
6.43.28.1 Modeling of Hybrid Systems1

Karl Henrik Johansson, Dept. of Signals, Sensors & Systems, Royal Institute of Technology,
100 44 Stockholm, Sweden, kallej@s3.kth.se.

John Lygeros, Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.,
jl290@eng.cam.ac.uk.

Shankar Sastry, Dept. of Electrical Engineering and Computer Sciences, University of Cali-
fornia, Berkeley, CA 94720, U.S.A., sastry@eecs.berkeley.edu.

Keywords: Hybrid system; Real-time system; Dynamical system; Control theory; Embedded
system; Zeno execution; Zeno time; Hierarchical control; Computer-controlled system; Dis-
continuous control; Switched system; Automaton; Finite state machine; Differential equation;
Vehicle control; Automated highway system; PID control; Automatic control; Discrete-event
system.

Contents

1. Introduction
2. Examples of Hybrid Systems

2.1. Water Tank System
2.2. Bouncing Ball
2.3. Clegg Integrator
2.4. Thermostat
2.5. Gear Shift Control
2.6. Swing-Up of Inverted Pendulum
2.7. Computer-Controlled System
2.8. Automated Highway System

3. Mathematical Models for Hybrid Systems
3.1. Modelling Issues
3.2. Hybrid Automata
3.3. Executions

4. Properties of Hybrid Systems
4.1. Overview of Issues
4.2. Existence of Executions
4.3. Uniqueness of Executions
4.4. Zeno Executions

5. Software Tools
Bibliography

1To appear in the UNESCO Encyclopedia of Life Support Systems

Glossary

Hybrid System: Dynamical system involving interacting continuous and discrete dynamics.
Hybrid Automaton: Mathematical model of a hybrid system.
Execution: Solution (or trajectory) of a hybrid automaton.
Hybrid Time Trajectory: Set of times over which an execution is defined.
Domain: Set of states where continuous evolution is possible.
Guard: Set of states where a discrete transition is possible.
Reset: Possible states after a discrete transition.
Zeno of Elea: Greek philosopher (ca. 500–400 b.c.).
Zeno Execution: Execution that takes an infinite number of discrete transitions in a finite
amount of time.

Summary

The distinguishing characteristic of hybrid systems is the interaction between a continuous-time
and a discrete-event component. By modeling these different components using differential
equations and finite state automata, it is possible to represent a wide range of phenomena
present in physical and technological systems. This paper illustrates hybrid dynamics by several
simple examples. Some of these examples illustrate properties of hybrid systems not present in
purely continuous or purely discrete systems, while others illustrate application domains such
as vehicle control and real-time systems. A mathematical model called a hybrid automaton is
then introduced, to show how hybrid dynamics can be formally analyzed.

1. Introduction

In the literature, the term “hybrid systems” is used to describe a very wide class of dynamical
systems that involve the interaction of heterogeneous data types and dynamics. Of great
interest is the class of hybrid systems that arises out of the interaction of continuous dynamics,
that describe the evolution of a continuous state under differential or difference equations, with
discrete dynamics, that describe the evolution of a finite state under automata or other models
of computation. This class of hybrid systems has been the focus of intense research activity in
recent years. The reason is that it provides a convenient framework for modelling a wide range
of engineering systems. For example, the hybrid framework is ideal for modelling systems with
multiple time scales, where the fast dynamics can be abstracted away and be treated as discrete
changes affecting the slower dynamics. Examples include mechanical systems with collisions,
circuits with diodes and switches, chemical processes controlled by valves or pumps, and, most
importantly, embedded computation systems, where digital devices interact with an analogue
environment.

Another reason for the popularity of hybrid systems is their importance in applications. Meth-
ods and tools developed for hybrid systems have already proved useful in a wide range of tech-
nological applications. Following early work on the verification of digital circuits, the hybrid
formalism and tools have been subsequently extended to the verification of embedded software,

real-time communication protocols, air traffic control, automotive control, bioengineering, em-
bedded software, process control, highway systems and manufacturing. Though many of the
applications are still too complicated to be addressed in their full generality by existing hybrid
tools, impressive progress has been recorded in all of these application areas.

The aim of this paper is to highlight the diversity of hybrid phenomena that one encounters
in physical and technological systems. In Section 2 a number of examples are presented to
illustrate the types of issues that arise out of the discrete–continuous interaction and the types
of applications that can be addressed using a hybrid approach. We also discuss the common
themes that emerge in the study of these examples. In Section 3 we present a formal mathe-
matical framework, which we call hybrid automaton, in which all of these diverse phenomena
can be modeled and analysed. Then, in Section 4, we discuss how one can determine whether
models developed in the hybrid automaton framework are reasonable representations of phys-
ical reality, or whether they contain fundamental flaws. Software tools for modeling hybrid
systems are briefly discussed in Section 5.

2. Examples of Hybrid Systems

Hybrid control systems are a much richer class of systems than ordinary control systems.
In a hybrid system there is an interaction between continuous and discrete dynamics. The
continuous flow is in general influenced not only by the regular continuous control, but also
by the discrete mode. Similarly, the discrete dynamics are affected by both discrete control
actions and, indirectly, by the continuous flow. In addition to control inputs, there might
be both continuous and discrete disturbances acting on the system. Therefore, in its full
generality, a hybrid control system can be a rather complicated object. In Section 3 we present
a mathematical framework that allows one to model a class of hybrid phenomena. First,
however, we informally introduce a number of examples, which are chosen to illustrate various
characteristics of hybrid dynamics.

2.1. Water Tank System

Consider the two-tank system shown in Figure 1. For i ∈ {1, 2}, let xi denote the volume of
water in Tank i and vi > 0 denote the constant flow of water out of Tank i. Let w denote the
constant flow of water into the system, dedicated exclusively to either Tank 1 or Tank 2 at each
time instant. The objective is to keep the water volumes above r1 and r2, respectively, assuming
that the water volumes are above r1 and r2 initially. This is to be achieved by a controller that
switches the inflow to Tank 1 whenever x1 ≤ r1 and to Tank 2 whenever x2 ≤ r2. The water
tank system can be represented by the hybrid system of Figure 1.

Suppose that at the initial time x1 > r1 and x2 > r2, and that the inflow if directed to Tank 1
(i.e., the discrete state q of the system is equal to q1). Then the continuous state flows according
to the differential equation in the q1 state in Figure 1. When the condition x2 ≤ r2 specified on
the edge, a discrete transition takes place. Subsequently, the state resumes flowing according to
the q2 state and so on. Such a trajectory having one continuous component, x, and one discrete
component, q, is called an execution (sometimes a run or a solution) of the hybrid system. An
execution of the hybrid system is shown in Figure 2.

PSfrag replacements

x1

x2
r1 r2

v1 v2

w

PSfrag replacements

x1

x2

r1
r2
v1

v2

w

x2 ≤ r2

x1 ≤ r1

q1
ẋ1 = w − v1

ẋ2 = −v2

x2 ≥ r2

q2
ẋ1 = −v1

ẋ2 = w − v2

x1 ≥ r1

Figure 1: Water tank system and the corresponding hybrid system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

Time

PSfrag replacements

q

q1

q2

x1

x2

Figure 2: Example of an execution of the water tank hybrid system.

If max(v1, v2) < w < v1 + v2, physical intuition suggests that at least one of the water tanks
will eventually drain. In the hybrid model this leads to an accumulation of jump instances.
This behaviour is known as the Zeno phenomenon and is further discussed in Section 4.

2.2. Bouncing Ball

A model for a bouncing ball can be represented as a simple hybrid system with a continuous
state of dimension two x = (x1, x2) and a single discrete state (Figure 3). x1 denotes the
vertical position of the ball and x2 its velocity. The continuous motion of the ball, governed by
Newton’s laws of motion, is represented by the differential equation in the vertex of the graph,
where g denotes the gravitational acceleration. As specified, the equation is only valid as long
as x1 ≥ 0, i.e., as long as the ball is above the ground. The ball bounces when x1 = 0 and
x2 ≤ 0, which is detailed by the left expression attached to the edge of the graph (∧ denotes
the logical “and”). At each bounce, the ball loses a fraction of its energy. This is represented

PSfrag replacementsx1 = 0 ∧ x2 ≤ 0 x2 := −cx2

ẋ1 = x2

ẋ2 = −g
x1 ≥ 0

Figure 3: A hybrid system modeling a bouncing ball.

by the equation x2 := −cx2, where c
2 ∈ [0, 1] is the coefficient of restitution. (The notation

“:=” should be interpreted as if x2 is reset to the value −cx2 at the transition. The reset map
is formally defined in Section 3.)

Starting at a point (x1, x2) with x1 > 0, the continuous state flows according to the vector field
as long as the condition x1 ≥ 0 is fulfilled. When x1 = 0 and x2 ≤ 0, a discrete transition takes
place and the continuous state is reset to x2 := −cx2 (x1 remains constant). Subsequently, the
state resumes flowing according to the vector field and so on.

For this example, it is easy to see that for c ∈ (0, 1) there is an accumulation point for the
times of the discrete jumps. In other words, the ball bounces infinitely many times in a finite
time interval. The bouncing ball hence exhibit Zeno phenomenon, similar to the water tank
system. Note however that the continuous state is constant at discrete transitions for the water
tank system (the water volumes do not change during the switch of the inflow), while for the
bouncing ball system the continuous state makes a jump.

2.3. Clegg Integrator

Many classical control strategies involve mode switching and other discontinuous control ac-
tions. Examples include anti-windup schemes, gain scheduling and sliding mode control. One
motivation for hybrid control models is to include all these strategies within a single mathe-
matical framework. Here we describe a classical fix in process control, where the state of the
integrator in the PID controller [EOLSS,6.43.3.3] is reset whenever its input crosses zero. This
so called Clegg Integrator was invented by J. C. Clegg in 1958.

Let e be the input to the Clegg Integrator and x the integrator state. The Clegg Integrator
can be described by

ẋ(t) = e(t) and x(t+) = 0, if e(t) = 0,

where the plus sign indicates that x is set to zero directly after e becomes zero. Figure 4 shows
a hybrid model for the same set of equations. The hybrid system has the input e and the
output x.

The advantage of using a Clegg Integrator compared to an ordinary integrator is that it gives
less phase lag, and thus in many applications improved stability margin. Using the describing
function method [EOLSS,6.43.6.1] it is easy to show that the Clegg Integrator gives 38 degrees
phase lag, compared to 90 degrees of an ordinary integrator. A disadvantage with the Clegg
Integrator is that it may induce oscillations.

PSfrag replacements
e = 0 x := 0

ẋ = e

e 6= 0

Figure 4: Hybrid system illustrating the Clegg Integrator.

2.4. Thermostat

Consider the control problem of maintaining the temperature of a room at some desired level
(say 19 degrees Celsius). Assume that a thermostat is used as a controller, but that we do not
have an exact model of how the thermostat functions. It is only known that the thermostat
turns on the radiator when the temperature is between 16 and 18 degrees and it turns the
radiator off when the temperature is between 20 and 22. This heating system can be modeled
as the hybrid system in Figure 5, where x denotes the temperature and the two discrete states
correspond to the radiator being off and on.

In this example, there is some uncertainty about when a transition takes place. We know that
this will happen when the temperature is in the intervals [16, 18] and [20, 22], but not exactly
when. Let us elaborate on how this ambiguity is captured by the hybrid system model. (A
formal description is given in Section 3.) Note that there are three components associated with
the discrete dynamics: (1) the domains x ≥ 16 and x ≤ 22, which constrain the values of
the continuous state in the corresponding discrete state, (2) the guard conditions x ≤ 18 and
x ≥ 20, which determine when a discrete transition is allowed to happen (is enabled), and (3)
the reset map x 7→ x, which specifies the relation between the old and the new continuous
state when a transition takes place (which in this example is equal to the identity map, but
for the bouncing ball, for example, is (x1, x2) 7→ (x1,−cx2)). The interpretation is as follows:
as long as the continuous state x belongs to a domain, continuous evolution may continue (the
temperature may continue to increase/decrease according to the differential equation). When x
enters a guard, a discrete jump may take place (the radiator may be switched on/off). For the
thermostat system this means that if, for example, the state is (q, x) = (no heating, 19) then
continuous evolution may continue. If the state is (q, x) = (no heating, 17) either continuous
evolution can continue, or a discrete jump to state (q, x) = (heating, 17) can take place.
Finally, if the state is (q, x) = (no heating, 16), a discrete jump must must take place, because
continuous evolution would lead x outside the domain.

The thermostat hybrid system is non-deterministic, in the sense that for a given initial condition
it accepts a whole family of different executions. A formal definition of a hybrid systems and
its evolution is given in Section 3, and determinism is discussed in Section 4.

PSfrag replacements

no heating

ẋ = −x
x ≥ 16

heating

ẋ = −x + 25
x ≤ 22

x ≤ 18

x ≥ 20

Figure 5: Hybrid system modeling a thermostat and the heating of a room.

2.5. Gear Shift Control

The gear shift example describes a control design problem where both the continuous and the
discrete controls need to be determined. Figure 6 shows a model of a car with a gear box
having four gears. The longitudinal position of the car along the road is denoted by x1 and
its velocity by x2 (lateral dynamics are ignored). The model has two control signals: the gear
denoted gear ∈ {1, . . . , 4} and the throttle position denoted u ∈ [umin, umax]. These may both
be considered as inputs to the system, while the position and the velocity are outputs. The
gear shift is necessary because little power can be generated by the engine at very low or very
high engine speed. The function αi represents the efficiency of gear i.

PSfrag replacements

ẋ1 = x2

ẋ2 = α1(x2)u
gear = 1

ẋ1 = x2

ẋ2 = α2(x2)u
gear = 2

ẋ1 = x2

ẋ2 = α3(x2)u
gear = 3

ẋ1 = x2

ẋ2 = α4(x2)u
gear = 4

gear = 2 gear = 3 gear = 4

gear = 3gear = 2gear = 1

Figure 6: A hybrid system modeling a car with four gears.

Several interesting control problems can be posed for this simple car model, including the
following: What is the optimal control strategy to drive from x = (a, 0) to (b, 0) in minimum
time? The problem is non-trivial if the reasonable assumption is included that each gear
shift takes a certain amount of time. The optimal controller, which can be modeled as a hybrid
system, may be derived using the theory of optimal control of hybrid systems [EOLSS,6.43.28.5].

2.6. Swing-Up of Inverted Pendulum

The inverted pendulum (Figure 7) is a popular system in teaching laboratories for illustrating
control problems present in various applications such as thrust-vectored rocket control and
bipedal walking. Here we discuss a hybrid control strategy for swinging up a pendulum from a
downward to an upright position and then stabilizing it.

Figure 7: Pendulum on a cart.

Let x1 be the angle between the vertical and the pendulum, x2 the angular velocity and u ∈
[−umax, umax] the acceleration of the pivot, which we consider as the control signal. Then, the
dynamics after normalization is given by

ẋ1 = x2

ẋ2 = g sin x1 − u cos x1,

where g > 0 is the acceleration of gravity. A swing-up control strategy suggested by Åström
and Furuta is based on controlling the energy of the pendulum. It has three different modes as
shown in Figure 8. The modes pos max and neg max correspond to maximum acceleration in
the positive and negative directions of the cart, respectively. The switching between these two
modes are determined by the sign of

β(x1, x2) = [x2
2/2 + g(cosx1 − 1)]x2 cos x1.

To avoid chattering when the the pendulum is close to upright position (within a fixed angle
θ > 0), the system enters mode loc stab, where a locally stabilizing linear controller u =
γ1x1 +γ2x2 is applied. Note that, because the acceleration of the pivot is limited to umax, more
than one swing may be needed to swing-up the pendulum.

PSfrag replacements

pos max

u = umax

β(x1, x2) > 0, |x1| > θ

neg max

u = −umax

β(x1, x2) < 0, |x1| > θ

loc stab

u = γ1x1 + γ2x2

|x1| < θ

β(x1, x2) < 0

β(x1, x2) > 0

|x1| < θ

|x1| > θ

|x1| > θ

|x1| < θ

Figure 8: Hybrid control strategy to swing up and stabilize an inverted pendulum on a cart.

2.7. Computer-Controlled System

Hybrid systems are natural models for computer-controlled systems (Figure 9), since they
involve a physical process (which often can be modelled as continuous-time system) and a
computer (which is fundamentally a finite state machine). The classical approach to computer-
controlled systems has been using sampled-data theory [EOLSS,6.43.4.1], where it is assumed
that measurements and control actions are taken at a fixed sampling rate. Such a scheme is
easily encoded using a hybrid model. The hybrid model also captures a more general formula-
tion, where measurements are taken based on computer interrupts. This is sometimes closer to
real-time implementations [EOLSS,6.43.4.4], for example, in embedded control systems.

2.8. Automated Highway System

Highway congestion is an increasing problem, especially in and around urban areas. One of
the promising solutions considered for this problem is traffic automation, either partial or full.

PSfrag replacements

Plant

Computer

A/DD/A

Figure 9: Computer-controlled system.

Substituting the driver by an automatic controller may reduce or eliminate human errors and
hence improve safety. Moreover, as the automatic controller can react to disturbances faster
than a human driver, automation may also decrease the average inter-vehicle spacing and hence
increase throughput and reduce congestion and delays.

The design of an automated highway system (AHS) is an extremely challenging control problem,
and a number of alternatives have been proposed for addressing it. One of the most forward-
looking AHS designs involves a fully automated highway system that supports platooning of
vehicles. The platooning concept of Varaiya assumes that traffic on the highway is organized in
groups of tightly spaced vehicles (platoons). The first vehicle of a platoon is called the leader,
while the remaining vehicles are called followers. The platooning structure achieves a balance
between safety and throughput: it is assumed that the system is safe even if in emergency
situations (for example, as a result of a failure) collisions do occur, as long as the relative velocity
at impact is low. Of course no collisions should take place during normal operation. This gives
rise to two safe spacing policies. The obvious one is that of the leaders, who are assumed to
maintain a large inter-platoon spacing (of the order of 30–60 meters). The idea is that the
leader has enough time to stop without colliding with the last vehicle of the platoon ahead.
The spacing policy of the followers is not as intuitive, because they are assumed to maintain
tight intra-platoon spacing (of the order of 1–5 meters). In case of emergency, collisions among
the followers of a platoon may take place, but, because of the tight spacing, they are expected
to be at low relative velocities. Recent theoretical, numerical and experimental studies have
shown that an AHS that supports platooning is not only technologically feasible but, if designed
properly, may lead to an improvement of both the safety and the throughput of the highway
system, under normal operation.

Implementation of the platooning concept requires automatic vehicle control, since human
drivers are not fast and reliable enough to produce the necessary inputs. To manage the com-
plexity of the design process a hierarchical controller was proposed by Varaiya. The controller
is organized in four layers, see Figure 10. The top two layers, called network and link, reside
on the roadside and are primarily concerned with throughput maximization, while the bottom
two, called coordination and regulation, reside on the vehicles and are primarily concerned with
safety. The physical layer is not part of the controller. It contains the plant, i.e., the vehicles
and highway, with their sensors, actuators and communication equipment.

The network layer is responsible for the flow of traffic on the entire highway system, for exam-

Link Layer

(Flow)

Network Layer

(Routing)

Coordination Layer

(Communication)

Regulation Layer

(Control)

Physical Layer

(Vehicles)

On−Board

Roadside

Continuous

Discrete

Figure 10: Hierarchical control structure of an automated highway system.

ple, several highways around an urban area. Its task is to prevent congestion and maximize
throughput by dynamically routing traffic. The link layer coordinates the operation of sections
(links) of the highway (for example the highway segment between two exists). Its primary
concern is to maximize the throughput of the link. With these criteria in mind, it calculates
an optimum platoon size and an optimum velocity and decides which lanes the vehicles should
follow. It also monitors incidents and diverts traffic away from them, in an attempt to minimize
their impact on traffic flow.

The coordination layer coordinates the operation of neighbouring platoons by choosing ma-
noeuvres that the platoons need to carry out. For normal operation, these manoeuvres are join
to join two platoons into one, split to break up one platoon into two, lane change, entry and
exit. The coordination layer is primarily a discrete controller. It uses communication protocols,
in the form of finite state machines, to coordinate the execution of these manoeuvres between
neighbouring vehicles.

The regulation layer receives the coordination layer commands and readings from the vehicle
sensors and generates throttle, steering and braking commands for the vehicle actuators. For
this purpose it utilizes a number of continuous time feedback control laws that use the readings

provided by the sensors to calculate the actuator inputs required for a particular manoeuvre.
In addition to the control laws needed for the manoeuvres, the regulation layer makes use of
two default controllers, one for leader and one for follower operation.

The interaction between the coordination layer (which is primarily discrete) and the regulation
layer (which is primarily continuous) gives rise to interesting hybrid dynamics. To ensure the
safety of the AHS, one needs to verify that the closed loop hybrid system does not enter a bad
region of its state space (e.g., does not allow any two vehicles to collide at high relative velocity).
This issue can be addressed by posing the problem as a game between the control applied by
one vehicle and the disturbance generated by neighbouring vehicles. It can be shown that
information available through discrete coordination can be used together with the continuous
controllers to ensure the safety of the closed-loop hybrid system.

3. Mathematical Models for Hybrid Systems

Hybrid systems were informally described in the previous section as systems with both continuous-
time and discrete-event dynamics. In this section, a formal mathematical model is introduced.

3.1. Modelling Issues

To be able to deal effectively with all the types of hybrid behaviour demonstrated by the
examples of Section 2 one needs a modelling language that is

• descriptive, to allow one to capture different types of continuous and discrete dynamics,
be capable of modelling different ways in which discrete evolution affects and is affected
by continuous evolution, allow non-deterministic models to capture uncertainty, etc.

• composable, to allow one to build large models by composing models of simple components.

• abstractable, to allow one to decompose the design problem for composite models down
to design problems for individual components and, conversely, compose arguments about
the performance of individual components to study the performance of the overall system.

Modelling languages that possess subsets of these properties have been proposed in the litera-
ture. Different languages place more emphasis on different aspects, depending on the applica-
tions and problems they are designed to address. Unfortunately, powerful modelling languages
will inevitably allow one to produce models that are unreasonable either physically or mathe-
matically. This issue is examined in Section 4.

In this section we introduce a specific hybrid system modelling language, that we call hybrid
automata. Hybrid automata provide a mathematically concrete language, that is rich enough to
demonstrate a number of interesting issues, but also simple enough to do so without excessive
mathematical formalism and notation. We stress that hybrid automata capture a fraction of
the hybrid phenomena that have been studied in the literature. Some of the generalisations
that have been pursued include the following.

1. Generalisations of the notion of time. Executions of hybrid automata are defined over se-
quences of intervals of the real line. The time sets we consider exclude, among other things,
the possibility of left accumulation points of discrete transitions, see [EOLSS,6.43.28.2].
More general models of time that have been considered in the literature (such as enriched
time intervals) allow one to capture more phenomena.

2. Generalisations of the continuous dynamics. Hybrid automata assume that the evolution
of continuous states in continuous time is governed by a differential equation. Generali-
sations include systems modeled by differential inclusions, differential algebraic systems,
or, more generally, abstract sets of time functions equipped only with a few fundamental
axioms (such as concatenation and the semigroup property). The last option allows one
to also capture infinite dimensional continuous dynamics that include, for example, pure
time delays.

3. Inclusion of inputs and outputs. To keep the presentation simple, only autonomous hybrid
systems (with time-invariant dynamics and no inputs or outputs) are considered here. One
can think of such systems as closed-loop hybrid control systems. Generalisations that
include inputs and outputs and hence allow one to study composition and abstraction
properties have also been extensively studied in the literature.

3.2. Hybrid Automata

A hybrid automaton is a dynamical system that describes the evolution in time of the values of
a set of discrete and continuous state variables. We start by giving the syntax of this modelling
language using both a mathematical and a graphical representation.

Definition 3.1 (Hybrid Automaton) A hybrid automaton H is a collection H = (Q, X,
f , Init, D, E, G, R), where

• Q is a discrete state space;

• X = R
n is a continuous state space;

• f : Q×X → R
n is a vector field;

• Init ⊂ Q×X is a set of initial states;

• D : Q→ P (X) is a domain;2

• E ⊂ Q×Q is a set of edges;

• G : E → P (X) is a guard condition;

• R : E ×X → P (X) is a reset map.

We refer to (q, x) ∈ Q × X as the state of H. Roughly speaking, hybrid automata define
possible evolutions for their state. Starting from an initial value (q0, x0) ∈ Init, the continuous
state x flows according to the vector field f(q0, ·), while the discrete state q remains constant.

2The domain is sometimes called the invariant set, especially in the hybrid system literature in computer
science. P (X) denotes the power set (set of all subsets) of X.

Continuous evolution can go on as long as x remains in D(q0). If at some point x reaches a
guard G(q0, q1), for some (q0, q1) ∈ E, the discrete state may change value to q1. At the same
time the continuous state gets reset to some value in R(q0, q1, x). After this discrete transition,
continuous evolution resumes and the whole process is repeated.

As we saw in the previous section, it is convenient to visualize hybrid automata as directed
graphs (Q,E) with vertices Q and edges E. With each vertex q ∈ Q, we associate a set of
initial states Initq = {x ∈ X : (q, x) ∈ Init}, a vector field f(q, ·) and a domain D(q). With
each edge e ∈ E, we associate a guard G(e) and a reset map R(e, ·). We illustrate the notation
by specifying the hybrid automaton for the water tank system in Figure 1:

• Q = {q} and Q = {q1, q2};

• X = {x1, x2} and X = R
2;

• f(q1, x) = (w − v1,−v2) and f(q2, x) = (−v1, w − v2);

• Init = Q× {x ∈ R
2 : x1 ≥ r1 ∧ x2 ≥ r2};

• D(q1) = {x ∈ R
2 : x2 ≥ r2} and D(q2) = {x ∈ R

2 : x1 ≥ r1};

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R
2 : x2 ≤ r2} and G(q2, q1) = {x ∈ R

2 : x1 ≤ r1};

• R(q1, q2, x) = R(q2, q1, x) = {x}.

The graphs can be treated as formal definitions of hybrid automata, since they represent the
same information as models in the style of Definition 3.1.

3.3. Executions

To formally define the semantics of a hybrid automaton model (i.e., the types of dynamics it
encodes, or else the types of solutions that it accepts) we first need to consider the sets of times
over which these solutions will be defined.

Definition 3.2 (Hybrid Time Set) A hybrid time set is a finite or infinite sequence of in-
tervals τ = {Ii}

N
i=0, such that

• Ii = [τi, τ
′

i] for all i < N ;

• if N <∞ then either IN = [τN , τ
′

N] or IN = [τN , τ
′

N); and

• τi ≤ τ ′i = τi+1 for all i.

Note that the right endpoint of one interval coincides with the left endpoint of the following
interval. The interpretation is that these are the times at which discrete transitions take place.
Note also that it is possible to have τi = τ ′i , therefore multiple discrete transitions may take
place at the same time. Hence, both purely discrete and purely continuous systems fit within

the hybrid automaton model. Since all hybrid automata discussed here are time invariant we
assume that τ0 = 0 without loss of generality. Hybrid time trajectories can extend to infinity if
τ is an infinite sequence or if it is a finite sequence ending with an interval of the form [τN ,∞).

Definition 3.3 (Execution) An execution of a hybrid automaton H is a collection χ =
(τ, q, x), where τ = {Ii}

N
i=0 is a hybrid time set, q = {qi(·)}

N
i=0 is a sequence of functions

qi(·) : Ii → Q and x = {xi}
N
i=0 is a sequence of continuously differentiable functions xi : Ii → X,

such that

• (q(0), x0(0)) ∈ Init;

• for all i and all t ∈ [τi, τ
′

i), qi(t) = qi(τi), ẋi(t) = f
(

qi(t), xi(t)
)

and xi(t) ∈ D(qi(t)); and

• for all i < N , e = (qi(τ
′

i), qi+1(τi+1)) ∈ E, xi(τ
′

i) ∈ G(e), and xi+1(τi+1) ∈ R(e, xi(τ
′

i)).

The definition of an execution involves conditions on the initial state, the continuous evolution
and the discrete evolution. As an example, consider again the execution of the water tank
automaton shown in Figure 2. The hybrid time set τ consists in this case of three intervals.
The discrete state evolution, q = {q1(·), q2(·), q3(·)}, is shown in the upper plot in Figure 2, and
the continuous state evolution x = {x1(·), x2(·), x3(·)} is shown in the lower plot.

We say that a hybrid automaton H accepts an execution χ if χ fulfills the conditions of Defini-
tion 3.3. For an execution χ = (τ, q, x), we use (q0, x0) =

(

q0(τ0), x0(τ0)
)

to denote the initial
state. The execution time T (χ) is defined as

T (χ) =
N
∑

i=0

(τ ′i − τi) = lim
i→N

τ ′i − τ0.

An execution is called infinite if τ is either an infinite sequence or if T (χ) =∞.

The concept of a reachable state is fundamental in the study of hybrid systems. A state, (q, x),
of a hybrid automaton, H, is called reachable if starting at some initial state, (q0, x0) ∈ Init,
H can end up in (q, x). The set of states reachable by H is denoted ReachH .

The existence and uniqueness conditions developed in the next section also involve the set of
states from which continuous evolution is impossible. Let ψ(t, q, x) denote the flow of the vector
field f(q, ·). Then the set of states from which continuous evolution is impossible is given by

OutH = {(q, x) ∈ Q×X : ∀ε > 0, ∃ t ∈ [0, ε), ψ(t, q, x) /∈ D(q)}.

These are hence the states for which the continuous dynamics instantaneously force the state
outside the domain.

4. Properties of Hybrid Systems

When analyzing hybrid automata from a control theoretic perspective it is natural to ask fun-
damental questions, such as “does the system accept an infinite execution for every initial
state?”, “do the executions depend continuously on the initial state?”, “is the hybrid system

stable?” (in some appropriate sense) etc. Here we only touch upon these questions by dis-
cussing existence and uniqueness issues. Stability issues are discussed in [EOLSS,6.43.28.3] and
[EOLSS,6.43.28.7]. Analysis questions one may be interested in from a computer science point
of view are discussed in [EOLSS,6.43.28.4].

4.1. Overview of Issues

A common danger in hybrid modelling is lack of existence of solutions. In most of the hybrid
languages one can easily construct models that admit no solutions for certain initial states
(blocking hybrid systems). This is an undesirable property when modelling physical systems,
since it suggests that the mathematical model provides an incomplete picture of the physical
reality; the evolution of the physical system is likely to continue despite the fact that the
evolution of the mathematical model is undefined.

Even if a hybrid system accepts executions for all initial states, it does not necessarily accept
executions with infinite execution times. Hybrid systems can take an infinite number of discrete
transitions in finite time (Zeno phenomenon). One can argue that physical systems do not
exhibit Zeno behaviour. However, modelling abstraction can lead to Zeno hybrid models of
physical systems that look realistic. Since abstraction is crucial for handling complex systems,
understanding when it may lead to Zeno behaviour is important.

Another issue that arises in hybrid modelling is lack of uniqueness of solutions (non-determinism).
For hybrid systems it is often desirable to retain some level of non-determinism, since it allows
one to capture modelling uncertainty. This, however, requires additional care when designing
controllers for such systems, or when developing arguments about their performance. One
needs to adopt a style of reasoning similar to the one used in robust control to ensure that a
controller is robust with respect to model uncertainty. Instead of developing arguments about
the solution of the system, one needs to ensure that the argument holds for all solutions of the
system.

Hybrid systems are especially challenging from the point of view of computer simulation. The
problems faced by the developers of simulation algorithms are intimately related to the mod-
elling problems discussed so far. The overall goal of a simulation is to present an accurate
approximation of the behaviour of the real system. Due to interaction between different com-
ponents and computational models in a hybrid system, computer simulations may however
produce results that are difficult to interpret. It is therefore important that the user is aware
of the following possible obstacles.

• Stiffness: Lack of continuity of the solution with respect to initial conditions, an inherent
characteristic of hybrid systems, can lead to problems, both theoretical and practical.
The most common problem is event detection, i.e., to determine when guard crossing
takes place.

• Existence and uniqueness: Simulation algorithms may run into trouble if the simulated
model does not have a solution defined in a suitable sense. This may be the case, for
example, if the hybrid system exhibits chattering or Zeno solutions. It is fairly easy to
construct hybrid systems that, when simulated “naively”, produce the wrong results ei-
ther mathematically or based on physical intuition. In certain cases the problem may be

PSfrag replacementsx ≥ 2

q

ẋ = 1
x ≤ 1

Figure 11: Blocking hybrid system.

alleviated by introducing additional discrete states and generalised solutions such as Fil-
ippov solutions. Non-determinism introduces further complications. Here the simulation
algorithm may be called upon to decide between different alternatives. When a choice
between continuous evolution and discrete transition is possible, a common approach is
to take transitions the moment they are enabled (as-soon-as semantics).

• Composability: When simulating large scale, multi-agent systems (like the AHS), one
would like to be able to build up the simulation from a number of components. It may
also be desirable to be able to dynamically add components (e.g., to model vehicles joining
the AHS), eliminate components (e.g., to model vehicles leaving the AHS), or redefine
the interactions of components (e.g., to model vehicles changing lanes). Object-oriented
modelling languages have been developed to address these needs.

Simulation packages that have been developed to address these issues include SHIFT, Dymola
(based on the Modelica standard) and the Simulink tool StateFlow. These and other software
tools are further discussed in Section 5.

4.2. Existence of Executions

It is easy to construct hybrid automata that do not accept infinite executions. Consider, for
example, the hybrid automaton of Figure 11. If the system finds itself at state (q, 1) the
continuous state is forced to leave D(q), but the discrete transition is not enabled since x = 1
does not belong to the guard. We say that the execution blocks at (q, 1).

A hybrid automaton H is called non-blocking if it accepts infinite executions for all (q0, x0) ∈
Init. It is reasonable to expect that models of real systems will be non-blocking. Therefore it
is useful to determine when there exist infinite executions for a hybrid automaton. The above
example suggests that a hybrid automaton H is non-blocking if for all reachable states for
which continuous evolution is impossible a discrete transition is possible. More formally, one
can show that H is non-blocking if for all (q, x) ∈ ReachH ∩OutH , there exists (q, q′) ∈ E such
that x ∈ G(q, q′).

4.3. Uniqueness of Executions

A hybrid automaton may accept multiple infinite executions for a single initial state. To see
this, take the blocking example above but let D(q) = {x ∈ R : x ≤ 3}. Then, at (q, x) = (q, 2)
the guard is enabled, so a discrete transition may take place. However, x = 2 is in the interior
of D(q), so a continuous evolution is also possible. Actually, there is an infinite number of

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time

x1

x2

τ∞
Figure 12: An example of a Zeno execution for the bouncing ball example.

maximal executions starting in (q, 0); all of them have one discrete transition taking place
somewhere between 2 ≤ τ ′0 ≤ 3. The thermostat system presented in Section 2.4 is another
example of a non-deterministic hybrid system. The hybrid model captures the uncertainty
about the temperature at which the radiator is switched on and off.

A hybrid automaton H is called deterministic if it accepts at most one execution (which is not
a strict prefix of any other execution) for all (q0, x0) ∈ Init. Intuitively, a hybrid automaton
may be non-deterministic if either there is a choice between continuous evolution and a discrete
transition, or if a discrete transition can lead to multiple destinations. More formally, it can be
shown that H is deterministic if and only if for all (q, x) ∈ ReachH ,

(1) if x ∈ G(q, q′) for some (q, q′) ∈ E then (q, x) ∈ OutH ;

(2) if (q, q′) ∈ E and (q, q′′) ∈ E with q′ 6= q′′ then G(q, q′) ∩G(q, q′′) = ∅; and

(3) if (q, q′) ∈ E and x ∈ G(q, q′) then |R(q, q′, x)| ≤ 1.

Here, | · | denotes the cardinality (number of elements) of a set.

4.4. Zeno Executions

An execution of a hybrid system may exhibit infinitely many discrete jumps in finite time. This
is a truly hybrid phenomenon, in the sense that it requires the interaction between continuous
and discrete behaviour. It can not even be formulated for a purely discrete system without the
notion of continuous time.

Formally, an execution χ = (τ, q, x) is called Zeno if it is infinite but its execution time is finite,
i.e., if τ is an infinite sequence and T (χ) <∞. The execution time of a Zeno execution is called
the Zeno time. An example of a Zeno execution for the bouncing ball system with c ∈ (0, 1) is
shown in Figure 12. The name Zeno refers to the philosopher Zeno of Elea (ca. 500–400 b.c.),
whose major work consisted of a number of paradoxes, designed to support his view that the

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Time

x1

x2

τ∞

Figure 13: A Zeno execution for the water tank hybrid system.

concepts of plurality and motion lead to contradictions. An example is Zeno’s Second Paradox
of Motion, in which Achilles is racing against a tortoise.

Zeno phenomena are classical in control, but often under other names. For example, consider
the problem of minimizing the performance index

∫

∞

0
xp(t) dt, p > 1, with respect to the

dynamics ẍ = u, x(0) 6= (0, 0), and the control constraint |u(t)| ≤ 1. The solutions to this
problem exhibit infinitely many switchings in finite time as proved by Zelikin and Borisov,
and thus corresponds to a Zeno execution. In optimal control, this is referred to as Fuller’s
phenomenon.

To better understand the dynamics of Zeno hybrid systems, we need to extend some notions
from continuous dynamical systems to the hybrid domain. An ω limit point of a Zeno execution
is called a Zeno point (or a Zeno state). A Zeno execution for the water tank system with
max(v1, v2) < w < v1 + v2 is shown in Figure 13. The continuous part of its Zeno point is equal
to (r1, r2). For the bouncing ball execution in Figure 12 the continuous part of the Zeno point
is the origin. Note that in both Zeno examples, the continuous part of the Zeno point is a
single point. This is no coincidence. It is possible to show in general that if the reset map R is
either contracting on G (as for the bouncing ball) or the identity on G (as for the water tank),
the continuous part of the Zeno point is a singleton. Moreover, if the guard does not intersect
the corresponding interior of the domain, then the Zeno point must be on the boundary of the
domains. This is the case for both the bouncing ball and the water tank. The proof of these
results and further discussion on Zeno hybrid systems are given in the references.

5. Software Tools

The development of computer-aided design tools for hybrid systems is important. Extensive
research efforts have been investigated in several software packages over the last ten–fifteen
years, in order to apply hybrid methods to real complex systems. It is possible to classify many
of them into simulation tools and verification tools, where simulation here means numerical
integration of the hybrid system dynamics and verification is to show that the hybrid system

fulfills a specific safety constraint. The descriptiveness of the underlying modeling language
is crucial in both simulation and verification. Today it is possible to simulate fairly general
hybrid systems, while verification is limited to certain classes of hybrid systems (such as timed
automata).

Numerical computer simulation is important in the analysis and design of hybrid control sys-
tems, particularly since the complexity of many systems limit the application of analytical
methods. Hybrid systems are in general difficult to simulate due to the nonsmooth character-
istics of the state evolution, where the continuous evolution of the system trajectory is affected
by discrete jumps. Specific classes of numerical solvers are used to get efficient and accurate
results. Recent software tools for hybrid systems include ABACUSS, Dymola, gPROMS, Om-
Sim, SHIFT and StateFlow in Simulink. Modelica is an object-oriented modeling language
for dynamical systems that is (simulator) platform independent, in a similar way as many
programming languages. Modelica supports the hybrid systems formalism.

Verification is the formal process of analyzing whether a system satisfies a desired specification
using a computer algorithm. Following early work on the verification of digital circuits, the
hybrid formalism and tools have been subsequently extended to the verification of embedded
control software and other applications. Today there exist several software tools, such as d/dt,
HyTech, KRONOS and UPPAAL for the verification of various classes of hybrid systems.
This is however still a very active area of research, since many real applications are still too
complicated to be addressed in their full generality by existing tools. To enlarge the applicability
of verification, new techniques are being developed that numerically approximate the set of
reachable states for the hybrid system. Verification is further discussed in [EOLSS,6.43.28.4]
and [EOLSS,6.43.28.6].

Acknowledgements

Part of this paper is based on work done by by the authors together with Magnus Egerstedt,
Slobodan Simić and Jun Zhang. Their contribution is gratefully acknowledged. The work
by the first author was partially supported by the European Commission under the RECSYS
project.

Bibliography

Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.H., Nicollin X., Olivero A.,
Sifakis J., Yovine S. (1995). The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1), 3–34. [Presents a framework for formal specification and algorithmic analy-
sis of hybrid systems. Particular focus on systems for which the continuous evolution follows
piecewise-linear trajectories.].

Alur R., Henzinger T.A. (1997). Modularity for timed and hybrid systems. In A. Mazurkiewics,
J. Winkowski, eds., CONCUR 97: Concurrency Theory, vol. 1243 of Lecture Notes in Com-
puter Science, pp. 74–88, Springer-Verlag. [Discusses modular and Zeno hybrid systems from a
computer science perspective. Uses the tank example in Section 2.4.].

Antsaklis, P.J. (Editor) (2000). Special issue on hybrid systems: Theory and applications. IEEE
Proceedings 88(7). [Collection of some recent work on hybrid systems.].

Åström K.J., Furuta K. (2000). Swinging up a pendulum by energy control. Automatica 36,
287–295. [Hybrid control strategy for an unstable laboratory process, see Section 2.6.].

Aubin J.P., Lygeros J., Quincampoix M., Sastry S., Seube N. (2002). Impulse differential
inclusions: A viability approach to hybrid systems. IEEE Transactions on Automatic Control
47(1), 2–20.

Balluchi A., Benvenuti L., Di Benedetto M.D., Pinello C., Sangiovanni-Vincentelli A. (2000).
Automotive engine control and hybrid systems: Challenges and opportunities. IEEE Proceed-
ings 88(7), 888–912. [Hybrid control problems in automotive engine control.].

Bemporad A., Morari M. (1999). Control of systems integrating logic dynamics and constraints.
Automatica 35(3), 407–427.

Branicky M.S., Borkar V.S., Mitter S.K. (1998). A unified framework for hybrid control: Model
and optimal control theory. IEEE Transactions on Automatic Control 43(1), 31–45.

Brockett R.W. (1993). Hybrid models for motion control systems. In H. Trentelman, J. Willems,
eds., Essays in Control: Perspectives in the Theory and Its Applications, pp. 29–53, Birkhäuser,
Boston. [Introduces the use of hybrid systems for the modelling of motion control systems. Poses
the problem discussed in Section 2.5.].

Chutinam A., Krogh B. (1999). Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations. In F.W. Vaandrager, J.H. van Schuppen, eds., Hybrid
Systems: Computation and Control, no. 1569 in LNCS, pp. 76–90, Springer Verlag.

Clegg J.C. (1958). A nonlinear integrator for servomechanisms. Transactions of AIEE, Part II
77, 41–42. [Presents a modification of the integrator in PID control, which is known as the
Clegg Integrator, see Section 2.2.].

Deshpande A., Gollu A., Semenzato L. (1998). The SHIFT programming language for dynamic
networks of hybrid automata. IEEE Transactions on Automatic Control 43(4), 584–587.

Engell S., Kowalewski S., Schulz C., Stursberg O. (2000). Continuous-discrete interactions in
chemical processing plants. IEEE Proceedings 88(7), 1050–1068. [Hybrid systems aspects of
chemical process control, including modeling, validation and scheduling.].

Filippov A.F. (1988). Differential Equations with Discontinuous Righthand Sides. Kluwer Aca-
demic Publishers. [Classical text on non-smooth dynamical systems.].

Fuller A.T. (1960). Relay control systems optimized for various performance criteria. In First
World Congress IFAC, Moscow. [Discusses an optimal control problem that leads to infinitely
many controller switchings in finite time.].

Hedlund S., Rantzer A. (1999). Optimal control of hybrid systems. In Proc. 38th IEEE Confer-
ence on Decision and Control, Phoenix, AZ. [Presents a computational solution to the problem
discussed in Section 2.5.].

Heemels M. (1999). Linear Complementarity Systems. Ph.D. thesis, University of Eindhoven.
[Discusses a class of hybrid systems with linear continuous dynamics in each discrete state.].

Johansson K.H., Egerstedt M., Lygeros J., Sastry S. (1999). On the regularization of Zeno
hybrid automata. System & Control Letters 38, 141–150. [Discusses Zeno hybrid systems from
a control perspective. The examples in Sections 2.1 and 2.4 are analysed.].

Lemmon M. (2000). On the existence of solutions to controlled hybrid automata. In B. Krogh,
N. Lynch, eds., Hybrid Systems: Computation and Control, vol. 1790 of Lecture Notes in
Computer Science, Springer-Verlag. [Studies existence of executions of hybrid systems having
linear continuous dynamics in each discrete state.].

Lygeros J., Godbole D.N., Sastry S. (1998). A verified hybrid controller for automated vehicles.
IEEE Transactions on Automatic Control 43(4), 522–539. [Application of hybrid systems to
automated highway systems.].

Lygeros J., Johansson K.H., Simić S.N., Zhang J., Sastry S. (2003). Dynamical properties of
hybrid automata. IEEE Transactions on Automatic Control 48(1), 2–17.

Lynch N., Segala R., Vaandrager F., Weinberg H. (1996). Hybrid I/O automata. In Hybrid
Systems III, no. 1066 in LNCS, pp. 496–510, Springer Verlag.

Mattsson S.E., Andersson M., Åström K.J. (1993). Object-oriented modelling and simulation.
In D.A. Linkens, ed., CAD for Control Systems, chap. 2, pp. 31–69, New York: Marcel Dekker
Inc. [Discusses an object-oriented modelling paradigm for multi-domain systems.].

Mattsson S.E., Otter M., Elmqvist H. (1999). Modelica hybrid modeling and efficient simu-
lation. In IEEE Conference on Decision and Control, Phoenix, AZ. [Focus on challenges in
simulating hybrid systems. Illustrations are done in Modelica, an object-oriented language for
modelling of large heterogeneous physical systems.].

Nerode A., Kohn W. (1993). Models for hybrid systems: Automata, topologies, stability. In
Hybrid Systems, no. 736 in LNCS, pp. 317–356, Springer Verlag.

Pepyne D.L., Cassandras C.G. (2000). Optimal control of hybrid systems in manufacturing.
IEEE Proceedings 88(7), 1108–1123. [Application of hybrid systems to manufacturing pro-
cesses.].

Tavernini L. (1987). Differential automata and their discrete simulators. Nonlinear Analysis,
Theory, Methods & Applications 11(6), 665–683. [Discusses well-posedness of a class of hybrid
systems called differential automata.].

Tomlin C., Pappas G., Sastry S. (1998). Conflict resolution for air traffic management: a case
study in multi-agent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521.
[Air traffic management posed as a hybrid control problem.].

Utkin V.I. (1992). Sliding Modes in Control Optimization. Springer-Verlag, Berlin. [Presents
control design method based on discontinuous control.].

van der Schaft A.J., Schumacher J.M. (1998). Complementarity modeling of hybrid systems.
IEEE Transactions on Automatic Control 43(4), 483–490. [A class of hybrid systems with
certain type of discrete transitions, which is, for example, suitable for modeling electrical circuits
with ideal diodes.].

— (2001). Compositionality issues in discrete, continuous, and hybrid systems. International
Journal of Robust and Nonlinear Control 11(5), 417–434. [Discusses the importance of compo-
sition in the analysis of complex systems. Examples are taken from continuous-time, discrete-
event and hybrid systems.].

Varaiya P. (1993). Smart cars on smart roads: Problems of control. IEEE Transactions on Au-
tomatic Control 38(2), 195–207. [Application of hybrid systems to automated highway systems.
Discusses relation between hybrid systems and hierarchical control structures.].

Zelikin M.I., Borisov V.F. (1994). Theory of Chattering Control. Springer-Verlag. [Analyses
optimal control problem leading to Zeno behaviour.].

Zhang J., Johansson K.H., Lygeros J., Sastry S. (2001). Zeno hybrid systems. International
Journal of Robust and Nonlinear Control 11(5), 435–451. [Presents properties of Zeno hybrid
systems, see Section 4.3.].

