have been captured:
limited packet rate [8], packet losses [7] and delays [9]. Both
approaches are computationally demanding, as they require
the solution of Linear or Bilinear matrix inequalities, or a
Dynamic programming problem.
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If: (i) the state signal is scalar, (ii) the dynamics is linear,
and (iii) the process and sensor noise densities are Gaussian,
then the estimation error variance is minimized by symmetric
silence intervals around the Kalman predictor [10], [11], [12],
[7]. With this simplified structure for the optimal silence
sets, the calculation of their sizes requires the numerical
solution of an one-agent Dynamic programming problem.
Andrén et al. [13] have shown that optimal silence sets can
be non-convex.

Molin and Hirche [14], [15] give two-person iterative
algorithm that they show to globally converge to a sequence
of symmetric intervals around the Kalman predictor, if the
initial state and noise are unimodal and symmetric, as
assumed in the works mentioned in the previous paragraph.

A log-concave probability density [16] is one whose log-
arithm is a concave function over its support. Henningsson
and Åström [17] showed that if the noise densities are log-
concave, then optimal observer design for linear systems is
simpler than without log-concavity, because the density of
the estimation error is log-concave even after conditioning on
the signal being inside the silence set. For s special class of
log-concave densities, called strongly log-concave, in which
tails decay at least as fast as for Gaussian densities, they give
an upper bound on the variance of estimation error.

B. Ultra-myopic choice of silence sets

To sidestep the computational burden of calculating opti-
mal silence sets, we use the suboptimal strategy of designing
each individual silence set without regard for the effects of
this choice on the costs and constraints at later times instants.
Given a causal specification of a sampling rate budget, our
strategy is to compute a suboptimal silence set for each
time such that it minimizes only the estimation distortion
at that instant, with no concern for the distortion at later
time instants.

C. Our results

We pursue the question of how best to synthesize this
suboptimal strategy, when the observed signal is a scalar,
and is driven by noises that have log-concave densities.

In Section II we give the centering algorithm of [14], [15]
for improving a given silence set. We are able to prove in
Section III that for any scalar log-concave density, iterations
of the centering algorithm converge to a unique optimal
silence interval. This is similar to every scalar log-concave
density has a unique optimal quantizer[18], [19], [20] .

When a scalar log-concave density is symmetric, then
clearly it is optimal to use a symmetric silence interval



around the mean cum mode. When such a density is not
symmetric, we posit that super-level sets give excellent
performance. We give some empirical evidence in Section IV
to support this claim.

Finally, in Section V we use the Gauss inequality for
unimodal densities to bound the rate-distortion trade-off for
silence intervals that are symmetric around the mode.

II. CENTERING REDUCES DISTORTION

We start with a general formulation of our problem, and
specialize to the scalar case in Section III.

Problem 1. For the random vector X ∈ Rn, the probability
density exists, and is given. The probabilistic sampling prob-
lem is to pick a measurable silence set A, by an optimization
in which: (a) the following chance constraint is met:

P [X ∈ A] ≥ η, for some prescribed η ∈ [0, 1] , (1)

and (b) the set A minimizes the average distortion:

E
[
δ
(
X − X̂A

)
|X ∈ A

]
,

where X̂A denotes the estimate under silence, and,

X̂A ≜ arg min
Y ∈Rn

E [δ (X − Y ) |X ∈ A ], (2)

and where the distortion function δ : Rn → R is non-
negative, and monotonically increasing as we move radially
away from the origin along an arbitrary vector.

In other words, for any vector x ∈ Rn, the value δ (αx)
is an increasing function of the positive real number α.
Hence, given two different positive levels, the sub-level set
corresponding to the smaller level is guaranteed to be entirely
within the interior of the sub-level set corresponding to the
higher level. Examples of valid distortion functions are:

|x|, |x|2, or xTMx with the matrix M > 0.

A. Centering is necessary for optimality

Definition 1 (centering of a set). Suppose we are given the
random variable X, the silence set S, the probability value η,
the distortion function δ(·), and the best estimate X̂S as
definied by Equation 2. Then the centering of the set S is
denoted by Scen., and is defined as the smallest sub-level
set of the function δ

(
·− X̂S

)
, such that the set has a

probability mass no less than η. In other words, if we let
the nonegative number

αη ≜ inf
{
α : P

[
X

∣∣∣δ (X − X̂S

)
≤ α

]
≥ η

}
, then

Scen. =
{
x ∈ Rn : δ

(
x− X̂S

)
≤ αη

}
. (3)

For any two sets A,B, we denote by A/B the set A∩BC ,
which is the set of all those elements of A not found in B.

A centered set is any set that either equals its centering,
or differs from it by a set of probability zero. This means:

P [X ∈ S/Scen.] = 0, if and only if S is a centered set.

Algorithm 1 Centering algorithm

1: function CENTERING( pX(·), S, δ (·) , η)
2: X̂S = argminY ∈Rn E [δ (X − Y ) |X ∈ S ]

3: αη = inf
{
α ∈ R : P

[
X

∣∣∣δ (x− X̂
)
≤ α

]
≥ η

}
4: S =

{
x ∈ Rn : δ

(
x− X̂

)
≤ αη

}
▷ S←− Scen.

5: return S

For example consider sets on the real line, and let δ (·) be
the squared error distortion. If an interval has its conditional
mean equal to its midpoint, then this interval is centered.

Lemma 1. Let the random vector X have a regular proba-
bility density function. Given the probability value η, and the
distortion function δ (·) , consider Problem 1. If an optimum
silence set exists, then a centered one exists that is optimal.

Proof: We shall show that if a candidate optimal set is
such that it differs from its centering by a set of non-zero
probability, then centering lowers the distortion.

Let the random vector X ∈ Rn. Suppose that the positive
number η is such that η ∈ (0, 1). Then consider any
candidate optimal set A∗ that is not centered, and satisfies:

P [A∗] ≥ η.

Let X̂A∗ denote the best estimate under the silence set A∗.
Without loss of generality, we can assume that the candi-

date optimal set has a probability mass of exactly η. If this
were not the case, then we can shrink the given set, to derive
a new silence set that has a probability mass of exactly η,
but with a lower average distortion. In specific, given the
candidate set, and a shrinkage factor σ, with 0 < σ < 1, the
shrunken set is:{

x ∈ Rn :
1

σ
·
(
x− X̂A∗

)
∈ A∗

}
.

Because the density is regular, the shrinkage factor σ can be
chosen to achieve a probability mass of exactly η. Hence, we
shall assume that the given candidate optimal silence set A∗

satisfies the exact chance equality:

P [A∗] = η. (4)

Then consider the centering of the given set A∗:

Cη ≜
{
x ∈ Rn : δ

(
x− X̂A∗

)
≤ rη

}
,

where the ‘radius’ rη is chosen such that P [Cη] = η.
A suitable value for η can be chosen, because the density

is regular. Since η is strictly less than 1, the radius of Cη

must be finite. The set A∗ is not centered. Hence:

P [A⋆/Cη] > 0.

Since both A⋆, and Cη have the same probability mass,

P [A⋆/Cη] = P [Cη/A
⋆] .
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Fig. 1: The sets used in the proof of Lemma 1.

Note that on every point x of the set A⋆/Cη, the distortion
function δ

(
x− X̂A⋆

)
takes values that are bigger than

values of the function at points of the set Cη/A
⋆. Therefore,

E
[
δ
(
X − X̂A⋆

)∣∣∣X ∈ A⋆/Cη

]
> E

[
δ
(
X − X̂A⋆

)∣∣∣X ∈ Cη/A
⋆
]
.

Using the above inequalities, we can write as below (at each
step, the text in red signifies changes from the previous step):

E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆
]
·P [A⋆]

=

∫
A⋆

δ
(
x− X̂A⋆

)
pX (x) dx

=

∫
A⋆/Cη

δ
(
x− X̂A⋆

)
pX (x) dx

+

∫
A⋆∩Cη

δ
(
x− X̂A⋆

)
pX (x) dx,

= E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆/Cη

]
· P [A⋆/Cη]

+ E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆ ∩ Cη

]
· P [A⋆ ∩ Cη]

> E
[
δ
(
X − X̂A⋆

)∣∣∣Cη/A
⋆
]
· P [A⋆/Cη]

+ E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆ ∩ Cη

]
· P [A⋆ ∩ Cη] ,

= E
[
δ
(
X − X̂A⋆

)∣∣∣Cη/A
⋆
]
· P [Cη/A

⋆]

+ E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆ ∩ Cη

]
· P [A⋆ ∩ Cη] ,

= E
[
δ
(
X − X̂A⋆

)∣∣∣Cη

]
· P [Cη] ,

≥ E
[
δ
(
X − X̂Cη

)∣∣∣Cη

]
· P [Cη] .

Since both the sets A⋆, Cη have the same probability mass,

E
[
δ
(
X − X̂A⋆

)∣∣∣A⋆
]
> E

[
δ
(
X − X̂Cη

)∣∣∣Cη

]
.

Hence centering cannot increase the average distortion.

III. UNIQUENESS OF THE OPTIMAL SILENCE INTERVAL

Each run of the centering algorithm either lowers or pre-
serves the average distortion. Consider the infinite sequence
of average distortions obtained by repeatedly applying the
centering algorithm. Such a sequence is non-increasing,
and is also bounded below by zero. Hence this sequence
converges. However, it could be that the limiting average
distortion is a local minimum.

We show that log-concavity of the density implies that
a local minimum must be a global minimum, in the special
case where the random variable X is scalar, and the distortion
function δ (·) is the usual square error, or the absolute error.

The technique of our proofs is based on the generic family
of all intervals with a prescribed probability mass. We span
this family with a sliding interval, that has a variable length
but a fixed probability mass. We shall compare the speed at
which the midpoint of this interval moves, when compared
to speeds of the conditional mean and the median of the
interval. To save space, we give the proof of our paper’s two
theorems in the Arxiv version [21].

A. Centering minimizes the mean squared error

Theorem 1. Let X be a scalar random variable with a
density pX(·) that is logarithmically concave. Then given
any probability value η ∈ [0, 1], either:

• there is a unique interval S∗ ≜
[
a∗η, a

∗
η + l∗η

]
with

probability mass of η, and minimizing the conditional
variance E

[
(X − E [X |X ∈ S ])

2 |X ∈ S
]
, over all

silence sets S having probability mass at least η, or
• there is a sliding family containing an infinity of optimal

intervals all of the same length. In specific, there is a
unique positive length l∗η, a unique lower bound aη, and
a unique upper bound aη such that, for every left end a
within these bounds, the interval S∗a ≜

[
a, a+ l∗η

]
has

a probability mass of η, and minimizes the conditional
variance over all silence sets S having a probability
mass of at least η.

Corollary 1.1. A centered silence set minimizes the mean
squared estimation error, if the density of the sampled
random variable is logarithmically concave.

Proof: Any non-increasing, and positive sequence of
numbers must converge. Therefore the process of repeated
iteration of the centering operation must lead to a limiting
value for the conditional distortion.

An iteration of the centering operation cannot increase the
distortion. If such an iteration results in the same distortion
as before, then the original and newer sets can differ only
by a set of measure zero. In which case the newer set must
be a centered one. The Corollary follows from the guarantee
of Theorem 1 that centered sets are essentially unique.

B. Centering minimizes the mean absolute error

Theorem 2. Let X be a scalar random variable with a
density pX(·) that is logarithmically concave. Then given
any probability value η ∈ [0, 1], either:



• there is a unique interval S∗ ≜
[
a∗η, a

∗
η + l∗η

]
with

probability mass of η, and minimizing the conditional
absolute error E

[ ∣∣X −mu[a,b]

∣∣∣∣X ∈ S
]
, over all si-

lence sets S having a probability mass of at least η,
or

• there is a sliding family containing an infinity of optimal
intervals all of the same length. In specific, there is a
unique positive length l∗η, a unique lower bound aη,
and a unique upper bound aη such that, for every
left end a within these bounds, the interval S∗a ≜[
a, a+ l∗η

]
has a probability mass of η, and minimizes

the conditional absolute error over all silence sets S

having a probability mass of at least η.

The proof is given in the Arxiv version [21].

Corollary 2.1. A centered silence set minimizes the mean
absolute estimation error, if the density of the sampled
random variable is logarithmically concave.

The proof is similar to that for Corollary 1.1.

IV. SUPER-LEVEL INTERVALS ARE NEARLY OPTIMAL

We shall calculate the conditional variance of the follow-
ing families of silence intervals. These famlilies result from
heuristic attempts to keep the interval lengths as small as
possible, while collecting the required probability mass η:

• Super level sets: A super level interval is defined as:

Ssuper-level
η =

{
x ∈ Rn : pX (x− µ) ≥ αsuper-level

η

}
,

where the level αsuper−level
η is chosen to be the smallest

level guaranteeing that the above interval has a proba-
bility mass of at least η.

• Equal sides around mode: An interval with equal sides
around the mean is defined as:

Sequal-sides
η =

{
x ∈ Rn : |x− µ| ≤ αequal-sides

η

}
,

where the half interval width αequal−sides
η is chosen to

be the smallest one guaranteeing that the above interval
has a probability mass of at least η.

• Equal areas around mode: An interval with equal
areas around the mean is defined as: S

equal-areas
η =[

αequal-areas
η , βequal-areass

η

]
, where the limits are such that∫ µ

αequal-areas
η

pX(x)dx =

∫ βequal-areas
η

µ

pX(x)dx =
η

2
.

• Mode-as-conditional mean: An interval with the con-
ditional mean as its mode is defined as: Smode-as-mean

η =[
αmode-as-mean
η , βmode-as-mean

η

]
, where the limits are care-

fully chosen around the mean such that

E
[
X

∣∣X ∈ [
αmode-as-mean
η , βmode-as-mean

η

]]
= µ.

The conditional variances of these families of intervals
were calculated for three log-concave densities shown in
Figure 2. These are the unbalanced Laplace density, a density
patched up from two circular arcs, and a triangular density.
We took these three to be representative of log-concave

(a) Laplace modified to have unbalanced sides

(b) Patchwork of circular arcs (c) Triangular density

Fig. 2: Log-concave densities used in our empirical study.

density classes induced by the concavity or convexity of the
waveform pieces making up the densities.

The variances incurred by the above families of silence
intervals are depicted in Figure 3. Clearly super level interval
are remarkably close to being optimal. Hence we can expect
to get quite good approximations to the optimal silence
interval by applying a couple of iterations of the centering
algorithm, initializing it with a super-level interval.

V. BOUND ON RATE DISTORTION TRADE-OFFS FOR
SCALAR UNIMODAL DENSITIES, VIA GAUSS INEQUALITY

We now study the performance of probabilistic sampling
for random variables that have symmetric, unimodal densi-
ties. Although log-concavity is not directly required for our
result, that property is useful to preserve unimodality for the
statistics of any random process with additive noise that is
independent of the past and current states [22].

We use the Gauss inequality for the tails of scalar
unimodal densities, to bound the rate-distortion curve of
probabilistic sampling. We consider silence intervals that are
symmetric about a mode of the density. Recall that the mode
is a point such that the cumulative distribution function is
convex everywhere to the left of the point, and is concave
everywhere to the right of this point. This point may be non-
unique; nevertheless we pick a mode and denote it by µ. We
denote the silence set by S = [µ− k, µ+ k] . We give upper
bounds for: (i) the sampling rate, and (ii) the conditional
variance given that the random variable falls within the
silence interval.

A. Upper bound on the sampling rate

For a unimodal density pX(·), let τ be defined as:

τ2 ≜ (mean−mode)2 + variance.

The Gauss inequality (Section 1 in [23]) on the symmetric
interval S around the mode, gives us:

P [|X − µ| > k] ≤

{
4
9
τ2

k2 , if k ≥ 2√
3
τ,

1− 1√
3
k
τ , if 0 ≤ k ≤ 2√

3
τ.

(5)

This gives us an upper bound on the rate at which the state
process X falls outside the silence interval, which is exactly
the rate at which samples are generated.



−1.5 −1 −0.5 0 0.5
0

0.05

0.1

a, the left end of interval

C
on

di
tio

na
l

va
ri

an
ce

ov
er

[a
,b
]

For super level intervals
For equal sides around mode
For equal areas arond mode
For Conditional mean = mode
for a, b such that P [x ∈ [a, b]] = 0.2

for a, b such that P [x ∈ [a, b]] = 0.4

for a, b such that P [x ∈ [a, b]] = 0.6

for a, b such that P [x ∈ [a, b]] = 0.8

(a) for double sided exponential density

−0.5 0 0.5
0

0.05

a, left end of interval

C
on

di
tio

na
l

va
ri

an
ce

ov
er

[a
,b
]

(b) for density with two circular arcs

−0.5 0 0.5
0

0.05

0.1

a, left end of interval

C
on

di
tio

na
l

va
ri

an
ce

ov
er

[a
,b
]

(c) for triangular density

Fig. 3: The near-optimal performance of super-level intervals

B. Upper bound on the mean-square error

The mean-cum-mode µ is the least squares estimate of X
given that it falls within the symmetric interval S. Because
the density of X is unimodal, its conditional error variance
of X over the interval S can be bounded above by the
variance of the uniform distribution over the same interval,
as shown below.

Let A be a measurable subset of S, and let PU |S [A]
denote the probability mass of the set A as per the uniform
distribution over the interval S. Consider the following two
probabilities as functions of the positive real number t:

ΘX|S (t) ≜ PX|S [|X − µ| ≤ t] ,

ΛU |S (t) ≜ PU |S [|X − µ| ≤ t] .

Clearly these two functions coincide at the extremes:

ΘX|S (0) = ΛU |S (0) = 0, and,
ΘX|S (t) = ΛU |S (t) = 1, if t ≥ k.

On the interval [0, k] the function ΛU |S (t) is linear and
increasing. On the same interval the function ΘX|S (t) is
increasing. It is also concave. This is because

ΘX|S (t) = PX|S [µ ≤ X ≤ µ+ t] + PX|S [µ− t ≤ X ≤ µ] ,

and both the terms on the right hand side are concave
functions of t, since their derivatives with respective to t
are non-increasing functions of t (because the density pX is
unimodal about the mode µ).

On the interval [0, k] the graph of ΛU |S (t) is a straight
line, that intersects the graph of ΘX|S (t) at the end points 0
and k. Hence the graph of ΛU |S (t) forms a chord for the
graph of the concave function ΘX|S (t). Hence, conditioned
on being in the interval S the density pX(·) is more peaked
than the uniform density over the same interval, as in:

ΘX|S (t) ≥ ΛU |S (t) , for 0 t ≤ k. (6)

Hence the corresponding variances obey:

EX|S
[
(X − µ)

2 |X ∈ S
]
≤ EU |S

[
(X − µ)

2 |X ∈ S
]
=

1

3
k2.

This upper bound can be quite large if k is large. Therefore
we cap it at the variance σ2 to get the refined upper bound:

EX|S
[
(X − µ)

2 |X ∈ S
]
≤ min

{
σ2,

1

3
k2

}
. (7)

The mean squared error in estimating X, under probabilistic
sampling that uses the silence set S is given by:

0× (1− PX [S]) + EX|S
[
(X − µ)

2 |X ∈ S
]
× PX [S] .

Using Equation (7), we can bound this quantity above with:
4
9
τ2

k2 ×min
{
σ2, 1

3k
2
}
, if k ≥ 2√

3
τ,(

1− 1√
3
k
τ

)
×min

{
σ2, 1

3k
2
}
, if 0 ≤ k ≤ 2√

3
τ.

(8)
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Fig. 4: Sampling rate versus Estimation error variance trade-
off, for scalar IID processes with unimodal, symmetric
densities.

C. A tight bound on the rate-distortion trade-off

For any scalar unimodal density with a bounded second
moment, and for a silence interval symmetric about the
mode, we have shown that (1) the sampling rate is bounded
above by the RHS of (5), and (2) the squared error distortion
is bounded above by the expression in (8).

We shall now apply these to the special case where the
density is also symmetric about the mode. In this case, the
quantity τ2 found on the RHS of the Gauss inequality (5)
simply equals the variance σ2. In Figure 4 we plot our rate-
distortion bound, and also the exact performances of periodic
sampling, of optimal sampling when the density is uniform
with σ = 1, and of optimal sampling when the density is
Gaussian with σ = 1.

VI. CONCLUDING REMARKS

A. Fast convergence of iterative centering

For log-concave densities, the centering algorithm con-
verges quite fast to optimum or near-optimum silence in-
tervals, as illustrated in Figure 5. This figure concerns the
exponential density, and is a copy of Figure ??, but now
showing the how quickly the conditional mean changes under
iterated centering. The fast convergence happens basically
because the conditional mean of the sliding interval increases
rather slowly as a function of the left end of the sliding
interval. While each iteration produces only a relatively
modest change in the left end of the interval, it nevertheless
produces rather big changes in the value of the right end of
the interval. This in turn produces big drops in the size of
the interval, and also in its average distortion.

Fig. 5: Fast convergence of iterated centering

We conjecture that such fast convergence holds for every
log-concave density. We think this because any tail of a log-
concave density must be bounded above by an exponential
decay. This shall ensure that the conditional mean of our slid-
ing interval changes relatively slowly, even as the midpoint
and the length change relatively fast.

B. Application to event-triggered sampling

For even-triggered sampling of a random process, a sub-
optimal scheme follows from our formulation for individual
random variables. But this needs to consider forecasting
and making communication decisions over time. Firstly the
sampled random process shall be correlated over time, and
secondly each sample is to be generated from within a
horizon that shall be longer than just one tick. This entangles
the design of the silence sets at any time tick to those at other
time ticks.

For example consider a single sample to be generated from
within a time horizon. We have to design a probability mass
function (PMF) of this sample being generated at any instant
from within this horizon. This PMF shall be non-uniorm,
perhaps with small values at the start of the horizon, and
a peak at some suitable time instant such as the middle of
horizon. At each instant, we can propagate the nonlinear filter
for density of the process at that instant, given that the sample
has not been generated yet. We can then apply our centering
algorithm on that density.

C. Utility of the Gauss bound

The Gauss inequality is useful when the average sampling
rate is in the range of approximately 0.3 to 0.9 samples
per tick. It is in this range that we get the most benefits
of interval based probabilistic sampling. As Figure 4 shows,
there is almost no advantage to interval based sampling, if
the average sampling rate is either close to zero or close
to one tick per tick. We can also see an order of magnitude



drop in the average distortion, if the sampling rate is between
0.6 and 0.9 samples per tick.
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