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Abstract— We study a closed-loop multivariable control system
with sensor feedback transmitted over a discrete noisy channel.
For this problem, we propose a joint design of the state measure-
ment quantization, protection against channel errors, and control.
The proposed algorithm leads to a practically feasible design
of time-varying non-uniform encoding and control. Numerical
results demonstrate the performance obtained by employing the
proposed iterative optimization algorithm.

I. INTRODUCTION
In recent years, the demand for sharing resources efficiently

in large networked systems has been continuously increasing.
However, in many situations, there is a challenging conflict
between the amount of transmitted data and the response
time. Limits imposed on available signaling bandwidth from
communication channels can severely restrict the closed-loop
performance and even destabilize the system. Networked
control based on limited sensor and actuator information
has therefore attracted considerable attention during the past
decade. Up till now, results on control with limited information
have often been derived based on rather simple system models.
Generalizations to more complex scenarios, e.g., systems with
process noise, measurement noise, and transmission errors, are
challenging research topics. Some recent work in feedback
control over noisy channels includes [1]–[3]. Further, the
research interests have mainly been devoted to the stability
properties of various control strategies. The counterpart of the
optimal encoder design is rarely exploited in the literature. In
most of the early work, the quantizers are typically considered
as fixed system components, e.g., [3]–[5]. A closely related
problem to the problem of the encoder design is the estimation
of a Markov source. Some new results can be found in e.g.,
[6], [7]. In particular, [6] has studied the sequential vector
quantization scheme, while [7] was interested in the design of
the optimal finite memory encoder–decoders.

The main contribution of the present paper is a practical
synthesis technique for joint optimization of the quantization
and error protection for state observations over a bandlimited
and noisy channel. The control system in Fig. 1 is considered.
Suboptimal strategies for various encoder information settings
are studied, as indicated by the dashed lines in the figure. In
particular we extend our previous work [8] as follows: our
new results are valid for multi-dimensional linear systems ([8]
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investigates the scalar case); the system model now includes
measurement noise; we explicitly investigate the influence of
side-information (SI) available at the encoder; and, we present
new results on the validity of the certainty equivalence (CE)
principle in control over noisy channels.

The paper is organized as follows. In Sec. II we define the
control system with encoder, controller, and communication
channel. The problem statement, which concerns a linear
quadratic (LQ) objective over a finite horizon, is presented in
Sec. III. The joint encoder–controller design and the training
procedure are described in Sec. IV and Sec. V. Finally,
we present the numerical experiments in Sec. VI and the
conclusions in the last section.

II. PRELIMINARIES

Consider the control system with a communication channel
depicted in Fig. 1. Sensor data are encoded and transmitted
over an unreliable communication channel. Control commands
are then derived based on the received data. (In [9] we moti-
vated this scenario based on applications that involve closed-
loop control using measurements from distributed wireless
sensors.) In this section, we describe this system in detail.
Let xb

a = {xa, . . . ,xb} denote the evolution of a discrete-time
multidimensional signal xt from t = a to t = b. The linear plant
is governed by the following equations

xt+1 = Axt +But + vt ,

yt = Cxt + et ,
(1)

where xt ∈ R
n,ut ∈ R

m,yt ∈ R
l are the state, the control, and

the measurement, respectively. The matrices A ∈ R
n×n, B ∈

R
n×m, C ∈ R

l×n, are known. The variable vt ∈ R
n is referred

to as the process noise and et ∈ R
l is the measurement noise.

The noise signals are white and mutually independent. We
also assume that the pdf’s of the initial state and the noises
are known.



We consider an encoder that causally utilizes the encoder
information. By the encoder information, we mean the set of
variables whose values are known to the encoder. The encoder
is then a mapping from the set of the encoder information
to a discrete set of symbols. We take each symbol to be
represented by an integer index. At time t, the index is
it ∈ IL = {0,1, . . . ,L−1}, where L = 2R with R denoting the
rate of the transmission, in bits per state measurement. In
particular, we are interested in the class of encoder mappings
described by the function

it = ft (yt ,kt−1
0 ). (2)

That is, given the side-information kt−1
0 , the encoder maps the

present measurement yt to an index it . The side-information
kt represents the feedback to the encoder about the symbol jt ,
received at the controller. The mapping from jt to kt will be
detailed later. We will also consider the encoders of the form

it = f̄t (ȳt ,kt−1
0 ), (3)

where we let ȳt depend on both yt and ut−1
0 , as will be specified

later.
Let the discrete memoryless channel have the input it and

the output jt ∈ IL, with one channel use defined by
jt = κt(it), (4)

where κt : IL → IL is a random mapping.
At the receiver side, we consider a controller that causally

utilizes the controller information {jt
0,u

t−1
0 }. The controller is

written as
ut = gt(jt

0,u
t−1
0 ). (5)

Finally, we denote the conditional mean estimator of the
state, based on the received indices, as x̂s|t = E{xs|jt

0,u
t−1
0 }

for s ≤ t; moreover, let x̂t = x̂t|t = E{xt |jt
0,u

t−1
0 } and x̃t = xt −

E{xt |jt
0,u

t−1
0 }.

III. PROBLEM STATEMENT
In this section, the memoryless binary channel and the per-

formance measure are specialized together with a discussion
on the encoder side-information.
A. Binary Channel and Performance Measure

We consider a memoryless binary channel in this paper. Let
c(it) ∈ {0,1}R be a binary codeword of length R representing
the encoder output, it ∈IL. The mapping between it and c(it)
is referred to as the index assignment [10]. In a similar way,
c( jt) denotes the received binary codeword, where jt ∈ IL is
the received index.

Our goal is to solve an optimal encoder–controller problem
for the linear system (1). The performance measure for this
integrated communication and control problem is the following
LQ cost function, with a finite horizon T > 0,

E{JT} = E

{

T

∑
t=1

Wt(xt ,ut−1)

}

, Wt = x′tVt xt +u′t−1Pt−1ut−1,

(6)
where (·)′ denotes matrix transpose. The matrices Vt’s and Pt’s
are symmetric positive definite.

B. Encoder Side-Information

In general, the main reason for using memory-based
encoder–controller is to increase the resolution of the quan-
tized observation. For memory-based schemes, the system
performance relies heavily on the encoder’s knowledge about
the controller memory state, and the controller’s believe in the
encoder memory state. In the presence of a noisy channel, care
has to be taken in specifying how to “synchronize” the states
of the encoder and controller.

We use the term encoder side-information (SI) to specify
the potential feedback to the encoder about jt−1

0 . Consequently,
no SI is the extreme case when there is no feedback at all
about the jt ’s, and full SI denotes the situation that the encoder
knows exactly the previously received symbols jt−1

0 . This is
the case when the channel is noiseless, so that jt = it , or when
there is an error-free side-information channel from the output
of the forward channel to the encoder. Note that full SI can also
be obtained if the encoder knows the previous control signals,
ut−1

0 , and the controller function is an invertible mapping, since
then jt can be deduced from ut

0. In this paper, we consider a
particular class of side-information, namely,

kt = ηt( jt) ∈ KK = {0,1, . . . ,K −1}, K ≤ L. (7)

Accordingly, kt = jt and K = L when full SI is available,
while K = 1 when there is no SI at the encoder. Between
the extremes, there is a variety of cases with incomplete SI,
for which 1 < K < L. One example is the case with no side-
information channel and a non-invertible controller mapping,
e.g., if ut takes on only K < L distinct values. We assume
the general case, 1 ≤ K ≤ L, in the paper. Note that in Fig. 1
we illustrate the mapping from jt to kt as an explicit side-
information channel, even though this information can be
obtained by other means, e.g., by inverting the controller
mapping as previously discussed.

IV. ENCODER–CONTROLLER DESIGN

This section presents the main results of the paper. Since
the overall joint encoder–controller optimization problem is
not tractable, we propose a method to optimize the encoder–
controller pair iteratively. Similar to traditional quantizer de-
sign [10], the idea is to fix the encoder and update the
controller, then fix the controller and update the encoder etc.
At each updating, only one (time-)component ( ft or gt for a
certain t) of the encoder or controller is optimized. For the
sake of clarity, we will refer to the sequence of components
which define the full operation of the encoder as fT−1

0 , and
the notation ft refers to the particular component at time t.
Similar notation is used for the controller.

First in Sec. IV-A, we consider the problem of the optimal
control for fixed encoding functions. Then, in Sec. IV-B, the
optimal control equation is solved for a class of modified
encoders. Thereafter, in Sec. IV-C, we address the problem
of optimal encoding, assuming the controller is fixed.



A. Optimal Controller

In this section, we investigate the optimal controller map-
ping gt , assuming the encoder fT−1

0 is fixed. This scenario fits
well into the setting of stochastic optimal control [11], and
we apply dynamic programming to derive the optimal control
strategy. The observation available at the controller is the
integer-valued received indices jt−1

0 . The recursive derivation
starts at the last stage t = T . Consider

λT =E{WT |jT−1
0 ,uT−2

0 } (8)

=tr(VT QT−1)+

∫

Rn
[x′T−1A′VT AxT−1 +2u′T−1B′VT AxT−1

+u′T−1(PT−1 +B′VT B)uT−1]p(xT−1|j
T−1
0 ,uT−2

0 )dxT−1,

where the term Qt = E{vtv′t} denotes the variance of the
process noise, which is independent of the control uT−1. The
optimal uT−1 is the one minimizing λT , in particular,

u∗T−1 =− [PT−1 +B′VT B]+B′VT Ax̂T−1, (9)

where [·]+ denotes matrix pseudoinverse and (·)∗ indicates the
optimal solution. Substituting u∗T−1 into λT , the optimal cost-
to-go for the last stage t = T is

γ∗T =min
uT−1

λT = E{x′T−1I1xT−1 +ϖ1|jT−1
0 ,uT−2

0 },

I1 =A′VT A−π1,

π1 =A′VT B[PT−1 +B′VT B]+B′VT A,

ϖ1 =tr(VT QT−1)+E{x̃′T−1π1x̃T−1|jT−1
0 ,uT−2

0 }.

(10)

When u∗T−1 is established, we can move to the second last
stage t = T −1. The optimal uT−2 is the one minimizing γT−1,

u∗T−2 =argmin
uT−2

{γT−1}, (11)

γT−1 =λT−1 +E{γ∗T |j
T−2
0 ,uT−3

0 },

λT−1 =E{x′T−1(VT−1 + I1)xT−1 +u′T−2PT−2uT−2|jT−2
0 ,uT−3

0 }.

Similarly, generalizing to any time t, the optimal ut−1 is the
one minimizing γt , (especially, γ0 = E{JT}). Resembling the
classical results, we present the following proposition.

Proposition 1: Consider a fixed encoder fT−1
0 . Given the

linear plant (1) and the memoryless channel (4), a controller
ut = gt(jt0,u

t−1
0 ) that minimizes the LQ cost (6) fulfills the

following recursive equation

u∗t−1 =argmin
ut−1

{γt} (12)

γt =λt +E{γ∗t+1|j
t−1
0 ,ut−2

0 }

λt =E{(Axt−1 +But−1 + vt−1)
′Vt(Axt−1 +But−1 + vt−1)

+u′t−1Pt−1ut−1|jt−2
0 ,ut−3

0 },

for t = 0, . . . ,T −1 and γ∗T+1 = 0.
Unfortunately, the minimization problem (12) is hard to

solve. One main obstruction lies in how E{γ∗t+1|j
t−1
0 ,ut−2

0 } is
affected by the past controls. Consider for example t = T −1;
the quantity E{x̃′T−1π1x̃T−1|jT−1

0 ,uT−2
0 } in γ∗T is then difficult

to analyze, since the received index jT−1 itself is a function
of uT−2 via encoding and transmission. Hence, obtaining an

explicit solution to (12) is not feasible. Moreover, resorting to
a numerical solution is computationally intensive and memory
demanding.
B. Modified Encoder Information

As concluded in Sec. IV-A, an explicit solution to the
optimal control problem (12) can in general be obtained only
in few special cases. Here we study one example where we
by changing the encoder information are able to arrive at an
explicit solution for the optimal control. Namely, we extend
the information available at the encoder to include also the
values of all past controls (as illustrated in Fig. 1). Define

ȳt = yt −
t−1

∑
j=0

CAt−1− jBu j = CAt x0 +
t−1

∑
j=0

CAt−1− jv j + et , (13)

that is, the part of yt remaining after removing the effect of
previous control signals. Consider the encoder

it = f̄t(ȳt ,kt−1
0 ), t = 0, . . . ,T −1,

(as defined in (3)), which uses the extended encoder infor-
mation ut−1

0 to compute ȳt , and then produces an index it
based on ȳt and kt−1

0 . According to the fact that ut−1
0 is

completely determined by jt−1
0 , when full SI is available, for

any ft (yt , j
t−1
0 ), there is an equivalent f̄t (ȳt , j

t−1
0 ), and vice

versa. For the encoder (3), we can verify that the estimation
error x̃t is not a function of ut−1

0 . This can be revealed by
writing x̃t as,

At x0 +
t−1

∑
j=0

At−1− jv j −E

{

At x0 +
t−1

∑
j=0

At−1− jv j|jt
0,u

t−1
0

}

.

Since ut−1
0 can be derived from jt−1

0 ; and, {x0,vT−1
0 ,eT−1

0 } are
not affected by uT−1

0 , one can show by the following induction
that the indices jt

0 are not functions of ut−1
0 . Start the induction

at t = 0. The statement holds true at t = 0 since

i0 = f̄0(ȳ0) = f̄0(x0 + e0), j0 = κ0(i0), k0 = η0( j0).

If the statement is valid for time t, then at time t +1,

it+1 = f̄t+1(ȳt+1,k
t
0), jt+1 = κt+1(it+1),kt+1 = ηt+1( jt+1),

which hence do not explicitly depend on ut
0. Therefore,

{it , jt ,kt}
T−1
t=0 depend only on {x0, vT−1

0 , eT−1
0 } and potential

channel errors, but not on uT−1
0 .

The fact that the estimation error x̃t is not a function of
ut−1

0 for the extended encoder information will significantly
simplify the derivation of the optimal control. Consider equa-
tion (11). Since the covariance of the estimation error x̃T−1 is
independent of uT−2

0 , the optimal uT−2 turns out to be
u∗T−2 =`T−2x̂T−2,

`T−2 =− [PT−2 +B′(VT−1 + I1)B]+B′(VT−1 + I1)A,
(14)

and the optimal cost-to-go at t = T −1 is given by
γ∗T−1 =E{x′T−2I2xT−2 +ϖ2|jT−2

0 ,uT−3
0 }, (15)

I2 =A′(VT−1 + I1)A−π2,

π2 =A′(VT−1 + I1)B[PT−2 +B′(VT−1 + I1)B]+B′(VT−1 + I1)A,

ϖ2 =ϖ1 + tr((VT−1 + I1)QT−2)+E{x̃′T−2π2x̃T−2|jT−2
0 ,uT−3

0 },



with {I1,π1,ϖ1} as in (10). Then, since E{x̃′tπT−t x̃t |jt
0,u

t−1
0 }

does not depend on ut−1
0 at any time instance t, the optimal

control of (5) at time t is obtained as

u∗t =`t x̂t ,

`t =− [Pt +B′(Vt+1 + IT−t−1)B]+B′(Vt+1 + IT−t−1)A.
(16)

The resulting optimal cost-to-go is

γ∗t+1 =E{x′tIT−t xt +ϖT−t |jt
0,u

t−1
0 },

IT−t =A′(Vt+1 + IT−t−1)A−πT−t , (17)
πT−t =A(Vt+1 + IT−t−1)B[Pt +B′(Vt+1 + IT−t−1)B]+

×B′(Vt+1 + IT−t−1)A,

ϖT−t =ϖT−t−1 + tr((Vt+1 + IT−t−1)Qt)+E{x̃′tπT−t x̃t |jt
0,u

t−1
0 }.

The results in (16) and (17) illustrate that, for the fixed
encoder (3), the optimal control strategy (12) admits an explicit
solution. We summarize the above result in Proposition 2.

Proposition 2: Consider a fixed encoder f̄T−1
0 . Given the

linear plant (1) and the memoryless channel (4), the controller
ut = gt(jt0,u

t−1
0 ) that minimizes the LQ cost (6) is given by

ut = `t x̂t , (18)
with `t specified in (16), and x̂t is the conditional mean
estimate of the state xt , i.e., x̂t = E{xt |jt0,u

t−1
0 }.

Observe that, the optimal control strategy (18) can be
decomposed into a separate decoder and a controller. Hence,
the separation property holds, e.g., [11], [12]. Additionally,
one can show that the derived optimal control strategy (16) is
a certainty equivalence (CE) controller, as discussed next.

A CE controller is obtained by first computing the optimal
deterministic control, in the absence of process noise and
assuming perfect state observations. Thereafter, the perfect
state observations are replaced with estimates of the partially
observed states, c.f., (16). The CE controller does in general
not provide optimum performance. In our case, we were able
to show that the resulting CE controller specified in (16) is
optimal for the fixed encoder f̄t in (3). In many applications
it is not reasonable to assume that the encoder has access
to the control sequence for computing ȳt . However, in the
case of the original encoder (2), we can still employ the CE
controller, together with the optimal encoder (19) (detailed in
the next sub-section), to implement a computationally feasible
approximation to the optimal solution.

C. Optimal Encoder

In this section, we address the problem of optimizing the
encoder component ft , for a fixed controller gT−1

0 and the
fixed encoder components ft−1

0 and fT−1
t+1 . The optimal encoder

needs to take the impact of the predicted future state evolutions
into account. Hence, the following results are evident from the
construction.

Proposition 3: Consider a fixed controller gT−1
0 and the

fixed encoder components ft−1
0 and fT−1

t+1 . Given the linear plant
(1) and the memoryless channel (4), the encoder component

ft(yt ,kt−1
0 ) that minimizes the LQ cost (6) is given by

it = arg min
i∈IL

E

{

T

∑
s=t+1

Ws(xs,us−1)
∣

∣

∣
yt ,kt−1

0 , it = i

}

. (19)

Observe that, the optimization problem (19) requires the
probability densities p(xt |yt ,kt−1

0 ) and p(jt−1
0 |yt ,kt−1

0 ) to be
estimated, and then used in the prediction of the future states
and controls. The plant (1), the memoryless channel (4), the
fixed controller and the encoder components gT−1

0 , ft−1
0 , fT−1

t+1 ,
and the design criterion (6), are all involved in the estimation
and prediction procedures. We also present the analogous
result for the encoder f̄t .

Proposition 4: Consider a fixed controller gT−1
0 , and the

fixed encoder components f̄t−1
0 and f̄T−1

t+1 . Given the linear plant
(1) and the memoryless channel (4), the encoder component
f̄t(ȳt ,kt−1

0 ) that minimizes the LQ cost (6) is given by

it = arg min
i∈IL

E

{

T

∑
s=t+1

Ws(xs,us−1)
∣

∣

∣
ȳt ,kt−1

0 , it = i

}

. (20)

V. TRAINING ALGORITHM
In this section, we propose an encoder–controller design

algorithm which is suitable for low data rate, accomplishing
source compression, channel protection and control simul-
taneously. Since, there are only a finite number of admis-
sible control signals (due to the finite number of symbols
E{xt |jt

0,u
t−1
0 }), these values can be pre-calculated and stored

in a codebook at the controller.
We summarize the results of Sec. IV in the following design

algorithm. The CE controller in (16) is employed for the both
encoders (2) and (3).
Encoder–Controller Design Algorithm

1) Initialize the encoder–controller mappings.
2) For each t = 0, . . . ,T −1,

• Update the encoder component ft using (19).
• Update the controller gt using (16)–(17).

3) If JT has not converged, go to Step 2); otherwise stop.
The analogous training algorithm for the encoder f̄t can be
formulated by simply replacing ft and (19) in Step 2) with f̄t
and (20).

Unfortunately, the design algorithm does not guarantee
global optimality. The result converges to a local minimum,
which has shown to work well in practice. The encoder–
controller design presented above is still fairly computationally
intensive. In our simulations, we resort to a sequential Monte
Carlo approach to handle the nonlinear filtering problems.

VI. NUMERICAL EXAMPLES
Here we present numerical results to demonstrate the per-

formance obtained using iterative encoder–controller design.
We study a scalar system for simplicity. The system equations
and the design criterion are,

xt+1 = axt +ut + vt , yt = xt + et , Wt = x2
t +ρu2

t−1.
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The system parameters are a = 1.2, T = 2, R = 2, and ρ = 0.1.
The initial state x0, the process noise vt and the measurement
noise et are all white Gaussian distributed, in particular, p(x0)
is N (0,1); p(vt) and p(et) are N (0,0.5). The encoded
symbols are transmitted over a binary symmetric channel.

In Fig. 2, we show the system performance as a function
of the channel transition probability ε . Performance J̄T is
obtained by normalizing JT in (6) with the cost obtained
when no control action is taken, c.f., the horizontal line
in Fig. 2. In this experiment, the encoder ft , with full SI, is em-
ployed. Three types of encoder–controller pairs are illustrated,
namely, the trained encoder–controllers, time-varying uniform
encoder–controllers, and time-varying uniform encoders with
CE controllers. The trained encoder–controller pairs evidently
outperform the other coding–control schemes. The improve-
ment is essentially attributed to the CE controller.

The SI affects the system in several ways. For the encoder
(3), the SI is involved in e.g., the probabilities p(xt |ȳt ,kt−1

0 )
and p(jt−1

0 |ȳt ,kt−1
0 ). Similarly, for the encoder (2), the SI

affects p(xt |yt ,kt−1
0 ) and p(jt−1

0 |yt ,kt−1
0 ). In Fig. 3, we show a

comparison of different degrees of the SI when the encoder (3)
is employed. In particular, we explore no, incomplete and full
SI scenarios. In the experiment, the incomplete SI is generated
as follows. The least significant bit of jt is discarded and the
resulting index is fed back to the encoder over a noiseless
link. The figure shows, full SI provides the best training
result, while the incomplete SI scenario outperforms the no
SI scenario. However, a similar experiment for the encoder ft

(2) shows, for this type of encoders, the improvement given by
knowing the SI becomes insignificant. The main reason is the
trained encoder–controllers have resulted in minor differences
among the densities p(xt |yt ,kt−1

0 )’s, for different kt−1
0 ’s.

VII. CONCLUSION
This paper has investigated the jointly optimization of the

encoder and the controller in closed-loop control of a linear
plant with low-rate feedback over a memoryless binary chan-
nel. After recognizing the difficulties in solving the general
optimal control problem, we resort to a suboptimal strategy.
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Moreover, we showed that the closed-form solution of the op-
timal controller for fixed encoders is possible by an extension
of the information set at the encoder. Thereafter, we introduced
an iterative approach to optimize the encoder–controller pairs.
We have performed various numerical investigations of the
proposed optimization algorithm. Numerical results demon-
strate the promising performance obtained by employing the
proposed algorithm. Finally, we have also investigated the
impact on system performance for different degrees of SI at
the encoder.
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