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Abstract

High-frequency dither signals are commonly used to implement modulation schemes in power electronics converters. These systems

represent an interesting class of hybrid systems with external excitation. They have a rich dynamical behavior, which cannot be easily

understood intuitively. Despite the common use of averaging techniques in power electronics, it was only recently proved that a dithered

hybrid system can be approximated by an averaged system under certain conditions on the dither signal. Averaging and averaged models

for various types of power converters are analyzed in the paper. It is shown that the averaged nonlinearity depends on the dither shape

and that dither signals with Lipschitz-continuous averaged nonlinearities can be used to adapt the equivalent gain of power converters.

Practical stability of the original dithered system can be inferred by analyzing a simpler averaged system. The main contribution of the

paper is to show that the averaged and the dithered systems may have drastically different behavior if the assumptions of the recently

developed averaging theory for dithered hybrid systems are violated. Several practical experiments and simulation examples of power

electronics converters are discussed. They indicate that the conditions on the dither signal imposed by the averaging theory are rather

tight.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many power electronics systems have switching devices
that more or less instantaneously change the dynamics of
the system. Ideal models of diodes and controlled switches
give rise to a class of hybrid dynamical systems, which
consist of differential equations with discontinuous non-
linearities and external excitation signals. The understand-
ing of the dynamical behavior of these systems is important
to enable the design of more robust and efficient power

converters, e.g., Kassakian, Schlecht, and Verghese (2001)
and Banerjee and Verghese (2001).
Detailed analysis of hybrid models of power converters

is difficult due to potentially complex interaction between
the nonsmooth dynamics and the external carrier signal.
Such signal, which is here interpreted as the dither,
determines the commutations of the switches by means of
a comparison with a suitable modulation signal. A possible
approach to circumvent some of the difficulties is to
average the hybrid dynamics over the period of the carrier
signal. If the dither is of sufficiently high frequency, the
behavior of the averaged system will often be close to the
original system. Although the averaging approach is widely
used in practice (Mohan, Undeland, & Robbins, 1995),
only recently rigorous averaging analysis was introduced,
e.g. (Lehman & Bass, 1996). For a general class of
Lipschitz-continuous systems, the averaging approach
was theoretically justified by Zames and Shneydor (1976,
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1977) already in the 1970s. They considered a class of
feedback systems with linear dynamics and Lipschitz-
continuous static nonlinearities excited by a dither signal,
and showed that the amplitude distribution function
(ADF) of the dither plays a key role in understanding the
stabilizing effect of the dither on the closed-loop system.
The assumption on Lipschitz continuity posed by Zames
and Shneydor is, however, often violated in practice; for
example, that is the case for several power converters
controlled using pulse width modulation. Results were
recently obtained on averaging and stability for dithered
systems with nonsmooth dynamics (Gelig & Churilov,
1998; Iannelli, Johansson, Jönsson, & Vasca, 2003;
Iannelli, Johansson, Jönsson, & Vasca, 2006; Teel,
Moreau, & Nesic, 2004). When the dynamics are non-
smooth, it seems like there is a considerably smaller class of
dither signals that can be used, compared to the smooth
case considered by Zames and Shneydor. For instance,
the averaging result in Iannelli et al. (2006) requires the
averaged system to be Lipschitz continuous, which, in
the case of nonsmooth dynamics, in general means that the
dither should have Lipschitz-continuous ADF.

The main contribution of this paper is to show that when
certain conditions on the carrier signal in power converters
are violated, then averaging may fail to predict the correct
system behavior. This finding is illustrated through a
number of examples, by simulated models of DC/DC and
three-phase converters as well as by two experimental set-
ups of DC/DC converters. The results show the importance
of some mathematical details behind the averaging theory:
the sufficient conditions on the dither, first presented in
Iannelli et al. (2006), are rather tight, and disregarding
them could have a dramatic effect on the accuracy of the
averaging. It is also indicated how averaging can be used to
infer rigorous practical stability of the dithered system by
analyzing the simpler averaged system, cf., Gelig and
Churilov (1998), Moreau and Aeyels (2000) and Iannelli
et al. (2003).

The outline of the paper is as follows. Section 2 presents
four common types of switched power converters. They
can all be represented as a particular class of hybrid
systems with external dither excitation. Section 3 presents
some background on the averaging for this class of hybrid
systems. Practical stability results on the dithered system
derived by assuming exponential stability of the averaged
system are presented in Section 4. How to choose the shape
of the dither is discussed in Section 5. Disregarding certain
conditions on the dither signal can give rise to interesting
dynamical phenomena, which are discussed in Section 6.
They can also be verified in reality, so Section 7 confirms
the theory through power converter experiments. The
paper is concluded in Section 8 with some future directions.

2. A hybrid model for a class of switched power converters

This section considers switched power converters com-
posed of linear passive electrical components (resistors,

inductors, capacitors), independent voltage and current
sources, and ideal diodes, transistors, and thyristors. As
examples DC/DC buck and boost converters, an H-bridge
drive, and a three-phase converter are discussed. The
section is concluded by showing that these converters,
when operating in continuous conduction mode, can be
modeled using the same class of hybrid models.

2.1. DC/DC buck converter

The circuit diagram of a voltage-mode controlled buck
converter is reported in Fig. 1. The purpose of this
converter is to reduce the input voltage v to a desired
output value, say xref

2 , without large energy losses. By
choosing as state variables the inductor current x1, the
capacitor voltage x2 and the output x3 of the integral block
of the controller, the dynamic model of the converter under
continuous conduction mode (i.e., the current through the
inductor is assumed to be always positive) can be
represented as

_xðtÞ ¼ A0xðtÞ þ b0rðtÞ þ b1vðtÞnðkprðtÞ � cxðtÞ � dðtÞÞ (1)

with

A0 ¼

�R1=L �1=L 0

1=C �1=ðR2CÞ 0

0 �k2 0

2
664

3
775; b0 ¼

0

0

1

2
664
3
775,

b1 ¼

1=L

0

0

2
664

3
775; c ¼ ½�k1 k2kp � ki�,

where k1 and k2 are the state feedback gains, r ¼ k2x
ref
2 , kp

and ki are the gains of the proportional and integral terms
of the controller, respectively, and d is the periodic carrier
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Fig. 1. DC/DC buck converter under voltage-mode control: S represents

an ideal switch, D is an ideal diode, d is the dither signal, and k1; k2; kp; ki

are the control parameters.
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signal (typically, a sawtooth signal). The step nonlinearity n

is given by

nðzÞ ¼
1; z40;

0; zo0;

(
(2)

and the switch S is assumed to be a short circuit (and D an
open circuit) if nðzÞ ¼ 1 and an open circuit (and D a short
circuit) if nðzÞ ¼ 0. A model of the open-loop modulated
power converter is simply obtained from (1) by letting
k1 ¼ k2 ¼ ki ¼ 0.

2.2. H-bridge drive

A power electronic drive with a position-controlled DC
motor and a full bridge, or H-bridge, DC/DC converter is
shown in Fig. 2. The control objective for the system is to
put the motor shaft at a desired angular position xref

1 . The
angular position of the shaft x1 is measured by using a
rotational potentiometer with gain kpot, therefore
r ¼ kpotx

ref
1 . The motor supply voltage is obtained through

a bipolar modulation of the DC/DC converter: when the
pair ðSþ1 ;S

�
2 Þ is conducting, the voltage over the DC motor

is v, and when ðS�1 ;S
þ
2 Þ is conducting, the voltage over the

DC motor is �v. By introducing as state vector, the
angular position x1, the angular speed x2, and the armature
current x3, the dynamic model of the power electronic
system can be represented as

_xðtÞ ¼ A0xðtÞ þ b0vðtÞ þ b1vðtÞnðrðtÞ � cxðtÞ � dðtÞÞ (3)

with

A0 ¼

0 1 0

0 �b=J kt=J

0 �ke=La �Ra=La

2
664

3
775; b0 ¼

0

0

�1=La

2
664

3
775,

b1 ¼ �2b0; c ¼ ½kpot 0 0�,

where b is the friction coefficient, J the motor inertia, kt the
torque constant, ke the electromagnetic constant, Ra the
armature resistance, La the armature inductance. It is
assumed that when nðzÞ ¼ 1 the pair ðSþ1 ;S

�
2 Þ is conducting

and when nðzÞ ¼ 0 the pair ðS�1 ;S
þ
2 Þ is conducting.

2.3. DC/DC boost converter

A DC/DC boost converter generates at steady state an
average output voltage that is larger than its input voltage.
The boost converter reported in Fig. 3 can be modeled as

_xðtÞ ¼ A0xðtÞ þ b0vðtÞ þ A1xðtÞnðrðtÞ � cxðtÞ � dðtÞÞ, (4)

with

A0 ¼
�R1=L �1=L

1=C �1=ðR2CÞ

" #
; A1 ¼

0 1=L

�1=C 0

" #
,

b0 ¼
1=L

0

" #
; c ¼ ½�k1 k2�.

The notation is similar to the buck converter, so d is a
periodic carrier signal, n denotes the step function, S is
conducting when nðzÞ ¼ 1, etc. Note that in the boost
converter model (4), as opposed to the previous models (1)
and (3), the nonlinearity n multiplies the state variables.

2.4. Three-phase converter

Consider the three-phase power converter reported in
Fig. 4. Let us introduce for each lag i ¼ 1; 2; 3, a
corresponding control variable ûi, which is equal to þ1 if
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Fig. 2. Position-controlled DC motor driven by a H-bridge power

converter: S�1;2 represent ideal switches, d is the dither signal, kpot is the

transducer gain and ke is the electromagnetic constant.
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Fig. 3. DC/DC boost converter under voltage-mode control: S represents

an ideal switch, D is an ideal diode, d is the dither signal and k1, k2 are the

control parameters.
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Sþi is conducting (and S�i is not) and�1 if S�i is conducting
(and Sþi is not). By applying the Kirchhoff’s circuit laws
one obtains

L _x1ðtÞ ¼ � Rx1ðtÞ þ v1ðtÞ � v2ðtÞ þ Rx2ðtÞ þ L _x2ðtÞ

þ
�û1ðtÞ þ û2ðtÞ

2
x4ðtÞ, ð5Þ

L _x2ðtÞ ¼ � Rx2ðtÞ þ v2ðtÞ � v3ðtÞ þ Rx3ðtÞ þ L _x3ðtÞ

þ
�û2ðtÞ þ û3ðtÞ

2
x4ðtÞ, ð6Þ

L _x3ðtÞ ¼ � Rx3ðtÞ þ v3ðtÞ � v1ðtÞ þ Rx1ðtÞ þ L _x1ðtÞ

þ
�û3ðtÞ þ û1ðtÞ

2
x4ðtÞ, ð7Þ

C _x4ðtÞ ¼
û1ðtÞ þ 1

2
x1ðtÞ þ

û2ðtÞ þ 1

2
x2ðtÞ

þ
û3ðtÞ þ 1

2
x3ðtÞ �

1

RL

x4ðtÞ. ð8Þ

By using the equilibrium condition for the currents
x1ðtÞ þ x2ðtÞ þ x3ðtÞ � 0, one can substitute _x2ðtÞ ¼

� _x1ðtÞ � _x3ðtÞ in (5), and by using (7) together with the
(typical) equilibrium condition for the input voltages,
v1ðtÞ þ v2ðtÞ þ v3ðtÞ ¼ 0, Eq. (5) can be rewritten as

L _x1ðtÞ ¼ �Rx1ðtÞ þ v1ðtÞ þ
1
6
ð�2û1ðtÞ þ û2ðtÞ þ û3ðtÞÞx4ðtÞ.

With similar arguments one can write

L _x2ðtÞ ¼ � Rx2ðtÞ þ v2ðtÞ þ
1
6
ðû1ðtÞ � 2û2ðtÞ þ û3ðtÞÞx4ðtÞ

L _x3ðtÞ ¼ � Rx3ðtÞ þ v3ðtÞ þ
1
6
ðû1ðtÞ þ û2ðtÞ � 2û3ðtÞÞx4ðtÞ

C _x4ðtÞ ¼
1

2
û1ðtÞx1ðtÞ þ

1

2
û2ðtÞx2ðtÞ þ

1

2
û3ðtÞx3ðtÞ �

1

RL

x4ðtÞ.

The commutation of the switches can be determined by
means of a modulated state feedback. Then the signals ûi

can be written as

ûiðtÞ ¼ 2nðriðtÞ � cixðtÞ � dðtÞÞ � 1,

where nðziÞ ¼ 1 (respectively, nðziÞ ¼ 0) means that, the
upper (lower) switch of the ith lag is conducting. Thus, the
entire model of the controlled converter can be written as

_xðtÞ ¼ A0xðtÞ þ b0vðtÞ þ
X3
i¼1

AixðtÞnðriðtÞ � cixðtÞ � dðtÞÞ,

(9)

where v is the vector of the input voltages, A0, Ai and b0 are
matrices that can be derived from the previous equations,
and ci depend on the control strategy. A typical open-loop
modulation strategy consists of choosing d as a triangular
dither and ri as low frequency sinusoidal signals with
suitable phase shifts.

2.5. Hybrid model

General hybrid models, such as hybrid automata and
switched systems, applicable for power converters but also
for many other applications, are widely considered in the
literature, e.g., Lygeros, Johansson, Simić, Zhang, and
Sastry (2003), Guéguen and Zaytoon (2004) and Liberzon
(2003). The converters presented above are examples of a
rather wide class of power converters that can be modeled
in the following form:

_xðtÞ ¼ A0xðtÞ þ b0vðtÞ

þ
Xm

i¼1

ðAixðtÞ þ bivðtÞÞ

� nðriðtÞ � cixðtÞ � dðtÞÞ, ð10Þ

where Ai, bi and ci are constant matrices of appropriate
dimensions and m is an integer related to the number of
modes of the converter. The initial condition xð0Þ is
denoted by x0. The external input vector v and reference
signals ri are assumed to be Lipschitz continuous. The
external carrier signal d is assumed to be a high-frequency
signal of period p. Here d is called a dither signal and
consequently the hybrid system (10) is called a dithered
system. This terminology is frequently used for a variety of
mechanical and electrical control systems with high-
frequency excitation signals. In power electronics systems,
d is usually a sawtooth or triangular signal, but in the
following a general shape of the signal will be allowed.
Indeed, also dither signals that are constant over non-
vanishing time intervals, such as square-waves, saturated,
and quantized signals, are sometimes used in applications.
Since the differential Eq. (10) has a discontinuous right-

hand side (because n is discontinuous), it is important to
make some comments on the existence and uniqueness of
solutions. In the following it is assumed that (10) has at
least one absolutely continuous solution xðt;x0Þ on ½0;1Þ
(in the sense of Carathéodory). It is supposed that the time
intervals when the solution is at a discontinuity point of n

are of zero Lebesgue measure. As a consequence, solutions
with sliding modes are not considered. Furthermore, it is
supposed that the solutions have no accumulation of
switching events (Zeno solutions).

3. Averaging

In this section it is formulated a version of the main
theorem in Iannelli et al. (2006), which will provide the
foundation for the subsequent analysis. The averaged
system corresponding to the dithered system (10) is defined
as

_wðtÞ ¼ A0wðtÞ þ b0vðtÞ

þ
Xm

i¼1

ðAiwðtÞ

þ bivðtÞÞNðriðtÞ � ciwðtÞÞ, ð11Þ
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where wð0Þ ¼ x0 and N is an averaged nonlinearity, which
is derived from the original step nonlinearity n and the
dither signal d as follows:

NðzÞ9
1

p

Z
½0;pÞ

nðz� dðsÞÞds. (12)

The averaged nonlinearity obviously depends on the shape
of d. Typical dither signals are sawtooth, triangular,
sinusoidal, trapezoidal, and square wave signals. Fig. 5
shows a sawtooth signal and its averaged nonlinearity.
Note that triangular dither and sawtooth dither with the
same amplitude and period have the same averaged
nonlinearity.

The following averaging result follows from Theorem 3.1
in Iannelli et al. (2006). It states conditions when the
dithered system (10) can be approximated by the averaged
system (11).

Proposition 3.1 (Iannelli et al., 2006). Consider the dithered

system (10) and the averaged system (11) under the following

assumptions:

(i) the external signals rðtÞ and vðtÞ are Lipschitz continuous,
(ii) the dither d is p-periodic, jdjpMd, and the corresponding

averaged nonlinearity is Lipschitz continuous.

Then, the averaged system (11) has a unique absolutely

continuous solution on ½0;1Þ. Moreover, for any compact set

K � Rn and any T40, there exists a positive constant g ¼
gðK;TÞ such that

jxðt;x0Þ � wðt;x0Þjpgp; 8x0 2K; t 2 ½0;T �. (13)

The approximation error depends linearly on the dither
period. The proof in Iannelli et al. (2006) is constructive
and gives an estimate of g that has exponential dependence
on T but is independent of p. This fact can be used to derive
an upper bound on the approximation error between the
dithered and the averaged systems over an infinite time
horizon provided that some stability condition is satisfied,
see next section for such a result.

It is straightforward to extend the averaging theorem to
the case of more than one dither signal (Iannelli et al.,
2006). In that case, the averaged system will have one
averaged nonlinearity corresponding to each dither. More-
over, it is possible to relax the periodicity assumption on
the dither and instead consider dither signals that have
some more general time repetition properties (Zames &

Shneydor, 1976). See Iannelli, Johansson, Jönsson, and
Vasca (2004) for details on how to extend Proposition 3.1
in this case.
It is possible to characterize a dither signal using its

ADF. The ADF F d : R! ½0; 1� of a p-periodic dither
signal d : ½0;1Þ ! R is defined as

FdðxÞ9
1

p
mðft 2 ½0; pÞ : dðtÞpxgÞ,

where m denotes the Lebesgue measure. The ADF simply
says how large fraction of each period the dither signal lies
below the level x. The ADF is thus a deterministic analog
of the probability distribution function. In particular, it is a
bounded, monotonically increasing function that takes
values in the interval ½0; 1�. The averaged nonlinearity
corresponding to the step function is equal to the ADF of
the dither:

NðzÞ ¼
1

p

Z
½0;pÞ

nðz� dðsÞÞds ¼

Z
R

nðz� xÞdFdðxÞ

¼

Z z

�1

dFdðxÞ ¼ FdðzÞ. ð14Þ

Therefore the averaged nonlinearity is determined by the
shape of the dither. An alternative condition in (ii) of
Proposition 3.1 is thus that the ADF should be Lipschitz
continuous.

4. Stability analysis

Proposition 3.1 can be used to derive stability results for
the dithered system. In this section it is shown that if the
averaged system (11) has an exponentially stable equili-
brium, then the dithered system is practically stable.

Proposition 4.1. Suppose the averaged system (11) has an

exponentially stable equilibrium at w0, i.e., there exist a040
and b0X1 such that

jwðtÞ � w0jpb0e
�a0tjwð0Þ � w0j; 8t 2 ½0;1Þ.

If the conditions of Proposition 3.1 are satisfied, then for any

compact set K and constants �40 and 0oaoa0, the

dithered system (10) satisfies

jxðtÞ � w0jpb0e
�atjxð0Þ � w0j þ �; 8xð0Þ 2K; t 2 ½0;1Þ

for all p 2 ð0; p0Þ where

p0 ¼
1� a1

ðb0 þ ð1� a1ÞÞg
�; T ¼ �a�10 lnða1=b0Þ,

a1 ¼ b�a=ða0�aÞ0 2 ð0; 1Þ, and g ¼ gðK;TÞ as in Proposition 3.1.

Proof. See Appendix.

The result shows that the state of the dithered system
converges to a neighborhood of the origin with a rate
similar to the averaged system, provided that the dither
frequency is sufficiently high. The size of the neighborhood
is determined by the high-frequency ripple that appears due
to the dither signal.
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The relationship between the averaged and the dithered
solutions shows that dithering can be also interpreted as a
technique for regularizing solutions of nonsmooth systems.
In fact, since n is discontinuous, the solution of (10) might
not be unique. On the other hand, if the averaged
nonlinearity is Lipschitz, the averaged system (11) will
have a unique solution. Now, from Propositions 3.1 and
4.1 one can conclude that by decreasing the dither period,
all possible solutions of (10) will get closer and closer to the
unique solution of the averaged system (11).

Proposition 4.1 assumes that the averaged system (11)
has an exponentially stable equilibrium. Regarding the
stability analysis of smooth averaged systems, there are
many available results. Here stability conditions are con-
sidered for a class of averaged systems with m ¼ 1, vðtÞ ¼ E

constant, rðtÞ ¼ r constant, b0 ¼ 0, A1 ¼ 0, b1 ¼ b=E, and
A0 ¼ A, where A is a Hurwitz matrix and b is a given
vector. The averaged dynamics become

_wðtÞ ¼ AwðtÞ þ bNðr� cwðtÞÞ. (15)

From (15) the equilibrium state can be written as w0 ¼

�A�1bNðe0Þ and the equilibrium value of the output error
e0 ¼ r� cw0 is determined by the equation

e0 � cA�1bNðe0Þ ¼ r. (16)

The system (15) is on Luré form, i.e., it is a negative
feedback interconnection between a linear system GðsÞ ¼

cðsI � AÞ�1b and a static nonlinearity.
The averaged models of buck converters and H-bridge

converters are on Luré form. The Popov criterion is one of
many possible tools for proving exponential stability of
such systems. More sophisticated results include the Zames
and Falb (1968) result and the integral quadratic constraint
method (Megretski & Rantzer, 1997). By using the Popov
criterion, the following proposition provides conditions for
the exponential stability of the averaged system (15).

Proposition 4.2. The equilibrium w0 ¼ �A�1bNðe0Þ of (15),
where e0 satisfies (16), is exponentially stable with rate of

decay a40, if there exists k40 such that

(i) Aþ aI is Hurwitz,
(ii) N is in the sector ½0; k�, i.e.,

e� e0 �
1

k
ðNðeÞ �Nðe0ÞÞ

� �
ðNðeÞ �Nðe0ÞÞX0; 8e 2 R,

(iii) there exists lX0 such that

Reðð1þ lðjo� aÞGðjo� aÞÞXalkjGðjo� aÞj2 �
1

k
,

8o 2 R.

Proof. See Appendix.

Proposition 4.2 illustrates how it is possible to infer
stability of the dithered system by analyzing the simpler
averaged system. In next section it is shown how the result

can be used to predict the behavior of a buck converter.
Proposition 4.2 can be extended to the case when there is
integral action in the dynamics (Jönsson & Megretski,
2000).
Many converter models such as the boost converter and

the three phase converter do not have averaged dynamics
on Luré form. These systems have instead bilinear
averaged dynamics. In general, it is easier to analyze these
systems with Lagrangian and Hamiltonian methods, e.g.,
Ortega, Loria, Nicklasson, and Sira-Ramirez (1988),
Escobar, van der Schaft, and Ortega, (1999).

5. Effects of dither shape

The results on averaging and stability show that
robustness and stability properties satisfied by the averaged
system can be inherited by the dithered system. This section
gives some examples that illustrate how the dither can be
used for designing control systems and motivate the need
for a deeper investigation of the possible use of dither
shapes.

5.1. Stabilization through appropriate dither

Consider the DC/DC buck converter under proportional
control and sawtooth dither (see Fig. 1). The controller
parameters are k1 ¼ 0, k2 ¼ 1, kp ¼ 0:5, ki ¼ 0, and vðtÞ ¼

E constant. The averaged dynamics can be written in the
form (15) with

A ¼
�R1=L �1=L

1=C �1=ðR2CÞ

" #
; b ¼

E=L

0

� �
; c ¼ ½0 0:5�,

and the averaged nonlinearity is

NðzÞ ¼

1; z4Md;

0:5þ z=ð2MdÞ; jzjpMd;

0; zo�Md;

8><
>:

which belongs to the sector ½0; 1=ð2MdÞ�. If e0 2 ½�Md;Md�,
then Nðe0Þ ¼ 0:5þ e0=ð2MdÞ and (16) gives

e0 ¼
2Mdðr� 0:5Gð0ÞÞ

2Md þ Gð0Þ
,

where GðsÞ ¼ cðsI � AÞ�1b. Hence, provided that e0 2

½�Md;Md�, it follows that the stationary output error is

xref
2 � w0

2 ¼
2Mdðr� 0:5Gð0ÞÞ

0:5ð2Md þ Gð0ÞÞ
(17)

and the stability condition (iii) of Proposition 4.2 is

Reðð1þ lðjo� aÞGðjo� aÞÞX
al
2Md
jGðjo� aÞj2 � 2Md,

8o 2 R. ð18Þ

It follows that the stationary output error becomes smaller
as the dither amplitude Md is decreased. The loop gain is in
the linear range of the nonlinearity inversely proportional
to Md, which implies a faster response as Md decreases.
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The price paid for a higher loop gain is that the stability
criterion in (18) is harder to satisfy. It may seem contra-
dictory to get a higher loop gain, and thus faster dynamics,
at the same time as a smaller rate of decay a is needed in
(18). The reason is that the stability criterion provides a
global estimate of the rate of convergence and takes the
saturation into account in the estimate.

Consider the following converter parameters R1 ¼ 0:1O,
L ¼ 10mH, C ¼ 220mF, R2 ¼ 8:9O, E ¼ 10V. By com-
puting the stationary output voltage in (17) and an upper
bound for a in the stability criterion in (18), the following
table can be obtained:

xref
2 � w0

2
Md ¼ 0:5 Md ¼ 5

xref
2 ¼ 5 0:01 0:04

xref
2 ¼ 8 0:51 2:04

a ¼ 87 a ¼ 244

These theoretical predictions are confirmed in the simula-
tion experiments reported in Figs. 6 and 7. Note that
by increasing the amplitude of the sawtooth dither signal,
the stationary output voltage error increases at the same
time as the rise time becomes larger. This is particularly
easy to see when the reference voltage varies at t ¼ 0:03 s.
Moreover the oscillations decay slower for a small
amplitude of the dither. This is predicted by the smaller
value of a.

5.2. Dithers with nonLipschitz ADF

The dither shape can be designed to give a desired
behavior of the averaged system. Consider, for instance, a
system with triangular dither. Then the averaged non-
linearity is a saturation. If the averaged system is not stable
in a neighborhood of the origin due to the high gain of the
averaged nonlinearity, then it is possible to increase the
amplitude of the dither and thus decrease the gain in the

linear region of the nonlinearity, cf., Fig. 5. As an
alternative, it is also possible to choose the dither shape
so that the slope of the averaged nonlinearity is distributed
unevenly over the nonsaturated region. One such possibi-
lity is to use a sinusoidal dither, which gives an averaged
nonlinearity with small slope near the equilibrium at the
expense of a steeper slope close to the saturation region, see
Fig. 8. The averaged nonlinearity is in this case

NðzÞ ¼

0; zo�Md;

1

2
1þ

2

p
sin�1

z

Md

� �� �
; jzjpMd;

1; z4Md:

8>>><
>>>:

Note that NðzÞ is continuous but not globally Lipschitz, so
it does not satisfy condition (ii) of Proposition 3.1. It is
nevertheless sometimes possible to successfully use this type
of nonlinearity in applications to stabilize the system. An
experimental example is given in Section 7. This motivates a
further investigation of the need for the assumptions made
on the dither signal in Proposition 3.1. In Section 6 it will be
proven that if the condition (ii) in Proposition 3.1 is
violated, then the averaged system does not necessarily
approximate the dithered system. The averaged nonlinear-
ity corresponding to the sinusoidal dither is continuous but
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Fig. 6. Capacitor voltage and inductor current of the closed-loop DC/DC

buck converter with triangular dither. The reference xref
2 varies from 5 to

8V after 0:03 s. The dither period is p ¼ 1:25ms with amplitude Md ¼ 0:5.
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Fig. 7. Capacitor voltage and inductor current of the closed-loop DC/DC

buck converter with triangular dither. The converter and controller

parameters are the same as in Fig. 6, but the dither amplitude is 10 times

larger ðMd ¼ 5Þ.
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Fig. 8. Sinusoidal dither and the corresponding averaged nonlinearity.
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has unbounded derivative. It is also possible to have
discontinuous averaged nonlinearities. Since nðzÞ is dis-
continuous in z ¼ 0, it holds that if dðtÞ is constant, equal to
d̄, say, for some nonzero time interval, then NðzÞ is not
defined for z ¼ �d̄. One such example is the trapezoidal
signal in Fig. 9. It is easy to see that dither signals that are
constant over nonvanishing time intervals, such as trape-
zoidal and square wave signals, have discontinuous
averaged nonlinearities. This class of zero-slope dither
signals can give rise to interesting dynamical behaviors
when applied to discontinuous feedback systems. They need
to be carefully analyzed, as discussed in next section.

6. Subtleties in the averaging of switched power converters

This section shows that when conditions on the ADF are
not satisfied, it is possible to find systems for which the
conclusions of Proposition 3.1 do not hold. In particular it is
shown that when conditions on the averaged nonlinearity are
not satisfied, it can happen that there are multiple solutions of
the averaged system, or an approximation error that cannot
be arbitrarily decreased by increasing the dither frequency.
The proofs of these results are constructive in the sense that
they are based on examples that illustrate the limitations.

The following example shows that it cannot be ensured
the existence of a unique solution to the averaged system
unless it is imposed the boundedness of the derivative of
the averaged nonlinearity NðzÞ. Consider the dithered
nonsmooth feedback system (10) with m ¼ 1, A0 ¼ A1 ¼ 0,
b0 ¼ 0, b1 ¼ 4, c1 ¼ �1, xð0Þ ¼ �1, r1ðtÞ � 0, vðtÞ � 1 and
d is the following p-periodic quadratic dither signal:

dðtÞ ¼

�4Md
t

p

� �2

þMd; tmod p 2 0;
p

2

� i
;

4Md
t

p

� �2

� 8Md
t

p
þ 3Md; tmod p 2

p

2
; p

� i
:

8>>>><
>>>>:

The corresponding averaged nonlinearity is

NðzÞ ¼

0; zp�Md;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

z

Md

r
; �Mdpzp0;

1�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

Md

r
; 0pzpMd;

1; zXMd:

8>>>>>>>><
>>>>>>>>:

(19)

Note that NðzÞ is absolutely continuous but its derivative is
not bounded. The averaged system (11) now reduces to

_wðtÞ ¼ 4Nð�wðtÞÞ; wð0Þ ¼ �1,

where NðzÞ is given by (19). Note that this averaged system
is not globally Lipschitz because NðzÞ is not globally
Lipschitz. It is easy to show that when Md ¼ 1 the
averaged system has a nonunique solution. In fact, there
are infinitely many solutions parameterized by t 2 ½0;1Þ
and given by

wðtÞ ¼
�1; 0ptpt;

ðt� tÞ2 � 1; tXt:

(

Then it is possible to claim the following proposition.

Proposition 6.1. Suppose the averaged nonlinearity NðzÞ is

absolutely continuous but its derivative is not bounded. Then

there exists a dithered system (10) for which the correspond-

ing averaged system (11) does not have a unique solution.

The next example shows that if the averaged nonlinearity
is not absolutely continuous then the uniform approxima-
tion property in (13) of Proposition 3.1 cannot be
guaranteed. Consider the nonsmooth feedback system
(10) with m ¼ 1, and

A0 ¼
�1 �1

0 �2

" #
; A1 ¼

0 0

0 0

" #
; b0 ¼

0

�1

" #
,

b1 ¼
0

2

" #
; c1 ¼ ½1 0�.

Let the external signals be constants: r1ðtÞ ¼ 0:5 and
vðtÞ ¼ 1. The dither d is a square wave signal with
amplitude Md ¼ 0:5. The averaged system (11) has an
averaged nonlinearity N as given in Fig. 9 with D ¼ 0 and
Md ¼ 0:5.
Let the state space of the dithered and the averaged

systems be partitioned into the following three regions, see
Fig. 10:

� Region O1 ¼ fx : x1o0g. In this region nðr1 � c1x�

dÞ ¼ 1. The dithered system coincides with the averaged
system and they have dynamics _x ¼ A0x� b0. The
equilibrium point is P1 ¼ A�10 b0 ¼ ð�0:5; 0:5Þ

T.
� Region O2 ¼ fx : x141g. In this region nðr1 � c1x�

dÞ ¼ 0. The dithered system coincides with the averaged
system and they have dynamics _x ¼ A0xþ b0. The
equilibrium point is P2 ¼ �A�10 b0 ¼ ð0:5;�0:5Þ

T.
� Region O0 ¼ fx : 0ox1o1g with subsets Oþ0 ¼ fx :

0ox1o1; x240:5g and O�0 ¼ fx : 0ox1o1; x2o
�0:5g. In O0 the state does not affect the output of the
step nonlinearity. The dithered system can be repre-
sented by the linear system

_z ¼ A0z� b0u (20)

with u a periodic signal that switches between �1 (when
r1 � dðtÞ ¼ 0) and 1 (when r1 � dðtÞ ¼ 1). The averaged
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system has an input equal to zero in this region, i.e.,
_w ¼ A0w.

Consider xð0Þ ¼ wð0Þ, with 0ox1ð0Þo1, 0ox2ð0Þo0:5 and
x1ð0Þ4x2ð0Þ. It is easy to show that the averaged trajectory
will tend to the origin without leaving the set indicated for
the possible initial conditions. The dithered trajectory will
oscillate about the averaged solution. By considering the
vector fields indicated in Fig. 10, it follows that the dithered
trajectory cannot leave the set O0 � fOþ0

S
O�0 g but

by crossing the segment fx : x1 ¼ 0; 0px2p0:5g. More-
over in O0 the solution of the dithered system can be
represented as

xðtÞ ¼ eA0tðxð0Þ � z0Þ þ zssðtÞ,

where zss is the steady-state p-periodic solution of (20) and

z0 ¼ �ðI � eA0pÞ
�1

Z p

0

eA0ðp�sÞbuðsÞds.

Since A0 is Hurwitz, xðtÞ will converge to zssðtÞ, which is a
counter clockwise oscillation around the origin. It is always
possible to choose a small enough dither period p such that
zssðtÞ never intersects O2, since zss ! 0 when p! 0. It is
then clear that xðtÞ eventually will cross the x2 axis for
some 0px2p0:5.
It is easy to see that the second orthant is an invariant set

under the dynamics of the dithered and averaged systems.
Moreover, since the system matrix A0 is Hurwitz, the
dithered solution xðtÞ will tend toward the equilibrium
point P1.
The above example shows that the dithered and the

averaged systems behave qualitatively different since they
converge to two different points, P1 and the origin,
respectively. This is in contradiction to the inequality (13)
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of Proposition 3.1. Indeed, if the compact set K includes
the origin, it would need to make p smaller and smaller the
closer x0 is to the origin (on the trajectory indicated in
Fig. 10) in order to get the inequality satisfied, because it
always exists a p such that (13) does not hold. Hence, there
is no uniform bound on p that holds for all x0 2K. Then it
is possible to state the following proposition.

Proposition 6.2. Suppose the averaged nonlinearity NðzÞ is

discontinuous. Then there exists a dithered system (10) for

which the uniform bound in (13) of Proposition 3.1 does not

hold.

The discrepancy between the averaged and the dithered
dynamics indicated above have previously been discovered
in simulations: limit cycles appeared in the dithered but not

in the averaged system in an example in Iannelli et al.
(2003). The second example in next section shows that such
discrepancy also can appear under experimental condi-
tions.

7. Experimental results

In this section experiments with the DC/DC buck
converter and the H-bridge drive show how and when
the averaging analysis can be used.

7.1. DC/DC buck converter

Consider the DC/DC buck converter reported in Fig. 1
with R1 ¼ 0:1O, L ¼ 1mH, C ¼ 220mF, R2 ¼ 8:9O, r ¼ 6,
v ¼ 10V, kp ¼ 0, k1 ¼ 0:5, k2 ¼ 1, and ki ¼ 10. The
controller is implemented through a dSPACETM DS1103
PPC controller board with a sampling period of 10ms. The
implementation scheme of the controlled DC/DC buck
converter is reported in Fig. 11.
The experimental results obtained by varying the input

voltage from 10 to 14V using dither signals with differ-
ent shapes and amplitudes are reported in Fig. 12 and
Table 1.
Experiments show that the behavior of the controlled

system is dependent on the dither shape and amplitude.
For instance, for Md ¼ 0:1, the sinusoidal dither recovers
the desired output voltage in a shorter time and with lower
overshoot than the sawtooth dither signal. The opposite
occurs for Md ¼ 0:25 (see Fig. 12) and Md ¼ 0:35. By
computing the averaged models it is possible to verify that
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Table 1

Experimental results of the DC/DC buck converter with input voltage

change

Amplitude Settling Overshoot Voltage

(V) time (ms) (%) ripple (V)

0:1 15:6 18:3 0:10
Sawtooth 0:25 15:0 18:2 0:12
dither 0:35 14:8 18:7 0:13

0:1 14:2 15:3 0:12
Sinusoidal 0:25 16:8 23:3 0:15
dither 0:35 18:0 22:7 0:16

The dither frequency is 5 kHz. The settling time is evaluated at 5% of the

steady-state averaged output voltage.
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Fig. 13. Equivalent computed nonlinearity (with p ¼ 200ms): (a) triangular dither (top diagram), (b) sinusoidal dither (bottom diagram) both with

Md ¼ 0:1; 0:35. On the horizontal axis it is reported z ¼ ð1=pÞ
R t

t�p
ðr� cxðtÞ � dðtÞÞdt and on the vertical axis it is reported

NðzÞ ¼ ð1=pÞ
R t

t�p
nðr� cxðtÞ � dðtÞÞdt.
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the experiments confirm that the dithered systems represent
a good approximation of the averaged ones. By evaluating
the time averaging (on a dither period) of both the input
and output signals of the step nonlinearity during different
dynamic operating conditions, Fig. 13 is obtained. The
computed averaged nonlinearities reproduce their analy-

tical prediction obtained through (12). Indeed it is also
possible to show that the averaged system approximates
quite well the behavior of the dithered system, although the
condition (ii) of Proposition 3.1 is violated. This is not true
in general, as it was shown in Proposition 6.2 and as it will
be confirmed by the next experiment.
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Fig. 14. Measured angular position x1 for sawtooth dither of three frequencies.

Fig. 15. Phase-space with sawtooth dither with p ¼ 5ms: the armature current, the measured angular position and the angular speed. Note that the

angular position has a small ripple as illustrated in Fig. 14. The two planes reported in the figure represent the boundaries corresponding to the minimum

and maximum values of the dither.
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7.2. H-bridge drive

Consider the DC motor control system described in
Section 2.2. The DC motor has the following parameters:
Ra¼2:510O; La ¼ 0:530mH, kt¼ke¼5:700mV=ðrad s�1Þ,
b ¼ 0:411mNcm=ðrad s�1Þ, J ¼ 31:400 g cm2, kpot ¼ 3=
ð2pÞV=rad, v ¼ 4:500V. Two dither shapes are considered:
a sawtooth signal and a trapezoidal signal. The dither
amplitude is in all cases equal to Md ¼ 70mV. It can be
shown (e.g., using the Popov criterion) that the averaged
systems corresponding to the sawtooth and trapezoidal
dither cases are both asymptotically stable. For sawtooth
dither, the approximation error between the dithered
system and the averaged system tends to zero as the dither
frequency goes to infinity, in accordance with Proposition
3.1. Hence, since the averaged system is asymptotically
stable, the system output goes to zero as we increase the
dither frequency. For trapezoidal dither, the assumptions
of Proposition 3.1 are not fulfilled, since trapezoidal dither
has a discontinuous ADF.

The following DC motor experiments support these
theoretical conclusions. The system is stabilized with
sawtooth dither, but not with trapezoidal dither. Experi-
ments were carried out using sawtooth dither of frequen-
cies 100, 200, and 500Hz. Fig. 14 reports the angular
position of the motor shaft under steady-state conditions
and Fig. 15 a phase-space diagram. Note that by increasing
the dither frequency the behavior of the dithered system
converges to the behavior of the (stable) averaged system
(i.e., the system output goes to zero). Table 2 reports the
ratios between consecutive averages of the peak-to-peak
values of the output signal, thus indicating the convergence
rate. The averaging effect of the dither works properly in
this case. Figs. 16 and 17 show experiments with
trapezoidal dither. In this case, the system output shows
a slow oscillation with a substantial amplitude for all three
dither frequencies. The frequency of the oscillation is low
compared to the dither frequency, and it seems to be
relatively independent of the dither frequency. In particu-
lar, note that by increasing the dither frequency, the system
output does not converge to zero, as was the case with
sawtooth dither. Instead going from 200 to 500Hz, the
amplitude of the oscillation is even increasing, see Table 2.
To investigate the high-frequency limiting case, a square

wave dither of 1MHz has been applied. Fig. 18 shows the
result. Although the trajectory does not intersect the planes
in this case, the dither still does not stabilize the system
about the origin.
The oscillations that appear in Figs. 16–18 are not

predicted by the averaged dynamics. The oscillations in the
experiments also appear in simulations of the correspond-
ing dithered system and it is an example of the discrepancy
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Table 2

Experimental results of the angular position for the H-bridge drive with

different dither signals

f (Hz) Sawtooth dither Trapezoidal dither

Peak-to-peak

(rad)

Ratio Peak-to-peak

(rad)

Ratio

100 0:0850 3:32 0:582 1:97
200 0:0256 2:84 0:295 0:86
500 0:0090 – 0:343 –
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Fig. 16. Measured angular position for trapezoidal dither of three frequencies. Note the different scale compared to Fig. 14.
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that may appear between the solutions of the dithered and
averaged systems when the conditions of the averaging
theorem are not satisfied.

8. Conclusions

In this paper it has been shown that an important class
of power electronics systems can be re-casted in the
framework of dithered nonsmooth systems. By exploiting
recent theory for hybrid systems with external excitation, it

has been analyzed how the shape of the external signal
affects the averaging result and thereby the behavior of the
power converters. Simulations and experiments supported
the theoretical results and showed the importance of
understanding the limitations of averaging theory in
practice.
The results presented in this paper propose several

interesting research problems for future investigations. An
important problem is on developing principles for dither
design. The paper shows that certain classes of dither
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Fig. 18. Phase-space with square wave dither with p ¼ 1ms.

Fig. 17. Phase-space with trapezoidal dither with p ¼ 10ms.
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signals are more suitable than others. A next step would be
to optimize the choice of signal within such a class. For
practical problems, such as the design of power converters,
implementation aspects should be taken into account in
this procedure, since certain modulation signals might be
easier to generate or are more desirable for other reasons.
Further analysis of some of the dynamical properties
illustrated in the simulations and experiments of the paper
is needed. For instance, the peculiar oscillations that
appear in the experiments of the H-bridge drive with
trapezoidal dither require further investigations.
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Appendix. Proofs

Proof of Proposition 4.1. To prove the result iteratively
consider time intervals of length T ¼ �a�10 lnða1=b0Þ where
0oa1o1. Let �0 ¼ gp0, where g ¼ gðK;TÞ. Then Proposi-
tion 3.1 implies

jxðtÞ � wðtÞjp�0

on t 2 ½0;T �. By considering a sequence of functions
~wk; k ¼ 1; 2; . . ., each defined on an interval ½kT ;
ðk þ 1ÞT � and satisfying (11) with ~wkðkTÞ ¼ xðkTÞ, then
it follows that

j ~wkðtÞ � w0jpb0e
�a0ðt�kTÞjxðkTÞ � w0j; 8tXkT ,

and, by applying Proposition 3.1 again,

jxðtÞ � w0j ¼ jxðtÞ � ~wkðtÞ þ ~wkðtÞ � w0j

pb0e
�a0ðt�kTÞjxðkTÞ � w0j þ �0 ð21Þ

on t 2 ½kT ; ðk þ 1ÞT �. By evaluating (21) in t ¼ ðk þ 1ÞT ,

jxððk þ 1ÞTÞ � w0jpa1jxðkTÞ � w0j þ �0. (22)

Hence

jxðkTÞ � w0jpak
1jx0 � w0j þ �0

1� ak
1

1� a1
. (23)

Then (21) becomes

jxðtÞ � w0jpb0e
�a0ðt�kTÞ e�akT jx0 � w0j þ

�0
1� a1

� �
þ �0

pb0e
�atjx0 � w0j þ b0

�0
1� a1

þ �0, ð24Þ

for t 2 ½kT ; ðk þ 1ÞT �, where a ¼ �T�1 ln a1, which implies
aoa0. The result follows since (24) is valid for any k and

b0
�0

1� a1
þ �0 ¼ gp0

b0 þ 1� a1
1� a1

¼ �: &

Proof of Proposition 4.2. Condition (i) and (iii) implies
by the Kalman–Yakubovich–Popov Lemma that there

exists P ¼ PT40 such that

ATPþ PAþ 2aPþ 2alkcTc Pb� ðcðI � lAÞÞT

bTP� cðI � lAÞ � 2
k
� 2lcb

" #
p0.

(25)

Let z ¼ w� w0, y ¼ �cðw� w0Þ, fðyÞ ¼ Nðr� cw0 þ yÞ�

Nðr� cw0Þ. Then the error dynamics satisfies

_z ¼ Azþ bfðyÞ; y ¼ �cz

and by (ii) the following sector condition holds
ðy� ð1=kÞfðyÞÞfðyÞX0. Let V 0ðzÞ ¼ zTPz and

V ðzÞ ¼ V0ðzÞ þ l
Z y

0

fðsÞds.

It follows from (14) that the nonlinearity is monotonically
nondecreasing (because Fd is monotonically nondecreas-
ing), which in turn implies that the integral always is
positive. This implies that this Lyapunov candidate is
bounded by

lminðPÞjzj
2pV ðzÞp lmaxðPÞ þ

lk

2
jcj2

� �
jzj2. (26)

Finally, from (25) and the sector condition on f it can be
derived the following bound on the derivative:

_V ðzÞp� 2aV ðzÞ. (27)

It follows from (26) and (27) that jzðtÞjpbe�atjzð0Þj, where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmaxðPÞ þ lkjcj2=2Þ=lminðPÞ

q
.

This completes the proof. &
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