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Recursive Network Estimation for
a Model with Binary-Valued States
Yu Xing, Xingkang He, Haitao Fang, and Karl H. Johansson, Fellow, IEEE

Abstract—This paper studies how to estimate the weighted
adjacency matrix of a network out of the state sequence of a
model with binary-valued states, by using a recursive algorithm.
In the considered system, agents display and exchange these
binary-valued states generated from intrinsic quantizers. It is
shown that stability of the model and identifiability of the
system parameters can be guaranteed under continuous random
noise. Under standard Gaussian noise, the problem of estimating
the real-valued weighted adjacency matrix and the unknown
quantization threshold is transformed to an optimization problem
via a maximum likelihood approach. It is further verified that
the unique solution of the optimization problem is the true
parameter vector. A recursive algorithm for the estimation
problem is then proposed based on stochastic approximation
techniques. Its strong consistency is established and convergence
rate analyzed. Numerical simulations are provided to illustrate
developed results.

Index Terms—network estimation, binary-valued states,
stochastic approximation, quantized identification, identifiability

I. INTRODUCTION

Network estimation, or network inference, i.e., inferring
underlying relationships between entities from data, is of great
significance in multiple scientific disciplines. For example,
traffic engineers can design new links to avoid network conges-
tion, by estimating traffic volume between all pairs of nodes
in a network from traffic flow, known as network tomogra-
phy [1]. Theoretical modeling and empirical verification of
gene regulatory networks can enhance our understanding of
diseases and development [2]. Inferring social structures such
as friendship and influence can help to analyze and predict
collective behaviors in complex social networks [3].

A problem needs to be further studied in network estimation
literature is to recursively estimate underlying networks based
on quantized data. Quantized data is ubiquitous across do-
mains, for example, active/inactive states of a gene [2] and or-
dinal rating of an individual [4]. However, existing researches
focus more on reconstructing networks based on real-valued
data [5]–[7]. In addition, recursive algorithms are of great
importance for identification of networked systems [8]. They
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can be used for online tasks, such as adaptive control and
decision-making, and thus have attracted much interest in the
control community. More attention has been paid, however, on
batch algorithms for network estimation [5]. Therefore, it is
crucial to propose and investigate online network estimation
algorithms for complex networked dynamics based on quan-
tized time-series data [2], [5], [7].

A related field in system identification is quantized identifi-
cation, i.e., estimating parameters based on quantized data [9]–
[11]. But many of these methods cannot be applied directly
to the aforementioned network estimation problems, since
they require the design of either input signals [12] or quan-
tizers [10], [13]. In contrast, it may be difficult to impose
sufficient input signals when estimating a complex networked
system. Moreover, quantized data could be generated from
unknown components of a system, instead of some artificial
quantized sensors.

This paper studies a recursive network estimation problem
based on binary-valued data, which is a special but crucial case
of general quantized data. In particular, we focus on the case
where weighted adjacency matrices of underlying networks are
real-valued, representing interaction strength between agents.
In the considered system, agents display and exchange binary-
valued states, which are generated from intrinsic quantizers.

Dynamics with binary-valued states can be encountered in a
variety of domains. Here we present two motivating examples.

A. Motivating Examples

Example 1. (Neuronal Dynamics Under Random Noise)
To model neuron behaviors, [14] introduces the following

model of neuronal dynamics. Although higher-order dynamics
are also studied in [14], [15], we focus on the first-order system
in this paper. The model evolves over a network with an agent
(neuron) set V = {1, . . . , n}. Let Sk be the state vector at
time k ≥ 0. Agent i ∈ V has state Sk,i ∈ {0, 1}, which can
be detected via experimental methods. The state of agent i
updates in the following way

Sk+1,i = f

( n∑

j=1

aijSk,j +Dk,i − ci
)
, (1)

where the function f represents the McCulloch-Pitts neural
model such that f(x) = 1 if x ≥ 0 and f(x) = 0 otherwise,
for real number x. Parameter aij = γitij/n represents the
total interaction strength between agents i and j, given by
the strength of synaptic connection γi and link strength tij
between agents i and j. The term Dk,i is the noise of agent i,
assumed to be independent and identically distributed (i.i.d.)
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standard Gaussian, and it comes from underlying biochemical
processes [16]. Finally, ci is the individual threshold of agent i.

Since the state space of System (1) is {0, 1}n, it is a
Boolean network (BN). BNs have been extensively studied
in many disciplines [2], [17], due to their effectiveness in
describing genetic regulatory networks, neuronal networks,
and so on. There have been numerous related researches,
such as stability [18] and filtering [19] of BNs, as well as
stabilization [20] and observer design [21] of Boolean control
networks.

Identification of BNs is a significant topic, because underly-
ing relationships between agents, either logical or parametric
ones, can be used for prediction and decision-making. For (1),
the problem of interest is how to estimate the interaction
strength matrix A = (aij) out of temporal data {Sk}, i.e.,
recovering the underlying connections between neurons from
their behaviors. It should be noted that although aij consists
of two unknown parameters γi and tij , there is no way to
estimate the exact values of them. This is because infinite
pairs of (γi, tij) can define the same aij .

Example 2. (Binary Choice Models of Social Interactions)
Social interactions shape behaviors of individuals. Many

interactive decisions are binary (e.g., voting), and these actions
can be observed directly or obtained from questionnaires
and online data. As a result, researchers have proposed lots
of mathematical models, in order to analyze binary choices
in social interactions [4]. A dynamical binary-choice model,
whose update rule is similar to Example 1, is introduced in
Section 4.1 of [22] and writes as follows,

P{Sk+1,i = 1|Sk} = F (hi +
∑n
j=1wijSk,j), (2)

where Sk,i ∈ {0, 1} is the state of agent i ∈ V = {1, . . . , n}
at time k ≥ 0, Sk ∈ {0, 1}n is the state vector, F (·) is
a cumulative distribution function (cdf), and hi and wij are
parameters. As discussed in [22], update rule (2) can be seen as
a consequence of agent i maximizing a random utility function
Vk,i(s, Sk) at time k + 1, where s ∈ {0, 1} and

Vk,i(s, Sk) := h′is−
n∑

j=1

w′ij(s− Sk,j)2 + εk,i(s).

Here h′i is a private preference, w′ij is the conformity strength
of j on i, and {εk,i(1), k ≥ 0}, {εk,i(0), k ≥ 0}, 1 ≤ i ≤
n, are mutually independent i.i.d. random sequences. When
Vk,i(1, Sk) ≥ Vk,i(0, Sk), agent i chooses action 1 at time
k+ 1 to maximize its utility. This process has update rule (2)
with hi = h′i−

∑n
j=1 wij , wij = 2w′ij , and F (·) being the cdf

of εk,i(0) − εk,i(1). It is of interest whether we can recover
conformity relationships between agents based on the observed
binary actions.

B. Related Work

For identification of BNs, most researches focus on estimat-
ing logical functions of deterministic BNs [2], [17], [23]. The
problem considered in this paper, however, is to estimate the
adjacency matrix, which constitutes the weights of Boolean
threshold functions in a probabilistic BN. Identification of
BNs with perturbation is studied in [24] without performance

analysis. Identifiability and estimation of probabilistic BNs
are studied rigorously in [25], [26]. [25] considers admissible
Boolean threshold functions, but these functions do not fit into
our case. In [26], authors investigate identification of logical
Boolean functions, but here we focus on a specific model
with threshold functions. Furthermore, [25], [26] assume that
observation data comprises independent samples instead of
time series.

Results on identification of binary choice models in the field
of econometric can be found in [27], which establishes suffi-
cient conditions for identifiability. Many estimation methods
and their asymptotic properties have, however, been studied
under static games and situations where the network size tends
to infinity [28], [29].

Probit models are a class of binary choice models relevant
to our problem. Such a model has a binary outcome that is
one if an unobserved continuous response exceeds a threshold
and is zero otherwise. In the classic probit model [30], the
unobserved response is the sum of a linear combination of
multiple inputs and a Gaussian noise. Generalizations of the
classic model include cases where the unobserved response
depends on previous binary choices and the noise sequence
is correlated and not necessarily Gaussian [31], [32]. To
address identifiability issues, researchers have introduced var-
ious identification constraints [33]; for instance, the threshold
and the noise variance can be assumed to be zero and one,
respectively. A common estimation approach for the classic
probit model follows the maximum likelihood framework [30].
Other estimation methods for dynamic probit models have
been proposed in the literature. For example, [32] obtains
asymptotic properties of the smoothed maximum score estima-
tor, and [31] investigates the conditional likelihood estimator
and the generalized method of moments. In this paper, we
study how to estimate networks by using online algorithms
rather than batch methods.

There is a growing interest on network inference for so-
cial dynamical systems, but not many researches focus on
estimating networks out of quantized data [7]. The authors
of [34] study a network estimation problem for a discuss-
then-vote model, in which individuals display a discrete voting
choice at the end of each discussion. But agents exchange
continuous states during the discussion, and multiple episodes
of the model are necessary for estimation.

In the literature of quantized identification, there are multi-
ple methods not relying on the design of inputs or quantizers.
For example, the maximum likelihood method is used in [10],
[35]–[37]. Authors in [10] propose an online algorithm, based
on the expectation-maximization (EM) algorithm and quasi-
Newton method, to estimate autoregressive moving average
models with quantized observations. But to achieve the best
performance, quantizers need to be known and adaptive. To
optimize likelihood functions, [35] and [36] use the EM algo-
rithm, and [37] utilizes a variational approximation approach.
Additionally, [11] applies a Bayesian framework. The authors
of [38] propose an algorithm based on a recursive prediction
error method, but both quantizers and the range of parameters
are assumed to be known. This paper applies the maximum
likelihood method to solve the network estimation problem
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with unknown quantization thresholds, and online estimation
is of interest.

C. Contributions

We study a recursive network estimation problem based on
binary-valued data in this paper, motivated by aforementioned
examples. More specifically, we propose an algorithm to recur-
sively estimate the weighted adjacency matrix of a network,
as well as unknown quantization thresholds, out of the state
sequence of a model with binary-valued states.

Our contributions are summarized as follows.
1. Stability of the model is studied as a Markov chain

under a general condition (Theorems 1 and 2). In addition,
we investigate properties of an auxiliary Markov chain, and
show that the stationary distribution of the auxiliary chain can
be uniquely determined by the transition probability matrix of
the original model (Lemma 1 and Theorem 3).

2. Identifiability of system parameters, consisting of a real-
valued weighted adjacency matrix and quantization thresholds,
is analyzed under the noise with non-zero density on the real
line, including the case of standard Gaussian noise (Theo-
rem 4).

3. The network estimation problem is studied via a maxi-
mum likelihood approach, under independent standard Gaus-
sian noise. We define an objective function based on log-
likelihood functions, and verify that the objective function is
strictly concave and attains its unique maximum at the true
parameter vector (Theorem 5).

4. By using stochastic approximation techniques, we pro-
pose a recursive estimation algorithm and prove that it is
strongly consistent (Theorem 6). Furthermore, its convergence
rate is estimated (Theorem 7).

The differences of this paper from the conference ver-
sion [39] are that we add motivating examples, provide de-
tailed proofs of results, further analyze the convergence rate
of the algorithm, and conduct more numerical simulations.

D. Outline and Notation

The remainder of this paper is organized as follows. In Sec-
tion II, the network estimation problem is formulated. Section
III-A studies stability of the model, and Section III-B provides
conditions such that the system parameters are identifiable.
The network estimation problem is cast into an optimization
problem in Section IV-A. We propose a recursive estimation
algorithm in Section IV-B to solve the problem. Section IV-C
investigates asymptotic properties of the estimation algorithm,
including strong consistency and convergence rate. Section V
presents numerical simulations illustrating theoretical results,
and Section VI concludes the paper. To keep the paper fluent,
some proofs are postponed to appendices.

Notation: By boldfaced lower-case or Greek letters we
denote column vectors, and by upper-case letters we denote
matrices and random vectors. We use R, Rn, Rn×m, and ‖·‖ to
represent the set of real numbers, the n-dimensional Euclidean
space, the set of n×m real matrices, and the Euclidean norm of
a vector, respectively. Let 0n, 1n, and ei be the n-dimensional
all-zero vector, the n-dimensional all-one vector, and the unit

vector with i-th entry being one. By ai and ai:j we denote the
i-th entry of vector a and its sub-vector (ai, ai+1, . . . , aj)

T .
For a matrix A ∈ Rn×m, aij , Ai, and AT are used to
represent its (i, j)-th entry, i-th row, and transpose. Define
vec(A) := (a11 a12 · · · a1n a21 · · · a2m · · · anm)T . Denote
the absolute value of x ∈ R by |x|, |a| := (|a1|, . . . , |an|)T ,
and |A| := (|aij |). A matrix A ∈ Rn×n is called stochastic if
A1n = 1n and all its entries are nonnegative, and A is called
absolutely stochastic if |A|1n = 1n.

Let E{Xk}, Xk,i, and Xk,i:j be the expectation, the i-th en-
try, and the sub-vector (Xk,i, Xk,i+1, . . . , Xk,j)

T of a random
vector Xk, k ≥ 0. For a, b ∈ R, denote a ∨ b := max{a, b}
and a ∧ b := min{a, b}. Define Sn as the Descartes product
Sn = ×ni=1Si, where Si = {0, 1}, 1 ≤ i ≤ n. I[property]

is the indicator function equal to 1, if the property in the
bracket holds, and equal to 0 otherwise. The gradient and the
Hessian of f(x) with respect to x are denoted by ∇xf(x)
and ∇2

xf(x), respectively. For two sequences {ak} and {bk}
with ak ∈ Rn and bk 6= 0, k ≥ 1, ak = O(bk) means that
‖ak/bk‖ ≤ C for all k ≥ 1 and some positive number C, and
ak = o(bk) means that limk→∞ ‖ak/bk‖ = 0. Let [·] be the
rounding function such that [k+ 0.5] = k+ 1 for all integer k
and [x] is the nearest integer of x for all other x ∈ R, and
let [x] := ([x1], . . . , [xn])T for x ∈ Rn, i.e., the entry-wise
rounding of x.

For a homogeneous and finite-state Markov chain {Xk} in
a state space X , the transition probability from x to y is
P (x, y) := P{X1 = y|X0 = x}, and the k-step transition
probability from x to y is P k(x, y) := P{Xk = y|X0 = x}
for all x, y ∈ X . We say that y is reachable from x, if there
exists k ≥ 1 such that P k(x, y) > 0. The Markov chain is said
to be irreducible, if y is reachable from x for all x, y ∈ X .
The greatest common divisor of set {k ≥ 1 : P k(x, x) > 0} is
called the period of x, denoted by d(x). The Markov chain is
aperiodic if d(x) = 1 for all x ∈ X . A probability distribution
π on X , which is a row vector, is referred to as a stationary
distribution of {Xk}, if π(y) =

∑
x∈X π(x)P (x, y) for all

y ∈ X .

II. PROBLEM FORMULATION

A. Problem

In the sequel, suppose that the network size n ≥ 2. The
considered model with binary-valued states is as follows:

Yk+1 = ASk +Dk,

Sk = Q(Yk, c),
(3)

where k ≥ 0, Yk = (Yk,1, . . . , Yk,n)T , Dk = (Dk,1, . . . ,
Dk,n)T , Sk = (Sk,1, . . . , Sk,n)T are the unobserved re-
sponse, the noise, and the state vector at time k, respec-
tively. A ∈ Rn×n is the weighted adjacency matrix, and
c = (c1, . . . , cn)T ∈ Rn is the unknown quantization thresh-
old vector. Q(Yk, c) := (I[Yk,1≥c1], . . . , I[Yk,n≥cn])

T is the
intrinsic quantizer. See Fig. 1 for an illustration of this system.

For the weighted adjacency matrix A, we do not assume
that it is primitive (corresponding to the strong connectivity of
the network) or row stochastic. Negative weights, representing
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Fig. 1. The focus of this paper is to recursively estimate the weighted
adjacency matrix A = (aij) and the quantization threshold c out of state
sequence {Sk}.

antagonistic relationships, are also permitted. Instead of as-
suming that the entries of A are integers, this paper considers a
more general case that A is real-valued in order to characterize
the influence strength between agents [7].

In this paper we study the following two problems:
Problem 1. Provide conditions such that real-valued param-
eters A and c are identifiable from the binary-valued state
sequence {Sk}.
Problem 2. For identifiable parameters A and c, design a
recursive estimation algorithm using the binary-valued state
sequence {Sk} and analyze the convergence of the algorithm.

B. Motivating Examples Revisited

We briefly revisit the motivating examples to show that they
fit into System (3). System (1), the model of Example 1, is
actually the same as System (3). System (2), the model of
Example 2, is equivalent to System (3) with ci = −hi =
−h′i +

∑n
j=1 w

′
ij , aij = wij = 2w′ij , 1 ≤ i, j ≤ n, and

Dk,i = εk,i(1)− εk,i(0), 1 ≤ i ≤ n, k ≥ 0.

III. MODEL ANALYSIS

In this section, we study stability of the system and
identifiability of the system parameters, to ensure that the
network estimation problem is well-posed. To estimate the
network as in Section IV, we need to ensure that the system
provides sufficient diversity, which is related to its stability.
Also, identifiability of parameters is necessary for consistent
estimation. Hence, in Section III-A, Theorems 1 and 2 study
stability of the system, and Lemma 1 and Theorem 3 show the
relationship between the stationary distribution of an auxiliary
Markov chain and the transition probability matrix of the
original system. In Section III-B, Theorem 4 investigates a
general condition for identifiability of parameters.

A. Stability

As in System (3), {Sk, k ≥ 0} is a Markov chain with
finite states. The existence of stationary distributions is an
essential property of Markov chains [40]. We study it under
the following assumption.

Assumption 1. (Noise)
The sequences of system noise {Dk,i, k ≥ 0}, 1 ≤ i ≤ n,
satisfy that
(i) they are i.i.d., mutually independent, and independent
of S0;
(ii) their distributions have density functions positive on R.

Denote the transition probability matrix of {Sk} by P (·, ·),
and we have that

Theorem 1. (Stability)
Suppose that Assumption 1 holds, then Markov chain {Sk} is
irreducible and aperiodic. Moreover, P (u, s) > 0 holds for
all u, s ∈ Sn. Hence, {Sk} converges in distribution, from
any initial condition, to a unique stationary distribution π on
Sn with π(s) > 0 for all s ∈ Sn.

Proof. The conclusion follows from directly computing the
transition probabilities of {Sk}, which is similar to the proof
of Theorem 1 in the conference version [39].

Remark 1. Theorem 1 provides a sufficient condition for the
irreducible and aperiodic properties of {Sk}, and Assump-
tion 1 is strong enough so that we do not need any assump-
tion for the weighted adjacency matrix A. The behaviors of
System (3) and related models have been extensively studied
in different disciplines, e.g., [14], [15], [22], [32], [41]. We
present this theorem to show that the observation sequence
can exhibit sufficient diversity, as long as noise can surpass the
influence of neighbors on an agent. The diversity is necessary
for an accurate estimate of A.

Define S̃k := (STk STk−1)T , k ≥ 1. Note that {S̃k} taking
values in S2n is also a Markov chain. This auxiliary chain is
critical for our estimation. For k ≥ 1 and sk−1, sk, sk+1 ∈
Sn, it holds that

P{S̃k+1 = ((sk+1)T (sk)T )T |S̃k = ((sk)T (sk−1)T )T }
= P{Sk+1 = sk+1|Sk = sk}. (4)

So {S̃k} is aperiodic. For any two states (sT uT )T ,
(xT yT )T ∈ S2n with s, u, x, y ∈ Sn, since {Sk} is
irreducible, there exists k ≥ 1 such that P k(x,u) > 0.
Moreover, from Theorem 1, P (u, s) > 0 holds. Hence it
follows from (4) that

P{S̃k+2 = (sTuT )T |S̃1 = (xTyT )T } > 0,

which implies that {S̃k} is also irreducible. Therefore, we have
the following result.

Theorem 2. (Stability of the auxiliary chain)
Suppose that Assumption 1 holds, then Markov chain {S̃k} is
irreducible and aperiodic. Hence, it converges in distribution,
from any initial condition, to a unique stationary distribution
π̃ on S2n with π̃(s̃) > 0 for all s̃ ∈ S2n.

The next lemma illustrates the relationship between {Sk}
and the stationary distribution of {S̃k}.
Lemma 1. Suppose that Assumption 1 holds, and S̃ is subject
to the stationary distribution of {S̃k}. Then

P{S̃1:n = s̃1:n|S̃n+1:2n = s̃n+1:2n} = P (s̃n+1:2n, s̃1:n),
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for all s̃ ∈ S2n.

Proof. See Appendix A.

Remark 2. This lemma indicates that the conditional proba-
bility of the event {S̃1:n = s̃1:n} given {S̃n+1:2n = s̃n+1:2n}
is the same as the transition probability of {Sk} from s̃n+1:2n

to s̃1:n, for all s̃ ∈ S2n. This accords with the definition
of {S̃k}.

Denote the system parameter vector by

θ := vec
{

(A c)
}

with (A c) ∈ Rn×(n+1), the transition probability matrix of
{Sk} and {S̃k} by Pθ and P̃θ, respectively, and the stationary
distribution of {S̃k} by π̃θ, emphasizing the dependency of
these terms on the parameter vector θ. The following theorem
shows that if {S̃k} has a unique stationary distribution, then
it is uniquely determined by the transition probability matrix
of {Sk}.
Theorem 3. Suppose that Assumption 1 holds, then π̃θ = π̃θ̄
implies Pθ = Pθ̄ for all θ, θ̄ ∈ Rn(n+1).

Proof. It suffices to study the structure of P̃θ. From the defini-
tion of {S̃k}, we know that for (sT uT )T , (xT yT )T ∈ S2n

with s, u, x, and y ∈ Sn, the transition probability from
(xT yT )T to (sT uT )T

P̃θ((x
TyT )T , (sTuT )T )

is positive if and only if u = x. Moreover, for the column
of (sT uT )T in P̃θ, denoted by P̃θ(·, (sT uT )T ), all of its
positive entries are identical to Pθ(u, s).

Note that under Assumption 1, both π̃θ and π̃θ̄ are unique.
Hence from the definition of stationary distribution, it follows
that

π̃θP̃θ(·, (sTuT )T ) = π̃θ((s
TuT )T ),

π̃θ̄P̃θ̄(·, (sTuT )T ) = π̃θ̄((s
TuT )T ).

By assumption, π̃θ = π̃θ̄, so the above obtained property of
P̃θ implies Pθ(u, s) = Pθ̄(u, s). The conclusion follows from
the arbitrariness of s and u.

It should be noted that infinitely many aperiodic and ir-
reducible transition probability matrices can define the same
stationary distribution. But the above theorem indicates that
the stationary distribution of the auxiliary chain is uniquely
determined by the transition probability matrix of {Sk}. This
shows the importance of the auxiliary chain and paves the way
for the identifiability issue discussed in next subsection.

B. Identifiability

We have shown in the preceding subsection that certain
condition ensures diverse information for estimation. Before
proposing the estimation algorithm, it is necessary to study
identifiability of the parameters in System (3). This is because
consistent estimators cannot exist if the parameters are not
identifiable.

For System (3), since the only available data is {Sk}
with Markov property, we define the identifiability from a

statistical perspective, following the idea of [42] (also that
of [43]), that is, “whether the values of the parameters are
uniquely determined by the probability distribution of the
model”. Hence the identifiability problem here is whether the
parameter vector θ can be specified from the finite-dimensional
distribution of {Sk}.

Here two issues need to be clarified.
1. It is known that a discrete-state Markov chain is de-

termined by its initial distribution and transition probability
matrix. But in our problem, the data comes from one sample
path of the Markov chain, and there is no way to distinguish
different initial conditions. Therefore, when discussing identi-
fiability of parameters, it is reasonable to assume that systems
with different parameters start with the same initial distribution
independent of these parameters. The identifiability problem
then reduces to whether the parameters can be uniquely
determined by the transition probability matrix of {Sk}, since
the transition probability matrix uniquely define the finite-
dimensional distribution under a fixed initial condition.

2. The other issue is that we should fix the distribution of
noise when studying identifiability of parameters, otherwise
there could be multiple noise distributions generating the same
state sequence.

Based on the above discussion, we define the identifiability
of parameters as follows by recalling that θ = vec

{
(A c)

}

and that Pθ denotes the transition probability matrix of {Sk}.
Definition 1. The parameters in System (3) are identifiable in
Rn(n+1), if Pθ = Pθ̄ implies θ = θ̄ for all θ, θ̄ ∈ Rn(n+1).

Remark 3. There are also other types of identifiability def-
initions in various disciplines, for example, unique system
representation of input-output relationships [2], [8]. Here
we follow the idea of [42], [43] for global identifiability,
with a justification for the current problem. These definitions,
however, all demonstrate the same idea that system parameters
can be uniquely determined by observations. Also note that it
follows from Theorem 3 and Definition 1 that parameters can
actually be uniquely determined by the stationary distribution
of the auxiliary chain, under Assumption 1. In Section IV
we show that under certain conditions the network estima-
tion problem can be transformed to optimizing a function
depending on the stationary distribution of {S̃k}. This links the
identifiability and consistent estimation of parameters together.

Now we provide a general identifiability condition.

Theorem 4. (Identifiability)
Suppose that Assumption 1 holds, then the parameters in
System (3) are identifiable in Rn(n+1).

Proof. The proof is similar to that of Theorem 3 in the
conference version [39], since under the assumption, the cdf
of the noise is strictly increasing and thus is invertible.

In the following, we adopt the assumption of standard
Gaussian noise, as in System (1).

Assumption 1′. (Gaussian noise)
The sequences of system noise {Dk,i, k ≥ 0}, 1 ≤ i ≤ n,
satisfy that

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195268

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 16,2023 at 10:38:25 UTC from IEEE Xplore.  Restrictions apply. 



6

(i) the same as (i) of Assumption 1;
(ii) their distributions are standard Gaussian.

Under this assumption the following identifiability result
follows from Theorem 4.

Corollary 1. Suppose that Assumption 1′ holds, then param-
eters in System (3) are identifiable in Rn(n+1).

It is easy to observe that, when the variance of the Gaussian
noise is not fixed, there exist a set of systems that define an
identical state sequence:

Proposition 1. Suppose that Assumption 1′ holds, then the
following system has the same transition probability matrix
as that of {Sk} in System (3),

Ȳk+1 = ĀSk + D̄k,

Sk = Q(Ȳk, c̄),
(5)

where Ā = BA, Ȳk = BYk, D̄k = BDk, and Q(Ȳk, c̄) =
(I[Ȳk,1>c̄1], . . . , I[Ȳk,n>c̄n])

T for k ≥ 0, with B = diag(b1, . . . ,
bn) being a diagonal matrix with non-zero diagonal entries,
and c̄i = bici for 1 ≤ i ≤ n.

Remark 4. If for all 1 ≤ i ≤ n, there exists j such that
aij 6= 0, then let bi = (|Ai|1n)−1, 1 ≤ i ≤ n. In this way,
Ā is absolutely stochastic, and {D̄k,i, 1 ≤ i ≤ n} become
Gaussian random variables with different variances. In other
words, if we assume that A is absolutely stochastic, then the
variances of D̄k,i are unconstrained. Hence the absolutely
stochastic condition defines another identification constraint,
in addition to those introduced in probit models [33]. Note
that the actual estimated entity for each agent i is the ratio of
|Ai|1n and the standard deviation of its noise. This conclusion
is similar to that in system identification with the presence of
binary sensors (e.g. [35]).

Motivating examples revisited: For System (1), Corollary 1
and discussions in Section II-B yield that ci and aij , 1 ≤
i, j ≤ n, are identifiable. As discussed in Example 1, there is
no way to separate the effect of γi and tij . But we are still able
to know the relative link strength between agent i and others
from γitij , 1 ≤ i, j ≤ n. Parameters in the utility function
in Example 2 are also identifiable under the assumption of
Theorem 4, because h′i and w′ij can be computed from the
transformation shown in Section II-B.

IV. NETWORK ESTIMATION

The previous section studies stability of the system and
identifiability of parameters, laying a solid foundation for
further investigation of network estimation. In this section,
the network estimation problem is studied under the assump-
tion of standard Gaussian noise. In Section IV-A, we cast
the estimation problem into a concave optimization problem
(Theorem 5), which is related to the stationary distribution
of System (3). The optimization objective function, however,
cannot be obtained directly, so an online algorithm is devel-
oped based on stochastic approximation (SA) techniques in
Section IV-B. Finally, asymptotic properties of the proposed
algorithm are studied in Section IV-C, including strong con-
sistency (Theorem 6) and convergence rate (Theorem 7).

A. An Objective Function and Its Concavity

Recall that θ = vec
{

(A c)
}
∈ Rn(n+1) is the parameter

vector to be estimated, and further denote θ(i) := (Ai ci)
T ∈

Rn+1. To avoid ambiguity, we use θ∗ := vec
{

(A∗ c∗)
}

=
(((θ∗)(1))T , . . . , ((θ∗)(n))T )T to represent the true parameter
vector. Given data {sk, 0 ≤ k ≤ T}, the log likelihood
function is

l(T ; θ)

= logP{Sk = sk, 0 ≤ k ≤ T |θ}

= logP{S0 = s0}+

T∑

k=1

logP{Sk = sk|Sk−1 = sk−1, θ}

= logP{S0 = s0}+

T∑

k=1

n∑

i=1

log gi(s̃
k|θ(i)), (6)

where (s̃k)T := ((sk)T (sk−1)T ), and

gi(s̃|θ(i)) := (1−Φ(ci−Ais̃n+1:2n))s̃iΦ(ci−Ais̃n+1:2n)1−s̃i ,
(7)

for s̃ ∈ S2n and 1 ≤ i ≤ n. Here Φ(x) represents the cdf of
the standard Gaussian variable.

For fixed θ, gi(s̃|θ(i)) is bounded since s̃ takes values
in S2n. Thus, by ergodic properties of Markov chains (Theo-
rem 17.1.7 in [40]), the following equation holds for the chain
{S̃k} and fixed θ a.s.:

lim
T→∞

1

T

T∑

k=1

n∑

i=1

log gi(S̃k|θ(i)) = E

{ n∑

i=1

log gi(S̃|θ(i))

}
,

where S̃ is subject to the stationary distribution of {S̃k}.
Therefore, to solve the online estimation problem, we con-

sider the function of θ

E

{ n∑

i=1

log gi(S̃|θ(i))

}
(8)

as an objective function. It has the following property:

Theorem 5. (Strict concavity of (8))
Under Assumption 1′, the function (8) of θ is strictly concave
over Rn(n+1), and the true parameter vector θ∗ is its unique
maximum point.

Proof. See Appendix B.

Remark 5. This theorem is the key to establish the consistent
estimation of the weighted adjacency matrix A∗, since it shows
that θ∗ = vec

{
(A∗ c∗)

}
can be obtained by optimizing (8).

Therefore, our estimation task turns to seeking the unique
maximum point of this function. Although S̃ cannot be directly
obtained, the observations {S̃k} can be used. We introduce an
SA algorithm in next subsection, and verify that the weighted
adjacency matrix and the quantization thresholds can indeed
be estimated out of the state sequence {Sk}.
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B. Network Estimation Algorithm

We use an SA algorithm to deal with the estimation prob-
lem. For 1 ≤ i ≤ n, denote

Ki(θ
(i), s̃) := ∇θ(i) log gi(s̃|θ(i)), (9)

K(θ, s̃) := (K1(θ(1), s̃), . . . ,Kn(θ(n), s̃))T , (10)

where θ = ((θ(1))T , . . . , (θ(n))T )T , s̃ ∈ S2n, and gi(·) is
defined in (7).

The estimation algorithm is as follows:

θk+1 = (θk + akK(θk, S̃k+1))I[‖θk+akK(θk,S̃k+1)‖≤Mσk
],

σk =

k−1∑

i=1

I[‖θi+aiK(θi,S̃i+1)‖>Mσi
],

(11)
where θk = ((θ

(1)
k )T , . . . , (θ

(n)
k )T )T is the estimate of θ∗ at

time step k, ak is the step size, {Mk} is a sequence of positive
numbers increasingly diverging to +∞, and σ0 = σ1 = 0. The
algorithm starts with a fixed initial vector θ0.

Remark 6. In Algorithm (11), the truncation term (the indica-
tor function) ensures the stability of the algorithm. This term
is not necessary and can be removed if the algorithm without
truncation is naturally bounded a.s.

C. Asymptotic Properties

In this subsection we provide results on asymptotic prop-
erties of Algorithm (11), including strong consistency and
convergence rate. First, we introduce the following step size
condition, which is standard for SA algorithms.

Assumption 2. Let ak be the step size in Algorithm (11),
satisfying ak > 0,

∑∞
k=1 ak =∞, and

∑∞
k=1 a

2
k <∞.

Under Assumptions 1′ and 2, we have the following strong
consistency result, indicating that Algorithm (11) converges to
the true parameter vector θ∗.

Theorem 6. (Strong consistency)
Suppose that Assumptions 1′ and 2 hold, then the estimate θk
in Algorithm (11) converges to θ∗ a.s., that is,

P
{

lim
k→∞

θk = θ∗
}

= 1,

from any fixed initial vector θ0.

Proof. See Appendix C.

Remark 7. Theorem 6 establishes a theoretical guarantee for
Algorithm (11), showing that the weighted adjacency matrix
and the quantization thresholds can be estimated under the
independent standard Gaussian assumption.

For convergence rate, we prove that by choosing an ap-
propriate step size, our proposed algorithm can have a con-
vergence rate arbitrarily close to O(1/

√
k) a.s. Three hyper-

parameters are given in the step size, which can be tuned to
promote the performance of the algorithm in practice.

Assumption 2′. Let ak be the step size in Algorithm (11),
satisfying ak = a

k1−β+γ
with a, γ > 0 and β ∈ [0, 1/2).

Theorem 7. (Convergence rate)
Suppose that Assumptions 1′ and 2′ hold.
If β > 0, then for θk in Algorithm (11),

‖θk − θ∗‖ = o(k−δ), ∀δ ∈
(

0,
1

2
− β

)
, a.s. (12)

If β = 0, then

‖θk − θ∗‖ = o(k−δ), ∀δ ∈ (0, δ′), a.s., (13)

where δ′ = (−aλmax(F )) ∧ 1
2 , F is the Hessian of objective

function (8) at θ∗, and λmax(F ) is the largest eigenvalue of F .

Proof. See Appendix D.

Remark 8. Theorem 7 further characterizes the performance
of Algorithm (11), whose convergence rate can be arbitrarily
close to O(1/

√
k), the upper bound of SA algorithms [44]. In

realistic scenarios one may encounter large-scale networks,
so scalability of an algorithm is important. From the explicit
expression of the gradient function (9) (given by (18) and (19)
in Appendix B), the vector inner product AiS only needs to
be computed once for agent i at each time with complexity
O(n), where n is the number of agents and 1 ≤ i ≤ n.
So to estimate θ(i), a number of O(n) operations are needed
at each time step. Since there are n agents in the network,
we know that the computational complexity of the proposed
algorithm at each time is O(n2). Note that System (3) has
O(n2) parameters to be estimated; this order is the same
as the computational complexity. For large-scale networks,
it is better to take sparsity into consideration, or learn low-
dimensional features of a network such as communities.

There are occasions where the entries of A are integers. For
example, A is the adjacency matrix with aij ∈ {0, 1}. The
consistency of Algorithm (11) means that under the assump-
tions of Theorem 6, the proposed algorithm converges to the
true integer-valued parameters a.s. If there is prior knowledge
about integer-valued parameters, a rounding operation can help
to further improve the performance of the algorithm.

Corollary 2. (Estimation of integer-valued parameters)
Suppose that Assumptions 1′ and 2 hold, and θ∗ is an integer-
valued vector. Then [θk] → θ∗ a.s., where θk is given by
Algorithm (11) and [·] is the entry-wise rounding function
defined in Section I-D. Moreover, this convergence happens in
finite time, i.e., there exists a positive integer-valued random
variable K such that [θk] = θ∗ for all k > K.

Proof. From Theorem 6, there exists a positive integer-valued
random variable K such that ‖θk − θ∗‖ < 1/2 for all k > K.
Hence [θk] = θ∗ for all k > K.

V. NUMERICAL SIMULATIONS

In this section, we first demonstrate the asymptotic prop-
erties of the proposed algorithm, and then show how to deal
with the case where parameters are integers. After that we
compare our algorithm with other approaches. Finally, we
investigate the performance of the algorithm under three kinds
of unmodeled factors.
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(a) Consistency of Algorithm (11).
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(b) Convergence rate of Algorithm (11)
with a nonzero β.
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(c) Convergence rate of Algorithm (11)
with β = 0 under parameter vectors
θ∗i, 1 ≤ i ≤ 4.

Fig. 2. Consistency and convergence rate of Algorithm (11).

A. Consistency and Convergence Rate

This subsection illustrates asymptotic properties of Algo-
rithm (11). First, we consider System (1). We set n = 10 and
γi = 1/2, 1 ≤ i ≤ n, randomly generate c from uniform
distribution on (−1, 1), and generate T = (tij) according to
the Hebbian learning rule [14]

T =

L∑

i=1

pip
T
i − LIn,

where the entries of pi are randomly chosen with equal
probability from the set {1,−1}, and L is learning times. The
explicit meaning of this learning rule is that the connection
between two neurons increases if they activate at the same
time. The term −LIn ensures that the diagonal entries of T are
zero, i.e., no self-loops in the network. We can then obtain A
according to Example 1.

In some references, e.g., [14], [22], system states are
represented by ±1. We note that the dynamics with states
S̆k ∈ {1,−1} is equivalent to System (3), by noticing the
transformation S̆k = 2Sk−1n, Y̆k = 2Yk−A1n, D̆k = 2Dk,
and c̆ = 2c− A1n. The matrix A remains unchanged during
the transformation. Note that the original model in [22] evolves
over continuous time and has asynchronous updates. We can
consider the embedded Markov chain, i.e., keeping only time
steps when agents update, to get a discrete-time process. It
can be verified that the stability results still hold for this
case. When an agent updates, we can compute the estimate
of the parameters corresponding to this agent by using the
proposed algorithm. Knowing the update information is a
common assumption for network estimation, e.g., [45].

For Algorithm (11), we set β = 0.00001, a = 25, and
γ = 500, and run 200 times. Consistency and convergence
rate are shown in Fig. 2. In Fig. 2(a), the blue line represents
the estimates of one entry of A in one sample path, while the
red line represents the true value. The dark (light) gray areas
demonstrate error bands with one (three) standard deviation(s).
This subfigure illustrates the consistency of Algorithm (11). It
can be observed from Fig. 2(b) that the convergence rate is
close to O(1/

√
k) as the first part of Theorem 7 shows. Using

an averaging technique may speed up SA algorithms [44], but
we leave the investigation to future work.

Illustration of the convergence rate result (13) in the case
of β = 0 is shown in Fig. 2(c). Since (13) indicates that the
convergence rate of Algorithm (11) may depend on system
parameters, in this simulation, we consider System (3) with
n = 2 and four parameter vectors, θ∗i, 1 ≤ i ≤ 4, such that

θ∗1 = (0.87 0.13 1 0.62 0.38 0.5)T ,

and (θ∗i)k = (θ∗1)k for 2 ≤ i ≤ 4 and k = 1, 2, 4, 5, 6 but
(θ∗2)3 = 1.3, (θ∗3)3 = 1.5, and (θ∗4)3 = 1.72, where (θ∗i)k
is the k-th component of θ∗i. We run Algorithm (11) 100 times
for each case, with a = 8 and γ = 100. The mean square error
(MSE) is computed, defined by MSEk := 1

N

∑N
i=1 ‖θ

[i]
k −θ∗‖2

with N = 100 and θ[i]
k being the i-th run’s estimate at time k.

It can be computed that λmax(F ) is approximately −0.07,
−0.04, −0.02, and −0.01, respectively for each parameter
vector. For θ∗1 we observe the convergence rate is O(1/

√
k)

as (13). But for System (3) with θ∗i, i = 2, 3, 4, the
convergence rate slows down, indicating its dependency on
parameters. The convergence rate for θ∗4 is approximately
0.215. This rate is better than the lower bound 0.08 provided
by (13), which is conservative. Note that large enough a can
ensure the convergence rate to be O(1/

√
k) according to (13).

B. Estimating Integer-Valued Parameters

There are circumstances where one may know in advance
that the parameters are integers. For example, A is a binary
adjacency matrix. In this subsection we show that the proposed
algorithm combined with a rounding operation can handle this
issue, if it is known in advance that θ∗ is an integer-valued
vector, under the assumption of standard Gaussian noise. The
theoretical result is given in Corollary 2.

We consider System (3) with n = 2 and an integer-valued
parameter vector θ∗, and run the algorithm 100 times, under
standard Gaussian noise. Fig. 3(a) shows the error of the algo-
rithm with rounding operation in one run. It can be seen that
the algorithm recovers the integer-valued parameters in finite
time. Fig. 3(b) demonstrates the accuracy of the algorithm
recovering the true parameters at each time, indicating the
accuracy tends to one as k →∞. The accuracy is defined by
1
N

∑N
i=1 I[[θ[i]k ]=θ∗]

, where N = 100 and θ[i]
k is the estimate of

θ∗ at time k in the i-th run.
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Fig. 3. Performance of Algorithm (11) combined with the rounding operation
when estimating integer-valued parameters.

C. Algorithm Comparison

In this subsection, we apply several other methods to the
network estimation problem for performance comparison.

First, we study the performance of two quantized identifica-
tion algorithms [9], [46]. We note that many quantized iden-
tification algorithms require known quantization thresholds,
except for the maximum likelihood approach and a method for
identifying Wiener systems [47]. However, [47] needs input
signals to be independent standard Gaussian, which cannot
hold in our case. To implement the algorithms in [9] and [46],
we consider System (3) as a collection of n subsystems, Sk
as the quantized inputs of these subsystems, and Sk+1,i as
the output of the i-th subsystem. In addition, we assume c is
known in advance. Behavior of the two algorithms shown in
Fig. 4(a) indicates that they may be valid under more general
situation, though they are designed for identifying FIR sys-
tems. The first example in Section V-A is used for illustration.
We run each algorithm for 100 times and compute the MSE.
All algorithms start with the same initial condition, but the
compared algorithms have larger MSE at the beginning due to
insufficient data. Since Algorithm (11) estimates both A and c,
we compare only the MSE of Algorithm (11) estimating A
with the other two algorithms in Fig. 4(a).

The projection algorithm in [46] is recursive, with com-
putational complexity O(n2) at each time, the same as Al-
gorithm (11). From Fig. 4(a), we can see that the algorithm
in [46] has slightly smaller MSE than Algorithm (11), but this
could result from that it has more information, including the
true value of c and the range of the parameters. The algorithm
in [9] is a batch one with total computational complexity
O(n2l2), where l ≥ n is the number of considered quantized
inputs. At each time step k, we run the algorithm using data
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(a) Performance of the proposed algo-
rithm and those in [9] and [46].
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(b) Performance of the proposed algo-
rithm, the EM algorithm, and that in [46].

Fig. 4. Performance comparison.

{St, 0 ≤ t ≤ k}. The algorithm does not perform well, be-
cause it needs to estimate the probability of {Ais+Dk,i ≥ ci}
for every state s ∈ Sn (considered as an input), 1 ≤ i ≤ n.
Although we can focus on estimating the above probability for
a small number of states which ensure the full rank condition
in [9], there could be only a few samples for each s. This
is because all s ∈ Sn appear with positive probability in
System (3), and |Sn| = 1024 when n = 10. It is unlike the
situation in quantized identification where one can impose a
small number of inputs. This idea of studying the effect of
each input is also introduced in [25], [26], but systems therein
are assumed to have only K variables, where K � n. Thus
algorithms in [25], [26] have less computational complexity
and sample complexity.

Next, we examine methods estimating both A and c. In fact,
by considering the following equivalent form of System (3),
we can regard c as a linear term during estimation,

Y ‡k+1 = ASk − diag(c) +Dk,

Sk = Q(Y ‡k ,0n),

where diag(c) is the diagonal matrix with entries of c on the
diagonal. In this way, we can apply the algorithm in [46] by
taking (STk −1)T as the input. We also test the EM algorithm,
since the unobserved response Y ‡k can be seen as missing
data. It turns out that the maximum likelihood estimator has
the form of the solution to a least-squares problem, and thus
for online estimation, we can rewrite the EM algorithm into
the form of recursive least-squares [10], [35]. We run each
algorithm for 100 times, and Fig. 4(b) shows the result. We
find that in this case the algorithm in [46] has larger MSE than
Algorithm (11). The EM algorithm has smaller MSE when the
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(c) The random communication scenario.

Fig. 5. Performance of Algorithm (11) under unmodeled factors.

data size is small, but its computational complexity is O(n3)
at each time step.

D. Performance Under Unmodeled Factors

We now study the influence of three possible unmodeled
factors on the performance of our algorithm, and consider the
first example in Section V-A.

The first unmodeled factor is that agents may update asyn-
chronously. For simplicity, suppose that at each time agents
update mutually independently and with probability p ∈ (0, 1].
When p = 1, this is System (3). For different p, we compute
the MSE with N = 100 runs. The result is shown in Fig. 5(a),
and it can be found that the proposed algorithm performs well
when p is close to one. This indicates that estimating adjacency
matrix without update information is a tricky task, since one
cannot know when an update happens with the presence of
random noise. But if update information is known, then the
proposed algorithm still works, as discussed in Section V-A.

The second factor is that noise occurs less frequently. More
specifically, for ζ ∈ [0, 1), the true dynamic of Yk is

Yk+1 =

{
ASk with probability ζ,
ASk +Dk,i with probability 1− ζ.

In other words, the agents are affected by noise occasionally.
When ζ is large, noise behaves more like a step or pulse
signal [8]. The MSEs with N = 100 for different ζ are
illustrated in Fig. 5(b). The system is the same as (3) when
ζ = 0. As ζ grows larger, the error of the algorithm increases,
but the MSE remains small for ζ around 0.1.

The final scenario considered here is that the network is
time-varying because of environment randomness or commu-
nication outages. Let {uk,ij , k ≥ 0}, 1 ≤ i, j ≤ n, be mutually
independent sequences of i.i.d. Bernoulli random variables
with mean 1− τ . The true dynamic of Yk is given below

Yk+1,i =
∑

j∈V
aijuk,ijSk,j +Dk,i,

which means that agent i does not receive the state of agent j
with probability τ . The result is demonstrated in Fig. 5(c). The
case of τ = 0 represents the original system. The estimation
error becomes greater for larger τ , but the algorithm performs
better than the two former cases. To sum up, our algorithm is
insensitive to small unmodeled factors.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied a recursive network estimation
problem based on binary data. Stability of the model and
identifiability of the parameters were studied. In particular,
we leveraged a maximum likelihood approach to address the
network estimation problem for the model with real-valued
weighted adjacency matrix under standard Gaussian noise, and
proposed a recursive algorithm based on stochastic approxi-
mation techniques. The strong consistency of the algorithm
was verified, and its convergence rate analyzed.

Future work includes investigation of asymptotic efficiency
of the algorithm, as well as generalization of the model and
noise conditions. Besides, the case with discrete noise is quite
different from the current case with continuous noise, so it
is worth studying in depth. In addition, network estimation
problems based on partial observations or prior information
about edge cardinality are also interesting.
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APPENDIX A
PROOF OF LEMMA 1

Let P̃ be the transition probability matrix of {S̃k}. From the
definition of stationary distribution, we have that for s̃ ∈ S2n

P{S̃ = s̃} =
∑

ũ∈S2n

P{S̃ = ũ}P̃ (ũ, s̃).

Define SF := {ũ ∈ S2n : ũ1:n = s̃n+1:2n}, and it follows
from the definition of {S̃k} that P̃ (ũ, s̃) = 0 for ũ 6∈ SF .
Hence,

P{S̃ = s̃} =
∑

ũ∈SF

P{S̃ = ũ}P̃ (ũ, s̃). (14)

Similarly, we have that

P{S̃n+1:2n = s̃n+1:2n}
=
∑

ṽ∈SL

P{S̃ = ṽ} =
∑

ũ∈SF

∑

ṽ∈SL

P{S̃ = ũ}P̃ (ũ, ṽ), (15)

where SL := {ṽ ∈ S2n : ṽn+1:2n = s̃n+1:2n}. Combining (4)
with (14) and (15), respectively, it holds that

P{S̃ = s̃} =
∑

ũ∈SF

P{S̃ = ũ}P (s̃n+1:2n, s̃1:n),
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P{S̃n+1:2n = s̃n+1:2n}
=
∑

ũ∈SF

∑

ṽ∈SL

P{S̃ = ũ}P (s̃n+1:2n, ṽ1:n)

=
∑

ũ∈SF

∑

w∈Sn
P{S̃ = ũ}P (s̃n+1:2n,w)

=
∑

ũ∈SF

P{S̃ = ũ}.

Hence, the conclusion follows from

P{S̃1:n = s̃1:n|S̃n+1:2n = s̃n+1:2n}

=
P{S̃ = s̃}

P{S̃n+1:2n = s̃n+1:2n}

=

∑
ũ∈SF

P{S̃ = ũ}P (s̃n+1:2n, s̃1:n)
∑

ũ∈SF
P{S̃ = ũ}

= P (s̃n+1:2n, s̃1:n). �

APPENDIX B
PROOF OF THEOREM 5

We first introduce the following property of the standard
Gaussian distribution.

Lemma 2.
It holds that G(x) :=

xφ(x)Φ(x) + φ2(x)

Φ2(x)
∈ (0, C), for x ∈

R, where C is a positive constant, and φ(x) (Φ(x)) represents
the probability density (cumulative distribution) function of the
standard Gaussian random variable.

Proof. For x ≥ 0, G(x) > 0 by definition. For x < 0, from the
inequality (Lemma 2.3.3 in [48]) Φ(x) < −φ(x)/x, x < 0,
it holds that xφ(x)Φ(x) + φ2(x) > −φ2(x) + φ2(x) = 0,
and hence G(x) > 0. To prove that G(x) has an upper
bound, it suffices to note that limx→+∞G(x) = 0 and
limx→−∞G(x) = 1. The latter follows from the L’Hôpital’s
rule and φ′(x) = −xφ(x). �

Proof of Theorem 5: We divide the proof into three steps.
Step 1. We prove the Hessian of E{log gi(S̃|θ(i))} is negative
definite over Rn+1, where θ(i) = (Ai ci)

T .
Note that S̃ takes only finite values, so for 1 ≤ i ≤ n,

∇θ(i)E{log gi(S̃|θ(i))} = E{∇θ(i) log gi(S̃|θ(i))}, (16)

∇2
θ(i)E{log gi(S̃|θ(i))} = E{∇2

θ(i) log gi(S̃|θ(i))}. (17)

The gradient of log gi(S̃|θ(i)) is given by

∂

∂aij
log gi(S̃|θ(i))

=
∂

∂aij
log
[
(1− Φ(ci −AiS))S̃iΦ(ci −AiS)1−S̃i

]

= S̃n+j

(
S̃iφ(ci −AiS)

1− Φ(ci −AiS)
− (1− S̃i)φ(ci −AiS)

Φ(ci −AiS)

)
, (18)

∂

∂ci
log gi(S̃|θ(i))

=
∂

∂ci
log
[
(1− Φ(ci −AiS))S̃iΦ(ci −AiS)1−S̃i

]

= − S̃iφ(ci −AiS)

1− Φ(ci −AiS)
+

(1− S̃i)φ(ci −AiS)

Φ(ci −AiS)
, (19)

where we denote S := S̃n+1:2n for simplicity. The Hessian of
log gi(S̃|θ(i)) is given by

∂2

∂aij∂aik
log gi(S̃|θ(i))

= −S̃n+jS̃n+k

{
S̃iφ(ci −AiS)

(1− Φ(ci −AiS))2

·
[
φ(ci −AiS)− (ci −AiS)(1− Φ(ci −AiS))

]

+
(1− S̃i)φ(ci −AiS)

Φ2(ci −AiS)

·
[
(ci −AiS)Φ(ci −AiS) + φ(ci −AiS)

]}

= −S̃n+jS̃n+k[S̃iG(AiS − ci) + (1− S̃i)G(ci −AiS)]

= −S̃n+jS̃n+kḠi(θ
(i)), (20)

∂2

∂aij∂ci
log gi(S̃|θ(i))

= S̃n+j [S̃iG(AiS − ci) + (1− S̃i)G(ci −AiS)]

= S̃n+jḠi(θ
(i)), (21)

∂2

∂2ci
log gi(S̃|θ(i)) = −Ḡi(θ(i)), (22)

where 1 ≤ i, j, k ≤ n, G(x) = (xφ(x)Φ(x) + φ2(x))/Φ2(x),
and Ḡi(θ

(i)) := [S̃iG(AiS − ci) + (1 − S̃i)G(ci − AiS)].
Lemma 2 and the boundedness of S̃ indicate that Ḡi(θ(i)) ≥
M(θ(i)) > 0 for all θ(i) ∈ Rn+1, where M(θ(i)) is a positive
constant depending only on θ(i).

Hence, from (17), (20), (21), and (22), we have that

∇2
θ(i)E{log gi(S̃|θ(i))}

= E

{
−Ḡi(θ(i))

(
S̃n+1:2n

−1

)(
S̃Tn+1:2n − 1

)}

≤ E
{
−M(θ(i))

(
S̃n+1:2n

−1

)(
S̃Tn+1:2n − 1

)}

= −M(θ(i))E

{(
S̃n+1:2n

−1

)(
S̃Tn+1:2n − 1

)}
.

We know from Theorem 2 that P{S̃n+1:2n = 0n} > 0. Thus,
E
{∥∥(S̃Tn+1:2n − 1

)
x
∥∥2} ≥ x2

n+1P{S̃n+1:2n = 0n} > 0,
for any x ∈ Rn+1 with xn+1 6= 0. If x ∈ Rn+1 satisfies
xn+1 = 0 but xi 6= 0 for some 1 ≤ i ≤ n, then similarly
E
{∥∥(S̃Tn+1:2n − 1

)
x
∥∥2} ≥ x2

iP{S̃n+1:2n = ei} > 0.
This fact means that E{(S̃Tn+1:2n −1)T (S̃Tn+1:2n −1)} is

positive definite. Therefore,∇2
θ(i)

E{log gi(S̃|θ(i))} is negative
definite over Rn+1.
Step 2. Note that

∇θE{
∑n
i=1 log gi(S̃|θ(i))}

= (∇θ(1)E{log g1(S̃|θ(1))}, . . . ,∇θ(n)E{log gn(S̃|θ(n))})T ,
and ∇2

θE
{∑n

i=1 log gi(S̃|θ(i))
}

is a block diagonal matrix
with matrices

∇2
θ(1)E{log g1(S̃|θ(1))}, . . . ,∇2

θ(n)E{log gn(S̃|θ(n))}
at the diagonal line. So ∇2

θE
{∑n

i=1 log gi(S̃|θ(i))
}

is neg-
ative definite over Rn(n+1), and E

{∑n
i=1 log gi(S̃|θ(i))

}
is

strictly concave from Proposition 1.2.6 in [49].

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195268

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 16,2023 at 10:38:25 UTC from IEEE Xplore.  Restrictions apply. 



12

Step 3. Finally, we show that θ∗ is a root of equation

∇θE{
∑n
i=1 log gi(S̃|θ(i))} = 0n(n+1).

From Step 2, it suffices to show that for 1 ≤ i ≤ n, (θ∗)(i) =
(A∗i c

∗
i )
T is a root of equation

∇θ(i)E{log gi(S̃|θ(i))} = 0n+1.

Again denote S := S̃n+1:2n and compute

E

{
∂

∂aij
log gi(S̃|θ(i))

}

=
∑

s̃∈S2n

P{S̃ = s̃} ∂

∂aij
log gi(s̃|θ(i))

=
∑

s∈Sn,s̃i∈S

P{S = s, S̃i = s̃i}

· ∂

∂aij
log
[
(1− Φ(ci −Ais))s̃iΦ(ci −Ais)1−s̃i

]

=
∑

s∈Sn

∑

s̃i∈S

P{S = s}P{S̃i = s̃i|S = s}

· ∂

∂aij
log
[
(1− Φ(ci −Ais))s̃iΦ(ci −Ais)1−s̃i

]

=
∑

s∈Sn
P{S = s}

[
P{D1,i ≥ c∗i −A∗i s} ·

sjφ(ci −Ais)

1− Φ(ci −Ais)

− P{D1,i < c∗i −A∗i s} ·
sjφ(ci −Ais)

Φ(ci −Ais)

]

=
∑

s∈Sn
P{S = s}

[
(1− Φ(c∗i −A∗i s)) · sjφ(ci −Ais)

1− Φ(ci −Ais)

− Φ(c∗i −A∗i s) · sjφ(ci −Ais)

Φ(ci −Ais)

]
,

for 1 ≤ j ≤ n, where the penultimate equation follows
from Lemma 1 and S = {0, 1}. The above equation is
zero when θ(i) = (θ∗)(i). The argument is similar for
E{ ∂

∂ci
log gi(S̃|θ(i))}. From step 2 and Proposition 2.1.2

in [49], θ∗ is the unique global maximum. �

APPENDIX C
PROOF OF THEOREM 6

We need the following conditions to ensure convergence.
A1. ak > 0,

∑∞
k=1 ak =∞,

∑∞
k=1 a

2
k <∞.

A2. There is a continuously differentiable function (not nec-
essarily being nonnegative) v(·) : Rn(n+1) → R such that for
K(θ) := E{K(θ, S̃)}, where S̃ is subject to the stationary
distribution of {S̃k}, it holds that for any d2 > d1 > 0,

sup
d1≤d(θ,J)≤d2

KT (θ)vθ(θ) < 0,

where J := {θ ∈ Rn(n+1) : K(θ) = 0n(n+1)}, d(θ, J) =
infη{‖θ − η‖ : η ∈ J}, and vθ denotes the gradient of v.
Also, v(J) := {v(θ) : θ ∈ J} is nowhere dense. Moreover,
v(0) < inf‖θ‖=d0 v(θ) for some d0 > 0.
A3. K(·, ·) is locally Lipschitz-continuous in the first argu-
ment, i.e., for any fixed L > 0,

‖
(
K(θ, η)−K(κ, η)

)
I[‖θ‖≤L,‖κ‖≤L]‖ ≤ cL‖θ−κ‖g(η), (23)

where cL is a constant depending on L, and g(η) is a
measurable function R2n → R.
A4. (i) {S̃k} is a φ-mixing process, i.e., for

φk := sup
n≥1

sup
A∈Fn1 ,P (A)>0,B∈F∞n+k

|P (AB)− P (A)P (B)|
P (A)

,

φk → 0 as k → +∞, where F ji := σ(S̃k, i ≤ k ≤ j).

(ii) µ2 := sup
k
E{(g2(S̃k+1) + ‖K(0, S̃k+1)‖2)|Fk1 } <∞,

λ2 := E{(g2(S̃) + ‖K(0, S̃)‖2)} <∞,

and Eµ2 <∞, where g(·) is defined in (23).
(iii) ψk := supA∈Bm

∣∣P (S̃k ∈ A)−P (S̃ ∈ A)| → 0, k →∞,
where Bm is the Borel σ-algebra of Rm.

Under conditions A1-A4, Theorem 2.5.1 in [44] ensures
d(θk, J

∗) → 0 a.s., as k → ∞, where J∗ is a connected
subset of the closure of J . So to verify strong consistency of
Algorithm (11), we validate the conditions A1-A4.

Proof of Theorem 6: First note that condition A1 is the
same as Assumption 2.

Let v(θ) = −E{∑1≤i≤n log gi(S̃|θ(i))}, and it is non-
negative by the definition of gi in (7). From Step 1
in the proof of Theorem 5, vθ(θ) = −E{K(θ, S̃)} =
−E{∇θ

∑
1≤i≤n log gi(S̃|θ(i))}. Since S̃ takes finite number

of values, Assumption 1′ implies that vθ(θ) is continuous.
Also, note that J = {K(θ) = 0} = {θ∗} by Theorem 5,

and

sup
d1≤d(θ,J)≤d2

KT (θ)vθ(θ) = −‖E{K(θ, S̃)}‖2 < 0,

for any d2 > d1 > 0, because θ∗ is the only root of K(θ)
from Theorem 5.

From Theorem 2, π∗ := mins̃∈S2n

{
P{S̃ = s̃}

}
> 0.

For the cumulative distribution function of standard Gaussian,
Φ(·), there exist constants M1 < 0 and M2 > 0 such that
Φ(x) < exp{−v(0)/π∗} for x < M1 and 1 − Φ(x) <
exp{−v(0)/π∗} for x > M2. Let M = |M1| ∨ M2 and
d0 =

√
4n2 + n(M+1). Then for ‖θ0‖ = d0, if there exists cj

such that |cj | ≥M+1, then supposing first cj ≥M+1 > M ,
we have that

v(θ0) = −E{∑n
i=1 log gi(S̃|θ(i)

0 )}
≥ −∑n

i=1 log gi(ũ|θ(i)
0 )P{S̃ = ũ}

≥ − log gj(ũ|θ(j)
0 )P{S̃ = ũ}

= − log(1− Φ(cj))P{S̃ = ũ} > v(0),

where ũ ∈ S2n is a vector with ũj = 1 and ũn+1:2n = 0n, the
first and the second inequalities follow from− log gi(S̃|θ(i)

0 ) ≥
0, 1 ≤ i ≤ n, and the second equation follows from the
definition of gi and ũ. If cj < −(M + 1), then choose
ũ such that ũj = 0 and ũn+1:2n = 0n. Hence, v(θ0) ≥
−π∗ log Φ(cj) > v(0).

If |ci| < M + 1 for all 1 ≤ i ≤ n, then there must
exist aij such that |aij | ≥ 2(M + 1). Otherwise, ‖θ0‖2 <
n24(M + 1)2 + n(M + 1)2 = d2

0. Suppose that |a11| >
2(M + 1) for convenience, and as above suppose further that
a11 ≥ 2(M + 1). Then c1 − a11 ≤ −(M + 1) < −M since
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|ci| < M + 1. Thus, selecting a vector w̃ ∈ S2n such that
w̃j = 0 and w̃n+1:2n = 1n, analogously we have that v(θ) ≥
−π∗ log Φ(c1 − a11) > v(0). Therefore, we have showed that
there exists d0 > 0 such that v(0) < inf‖θ0‖=d0 v(θ0) and
hence validate A2.

Apropos of A3, for θ̄ and θ̂ such that ‖θ̄‖, ‖θ̂‖ ≤ L with
L > 0 fixed and z̃ ∈ R2n,

‖K(θ̄, z̃)−K(θ̂, z̃)‖ ≤
n∑

i=1

‖Ki(θ̄
(i), z̃)−Ki(θ̂

(i), z̃)‖

≤
n∑

i=1

n+1∑

j=1

∥∥∥∥
∂

∂θ
(i)
j

log gi(z̃|θ(i))
∣∣
θ(i)=θ̄(i)

− ∂

∂θ
(i)
j

log gi(z̃|θ(i))
∣∣
θ(i)=θ̂(i)

∥∥∥∥

≤
n∑

i=1

n+1∑

j=1

∥∥∥∥∇θ(i)
( ∂

∂θ
(i)
j

log gi(z̃|θ(i))
)∣∣
θ(i)=θ̃(i)

∥∥∥∥

· ‖θ̄(i) − θ̂(i)‖

≤ εLh(z̃)

n∑

i=1

‖θ̄(i) − θ̂(i)‖

≤ εL ·
√
nh(z̃) · ‖θ̄ − θ̂‖ := εL · g(z̃) · ‖θ̄ − θ̂‖, (24)

where the third inequality follows from the mean value the-
orem, θ̃(i) = (1 − λ)θ̄(i) + λθ̂(i) for 1 ≤ i ≤ n and some
λ ∈ (0, 1), and the fourth inequality can be obtained from the
boundedness of (20), (21), and (22) for ‖θ‖ ≤ L, with some
bounded function εLh(z̃).

Since {S̃k} is an aperiodic irreducible finite-state Markov
chain from Theorem 2, it is φ-mixing [50]. We also have that
g2(S̃k+1) + ‖K(0, S̃k+1)‖2 and E{g2(S̃) + ‖K(0, S̃)‖2} are
bounded because S̃k takes value only in S2n. In addition,
Theorem 4.9 in [51] and Theorem 2 imply that ψk → 0 as
k →∞. Therefore, A4 holds, and the conclusion follows from
Theorem 2.5.1 in [44] by noticing that J = {θ∗}. �

APPENDIX D
PROOF OF THEOREM 7

Recall K(θ) = E{K(θ, S̃)}, where K(θ, S̃) is defined
in (10) and S̃ is subject to the stationary distribution of {S̃k}.
We know from Theorem 5 that K(θ) has a single root θ∗.
In addition, it is differentiable at θ∗, so its Taylor expansion
at θ∗ is K(θ) = F (θ − θ∗) + δ(θ), where δ(θ∗) = 0 and
δ(θ) = o(‖θ − θ∗‖) as θ → θ∗.

Consider the following conditions.
A1’. ak > 0, ak → 0 as k →∞,

∑∞
k=1 ak =∞, and

ak − ak+1

akak+1
→ α ≥ 0, k →∞. (25)

A3’. K(θ) is measurable and locally bounded, and is differ-
entiable at θ∗ such that as θ → θ∗

K(θ) = F (θ − θ∗) + δ(θ), δ(θ∗) = 0, δ(θ) = o(‖θ − θ∗‖).
(26)

The matrix F is stable (all its eigenvalues are with negative
real parts). In addition, F + αδI is also stable, where α and
δ are given by (25) and (27), respectively.

A4’. For the sample path ω under consideration the obser-
vation noise εk := K(θk−1, S̃k) − K(θk−1), k ≥ 1, can be
decomposed into two parts εk = ε′k + ε′′k such that

∞∑

k=1

a1−δ
k ε′k+1 <∞, ε′′k+1 = O(aδk), (27)

for some δ ∈ (0, 1].
From Appendix C we know that under Assumption 1′,

condition A2 holds with J = {θ∗}. The following result
characterizes convergence rate of Algorithm (11) under the
preceding conditions.

Lemma 3. (Theorem 3.1.1 in [44])
Assume A1’, A3’, and A4’ hold. In addition, A2 holds with
J = {θ∗}. Then for those sample paths for which (27) holds,
θk given by Algorithm (11) converges to θ∗ with the following
convergence rate:

‖θk − θ∗‖ = o(aδk), (28)

where δ is the one given in (27).

We now prove the following auxiliary lemma.

Lemma 4. For fixed θ ∈ Rn(n+1) and z̃ ∈ S2n, the series

K̂(θ, z̃) :=

∞∑

k=0

( ∑

z̃′∈S2n

K(θ, z̃′)P̃ k(z̃, z̃′)−K(θ)

)
(29)

converges, and it is a solution of the following Poisson
equation

K(θ, z̃)−K(θ) = K̂(θ, z̃)−
∑

z̃′∈S2n

K̂(θ, z̃′)P̃ (z̃, z̃′), (30)

where P̃ (·, ·) and P̃ k(·, ·) are the transition probability matrix
and k-step transition probability matrix of {S̃k}, respectively.
P̃ 0(z̃, z̃′) = 1 if z̃′ = z̃, and P̃ 0(z̃, z̃′) = 0 otherwise.

Proof. Note that
∥∥∥∥
∑

z̃′∈S2n

K(θ, z̃′)P̃ k(z̃, z̃′)−K(θ)

∥∥∥∥

=

∥∥∥∥
∑

z̃′∈S2n

K(θ, z̃′)P̃ k(z̃, z̃′)−K(θ, z̃′)π̃(z̃′)

∥∥∥∥

≤
∑

z̃′∈S2n

‖K(θ, z̃′)‖ · |P̃ k(z̃, z̃′)− π̃(z̃′)|

≤ max
z̃′∈S2n

‖K(θ, z̃′)‖ ·
∑

z̃′∈S2n

|P̃ k(z̃, z̃′)− π̃(z̃′)|

≤ max
z̃′∈S2n

‖K(θ, z̃′)‖ · C1ρ
k,

where π̃ is the stationary distribution of {S̃k}, and the last
inequality follows from the convergence theorem of finite-state
Markov chains (Theorem 4.9 in [51]) for some C1 > 0, ρ ∈
(0, 1), and any z̃ ∈ S2n. Hence,

‖K̂(θ, z̃)‖ ≤ max
z̃′∈S2n

‖K(θ, z̃′)‖ ·
∞∑

k=0

C1ρ
k

:= C2 · max
z̃′∈S2n

‖K(θ, z̃′)‖, (31)
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where C2 is a positive constant. Thus (30) is obtained from
∑

z̃′∈S2n

K̂(θ, z̃′)P̃ (z̃, z̃′)

=
∑

z̃′∈S2n

∞∑

k=0

∑

z̃′′∈S2n

(K(θ, z̃′′)P̃ k(z̃′, z̃′′)−K(θ))P̃ (z̃, z̃′)

=

∞∑

k=0

∑

z̃′′∈S2n

∑

z̃′∈S2n

(K(θ, z̃′′)P̃ k(z̃′, z̃′′)−K(θ))P̃ (z̃, z̃′)

=

∞∑

k=0

( ∑

z̃′′∈S2n

K(θ, z̃′′)P̃ k+1(z̃, z̃′′)−K(θ)

)

= K̂(θ, z̃)− (K(θ, z̃)−K(θ)). �

Proof of Theorem 7: Note that Assumption 2′ satisfies
the conditions in Assumption 2, so under the assumptions of
Theorem 7, Algorithm (11) converges a.s. Thus, the algorithm
is bounded a.s. That is, ‖θk‖ ≤ L, ∀k ≥ 0, where L is a
positive random variable.

First note that ak−ak+1

akak+1
→ 0 when β ∈ (0, 1/2). Thus A1’

holds with α = 0. In addition, A2 has been verified in the
proof of Theorem 6. From the definition of K(θ), we know
that F in (26) is in fact the Hessian of E{∑n

i=1 log gi(S̃|θ(i))}
at θ∗. It follows that F is negative definite and consequently
stable from the proof of Theorem 5. Thus A3’ holds as α = 0
for β ∈ (0, 1/2).

Now we show that A4’ holds a.s. for δ ∈ (0, 1 − 1
2(1−β) )

by using (30) and decomposing the noise into three parts:

εk = K(θk−1, S̃k)−K(θk−1)

= K̂(θk−1, S̃k)−
∑

z̃∈S2n
K̂(θk−1, z̃)P̃ (S̃k, z̃)

= I
(1)
k + I

(2)
k + I

(3)
k ,

where for k ≥ 2,

I
(1)
k := K̂(θk−1, S̃k)−

∑
z̃∈S2n

K̂(θk−1, z̃)P̃ (S̃k−1, z̃),

I
(2)
k :=

∑
z̃∈S2n

K̂(θk−1, z̃)P̃ (S̃k−1, z̃)

−
∑

z̃∈S2n
K̂(θk−2, z̃)P̃ (S̃k−1, z̃),

I
(3)
k :=

∑
z̃∈S2n

K̂(θk−2, z̃)P̃ (S̃k−1, z̃)

−
∑

z̃∈S2n
K̂(θk−1, z̃)P̃ (S̃k, z̃).

It follows that K̂(θk, S̃k+1)I[‖θk‖≤N ] is bounded a.s. for
fixed N > 0 from Lemma 4. Denote F ji := σ{S̃k, i ≤ k ≤ j},
it holds that for N > 0

E{K̂(θk, S̃k+1)I[‖θk‖≤N ]|Fk1 }(ω)

=

∫
K̂(θk(ω), z̃)I[‖θk‖≤N ]dF

ω
k+1(z̃;Fk1 )

=

∫
K̂(θk(ω), z̃)I[‖θk‖≤N ]dF

ω
k+1(z̃;Fkk )

=
∑

z̃∈S2n
K̂(θk(ω), z̃)I[‖θk‖≤N ]P̃ (S̃k(ω), z̃),

where ω is a sample path, Fωk+1(·;Fk1 ) is the conditional
distribution of S̃k+1 given Fk1 , and the second equality follows
from the Markov property of {S̃k}. Thus

I
(1,N)
k := K̂(θk−1, S̃k)I[‖θk−1‖≤N ]

−
∑

z̃∈S2n
K̂(θk−1, z̃)I[‖θk−1‖≤N ]P̃ (S̃k−1, z̃)

is a martingale difference sequence for any N > 0. For δ ∈
(0, 1 − 1

2(1−β) ) and β ∈ (0, 1/2), it holds that 2(1 − β)(1 −
δ) > 1, so

∑∞
k=1 a

2(1−δ)
k < ∞ for ak = a/(k1−β + γ), and∑∞

k=1 a
1−δ
k I

(1,N)
k+1 <∞ for N > 0 by Theorem B.6.1 in [44].

As discussed above, from Theorem 6, for a fixed sample
path ω ∈ Ω0 with P (Ω0) = 1, θk(ω) → θ∗ as k → ∞.
So there exists an integer L = L(ω) > 0 such that for all
k ≥ 0, ‖θk(ω)‖ ≤ L. Hence set N = L, we have that for
δ ∈ (0, 1− 1

2(1−β) )

∞∑

k=1

a1−δ
k I

(1)
k+1(ω) =

∞∑

k=1

a1−δ
k I

(1,L)
k+1 (ω) <∞.

Therefore,
∑∞
k=1 a

1−δ
k I

(1)
k+1 <∞ a.s.

To analyze I(2)
k , first we have for θ̄, θ̂ with ‖θ̄‖, ‖θ̂‖ ≤ L

and z̃ ∈ S2n,

‖K̂(θ̄, z̃)− K̂(θ̂, z̃)‖

=

∥∥∥∥
∞∑

k=0

∑

z̃′∈S2n

(K(θ̄, z̃′)−K(θ̂, z̃′))(P̃ k(z̃, z̃′)− π̃(z̃′))

∥∥∥∥

≤
∞∑

k=0

∑

z̃′∈S2n

‖K(θ̄, z̃′)−K(θ̂, z̃′)‖ · |P̃ k(z̃, z̃′)− π̃(z̃′)|

≤
∞∑

k=0

∑

z̃′∈S2n

εL · g(z̃′) · ‖θ̄ − θ̂‖ · |P̃ k(z̃, z̃′)− π̃(z̃′)|

= εL · max
z̃∈S2n

g(z̃) · ‖θ̄ − θ̂‖ ·
∞∑

k=0

∑

z̃′∈S2n

|P̃ k(z̃, z̃′)− π̃(z̃′)|

≤ εLC2 max
z̃∈S2n

g(z̃) · ‖θ̄ − θ̂‖, (32)

where the second inequality follows from (24) in the proof of
Theorem 6, the last inequality is obtained as (31) in the proof
of Lemma 4 with the constant C2, and π̃ is the stationary
distribution of {S̃k}.

Hence, for the fixed sample path ω such that ‖θk(ω)‖ ≤ L,
∀k ≥ 1, (we omit ω in the following for simplicity)
∥∥∥∥
∑

z̃∈S2n

K̂(θk, z̃)P̃ (S̃k, z̃)−
∑

z̃∈S2n
K̂(θk−1, z̃)P̃ (S̃k, z̃)

∥∥∥∥

≤
∑

z̃∈S2n

‖K̂(θk, z̃)I[‖θk‖≤L] − K̂(θk−1, z̃)I[‖θk−1‖≤L]‖

· P̃ (S̃k, z̃)

≤ εLC2 · max
z̃∈S2n

g(z̃) · ‖θk − θk−1‖ ·
∑

z̃∈S2n

P̃ (S̃k, z̃)

= εLC2 · max
z̃∈S2n

g(z̃) · ak‖K(θk−1, S̃k)‖

= εLC2 · max
z̃∈S2n

g(z̃) · ak‖K(θk−1, S̃k)I[‖θk−1‖≤L]‖ ≤ C3ak,

where the second inequality follows from (32), and C3 is a
constant depending on ω. Hence, ‖I(2)

k+1‖ ≤ C3ak, and I(2)
k+1 =

O(aδk) for all δ ∈ (0, 1].
As for I(3)

k , rewrite
∑∞
k=1 a

1−δ
k I

(3)
k+1 as

∞∑

k=1

∑

z̃∈S2n

a1−δ
k

(
K̂(θk−1, z̃)P̃ (S̃k, z̃)− K̂(θk, z̃)P̃ (S̃k+1, z̃)

)
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=

∞∑

k=1

∑

z̃∈S2n

a1−δ
k K̂(θk−1, z̃)P̃ (S̃k, z̃)

−
∞∑

k=1

∑

z̃∈S2n

a1−δ
k K̂(θk, z̃)P̃ (S̃k+1, z̃)

=

∞∑

k=0

∑

z̃∈S2n

a1−δ
k+1K̂(θk, z̃)P̃ (S̃k+1, z̃)

−
∞∑

k=1

∑

z̃∈S2n

a1−δ
k K̂(θk, z̃)P̃ (S̃k+1, z̃)

=

∞∑

k=1

∑

z̃∈S2n

(a1−δ
k+1 − a1−δ

k )K̂(θk, z̃)P̃ (S̃k+1, z̃)

+ a1−δ
1

∑

z̃∈S2n

K̂(θ0, z̃)P̃ (S̃1, z̃). (33)

For the fixed sample path ω such that ‖θk(ω)‖ < L, ∀k > 0,
the first term in (33) is bounded by
∥∥∥∥∥
∞∑

k=1

∑

z̃∈S2n

(a1−δ
k+1 − a1−δ

k )K̂(θk(ω), z̃)P̃ (S̃k+1(ω), z̃)

∥∥∥∥∥

≤
∞∑

k=1

|a1−δ
k − a1−δ

k+1|
( ∑

z̃∈S2n

‖K̂(θk(ω), z̃)‖P̃ (S̃k+1(ω), z̃)

)

=

∞∑

k=1

|a1−δ
k − a1−δ

k+1|

·
( ∑

z̃∈S2n

‖K̂(θk(ω), z̃)I‖θk(ω)‖≤L‖P̃ (S̃k+1(ω), z̃)

)

≤ C4

∞∑

k=1

|a1−δ
k − a1−δ

k+1| = O

( ∞∑

k=1

1

k1+(1−β)(1−δ)

)
,

where the second inequality follows from (31) in the proof of
Lemma 4 for a positive constant C4, and the last equation is
obtained from the following fact. For δ ∈ (0, 1), ak = a

k1−β+γ

and β ∈ (0, 1/2), it holds that

a1−δ
k − a1−δ

k+1

= a1−δ 1

((k + 1)1−β + γ)1−δ

(( (k + 1)1−β + γ

k1−β + γ

)1−δ
− 1
)

∼ a1−δ 1

k(1−β)(1−δ)

((
1 +

1

k

)(1−β)(1−δ)
− 1
)

= O
( 1

k1+(1−β)(1−δ)

)
,

where for two sequences {αk} and {βk} with βk 6= 0, k ≥ 1,
αk ∼ βk means that limk→∞ αk/βk = 1. The second term
of (33) is finite because the algorithm starts with a fixed initial
state θ0.

To sum up, we have shown that
∑∞
k=1 a

1−δ
k ε′k+1 <∞ a.s.,

where ε′k := I
(1)
k +I

(3)
k , for δ ∈ (0, 1− 1

2(1−β) ) and β ∈ (0, 1
2 ).

Also, ε′′k+1 := I
(2)
k+1 = O(aδk) for all δ ∈ (0, 1]. By Lemma 3,

‖θk − θ∗‖ = o(aδk) = O(k−η), η = (1− β)δ. The conclusion
follows from η = (1−β)δ ∈ (0, 1

2−β) for δ ∈ (0, 1− 1
2(1−β) ).

When β = 0, ak−ak+1

akak+1
→ 1

a = α. Similar to the above
argument, we know that A4’ holds a.s. for δ ∈ (0, 1/2).

According to A3’, F + αδI has to be stable. But the max-
imum eigenvalue of F depends on the parameter vector θ∗.
Nevertheless, from the negative definiteness of F , there exists
δ′ ∈ (0, 1/2] such that F + αδI < 0 for all δ ∈ (0, δ′).
In fact, δ′ = (−aλmax(F )) ∧ (1/2), where λmax(F ) is the
largest eigenvalue of F . So for δ ∈ (0, δ′) we have that
‖θk − θ∗‖ = o(k−δ). �
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