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Abstract— In this paper, we discover that the trace of the
division of the optimal output estimation error covariance over
the noise covariance attained by the Kalman–Bucy filter can
be explicitly expressed in terms of the plant dynamics and
noise statistics in a frequency-domain integral characterization.
Towards this end, we examine the algebraic Riccati equation
associated with Kalman–Bucy filtering using analytic function
theory and relate it to the Bode integral. Our approach features
an alternative, frequency-domain framework for analyzing
algebraic Riccati equations and reduces to various existing
related results.

I. INTRODUCTION

The Kalman–Bucy filter [1] is the optimal state estimator
for linear continuous-time systems with white Gaussian
noises. It is well known that the optimal state estimation
error covariance attained by the Kalman–Bucy filter in steady
state satisfies the algebraic Riccati equation [2]–[4], which,
however, does not provide an analytical expression of the
error covariance. Over the years, various upper bounds and
lower bounds have been obtained for the error covariance
(see, e.g., [5] and the references therein). Meanwhile, nonre-
cursive algebraic solutions have been obtained as well (see,
e.g., [3], [6], [7] and the references therein).

In this paper, we develop an alternative approach towards
this problem from the viewpoint of the Bode integral [8].
Bode integral was the first and arguably the best known
result to analyze the fundamental limitations of feedback
control systems using analytic function theory [9]–[15]. In
particular, the Bode integral is implied by the Poisson–Jensen
formula [16]. This line of research has been of continuing
interest to the control community [17], [18], and was related
to information theory in recent years as well [19]–[27];
such results together with [28] inspired us to reexamine the
Kalman–Bucy filter (in steady-state) using analytic function
theory, e.g., the Poisson–Jensen formula, which will be seen
to play an essential role in our analysis.

In particular, we first develop from the Poisson–Jensen
formula a counterpart of Jensen’s formula, based on which
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we obtain an analytical expression of the trace of the
division of the optimal output estimation error covariance
over the noise covariance by the Kalman–Bucy filter; this
is given in terms of the plant dynamics, e.g., the unstable
poles, and the noise statistics in a frequency-domain integral
characterization. The analysis mainly concerns examining the
algebraic Riccati equation associated with the Kalman–Bucy
filter using analytic function theory.

We compare our result with the existing related results
in [29]–[33], and our integral characterization is seen to be
the most generic and reduces to all of them. Specifically,
the case when the plant is stable and the plant output is a
scalar process was considered in [29]. The authors of [30]
then analyzed the case when the plant output is scalar but
the plant is not necessarily stable. The following results in
[31] considered the case when the process noise is relatively
small in variance (and in the limit, zero) compared with the
observation noise. Most recently, the case when the plant
output is a vector process while the observation noise is with
an identity covariance matrix was investigated in [33]. In
addition, discussions on the dual problem in control can be
found in [30], [32].

The remainder of the paper is organized as follows.
Section II introduces the technical preliminaries. Section III
introduces a counterpart of Jensen’s formula. In Section IV,
we examine the Kalman–Bucy filter using algebraic function
theory and presents an integral characterization of the opti-
mal output estimation error covariance. Relevant discussions
and interpretations are also presented. Concluding remarks
are given in Section IV.

For the proofs omitted in this conference version, refer
to the extended version [34]. For analysis and discussions
on the discrete-time Kalman filters, see our parallel work
presented in [35].

II. PRELIMINARIES

In this section, we introduce some relevant notions from
stochastic processes, and briefly review the basic properties
of the Kalman–Bucy filter.

A. Notations and Basic Concepts

In this paper, we consider real-valued continuous zero-
mean random variables and vectors, as well as continuous-
time stochastic processes. We denote random variables and
vectors using boldface letters. The logarithm ln is defined
with base e, and all functions are assumed to be measurable.

A zero-mean stochastic process {x (t)} ,x (t) ∈ Rm is
said to be (asymptotically) stationary [36] if for any t ≥ 0,
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Fig. 1. The Kalman–Bucy filter.

the (asymptotic) correlation matrix

Rx (τ) = lim
t→∞

E
[
x (t+ τ)xT (t)

]
exists. The (asymptotic) power spectrum of {x (t)} ,x (t) ∈
Rm is then defined as

Φx (ω) =

∫ ∞

−∞
Rx (τ) e

−jωτdτ.

It can be verified that Φx (ω) is positive semidefinite. In the
scalar case, we denote Φx (ω) by Sx (ω). For the inversion,

Rx (τ) = lim
t→∞

E
[
x (t+ τ)xT (t)

]
=

1

2π

∫ ∞

−∞
Φx (ω) e

jωτdω.

Moreover, the (asymptotic) covariance matrix of
{x (t)} ,x (t) ∈ Rm is given by

Σx = lim
t→∞

E
[
x (t)xT (t)

]
= Rx (0) =

1

2π

∫ ∞

−∞
Φx (ω) dω.

In the scalar case, Σx reduces to (asymptotic) variance σ2
x.

Moreover, if {x (t)} ,x (t) ∈ Rm is (asymptotically) white,
then Φx (ω) is a constant X for all ω, and

Rx (τ) = lim
t→∞

E
[
x (t+ τ)xT (t)

]
= Xδ (τ) ,

where δ (·) is the Dirac delta function.

B. The Kalman–Bucy Filter

Consider the continuous-time Kalman–Bucy filtering sys-
tem [4] depicted in Fig. 1, where the system is linear time-
invariant (LTI) with state-space model given by{

ẋ (t) = Ax (t) +w (t) ,
y (t) = Cx (t) + v (t) ,

where x (t) ∈ Rm is the state to be estimated, y (t) ∈ Rl

is the system output, w (t) ∈ Rm is the process noise, and
v (t) ∈ Rl is the measurement noise. The system matrices
are A ∈ Rm×m and C ∈ Rl×m, and (A,C) is assumed to
be detectable. Suppose that {w (t)} and {v (t)} are white
Gaussian with covariance matrices

E
[
w (t+ τ)wT (t)

]
= Wδ (τ) , W ≥ 0,

and

E
[
v (t+ τ)vT (t)

]
= V δ (τ) , V > 0,

respectively, and that the initial state x (0) is Gaussian
with covariance Σx(0) satisfying 0 < detΣx(0) < ∞.
Furthermore, {w (t)}, {v (t)}, and x (0) are assumed to be
mutually uncorrelated.

The Kalman–Bucy filter is given by
ẋ (t) = Ax (t) + u (t) ,
y (t) = Cx (t) ,
e (t) = y (t)− y (t) ,
u (t) = K (t) e (t) ,

where x (t) ∈ Rm, y (t) ∈ Rl, e (t) ∈ Rl, and u (t) ∈ Rm.
Herein, K (t) denotes the Kalman gain, which is given by

K (t) = P (t)CTV −1, (1)

where P (t) denotes the state estimation error covariance
matrix as

P (t) = E
[
[x (t)− x (t)] [x (t)− x (t)]

T
]
.

Herein, P (t) is obtained using the Riccati equation

Ṗ (t) = AP (t) + P (t)AT +W − P (t)CTV −1CP (t) ,

with P (0) = E
[
x (0)xT (0)

]
.

It is known that the Kalman–Bucy filtering system con-
verges, i.e., the estimator is asymptotically stable, the state
estimation error {x (t)− x (t)} and the output estimation
error {e (t)} are asymptotically stationary, and {e (t)} is
asymptotically white, under the assumption that the system
(A,C) is detectable. Moreover, in steady state, the optimal
state estimation error covariance matrix

P = lim
t→∞

E
[
[x (t)− x (t)] [x (t)− x (t)]

T
]

attained by the Kalman–Bucy filter satisfies the algebraic
Riccati equation

AP + PAT +W − PCTV −1CP = 0, (2)

whereas the steady-state Kalman gain is given by

K = PCTV −1. (3)

In addition, the optimal steady-state output estimation error
covariance matrix is found to be

Σz−y = lim
t→∞

E
[
[z (t)− y (t)] [z (t)− y (t)]

T
]

= CPCT , (4)

where z (t) = Cx (t) denotes the true value of the system
output (in comparison, y (t) denotes the measured value of
the system output). Moreover, when l = 1, (4) reduces to

σ2
z−y = lim

t→∞
E
[
[z (t)− y (t)]

2
]
.

It is also worth mentioning that

lim
t→∞

E
[
e (t+ τ) eT (t)

]
= V δ (τ) .
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III. A COUNTERPART OF JENSEN’S FORMULA

In this section, we first examine the Poisson–Jensen for-
mula (see, e.g., Appendix C of [16]) for a special class of
analytic functions, and obtain a formula that will be essential
for the rest of the paper.

Proposition 1: Let

f (s) =
p (s)

q (s)
(5)

be a rational transfer function for which the numerator
polynomial p (s) and denominator polynomial q (s) are both
of order m. Suppose that all the poles of f (s) are stable and
that f (s) has no zeros on the imaginary axis. In addition,
suppose that

lim
s→∞

f (s) = 1. (6)

Then,

1

2π

∫ ∞

−∞
ln |f (jω)| dω

= lim
s→∞

1

2
s ln |f (s)|+

m∑
i=1

max {0,< [ϕi]} , (7)

where ϕi denote the zeros of f (s).
The proof of Proposition 1 is omitted due to lack of space.

Note that in the discrete-time case (for the unit disk), Jensen’s
formula is a consequence of the more general Poisson–Jensen
formula [16]. Likewise in the continuous-time case (for the
half plane), (7) is also a consequence of the more general
Poisson–Jensen formula mandating that for every point s0 =
σ0 + jω0, σ0 > 0,

1

π

∫ ∞

−∞

σ0

σ2
0 + (ω − ω0)

2 ln |f (jω)| dω

= ln |f (s0)| −
∑
i

ln

∣∣∣∣ s0 − zi
s0 + z∗i

∣∣∣∣ , (8)

where zi denote the nonminimum-phase zeros of f (s) and
z∗i denote the complex conjugate of zi. As such, (7) as well
as the subsequent (11) may be viewed as the continuous-
time (half-plane) counterparts of the discrete-time (unit-disk)
Jensen’s formula.

More generally, when not necessarily all the poles of
f (s) are stable, we can obtain the following result based
on Proposition 1. The proof of Proposition 2 is also omitted
due to lack of space.

Proposition 2: Let

f (s) =
p (s)

q (s)
(9)

be a rational transfer function for which the numerator
polynomial p (s) and denominator polynomial q (s) are both
of order m. Suppose that f (s) has no zeros on the imaginary
axis and that

lim
s→∞

f (s) = 1. (10)

Then,
1

2π

∫ ∞

−∞
ln |f (jω)| dω

= lim
s→∞

1

2
s ln |f (s)|+

∑
i

max {0,< [ϕi]}

−
∑
j

max {0,< [ηj ]} , (11)

where ϕi denote the zeros of f (s) and ηj denote its poles.

IV. OPTIMAL ERROR COVARIANCE BY THE
KALMAN–BUCY FILTER

We now study the optimal output estimation error co-
variance matrix Σz−y by the continuous-time Kalman–Bucy
filter, which is determined by the plant dynamics and the
noise statistics in an integral characterization. Due to lack of
space, the proof of Theorem 1 is omitted.

Theorem 1: The optimal output estimation error covari-
ance matrix Σz−y by the Kalman–Bucy filter satisfies

tr
(
Σz−yV

−1
)
= tr

(
CPCTV −1

)
=

1

2π

∫ ∞

−∞
ln

[
detΦy (ω)

detV

]
dω

+ 2

m∑
i=1

max {0,< [λi (A)]} , (12)

where

Φy (ω) = C (jωI −A)
−1

W (−jωI −A)
−T

CT + V, (13)

and λi (A) denote the eigenvalues of A.
On the right-hand side of (12), the term

m∑
i=1

max {0,< [λi (A)]} (14)

quantifies the instability of the system [37], [38]. Moreover,
when A is stable, i.e., when all the eigenvalues λi (A) of
matrix A satisfy < [λi (A)] < 0, {y (t)} is stationary and
thus

C (jωI −A)
−1

W (−jωI −A)
−T

CT + V (15)

denotes the power spectrum Φy (ω) of {y (t)}; in general,
however, A needs not to be stable, and hence the function

C (sI −A)
−1

W (−sI −A)
−T

CT + V (16)

is a Popov function (see, e.g., [4], for a detailed discussion).
One key step in the proof of Theorem 1 (see [34])is

1

2π

∫ ∞

−∞
ln

∣∣∣∣det [I + C (jωI −A)
−1

K
]−1

∣∣∣∣ dω
= lim

s→∞

1

2
s

{
ln

∣∣∣∣det [I + C (sI −A)
−1

K
]−1

∣∣∣∣}
+

m∑
i=1

max {0,< [ϕi]}

= −1

2
tr
(
CPCTV −1

)
+

m∑
i=1

max {0,< [λi (A)]} ,

(17)
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where ϕi denote the zeros of det
[
I + C (sI −A)

−1
K
]−1

.
Note also that an alternative proof of (17) is given in [39].

A. Interpretation from the Viewpoint of Bode Integral

As a matter of fact, equation (17), in particular,

1

2π

∫ ∞

−∞
ln

∣∣∣∣det [I + C (jωI −A)
−1

K
]−1

∣∣∣∣ dω
= −1

2
tr
(
CPCTV −1

)
+

m∑
i=1

max {0,< [λi (A)]} ,

(18)

can also be obtained as a consequence of the (continuous-
time) Bode integral [16]; it is interesting to discover that
such a relation exists between these two top equations [40],
namely algebraic Riccati equation and Bode integral, of the
control field. Specifically, the estimator may be viewed as a
feedback system, and thus the Bode integral can be obtained
for its sensitivity from {y (t)} to {e (t)} (see Fig. 1). Indeed,
if we denote

L (s) = C (sI −A)
−1

K, (19)

then (18) can be rewritten as

1

2π

∫ ∞

−∞
ln
∣∣∣det [I + L (jω)]

−1
∣∣∣ dω

= − lim
s→∞

1

2
strL (s) +

m∑
i=1

max {0,< [λi]} , (20)

where λi denote the poles of L (s). Herein, we have used
the fact that

m∑
i=1

max {0,< [λi]} =

m∑
i=1

max {0,< [λi (A)]} , (21)

which holds since the system is detectable (all the unstable
modes of the system are observable) and thus the unstable
poles of L (s) correspond to the eigenvalues of A with real
parts larger than zero. It is also worth mentioning that when
it is further assumed that l = 1, (20) reduces to

1

2π

∫ ∞

−∞
ln

∣∣∣∣ 1

1 + L (jω)

∣∣∣∣ dω
= − lim

s→∞

1

2
sL (s) +

m∑
i=1

max {0,< [λi]} . (22)

On the other hand, it can be verified that the Bode integrals
given in (20) and (22) are implied by (7) by letting f (s) =
det [I + L (s)]

−1 and f (s) = 1/ [1 + L (s)], respectively. In
addition, note that one common instance for

lim
s→∞

s
{
ln
∣∣∣det [I + L (s)]

−1
∣∣∣} = 0 (23)

to hold is that all the entries of L (s) have at least two
more poles than zeros, which is not satisfied in the case
of Kalman–Bucy filtering as discussed in this paper.

B. A More Explicit Expression of (12)

Using (11), we can obtain a more explicit form for the
formula in (12).

Theorem 2: Equality (12) can be rewritten as

tr
(
Σz−yV

−1
)
= tr

(
CPCTV −1

)
=

∑
j

max {0,< [ϕj ]} −
∑
k

max {0,< [ηk]}

+ 2

m∑
i=1

max {0,< [λi (A)]} , (24)

where ϕj denote the zeros of det
[
Φy (s)V

−1
]

and ηk
denote its poles.

Proof: By invoking (11), it holds that

1

2π

∫ ∞

−∞
ln

[
detΦy (ω)

detV

]
dω

=
1

2π

∫ ∞

−∞
ln det

[
Φy (ω)V

−1
]
dω

= lim
s→∞

1

2
s
{
ln det

[
Φy (s)V

−1
]}

+
∑
j

max {0,< [ϕj ]}

−
∑
k

max {0,< [ηk]} .

Since

Φy (s)V
−1 = C (sI −A)

−1
W (−sI −A)

−T
CTV −1 + I,

it follows from [39] (Appendix A) that

lim
s→∞

1

2
s
{
ln det

[
Φy (s)V

−1
]}

= 0,

Noting also (12), (24) follows by simple substitution.
Concerning the terms in (24), it holds in general that∑

k

max {0,< [ηk]} ≤ 2

m∑
i=1

max {0,< [λi (A)]} , (25)

since the unstable poles of det
[
Φy (s)V

−1
]

must belong
to the set of eigenvalues A with real parts larger than zero,
while not all such eigenvalues of A may be present in the
set of unstable poles of det

[
Φy (s)V

−1
]
. Note that this

is different from the case of det
[
I + C (sI −A)

−1
K
]
, as

discussed in the proof of Theorem 1 (see [34]); in such a
case, since the system (A,C) is detectable (all the unstable
modes of the system are observable), the set of unstable poles
of det

[
I + C (sI −A)

−1
K
]

is exactly the same as the set
of eigenvalues of A with real parts larger than zero.

C. Some Straightforward Corollaries and Relation to Exist-
ing Results

Using the fact that

λ
(
CTV −1C

)
trP ≤ tr

(
CPCTV −1

)
= tr

(
V − 1

2CPCTV − 1
2

)
≤ λ

(
CTV −1C

)
trP, (26)
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we could obtain lower and upper bounds on trP based on
(12) as

trP ≥ 1

λ (CTV −1C)

{
1

2π

∫ ∞

−∞
ln

[
detΦy (ω)

detV

]
dω

+ 2

m∑
i=1

max {0,< [λi (A)]}

}
, (27)

and

trP ≤ 1

λ (CTV −1C)

{
1

2π

∫ ∞

−∞
ln

[
detΦy (ω)

detV

]
dω

+ 2

m∑
i=1

max {0,< [λi (A)]}

}
. (28)

One might also compare our bounds with those in, e.g., [5],
which, however, goes beyond the scope of this paper.

We next consider some special cases of Theorem 1.
Corollary 1: If l = 1, and suppose that {w (t)} and

{v (t)} are white Gaussian with covariance matrix W and
variance σ2

v, respectively, then

σ2
z−y = CPCT

=
σ2
v

2π

∫ ∞

−∞
ln

[
Sy (ω)

σ2
v

]
dω + 2σ2

v

m∑
i=1

max {0,< [λi (A)]} ,

(29)

where

Sy (ω) = C (jωI −A)
−1

W (−jωI −A)
−T

CT + σ2
v.
(30)

Corollary 2: If l = m = 1, and suppose that {w (t)}
and {v (t)} are white Gaussian with variances σ2

w and σ2
v,

respectively, then

P =
1

C2

{
σ2
v

2π

∫ ∞

−∞
ln

[
C2

∣∣∣∣ 1

jω −A

∣∣∣∣2 σ2
w

σ2
v

+ 1

]
dω

+ 2σ2
v max {0,< [A]}

}
. (31)

We now present a list of comparisons with existing results
in the related works. It will be seen that our result in (12) is
the most generic and reduces to all the listed ones, although
they have adopted different approaches.

• When l = 1 and A is stable, {z (t)} is stationary and

C (jωI −A)
−1

W (−jωI −A)
−T

CT (32)

denotes its power spectrum Sz (ω). Hence, (29) reduces
to

σ2
z−y = CPCT =

σ2
v

2π

∫ ∞

−∞
ln

[
Sz (ω) + σ2

v

σ2
v

]
dω.

(33)

This coincides with the result in [29].

• When l = 1, σ2
v = 1, and W = BBT , where B ∈

Rm×1, (29) reduces to

σ2
z−y = CPCT

=
1

2π

∫ ∞

−∞
ln

[∣∣∣C (jωI −A)
−1

B
∣∣∣2 + 1

]
dω

+ 2

m∑
i=1

max {0,< [λi (A)]} . (34)

This coincides with the conclusion in [30].
• When l = m = 1, σ2

v = 1, and σ2
w = ε2, (29) reduces

to

σ2
z−y = CPCT

=
1

2π

∫ ∞

−∞
ln

[
ε2C2

∣∣∣∣ 1

jω −A

∣∣∣∣2 + 1

]
dω

+ 2

m∑
i=1

max {0,< [A]} . (35)

This coincides with the corresponding result in [31].
• When l = 1, σ2

v = 1, and W = 0, (29) reduces to

σ2
z−y = CPCT = 2

m∑
i=1

max {0,< [λi (A)]} . (36)

This also coincides with conclusion in [31].
• When V = I , (12) reduces to

trΣz−y = tr
(
CPCT

)
=

1

2π

∫ ∞

−∞
ln detΦy (ω) dω

+ 2

m∑
i=1

max {0,< [λi (A)]} , (37)

where

Φy (ω) = C (jωI −A)
−1

W (−jωI −A)
−T

CT + I.
(38)

This coincides with the result in [33].
Discussions on the dual problem in control can be found

in, e.g., [30], [32].
Indeed, equation (33) is referred to as the Yovits–Jackson

formula in [41]. In a broad sense, the Yovits–Jackson for-
mula can be viewed as the continuous-time counterpart of
the Kolmogorov–Szegö formula [4], [36], [42]–[44] in the
discrete-time case. For the multiple-input multiple-output
(MIMO) case, when {y (t)} is stationary (A is stable), (12)
reduces to

tr
(
Σz−yV

−1
)
= tr

(
CPCTV −1

)
=

1

2π

∫ ∞

−∞
ln

[
detΦy (ω)

detV

]
dω

=
1

2π

∫ ∞

−∞
ln

{
det [Φz (ω) + V ]

detV

}
dω,

(39)

which may be viewed as the as the continuous-time coun-
terpart of the Wiener–Masani formula [42], [44], [45].
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As we pointed out in [35], our formula therein generalizes
the Kolmogorov–Szegö formula and the Wiener–Masani
formula to the non-stationary case, and correspondingly in
this paper, we have generalized the Yovits–Jackson formula
to the MIMO case as well as the non-stationary case.

V. CONCLUSION

In this paper, we have shown that the trace of the division
of the optimal output estimation error covariance over the
noise covariance attained by the Kalman–Bucy filter can
be explicitly expressed in terms of the plant dynamics and
noise statistics in a frequency-domain integral characteriza-
tion. We have also discussed the relation of our integral
characterization to the Bode integral. Possible future research
directions include analysis of other classes of algebraic
Riccati equations.
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