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Abstract�— Mobile wireless sensors in indoor environments
will experience multipath fading, causing rapid variations in the
capacity of the radio link. We present a strategy that increases
the throughput by modifying the trajectory of the sensor so it
spends more time at positions where the capacity is high. While
doing so, it still maintains some desired average velocity. Our
approach includes closed-loop estimation of the parameters of
the fading, which may change when moving between rooms. We
prove stability of the feedback system and illustrate its behavior
through simulations. Finally, we demonstrate robustness to
errors in the channel model.

I. INTRODUCTION

There is growing awareness that the communication chan-
nel must be taken into account when coordinating mobile
sensor networks. Avoiding physical obstacles has a long
tradition in robotics, but there is an equally real but invisible
radio propagation environment that needs to be taken into
consideration. Successful sensing requires both reaching the
desired location and transferring sensor information to the
recipient.

The interaction of motion and communication can be mod-
eled in different ways, depending on what radio propagation
phenomena dominate in a particular environment and what
kinds of analysis the model must allow. Path loss, shadowing
and multipath fading are three important such phenomena,
briey described below.

In open elds or in long distance deployments, the
distance-dependent path loss dominates. Some model this
as circular regions of perfect coverage and others as the
signal gradually decreasing with distance. This allows joint
optimization of sensing and communication objectives [1],
[2]. Such models can also be used to develop algorithms
with guaranteed connectivity within the group [3].

When obstacles are present, shadowing will occur, i.e.,
attenuation of the signal as it passes through an obstacle.
Shadowing can be avoided by requiring a direct line of sight,
which gives the motion planning problem a more geometric
nature [4], [5].

In indoor or urban settings, multipath fading becomes
signicant. It is caused by negative or positive interference
from multiple reections of the same signal, and results
in signal strength variations over distances that are just a
fraction of a wavelength. Since the fading has a complex
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dependence on the layout of the environment, it is usually
treated as a stochastic effect. Even small movements of a
sensor node will change the fading, which can be exploited to
improve the signal strength for a stationary sensor node [6].
If the node is connected in a network, such small movements
will change the capacities of the different links, which
may be used for load balancing [7]. Estimating the spatial
correlation of the fading can also give important information.
Mobile sensors can adapt the step size of their movement so
as to faster escape from deep fades [8].

The main contribution of this paper is a novel adaptive
architecture that closes the loop between motion and com-
munication in environments with multipath fading. We study
a robot moving along a reference trajectory, adapting its
motion so as to spend more time at positions where the signal
strength is high. We have previously shown that such stop-
and-go motion improves the average radio throughput [9]. By
applying feedback from the robot position, we can improve
those results, maintaining tracking of the reference position
and making the system adapt to varying channel parameters.

The analysis includes proofs of input-output stability of the
closed-loop system, as well as convergence in the absence of
noise. Moreover, we illustrate how the feedback architecture
gives robustness to errors in the channel model, which are
likely to occur in practical usage. Finally, we discuss how to
tune the time constant of the channel estimator, which is a
matter of separation of time scales between the stop-and-go
motion and the estimator dynamics.

In the following section, we introduce models for the
motion and communication and formulate the problem. In
Section III, we briey recapitulate the stop-and-go motion for
completeness. Section IV presents the proposed architecture
and an analysis of its stability and time constant. Simula-
tions in Section V illustrate how the feedback improves the
performance of the system and its robustness. Finally there
is a short conclusion.

II. PROBLEM FORMULATION

Fig. 1 shows the problem scenario. We consider a robot
following a reference trajectory in an environment with
multipath fading. It makes regular stops and measures the
signal strength to determine how long each stop should last.
By stopping longer at points with high signal strength, we
can improve the total throughput while still making sure that
the robot tracks the reference within some margin. We give
a model for the fading channel as well as the motion of the
robot and end by formally stating the problem of nding a
stop-time policy.
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Fig. 1. A robot is following a reference trajectory while sending sensor
information to a base station. Reections off walls and furniture cause
multipath fading, which makes the radio signal strength uctuate. By
stopping periodically and making longer stops at positions with high signal
strength, the robot can increase the link throughput. On average, the robot
still tracks the reference position.

A. Communication Model

This section presents some communication preliminaries
that will be needed for understanding the analysis of the
proposed strategy. Our communication model is based on
the popular Tmote Sky sensor board, which implements
IEEE 802.15.4, communicates at 2.4 GHz and uses quadra-
ture phase shift keying (QPSK) modulation [10]. The bit
error rate (BER) for QPSK for a signal with signal-to-noise
ratio (SNR) γ is [11, p. 223]

Pb(γ) = Q(
√
γ),

where Q(x) is the cumulative distribution function of the
standard normal distribution.

We dene the link capacity as the packet reception rate.
Under the assumption of bit-to-bit error independence, the
capacity is

c(γ) = c0[1 − Q(
√
γ)]8N ,

where N is the number of bytes in a package and c0 is the
nominal capacity. IEEE 802.15.4 denes a packet length of
11 bytes, plus address and payload. With an address and
payload of 4+8 bytes, the Tmote has a nominal capacity of
1360 packets/s.

We further assume static Rayleigh fading. By this we mean
that the channel is Rayleigh fading, but the environment is
static so the fading does not change over time if the robot
stands still. It is exponentially distributed:

fγ(γ) =
1
Γ

e−γ/Γ, (1)

where Γ is the average SNR. The spatial autocorrelation of γ
has a zero at the inter-sample distance of 0.38 wavelengths of
the carrier signal, which is 4.75 cm at 2.4 GHz. In practice,
two samples are often considered independent if the inter-
sample distance is greater than half a wavelength [12].

Since the Tmote has a 1 MHz bandwidth, we consider the
fading to be at. Further, the robot is assumed to only move

at walking speeds, so even when it is moving, the fading is
slow [11]. (Meaning that the channel is considered constant
over the duration of one bit.)

B. Robot Model

We study one-dimensional movement along a pre-dened
reference trajectory, where the reference position moves with
velocity vref. The relative position of the robot is ∆(t), where
∆ > 0 means that the robot is ahead of the reference, and we
assume ∆(0) = 0. The robot rst drives at velocity vd for a
constant time τd, then stops, samples γ and stands still for
a time τs(γ) before starting over again. Formally, we dene
the system dynamics as

∆̇(t) =

{
−vref when tk ≤ t < tk + τs(γ[k])

vd − vref else,
(2)

for all k ≥ 0, where

tk = kτd +
k∑

m=1

τs(γ[m − 1]) (3)

and γ[k] denotes the SNR, sampled at time tk.
Note that if vdτd is greater than half a wavelength, which

is 6.3 cm for a 2.4 GHz signal, we can consider all γ[k]
as if they are independent. Also note that we only sample
the SNR when standing still. This allows us to estimate
the signal strength over several received packets, which is
often necessary for low-cost transceivers because the signal
strength sensor is inaccurate.

C. Problem Formulation

For the stochastic hybrid system (2), where independent
samples γ[k] are drawn from the distribution (1), nd a stop-
time policy τs(γ) that yields the average velocity vref and
compute the resulting average link capacity.

We will rst restate our solution from [9] for the case
when the average SNR Γ is known, and then study the case
when it has to be estimated on-line.

III. SOLUTION FOR KNOWN AVERAGE SNR

Assuming that the average SNR Γ is known, we propose
a stop-time policy and analyze the resulting link capacity it
yields.

A. Stop-Time Policy

We propose a simple threshold policy: After sampling the
SNR, the robot stands still for a xed time ατd if the SNR is
above some threshold γth, otherwise it immediately resumes
driving. The choice of α > 0 will be discussed later in this
section. The policy can formally be stated as

τs(γ) =

{
ατd if γ > γth

0 else.
(4)

The average velocity after M + 1 stop-and-go cycles is
∑M

k=0 vdτd∑M
k=0(τd + τs(γ[k]))

.

#F?I



As M → ∞, we get the expected velocity as

E{v} =
vdτd

τd + E{τs}
.

The expected stop-time can be computed as

E{τs} =
∫ ∞

γth

ατd
1
Γ

e−γ/Γdγ = ατde
−γth/Γ. (5)

Since γth < 0 has the same effect as γth = 0, this shows
that ατd is a lower bound for the average stop time. In the
following, we will assume α > 1 and use γth = Γ lnα,
which yields E{τs} = τd and E{v} = 1

2vd.
High values of α correspond to making very few stops

at positions with high SNR. But such a policy causes very
large deviations from the reference position. It also depends
on the Rayleigh distribution being an accurate channel model
also at very high SNR, which is not the case. The extreme
case α → ∞ represents making a single stop at a position
with innite SNR, which is physically impossible since for
a given noise level, the SNR is limited by the transmitted
signal power. It is, however, easy to see that this pathological
case corresponds to the maximum expected link capacity.
On the other hand, small values of α limit the time the
robot can spend at really good positions and thus reduces
the achievable link capacity. In experiments, we have found
α = 4 to be a reasonable compromise.

B. Expected Link Capacity

With the choice of parameter shown above and by letting
vd = 2vref, the expected velocity of the robot will equal the
reference velocity. We will now analyze the expected average
link capacity.

While driving, the robot experiences slow fading and the
average driving capacity cd is

cd ! c0

∫ ∞

0
[1 − Q(

√
γ)]8N 1

Γ
e−γ/Γdγ.

We then compute the expected amount of data transmitted
per stop:

E{cτs} =
∫ ∞

0
c(γ)τs(γ)fγ(γ)dγ

The average link capacity for M + 1 stop-and-go cycles can
be computed as

∑M
k=0 (c(γ[k])τs(γ[k]) + cdτd)∑M

k=0 (τs(γ[k]) + τd)
.

In the limit as M → ∞, we get the expected average link
capacity as

E{c} =
E{cτs} + cdτd

2τd
.

The resulting link capacity is depicted in Fig. 2. For
comparison, we have also included the capacity cd when
driving at constant velocity. This is the same capacity as
would be obtained by the constant policy τs(γ) ≡ τd. Using
the proposed stop-and-go motion yields over 50% more
capacity than constant velocity when Γ < 7 dB. The prize
we pay for this capacity improvement is some deviation from
the reference position.
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Fig. 2. Expected link capacity (i.e., packet reception ratio) as a function of
the average SNR Γ. Using the stop-and-go motion is particularly benecial
in the transition region, where the signal is weak but still detectable.

IV. ESTIMATING CHANNEL PARAMETERS

So far we have assumed that the average SNR Γ is constant
and known. In practice, Γ depends on the output power of
the transmitter, the path loss and the noise level. When the
robot is moving over larger distances, the shadowing due to
obstacles between transmitter and receiver can be expected
to vary, which changes the path loss. Therefore, we propose
a feedback scheme to compute an estimate Γ̂ of Γ.

If Γ̂ underestimates Γ, the robot will stop too often and
thus fall behind the reference. The opposite happens if Γ̂
overestimates Γ. By monitoring the relative position ∆(t),
a controller can adjust Γ̂ to match the current channel
properties. The controller is formulated in discrete time,
sampling ∆(t) irregularly at each instant tk. We rst dene
the closed-loop system and then show that the SNR estimate
will converge to Γ and the relative position to zero.

A. Closed-Loop Estimation

Our model of the system with an estimator is illustrated in
Fig. 3. The SNR estimate in dB, u[k] ! 10 log Γ̂(tk) is the
input to the robot, which has dynamics (2) and follows the
policy τs(γ). We also dene d[k] as the change in relative
position during the interval tk ≤ t < tk+1, thus the relative
position at time tk is

∆[k] = ∆[k − 1] + d[k − 1].

Due to our probabilistic model of the fading, the position
change is considered stochastic. As we will show later, the
expected value of d[k] is a function of the SNR estimate. We
dene it as

f(u[k]) ! E{d[k]}.

The deviation from the expectation will be white noise since
we consider all samples γ[k] as independent. We denote it
w[k]:

w[k] = d[k] − E{d[k]}
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Fig. 3. The controller C(z) uses u, the SNR estimate in dB, to control
the average motion of the robot. It uses the relative position ∆, as input.

Note that since the stop times have an upper bound, d[k] and
hence the noise w[k] are also bounded.

This architecture allows us to introduce a controller C(z),
which uses u[k] to control the relative position ∆[k].

B. Static Nonlinearity

Here we give expressions for the static nonlinearity f . The
change in relative position at each stop-and-go cycle is

d[k] = τdvd − (τd + τs(γ[k])) vref,

so

E{d[k]} = τd(vd − vref) − vref

∫ ∞

0
τs(γ)fγ(γ)dγ.

For the policy (4), the nonlinearity becomes

f(u[k]) = E{d[k]} = τd
(
vd − vref − vrefα

(1−Γ̂/Γ)
)

.

Note that this does not depend on the actual values of Γ and
Γ̂, only the ratio. This motivates a change of control variable
to ũ[k], which we dene as the relative SNR estimation error
in dB:

ũ[k] ! 10 log
Γ̂
Γ

= u[k] − 10 logΓ (6)

We also dene the static nonlinearity

g(ũ[k]) = f(ũ[k] + 10 logΓ) + kminũ[k].

The last term is included for technical reasons, to ensure
a minimum slope of kmin. This term can be introduced by
letting the (previously constant) driving velocity vd vary
slightly with the SNR:

v(γ) = vd − 10kmin

τd
κ log e − kmin

τd
10 log

γ

Γ
,

where κ ≈ 0.577 is Euler�’s constant. This is not used in
the simulations, but is required for the stability proof below,
to ensure global convergence of the estimator even for very
large initial estimation errors.

The maximum slope of g is

kmax ! max
ũ

dg

dũ
= τdvref

ln 10
10

α(1−1/ ln α) + kmin.

ũ[k] (dB)

Ed[k]

τdvref

(1 − α)τdvref

Fig. 4. The static nonlinearity g̃, giving the expected change of relative
position per sampling period, as a function of the SNR estimation error.

C. State Space Description

We propose a PI-controller with proportional gain kP

and integral gain kI . The closed-loop system can then be
described on state space form as

x[k + 1] =
[

1 1
0 1

]

︸ ︷︷ ︸
A

x[k] +
[

0
1

]

︸ ︷︷ ︸
B

d[k]

ũ[k] =
[

kI kP

]
︸ ︷︷ ︸

C

x[k] (7)

d[k] = g(−ũ[k]) + w[k].

D. Closed-Loop Stability

We start by showing that the system with input w[k] is l2
stable. This means that for a bounded noise input w[k] ∈ l2,
we will have a bounded SNR estimation error ũ[k] ∈ l2.

Proposition 1 (l2 stability): Using kmin = 0.01, the sys-
tem (7) with the controller parameters

kP =
2(1 − a)

kmin
, kI =

(a − 1)2

kmin
,

is l2 stable if

2√
kmin/kmax + 1

− 1 < a < 1. (8)

Proof: We will use the circle criterion [13, Theo-
rem 6.7.37], but rst we need to make a loop transformation.
Using kmin as a constant gain element, we can dene a
modied nonlinearity g̃ as

g̃(ũ[k]) ! g(ũ[k]) − kminũ[k].

This is illustrated in Fig. 4.
The system (7) can then be redrawn as in Fig. 5, where

the dashed subsystem G̃(z) has transfer function

G̃(z) =
2(1 − a)z + a2 − 1

kmin(a − z)2
.

The system G̃(z) is stable since it has a double pole in
z = a and the nonlinearity g̃ belongs to the sector [0, kmax].
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Fig. 5. The closed-loop system after a loop transformation. The dashed
subsystem is linear and asymptotically stable and we can apply the circle
criterion.

Then, according to the circle criterion, the feedback system
is l2 stable if

Re{G̃(z)} > −1/kmax ∀ |z| = 1. (9)

As shown in [14], this is fullled if

2√
kmin/kmax + 1

− 1 < a < 1.

We now consider the case with no noise, w[k] = 0. Since
g(0) = 0, the system (7) has an equilibrium at x = 0, ũ = 0.
This corresponds to when there is no deviation from the
reference trajectory (∆ = 0) and the SNR estimate is correct.

Corollary 1 (Asymptotic stability): With the choice
of controller parameters as in Proposition 1 and if
w[k] = 0 ∀ k, the system (7) has a globally asymptotically
stable equilibrium at x = 0.

Proof: The pair (A, B) is controllable and the pair
(C, A) is observable since kI += 0. Further, the nonlinearity
g is Lipschitz continuous. Then the l2 stability of the forced
system (7) implies that x = 0 is a globally attractive equi-
librium of the system with no input [13, Theorem 6.3.46].

E. Tuning the Time Constant

Proposition 1 allows for a range of pole placements a,
which leaves some design freedom to set the time constant
of the estimator. A long time constant (a close to 1) makes
Γ̂ less sensitive to noise, but adapting to changes in Γ takes
very long. A short time constant (a closer to 0) causes Γ̂
to vary on the same time scale as the stop-and-go motion,
which gives a lower improvement of the link capacity than
predicted. The choice must depend on how fast the SNR is
expected to vary in the specic application, but when using
the parameters described below, we recommend selecting a
in the interval [0.980, 0.997], which limits the reduction of
the link capacity to a few percent.
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Fig. 6. Stop-and-go trajectory when the average SNR Γ is constant and
known.
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Fig. 7. If the SNR estimate is constantly 3 dB too low, the robot falls
behind the reference.

V. SIMULATIONS

Here we illustrate the performance of the stop-and-go
strategy, both for known channel parameters and when
estimating the channel in closed loop. We end by showing
that the system is robust to errors in the channel model.
All simulations use the following parameters: vref=0.2 m/s,
vd=0.4 m/s, τd=5 s, α=4 and a = 0.9957.

A. Running in Open Loop

Fig. 6 illustrates the stop-and-go motion of the system
when running in open loop. If the average SNR Γ is known,
the robot tracks the reference trajectory. However, if Γ is
underestimated by 3 dB, as in Fig. 7, the robot makes too
long stops and falls behind the reference. This motivates
using the closed-loop estimation.
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Fig. 8. A simulation of using closed-loop estimation of the average SNR Γ.
The initial estimate is too low, so the robot falls behind but then converges
to the correct estimate and manages to track the reference position.

B. Closed-Loop Estimation

Here we demonstrate convergence of the closed-loop esti-
mator. The correct average SNR is Γ = 0 dB, but the initial
estimate is Γ̂ = −10 dB. Fig. 8 shows the robot trajectory
and the evolution of Γ̂(t).

C. Robustness

The derivation above assumes Rayleigh fading, where
there is no line of sight between the robot and its base
station. If a line of sight component does exist, this may
change the distribution of the fading. This is often modeled
as a Rice distribution [11]. To illustrate the robustness of
the closed-loop system, Fig. 9 shows a simulation where the
SNR samples are drawn from the Rice distribution, with a
Rice factor of K = 17 dB. The error in the channel model
causes a slight bias in the SNR estimate, but it does not
affect the tracking of the reference trajectory.

VI. CONCLUSIONS

We have presented a feedback system that allows a robot
to do stop-and-go motion along a reference trajectory to
improve its wireless throughput. While doing so, it main-
tains tracking of the reference position, even if the channel
properties vary along the way.

Although the PI-controller is formulated as an estimator,
in practice it controls the relative position, so it sacrices
estimation accuracy if needed to correct for faulty initial
positions or errors in the SNR distribution. In the case of
Rayleigh fading, the control output eventually converges to
a correct estimate of the average SNR.
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Fig. 9. An illustration of the robustness of the closed-loop system: The
fading is now Rice distributed, which causes a slight bias in the SNR
estimate Γ̂, but the robot still tracks the reference trajectory.
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