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Abstract—Utility maximization in networked control systems
(NCSs) is difficult in the presence of limited sensing and com-
munication resources. In this paper, a new communication rate
optimization method for state feedback control over a noisy
channel is proposed. Linear dynamic systems with quantization
errors, limited transmission rate, and noisy communication chan-
nels are considered. The most challenging part of the optimization
is that no closed-form expressions are available for assessing
the performance and the optimization problem is nonconvex.
The proposed method consists of two steps: (i) the overall NCS
performance measure is expressed as a function of rates at all time
instants by means of high-rate quantization theory, and (ii) a con-
strained optimization problem to minimize a weighted quadratic
objective function is solved. The proposed method is applied to
the problem of state feedback control and the problem of state
estimation. Monte Carlo simulations illustrate the performance
of the proposed rate allocation. It is shown numerically that the
proposed method has better performance when compared to ar-
bitrarily selected rate allocations. Also, it is shown that in certain
cases nonuniform rate allocation can outperform the uniform rate
allocation, which is commonly considered in quantized control
systems, for feedback control over noisy channels.

Index Terms—Constrained nonconvex optimization, linear
quadratic cost, quantized feedback control, rate allocation, utility
maximization.

I. INTRODUCTION

N ETWORKED control systems based on limited sensor
and actuator information have attracted increasing atten-

tion during the past decades [1], [2]. In future NCSs, monitoring
and control tasks could be performed by simple, inexpensive,
and small sensor nodes, which means that the transmitting and
the computing resources are highly limited. After the deploy-
ment, it may not be possible to maintain or recharge the network
and its nodes manually for reasons such as the physical location
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of the network, or harsh environment conditions. A major chal-
lenge is to design a sustainable network that is highly energy
efficient, since the life time of such a network is determined by
battery-powered devices.
The natural resources that govern digital radio communica-

tions are energy/power and bandwidth, and it is well known that
power and bandwidth can be traded against each-other. In en-
ergy-critical applications, as in wireless sensor and actuator net-
works, it is fair to assume that radio nodes are operating in the
power-efficient, wideband, regime, resulting in a direct (linear)
connection between the transmission rate and the required en-
ergy per bit [3]. Hence, in such systems, being in the focus of
this paper, using the available rate efficiently will have direct
impact on the energy consumption. In general, increasing the
transmission rate will always lead to higher cost of transmis-
sion, in terms of energy/power or bandwidth, or both. At this
background, we focus on efficient use of a limited bit-budget
in quantized feedback control. To reduce the rate, we study the
case where the sensed data is quantized by using only a few
bits per sample. In addition to lowering the cost of communica-
tion, there is also another important advantage in constraining
the bit resolution per transmission, that of reducing the latency
in the decoding. At low rates, and with a latency constraint in the
decoding processing, channel errors cannot be prevented (since
perfect error correction in general requires very long codewords,
increasing the decoding delay). Furthermore, spending fewer
bits on quantization will increase the quantization distortion.
Designing schemes that efficiently carry out the joint action of
quantization, channel protection and control is therefore of great
importance.
Optimizing encoder-controller design is a challenging task,

cf., [5], [6]. On the other hand, from the practical point of view it
is often of interest to use simple coding-control policies subject
to satisfactory performance. Rate allocation can then be used to
improve upon the system performance by exploiting the addi-
tional degree of freedom offered by communication resources.
In general, one main obstacle to optimize the rates is the lack
of tractable distortion functions, which model the performance
index of the feedback control system. The optimization problem
often becomes nonconvex, which implies that it is difficult to
compute the optimal solution.

A. Related Work

Rate optimization for NCSs is a resource allocation problem
where the utility function is expressed in terms of control
performance. There is a vast literature on utility maximization
with communication resource constraints [7]–[11]. However,
expressing a utility function for NCSs introduces major chal-
lenges with respect to existing methods from the literature,
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because of the presence of quantization errors, channel losses,
and their impact on the control decisions, as we discuss next.
Allocating communication resources over space and time is

important. For feedback control systems this is largely an open
problem. Approaches to assigning bits among the elements of
the state of the plant, while imposing a constraint on the number
of transmitted bits over time, can be found in, e.g., [12] and [13].
In these works, it has been often assumed that bits (rates) are dis-
tributed to sensor measurements evenly over time. Owing to the
nonstationarity of the state observations, an even distribution of
bits over time to sensor measurements may not be efficient for
networked control. It is natural to expect considerable gains by
employing a nonuniform allocation of rates. Hence, optimizing
the rate allocation is vital to overcome the limited communica-
tion resources and to achieve a better overall control and com-
munication performance.
The rate allocation problem studied in this paper is related to

classical rate allocation problems in communications, e.g., [14]
and [15]. In these works, high-rate quantization theory is used to
quantify the relation between rate and performance for a general
class of quantizers. There exists a rich body of literature on the
high-rate analysis of quantized system, for both noiseless and
noisy communication channels [16]–[18]. It is worth remarking
that although high-rate theory requires high rates to be perfectly
valid, this theory can often be used at a lower rate [19]. Experi-
ence has shown that high-rate theory can also make useful pre-
dictions at low rate which is the case in this paper. Further, pre-
vious work on rate allocation has often focused on the special
case of optimized quantizers, for example in [20] the optimal
quantizer is studied in the context of transform codes, where the
distortion introduced by the quantizer is a convex function, and
a closed-form optimal solution can be derived. However, in our
setting we will show that the overall distortion is a nonconvex
function of the instantaneous rates, which makes more difficult
the computation of the optimal solution.
Quantization and transmission errors are crucial obstacles to

maximize the control system performance. The quantization de-
teriorates the signals transmitted between the plant and the con-
troller, which can potentially degrade the overall control system
performance substantially. In the literature, quantization errors
have mainly been modeled as additive white Gaussian noise
[14], [21], uncorrelated with the signal being quantized. The ad-
vantage of this model is that many tools and methods can be
readily applied. In the beginning of the 1990’s, research interest
in the stability analysis of quantized control systems was trig-
gered by [22]. In that paper the author showed that, even for
the simplest dynamic system (linear, scalar and noiseless), it is
not possible to stabilize an unstable plant asymptotically with
a static controller of a finite data rate. Since then, a wide range
of interesting problems have been formulated and studied. The
properties of static quantizers are thoroughly studied in, e.g.,
[22] and [23]. For this type of quantizers, the classical notion
of stability is no longer relevant. Instead, attractivity and prac-
tical stability are introduced. Unlike the case of static quantizers,
asymptotic stability is possible when time-varying quantizers
are used, e.g., [12], [24]. Asymptotic stability is achieved by
employing a “zooming”-strategy in [25]. The basic idea is that
the quantizer resolution is increased when the state is close to the
equilibrium, while the resolution is reduced when the state is far
away. The fundamental problem of the minimum data rate re-

quired to asymptotically stabilize an unstable plant was studied
in, e.g., [24], [26]–[28]. In the aforementioned works, the com-
munication channel was essentially assumed to be noise-free,
and the only limitation imposed by the channel is the limited
data rate. Some recent works on control over a noisy channel
include [27], [29]–[32]. Most work on control with limited in-
formation has been devoted to stability issues, while optimal
designs are much less explored in the literature. Exceptions in-
clude the study of optimal stochastic control over communica-
tion channels, e.g., [5], [6], [28], [33]. Including the topic of con-
trol over rate-limited communication channel, the special issue
on technology of networked control system [34] and the survey
[35] provide excellent overview of a number of important com-
munication and control challenges and recent results in the field
of control over communication networks.

B. Contributions and Organization

The main contribution of this paper is a novel method for rate
allocation for state feedback control of a linear system over a
noisy channel. Specifically, we are interested in the optimization
of two important cases of closed-loop control under commu-
nication constraints: linear feedback control and state estima-
tion. By resorting to an approximation based on high-rate quan-
tization theory, we are able to derive a computationally feasible
scheme that seeks to minimize the overall distortion over a fi-
nite time horizon. The resulting rate allocation is not necessarily
evenly distributed, as opposed to what is commonly assumed
in the literature aforementioned. Overall good performance of
our method is shown by numerical simulations. The goal of the
paper is to demonstrate how rate allocation can be used to im-
prove the overall performance of a control system, subject to
given types of encoders and controllers. The proposed scheme
is applicable for a general class of quantizers to meet require-
ments of different applications.
The remaining part of this paper is organized as follows. In

Section II, the control system is described and the rate allocation
problem is formulated. A brief review on some useful results of
high-rate quantization theory is included in Section III. There-
after, the rate allocation problems for linear feedback control,
as well as state estimation, are solved in Section IV. Numerical
simulations are carried out in Section V to demonstrate the per-
formance of the proposed rate allocation method.

Notation

Let , and ZZ denote the sets of real numbers, natural
numbers and nonnegative integers, respectively. We use
to denote the expectation operator, and the matrix transpose.
An optimal solution is denoted by . Moreover, denotes
a probability density function (pdf) and denotes a proba-
bility.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

The goal of this paper is to arrive at a new rate allocation
method for state feedback control over a noisy channel. Fig. 1
shows a block-diagram of the control system we investigate.
First, we briefly introduce each building block of the system,
and then describe the rate constrained optimization problem.
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Fig. 1. Block-diagram for the closed-loop system studied in this paper. The
system has a separate decoder unit and a controller. This paper aims at demon-
strating that rate allocation can improve significantly the performance of the
control.

Finally, the coding unit and the channel will be explained in
more detail.

A. System Description

Throughout this paper we consider a scalar system where the
plant is governed by the linear equation

(1)

where , , , are the state, the control and the process
noise, respectively. Process noise is modeled as a white
Gaussian noise sequence of variance , i.e., .
It is mutually independent of the initial state , which is also
assumed to be zero-mean Gaussian, . Since
the focus of the paper is on the optimization of the overall
system performance, we assume that the open-loop system is
stable, i.e., . Nevertheless, communication errors might
degrade the system performance significantly, even destabilize
an open-loop stable system. For analytical simplicity, we also
assume that the state is available at the encoder, although a
state measurement with measurement error can be included
easily at the cost of more complex notation and derivations.
More details for such an extension and the multidimensional
case can be found in [36].
At the encoder, the full state measurement is coded by amem-

oryless time-varying encoder, which takes the current state as
the input, and produces an index

(2)

where the time-varying instantaneous rate ZZ is to be
determined later. Note that the encoder can be adapted to the
statistical time variation of the state and depends on . We
introduce the index set ZZ , and
for a given , .
The index will be mapped into a binary codeword before

being fed to a binary channel. As commented in Section I, since
closed-loop control is a time-critical application, we cannot use
long codewords to prevent channel transmission errors. Hence,
the binary channel codewords assumed here do not introduce
additional redundancy, i.e., each member of is mapped
to a codeword of length . Such a mapping from an index to
a codeword is commonly referred to as the index assignment
(IA). Unlike in the error-free scenarios where all IA’s perform
equally well, in the presence of channel errors different IA’s
have different impact on the system performance. Finding the
optimal IA is a combinatorial problem which is known to be

NP-hard [37]. Therefore, in this paper we average out the depen-
dence on a specific IA by randomization. At each transmission,
a random assignment is generated and revealed to the encoder
and decoder. Previous work that assumed a random IA to fa-
cilitate further analysis includes, e.g., [18] and [38]. Assigning
a new IA randomly for each transmission is impractical in real
communication systems. However, using the random IA in the
analysis can characterize the average performance for a given
rate allocation, and one can always find at least one IA which
performs at least as well as the average over the random as-
signments (cf., random coding arguments in information theory
[39]). It is possible to find a variety of IA’s which outperform
the random assignment. In practice, we can first use random IA
in the analysis to optimize the rate allocation. For the optimized
rate allocation we can adopt an IA which performs better than
the random assignment.
The overall channel, composed by the combination of the

random index assignment and a binary symmetric channel
(BSC), is completely specified by the symbol transition prob-
abilities , with denoting the received index.
At the bit level, the channel is characterized by the crossover
probability of the BSC, . Because of
the symmetry, it is reasonable to consider . The
overall symbol error probability is determined by
both and the randomized IA, according to

(3)

where is obtained by averaging over all
possible IA’s [38]. For this channel, all symbol errors are equally
probable.
At the receiver side, there is a separate decoder unit and a

controller. The decoder takes the instantaneous channel output
as the input, and produces an estimate of , denoted by ,

(4)

where is an arbitrary deterministic function. The estimate
can take on one of values, referred to as the reconstruc-

tions. Finally, the control is computed based on the decoded
symbol, . We will be more specific about the
control function after the rate allocation problem is pre-
sented.
We remark here that memoryless encoder-controller map-

pings are considered in the paper mainly because they are prac-
tical, and also, the aim of the paper is to demonstrate the basic
concept that rate allocation can be used to improve the overall
performance of a control system. The optimization in this paper
is performed with respect to the transmission rate, subject to
given types of encoders and controllers, as described in the next
subsection. The rate allocation techniquewe investigate is appli-
cable to a wide range of encoder-controller mappings, including
the optimal mappings. Regarding real applications, it is often of
practical interest to implement simple encoders and controllers
with satisfactory performance. Optimizing rate allocation for
simple coding-control policies may be more realistic than op-
timizing fixed-rate encoder-controller mappings.
Moreover, our proposed rate allocation techniques can be ap-

plied to encoders and controllers with memory. In general, the
overall system performance can be improved by having access
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to past information. However, in the presence of process noise,
the significance of memory is often limited. Due to the unre-
liable communications between the encoder and controller, the
uncertainty in the memory should be addressed. A common so-
lution is to introduce side-information to the system to inform
the encoder about the channel outputs. For the purpose of rate
allocation, there is no essential difference, besides the increased
complexity of the system and computational burden.
Our problem could be viewed as one of the two subprob-

lems of the general problem that the transmission rate and en-
coder-controller mappings are optimized jointly. By specifying
the type of encoder-controller, we have imposed a certain struc-
ture on the coding-control mappings. Compared with the gen-
eral problem, our problem is still a challenge in its own right.
The other subproblem is the optimization of fixed-rate coding-
control mappings, cf., [5] and [6].

B. Problem Statement

The control objective is to minimize the expected overall cost
, , over a finite horizon, sub-

ject to a rate constraint , ZZ , with
denoting the total rate. We motivated this constraint in Section I,
noting that increasing the rate will always lead to higher cost of
communication in general, and increased energy consumption
in particular. Also, since we assume that the individual rates,
, are typically very low, it is important to allocate each avail-

able bit wisely. The constraint is typical of water-filling resource
allocation [40], [41]. We refer to the whole sequence as the
bit-rate allocation. Throughout this paper, we say “for all ”
when we mean “for ”.
Next, we introduce an objective function which we will use

to describe both the state feedback control problem and the state
estimation problem. More specifically, is the quadratic
function

(5)

where denotes the instantaneous objective function,
, and are positive

constants. In the remaining part of this subsection we use (5)
to formulate rate allocation problems for state feedback control
and state estimation.
First, we formulate the problem of rate allocation for state

feedback control, where we consider to minimize the expected
value of the quadratic function

(6)

where is the weighting factor. The function (6) is the
linear quadratic (LQ) cost from classical stochastic control [42].
The aim of using (6) is to minimize the state variance at all time
instances, with a power constraint on the control signal. The
relation between the rate allocation and the cost
depends on the channel and the coding-control scheme, which
will be specified next.

From classical linear quadratic control theory we know that
because the process noise is white, uncorrelated with and
, we can write , with given by (6), as

(7)

where and are defined as

(8)

(9)

Clearly, only the terms in the last sum of (7) are affected
by control. According to classical linear quadratic Gaussian
(LQG) theory [42], when the channel imperfections are absent
(no quantization distortion and transmission error), the optimal
control is given by . If the estimate is close to the
true state then the classical LQG controller, which is a sub-
optimal solution in the presence of communication channels, is
expected to give good results, even though it does not account
for channel errors and quantization distortion. Motivated by the
importance of classical LQG theory, in this paper we focus on
the linear control policy

(10)

where is calculated according to (8). By using(10), mini-
mizing of (6) is equivalent to minimizing the ex-
pected value of

(11)

where is defined as

(12)

Hence, the objective function (11) is equal to (5) with
. Therefore, for state feedback control we replace the objec-

tive function (6) with (11), and the new instantaneous objective
function is

(13)

Summarizing the above discussions, Problem 1 below specifies
the rate allocation problem for state feedback control studied in
this paper.
Problem 1: Given a linear plant of (1), a discrete memory-

less channel of (3), a memoryless encoder-decoder pair of (2)
and (4), subject to the linear control law (10), find the optimal
bit-rate allocation which minimizes the expected objective
function (6), subject to the total bit constraint, i.e.,

ZZ
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A special case of the linear feedback control problem is the
state estimation problem. Consider the case of the system (1)
when , and the dynamic system is governed by

(14)

Then, the expected state estimation error is

(15)

where . We summarize the state estimation problem as
follows.
Problem 2: Given a linear plant of (14), a discrete memory-

less channel of (3), a memoryless encoder-decoder pair of (2)
and (4), find the rate allocation that solves the problem,

ZZ

In striving to solve Problem 1 and Problem 2, there are two
major difficulties. First, they are integer programming prob-
lems which are hard to solve because of the computational com-
plexity. In this paper, we apply the classical approach [14] that
first the rate allocation is optimized by relaxing the nonnega-
tivity and integer constraints. Thereafter these constraints are
dealt with by rounding. Second, the problems require the char-
acterization of the mean squared error (MSE)
as a function of the instantaneous rates, which does not have
an analytical explicit expression in general. We simplify this
problem by introducing two approximations: the high rate ap-
proximation of the reconstructions and the Gaussian approxima-
tion of the state . As a result, we are able to write the overall
cost in terms of all previous rate, and moreover, strong duality
applies to the constrained optimization problem, as shown in
Section IV. Next, we address the high-rate approximation of
MSE in Section III. Then later in Section IV, we describe the
Gaussian approximation of the state in the control system.

III. HIGH-RATE APPROXIMATION OF MSE

We have seen in the previous section that the MSE
appears to be a central figure-of-merit both

in the state feedback control problem and the state estima-
tion problem. In general, it is hard to formulate closed-form
expressions for the MSE, even in the case of simple uniform
quantizers. We have to resort to approximations. Inspired by
the classical works on rate allocation in communications, e.g.,
[14], we resort to high-rate quantization to compute MSE. For
general aspects about high-rate quantization theory, we refer
the reader to, e.g., [18] and [38].
Given that it is impossible to formulate a closed-form ex-

pression for the MSE, we show a useful approximation derived
under the high-rate assumption. Roughly speaking, the high-rate
assumption requires that the pdf of the source is approximately
constant within the same quantization cell. Following [18], in
case of the symmetric channel (3), a high-rate approximation of
the MSE is

where the source is zero-mean with variance , and
denotes the probability density function of . Further, in

(16), the constant represents the volume of a unit sphere,
and for a scalar quantizer . The function is re-
ferred to as the point density function [18], specifying the den-
sity of the (arbitrary) reconstruction . Resembling a proba-
bility density function, it follows that , for all ,
and . Finally, the parameter , ,
specifies the number of codewords the encoder will chose. If the
crossover probability is large, then in order to protect against
the channel error, a good encoder may only use a part of the
available codewords. For simplicity, we assume ,
throughout this paper.
Essentially, we are interested in an efficient approximation to

describe the relation between the MSE and the rate . By a
further approximation, , we rewrite
(16) and introduce the high-rate approximation

(16)

where . For practical sources and encoder-decoder
pairs, it follows that , and , which is
considered throughout this paper. The expression of the distor-
tion in (16) is rather general for a large variety of quantizers,
described by means of the point density function, and derived
under the high-rate assumption. It could be observed that the
crossover probability influences the convexity of the function.
When , is monotonically decreasing in . In fact,
is a convex function in . On the other hand, for noisy chan-
nels, convexity only applies for certain pairs. For the
general case of an arbitrary pair, (16) is a quasi-convex
function in , as stated in Lemma 1.
Definition 1: Quasi-convex function [40] Let be the

domain of . The function is quasi-convex if its
domain and all its sublevel sets ,
for , are convex.
Lemma 1: The distortion function

, , , is a
quasi-convex function in the variable and there is a unique
global minimizer with respect to .

Proof: The proof follows by taking the first- and second-
order derivative of . The first-order derivative is

, and it has
at most one critical point , which solves

. This is observed since the first term
of the derivative, , is strictly decreasing
towards 0 as grows, and the second term
is strictly increasing towards 0 as grows. Note also, for

, decreases more slowly than . Thus,
for all , is negative, and is monotonically de-

creasing; for all , is positive, and is mono-
tonically increasing. In case that , the critical point is at

, since . The second-order deriva-

tive is .
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Fig. 2. A diagram of data transmission over a binary symmetric channel. As
an example, the index is mapped to the binary codeword 01, and the
codeword 11 is received due to the error imposed by the channel. The decoded
index is .

Fig. 3. The impact of , , , and on the objective function .

The critical point is a global minimum, since the second-order
derivative of the critical point is larger than 0.
In Fig. 3, some examples of are depicted to show the

impact of the variables , and . Generally speaking, as
the rate increases, the quantization distortion decreases, while
the distortion caused by transmission errors grows. Beyond the
critical point, the latter distortion dominates, and therefore the
overall distortion will increase with the rate. Moreover, for the
same quantizer, the higher the crossover probability , the closer
to 0 the critical point is. As will be shown later, Lemma 1 is in-
strumental to solve the rate allocation problems studied in this
paper. Here we introduce a class of , which can be written as

(17)

i.e., and , where and are
independent of and . As shown later, this class of is
central to our solutions to the state feedback control problems.
Owing to the fact that is a special case of , Lemma 1 applies

directly to . Finally, we use a uniform quantizer to illustrate
the computation of according to (16) and (17).
Example 1: Uniform quantizer and Gaussian source

Recall that throughout the paper, encoder-controller pairs
are memoryless mappings and functionally equivalent to a
quantizer. Owing to its simplicity, the uniform quantizer is
thoroughly studied in the literature and widely used in practice.
In the example, we describe the step length of a
uniform quantizer as a function of the quantizer range
and the rate . The quantizer works as follows,

The parameter can be selected with respect to the source
signal. Consider a source , and let
denote the probability that is within the range of the quan-
tizer. If is zero-mean Gaussian with variance , then

is related to and as ,

where is the inverse of the -function,

.

For a uniform quantizer with a quantization range ,
the point density function is then . If the source
signal and the uniform quantizer share the same range ,
then the high-rate approximation , according to (16), is

, which means

and . The first-order derivative of , with

respect to , is

. If the distortion caused by signals out of the quan-
tizer support is negligible, then a high-rate approx-
imation of the MSE can be written as (17) with

and .

IV. RATE ALLOCATION

Now we are in the position to investigate the rate allocation
problem for state feedback control. The essential challenge is
that the communication between the sensor and the controller
affects all future states. Estimating the key terms, such as

and , is a formidable task because the
estimation error propagates with time in a highly non linear
fashion. Therefore, we approximate the pdf of the state
by a zero-mean Gaussian function, since the initial state and
the process noise are zero-mean Gaussian. By imposing the
Gaussian approximation, we need only estimate the variance,
with the estimated variance denoted by . The next challenge
lies in the derivation of . We consider an upper bound for

by simplifying the correlation between and , such that

(18)

where and are independent of , and
. The above assumption is reasonable, as illustrated by the

following two cases.
Case 1: Consider the decoder . In this case,

the estimation error is uncorrelated with the estimate
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, so we can write , and
approximate as

(19)

by using the high-rate approximation
. Hence, based on (19), we

can relate the approximations and as

which corresponds to (18), with

(20)

In general, we can write as,

(21)

The term depends on the source, quan-
tizer and channel, and therefore it is often hard to formulate a
closed-form expression. Belowwe show another case when (18)
applies.
Case 2: Consider the case that in

(21) can be written as a linear function of , such as
, where depends

only on . Utilizing this linear relation together with the high-
rate approximation, can be expressed in (18), with

(22)

Based on (16) and (18), an approximation of the instanta-
neous objective function (13) is given by

(23)

where follows (18). In practice, the approximation (23) can
be applied generally to all systems from Section II-B by finding
suitable and to approximate the true objective functions.
As explained earlier that the rate is a nonnegative integer

number, therefore, we will first solve a relaxed problem by opti-
mizing rate allocation for , and, thereafter the nonneg-
ativity and integer constraints are treated separately.
The unconstrained and constrained rate allocation problems

based on (23) are formulated as follows.

Problem 3: Find the rate allocation that solves the
problem,

where is given by (23).
Problem 4: Find the rate allocation that solves the

problem,

where is given by (23).
Next, we present one of the main results of this paper.
Theorem 1:
—For error-free channels , it holds that a solution

to

(24)

solves Problem 4, with being the associated Lagrange
multiplier, and

(25)

Here:
1) and are specified in (12) and (17).
2) is the smallest integer such that .
3) The term is defined as

(26)

where is referred to (18), and is calculated recur-
sively as

4) The term is chosen between and , determined
by ,

.
(27)

— For noisy channels , it follows that:
1) If , where solves

(28)

with given by (17), then the same
solves Problem 4.
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2) If , where is a solution to (28),
then the solution to the system of equations

(29)

solves Problem 4. Here, the term is

(30)

where , ZZ , and

The terms and are as given by (26)–(27), and
is defined as (31)

.
(31)

To prove Theorem 1, we use Lemma 2– Lemma 8, as shown
subsequently. We start by dealing with the error-free scenario.

A. Error-Free Channels

Lemma 2 presents (23) in a more tractable form.
Lemma 2: Let . The instantaneous objective function

(23) is given by

(32)

where is defined in (25).
Proof: For , the instantaneous objective function (23)

is

(33)

where , with and
as given by (18). By recursively replacing with and

, for , up to , then we can write
as a function of . In particular, is given by a sum
of products, from (25), i.e.

with all terms described in Theorem 1.
Lemma 3: Consider . Then, the overall

objective function from Problem 4, i.e.,

(34)

is convex in this region.
Proof: (Sketch) The nontrivial and lengthy proof follows

by applying Sylvester’s criterion, which requires that all of
the principal submatrices of the Hessian have a positive de-
terminant. The determinants can be verified by performing
Gaussian elimination and examining the diagonal elements of

the resulting triangle matrix. The detailed proof, which we have
to remove for lack of space, is given in [43].
Given a finite , the constrained optimization problem can

be solved according to Lemma 4.
Lemma 4: Let . A solution to (24) solves Problem 4.
Proof: We can show that and

, when . That is to say
Problem 3 has a unique global minimum, which is achieved
at , . Moreover, the overall objective function
is convex, as shown in Lemma 3. Therefore, strong duality
holds. When , the instantaneous objective function
(23) becomes , with

given by (25). Then, we minimize the Lagrangian

, with

respect to , with being the associated Lagrange
multiplier. Setting and , yields
immediately (24).

B. Noisy Channels

Moving on to deal with the noisy channel scenario, it should
be clear that the approximation is essential to the deriva-
tion of the overall objective function. Similarly to the error-free
scenario, starting at , by successively replacing with

, right up to , we can formulate as a func-

tion of , and . In particular, is a sum of
products, as shown in Lemma 5.
Lemma 5: Let . The instantaneous objective function

(23) can be rewritten as

(35)

where is as defined in (17), and

, with , , given by

(12) and(26)–(27), and is the smallest integer for which
.

Lemma 5 is proved by straightforward calculation. According
to Lemma 5, each consists of terms.
Fig. 4 demonstrates an efficient method to compute the

middle term , where the binary sequence plays
an important role. Note that there are in total different binary
sequences of length . Each sequence has a corresponding

, which can be computed by following the binary tree
in Fig. 4 from the root to the branch nodes. As a matter of fact,
the branch nodes at the tth level represent all the
terms. We illustrate the computation of one term in
Example 2.
Example 2: Computing In this example, we

demonstrate how to compute by following the bi-
nary tree from Fig. 4. Start by setting , and then succes-
sively obtain
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Fig. 4. The breakdown terms of , where , and are short notations for , , and.

Finally,
.

In Lemma 6, we show the solution to the rate unconstrained
problem.
Lemma 6: Let . Problem 3 has a unique global min-

imum , which solves (28).
The proof of Lemma 6 can be found in Appendix I-A.
Lemma 7: Consider , and the overall

objective function (34) from Problem 4 is convex in this region.
Proof: Similar to the proof of Lemma 3, the convexity is

also proved by applying Sylvester’s criterion, where all of the
principal submatrices of the Hessian have a positive determi-
nant. The detailed proof is given in [43].
Finally, we show how to solve the rate constrained optimiza-

tion problem, in Lemma 8.
Lemma 8: Let . A solution to (29) solves Problem

4, where is given by (30) and is the corresponding La-
grangian multiplier.

Proof: The proof is based on Lagrange duality. Strong
duality still applies, since the overall objective function has a
unique global minimum (Lemma 6), and since the overall ob-
jective function is convex in this region (Lemma 7).
Second, we minimize the Lagrangian,

, where is given by
(42); and is the associated Lagrange multiplier. Calculating
the derivative , implies ,
where is given by (30). Note that, all binary variables

, and , take both the values of ,
except , which can only take the value 1. Straightforward
calculation shows that the term in (30) is

where the parameters and can be found in (26)–(27), and
is given by (31). Then, and lead

to (29), which concludes the proof.
We can now give a proof of Theorem 1 by using the previous

lemmata:
Proof (Theorem 1): We prove the special case for noise-

less channels in three steps. First, we use Lemma 2 to write
the overall objective as a function of , explicitly. Then,
we could show that when , the unconstrained rate allo-
cation problem has a unique global minimum, .

Finally, we use Lemma 3 and Lemma 4 to show that given any
, a solution to (24) solves the constrained rate alloca-

tion problem, i.e., Problem 4.
Likewise, we prove the general case for noisy channels also

in three steps. First, we use Lemma 5 to write the overall objec-
tive as a function of , , explicitly. Then, we use Lemma
6 to show that when , the unconstrained rate alloca-
tion problem has a global minimum which solves (37). This
global minimum is the solution to the constrained rate allocation
problem if the rate constraint fulfills. Finally, we use Lemma 7
and Lemma 8 to show that the solution to (38) solves the con-
strained rate allocation problem, if the rate constraint is violated
by the global minimum.
This concludes the proof of the theorem.
In the rest of this section, we briefly present the result to

the state estimation problem (Problem 2), which is easier
to solve compared with Problem 1, i.e., the control coun-
terpart. According to (14), the state is a function of
the initial state and the process noises , namely,

. Since and are
i.i.d. zero-mean Gaussian, consequently, is also zero-mean
Gaussian with the variance .
Note that the state does not depend on the communication
over the noisy link, and therefore, is not affected by the
rate allocation. Hence, the major challenge lies in deriving a
useful expression for the MSE, cf., the instantaneous distortion
(15). In order to proceed, we resort to approximations based
on high rate theory and approximate the distortion (15) by

from (16). We thus solve the rate allocation
problem with respect to the following average instantaneous
distortion:

(36)

The rate unconstrained and constrained optimization problems
for state estimation, as an approximate version of Problem 2,
are formulated as
Problem 5: Find the rate allocation that solves

where is given by (16).
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Problem 6: Find the rate allocation that solves

where is given by (16).
The solution to Problem 6 is summarized in Theorem 2.
Theorem 2:
• For noisy channels
1) If , where is a solution to

(37)

then solves Problem 6.
2) If , where solves (37), then a
solution to

(38)

solves Problem 6, with being the associated Lagrange
multiplier.

• For error-free channels

(39)

solves Problem 6.
To prove Theorem 2, we need Lemma 9–Lemma 11, as shown

subsequently.
First, consider the noisy channel scenario, we note that the

unconstrained problem for the noisy channel has a unique min-
imum that is not necessarily achieved at , as stated in
Lemma 9.
Lemma 9: Let . The solution to Problem 5 is a unique

global minimum, , which also solves (37).
Proof: Compute the critical point, at which the gradient

of is a zero vector. Straightforward cal-
culation yields (37). It should be remarked that the system of
equations is decoupled and the variables are separable. We
can argue that, since each decoupled function is
quasi-convex and has a uniqueminimum, as shown in Lemma 1,
the overall distortion has a unique global
minimum.
From Lemma 9, we know that if , where
is a solution to (37), then the same also solves Problem

6. On the other hand if , where solves
(37), then the solution to (38) solves Problem 6, as stated in the
following lemma.
Lemma 10: Let . The solution to Problem 6 is also a

solution to (38).
Proof: The proof is based on Lagrange duality. We note

that strong duality holds, because the objective function is a
sum of separable quasi-convex functions from Lemma 1, and
the constraint is linear. Consider the Lagrangian

, with being the asso-
ciated Lagrange multiplier. Compute the first-order derivatives
of with respect to the variables and . The minimum

is achieved when the derivatives are equal to 0. Observe that,
these equations in unknowns, and , correspond
to (38).
For an error-free channel , the rate allocation problem

has a closed-form solution, as shown in Lemma 11.
Lemma 11: Consider Problem 5 where . A solution

to (38) is (39).
Proof: Problem 5 is convex and the global minimum is

achieved at . The convexity of the overall objective
function is readily shown by observing that
the Hessian is positive definite. Then, it is straightforward to
write as a function of , according to (38)

(40)

We can solve by means of the total bit constraint

(41)

Substituting (41) into (40), (39) follows immediately.
The similar results concerning rate allocation in the absence

of transmission errors can be found in for example [14]. Finally,
we give a brief proof of Theorem 2 by using the previous lem-
mata.

Proof (Theorem 2): In short, we prove the general case
for noisy channels in two steps. We use Lemma 9 to show that
when the unconstrained rate allocation problem, i.e.,
Problem 5, has a unique global minimum, which solves (37).
This global minimum is the solution to the constrained rate al-
location problem, i.e., Problem 6, if the rate constraint fulfills.
Then, we use Lemma 10 to show that the solution to (38) solves
the constrained rate allocation problem, if the rate constraint is
fulfilled.
The special case of noiseless channels is proved in a similar

way. This concludes the proof.
We remark here that the complexity of the proposed rate al-

location method is increasing with time. However, the rate allo-
cation is more relevant for applications with short time horizon.
In addition, the computation can be done off-line in advance.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to verify
the performance of the proposed rate allocation algorithms. Let
us first address some issues common for all experiments in this
paper. In general, we refer to the rate allocation obtained by
applying Theorem 1 as the optimized allocation. In particular,
we optimize the rate allocation by means of the objective func-
tion (23) of Problem 4, while the overall performance is on
the other hand evaluated in term of the objective function (6)
of Problem 1. Throughout this section, the initial state and the
process noise are zero-mean Gaussian with variances and
, respectively. For the exposition of the basic design con-

cept and procedure, we choose to use a time-varying uniform
quantizer for which the quantizer range is related to the esti-
mated signal variance as . At the same time, we also
use this quantizer to expose the importance of a carefully de-
signed coding-controller. As revealed later, this simple quan-
tizer is far from optimal in view of the efficiency of commu-
nications. Moreover, recall that we derived the instantaneous
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objective function (23) based on two approximations: First,
was assumed to be Gaussian, and, second, we assume that the
high-rate form (16) is adopted and the distortion caused by the
signals outside the support of the quantizer is negligible. Hence,
we use (18) and (22). In this paper, the system of nonlinear (29)
is solved numerically using Newton’s method. We discuss the
validity of these two approximations later in Fig. 8. We deal
with the nonnegativity and integer constraints of the rates by
using standard rounding approaches, cf., [14] and [44]. In the
experiments, we formulate the rounding as a binary optimiza-
tion problem in which the binary variables represent rounding
the rate upwards or downwards to the nearest integer. A solution
to such a problem can always be obtained by exhaustive search
or combinatorial algorithms [45].

A. Performance of the Rate Allocation Algorithms

First, in Fig. 5(a) we demonstrate the performance of the pro-
posed scheme to the state feedback control problem by com-
paring it with several other allocations. In many previous works,
the transmission rate is constant over time, e.g., [24] and [46].
We show that this is not the most efficient way to utilize the
communication resources. The system parameters are chosen
in the interest of demonstrating nonuniform rate allocations, in
particular, the system setup is: , , ,

, , , and . The simu-
lated costs are obtained by averaging over 100 IA’s and for each
IA over 150 000 samples. In Fig. 5(a), we compare the opti-
mized allocation, denoted by , which is obtained by the
method proposed in this paper, to 13 other allocations, denoted
by , , and . All 14 allocations are listed
in the same figure. Especially, the allocation is achieved
with our method by solving the unconstrained rate allocation
problem. Regarding the optimized allocation, is fairly evenly
distributed over , and compared with the uniform allocation

, there is certain performance improvement. The uniform
allocations have a time-invariant rate from 8 bits to
1 bit. Among these allocations, , for which , has
the worst performance, while , for which , has
the best performance. In fact, based on our analysis, ,

, and the solution to Problem 3 is . In the
presence of channel errors, more bits can sometimes degrade
the performance. This is consistent with the simulation result
that is superior to allocations that are assigned more than
5 bits for every , cf., . The allocations
are used to represent the strategies that more bits are assigned
to the initial states. Obviously, this strategy is not efficient in
the current example partly because of the following facts. First,
as discussed, the additional bits exceeding the critical point do
more harm than good. Second, the degradation caused by re-
ducing one bit at a lower rate is much significant than the im-
provement along with adding one bit at a higher rate. In addi-
tion, we in the same figure include the results obtained by using
a fixed index assignment, namely the nature binary IA. In this
experiment the nature binary IA, in most of cases, yields a lower
cost than the random IA. Similar to the random IA, the lowest
cost is given by .
In Fig. 5(b), we demonstrate the corresponding simulation re-

sults for the state estimation problem. Here, the optimized rate
allocation is obtained by applying Theorem 2 and the binary
rounding algorithm. The involved system parameters are the

Fig. 5. (a) Performance comparison among various rate allocations for state
feedback control. The axis is associated to the allocation, whereas the axis
is the overall distortion. An allocation is described by an integer vector, for ex-
ample, has . Allocations marked with a diamond do
not satisfy the total rate constraint, that is to say . Allocations
marked with a triangle or a circle fulfill the total rate constraint,
. Allocations marked with a diamond or a triangle use the random IA. Alloca-

tions marked with a circle use the nature binary IA. (b) Performance comparison
among various rate allocations for state estimation. (a) State feedback control,

given by (11). (b) State estimation, given by (15).

same as in Fig. 5(a). Also, the performance for the same 14 allo-
cations, as in Fig. 5(a), are depicted. In particular,

is still the global optimum which solves the unconstrained
optimization problem; while is the optimized rate alloca-
tion for state estimation. Performance in Fig. 5(b) is measured
by the objective function of Problem 2, and it is obtained by
averaging over 100 IA’s and each IA 150 000 samples. Com-
pared with the uniform allocation , we see that our method
gives an evident gain. Note that, here outperforms ,
which is the optimized allocation for state feedback control. An
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Fig. 6. Performance comparison between [(a) and (c)] and
[(b) and (d)].

explanation for the gain of is that without control action
the trajectory approaches slowly which requires more bits
in the initial states.

B. Impact of the Weighing Factor

The purpose of this example is to demonstrate the impact
of the weighting factor . Recall that plays a role of regu-
lating the power of the control signal. More precisely, the mag-
nitude of the control signal decreases as increases. That is to
say, a large yields small-valued controls, consequently, a slow
state response and a high steady-state level. In this experiment,
we fix the following system parameters, , ,

, , , , and the aforemen-
tioned time-varying uniform quantizer. The optimized rate allo-
cations are , ,

, for , respectively. By
applying Lemma 6, we see that the global minimum to the rate
unconstrained problem is . This is consistent with
the above derived rate allocations that there is no larger than
5. When is small, for example , large-valued con-
trols are allowed and the steady state is quickly reached. As
increases, only small-valued controls are allowed and it takes
longer time to reach the steady state. This explains that
more bits are needed in the initial states when is large. Asmen-
tioned previously, the rate allocation is also the solution
to the state estimation problem. Interestingly, the optimized rate
allocation in this case is the same as when . It is a rea-
sonable observation, since, when , first, the controls are
extremely small and have hardly impact on the state evolution;
second, is nearly constant. As a result, Problem 4 becomes
similar to the estimation problem, cf., Theorem 2. The simu-
lated instantaneous costs for and are depicted
in Fig. 6. Indeed, the instantaneous cost for is remark-
ably higher than the one for , because the former system
performs similarly to the one without any control.

Fig. 7. Performance comparison with respect to epsilon: (a) ;
(b) ; (c) ; (d) .

C. Impact of the Cross-Over Probability

The impact of the cross-over probability is studied in Fig. 7,
where we fix the other parameters and only vary . As before,
the system setup is: , , , and

. Applying Theorem 1, we obtain for ,
and for , respectively. At , the global
minimum to the unconstrained problem, according to Lemma
6, is , which means the rate constraint is violated at
the global minimum. On the other hand, at , the global
minimum is , so the rate constraint applies. Since the
quantizer range is fixed, a reduction in the rate causes a higher
quantization error, but more robust codewords against transmis-
sion errors. Beyond a certain number, the “additional bits” will
do more harm than good, as demonstrated in Fig. 7. In the figure,
the simulated instantaneous costs obtained by using and

at and , are depicted. At ,
if , we can improve the performance by increasing the
rate. Therefore, outperforms . At , the situa-
tion is different. When , the performance is degraded by
increasing the rate, which is consistent to the simulation result
in Fig. 7.

D. Additional Remarks

We conclude this section by some additional remarks. In
Section II, we have formulated Problem 1 to assign totally

bits optimally to time units. In fact, the solutions to
the optimal rate allocation problem have partly answered the
question the other way round. That is to say how much data
it is truly needed to achieve a certain system behavior. In the
absence of channel errors, increasing the data rate typically
means more accurate information, consequently, a better con-
trol performance. Unfortunately, in the presence of channel
errors, the situation is complicated. The channel error has
different kinds of impact on the system performance. First, if
the encoder-controller is not optimal, increasing the data rate
does not necessarily improve the performance. Moreover, the
improvement given by the rate is significantly reduced if is
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Fig. 8. The pdf’s of the estimated and the true , , for two values.

high. It is worth noticing that the solution to the unconstrained
problem can be used to evaluate the optimality of the quantizer.
In particular, optimal quantizers will solve Problem 3 with

. In other words, by optimizing the encoder-decoder
pair, we can move towards to enhance the efficiency of
the available communication resources.
Finally, we would like to make a few comments on the accu-

racy of the approximations (the high-rate approximation and the
Gaussian state approximation). Regarding the high-rate approx-
imation of the MSE, although the high-rate assumption requires
the source pdf to be approximately constant over one quantiza-
tion cell, the high-rate approximation works fairly well in prac-
tice for as low rates such as 3, 4 bits. On the other hand, we
may say generally that the accuracy decreases when the rate ap-
proaches 0. The worst case occurs at , where the esti-
mation error given by (16) is even worse than
, obtained by setting . Finally, the Gaussian approxi-

mation becomes less accurate as the significance of control in-
creases, which is assessed below by a numerical example. In
Fig. 8, a comparison of the pdf’s of the estimated and the
true is depicted, for two values: and .
The other parameters retain the same values, i.e., ,

, , , , . We
could observe that for large-valued , the influence of control
is moderate. Consequently, the system behaved more like the
open-loop system. Therefore the Gaussian assumption is more
accurate. On the other hand, for small-valued , the influence
of control is significant, which reduces slightly the accuracy of
the Gaussian assumption of the state . We conclude that the
assumption works well in practice.

VI. CONCLUSION

We proposed a newmethod to optimize the allocation of com-
munication resources in state feedback control and state esti-
mation over noisy channels. More specifically, we studied the
problem of optimal rate allocation with control and/or estima-
tion performance as the utility function. In order to arrive at a

tractable objective function, we first approximated the objec-
tive functions by means of the high-rate approximation theory.
Second, for each rate allocation problem, we showed that the
unconstrained version has a global minimum, which solves the
problem if such a global minimum does not violate the rate con-
straint. On the other hand, if the global minimum violates the
rate constraint, then we solved the rate constrained optimiza-
tion problems by means of Lagrangian duality. Numerical sim-
ulations showed good performance of the proposed method and
that, contrarily to previous studies, it is better to give an unequal
rate allocation.
Future work include the extension of our rate allocation

scheme to handle networked control systems of multiple
plants. For example in the presence of a shared communication
medium, a total transmission rate constraint could be imposed
to formulate optimization problems of multi-objective utility
functions. Meanwhile, it is also interesting to investigate how
the interference between the plants can affect the rate allocation.

APPENDIX

Proof of Lemma 6: According to Lemma 5, can be
written as

(42)

The coefficient is indepen-

dent of , and the parameters , , and are given in
Theorem 1. Taking the first-order derivative of gives

(43)

where the sums are positive. Note that , for .
Since (43) applies for all , it follows that at the critical point

, so that . Com-
puting the second-order derivatives, implies
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Note that if or , the second-order derivative is 0. At the
critical point, and , hence, all elements at the
diagonal of the Hessian matrix are positive. We can conclude
that the Hessian matrix is positive definite and the critical point
is a global minimum.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
anonymous reviewers for many very helpful comments that
considerably helped to improve the quality of the paper.

REFERENCES

[1] Z.-Q. Luo, M. Gastpar, J. Liu, and A. Swami, “Distributed signal pro-
cessing in sensor networks,” IEEE Signal Process. Mag., vol. 23, no.
4, 2006.

[2] A. Willig, “Recent and emerging topics in wireless industrial commu-
nication,” IEEE Trans. Indust. Inf., vol. 4, no. 2, pp. 102–124, 2008.

[3] S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans.
Inf. Theory, vol. 48, no. 6, pp. 1319–1343, 2002.

[4] M. Sabin and R. Gray, “Global convergence and empirical consistency
of the generalized Lloyd algorithm,” IEEE Trans. Inf. Theory, vol. 32,
no. 2, pp. 148–155, Mar. 1986.

[5] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control over a
communication channel,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1549–1561, Sep. 2004.

[6] L. Bao, M. Skoglund, and K. H. Johansson, “Iterative encoder-con-
troller design for feedback control over noisy channels,” IEEE Trans.
Autom. Control, vol. 56, no. 2, pp. 256–278, Feb. 2011.

[7] F.Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource
allocation in wireless networks,” IEEE Signal Process. Mag., vol. 24,
no. 3, pp. 58–68, 2007.

[8] X. Wang, A. G. Marques, and G. B. Giannakis, “Power-efficient re-
source allocation and quantization for TDMA using adaptive transmis-
sion and limited-Rate feedback,” IEEE Trans. Signal Process., vol. 56,
no. 9, pp. 4470–4485, Sep. 2008.

[9] R. Zhang, Y.-C. Liang, and S. Cui, “Dynamic resource allocation in
cognitive radio networks,” IEEE Signal Process. Mag., vol. 27, no. 3,
pp. 102–114, 2010.

[10] F. Chen,W. Su, S. Batalama, and J. D.Matyjas, “Joint power optimiza-
tion for multi-source multi-destination relay networks,” IEEE Trans.
Signal Process., vol. 59, no. 5, pp. 2370–2381, 2011.

[11] P. C. Weeraddana, M. Codreanu, M. Latva-aho, and A. Ephremides,
“Resource allocation for cross-layer utility maximization in wireless
networks,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2790–2809,
2011.

[12] Q. Ling and M. D. Lemmon, “Stability of quantized control systems
under dynamic bit assignment,” IEEE Trans. Autom. Control, vol. 50,
no. 5, pp. 734–740, 2005.

[13] L. Xiao,M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith, “Joint op-
timization of wireless communication and networked control systems,”
Chap. Switching Learn., Springer Lecture Notes in Comput. Sci. 3355,
vol. 32, no. 2, pp. 148–155, Mar. 1986.

[14] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. New York: Kluwer, 1992.

[15] B. Farber and K. Zeger, “Quantization of multiple sources using non-
negative integer bit allocation,” IEEE Trans. Inf. Theory, vol. 52, no.
11, pp. 4945–4964, 2006.

[16] S. W. Mclaughlin and D. L. Neuhoff, “Asymptotic quantization for
noisy channels,” in Proc. IEEE Int. Symp. Inf. Theory, 1993, p. 442.

[17] R. Gupta and A. O. Hero, “High-rate vector quantization for detection,”
IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1951–1969, Aug. 2003.

[18] C. R. Murthy and B. D. Rao, “High-rate analysis of source coding
for symmetric error channels,” in Proc. IEEE Data Compress. Conf.
(DCC), 2006, pp. 163–172.

[19] N. Farvardin and J. W. Modestino, “Optimum quantizer performance
for a class of non-Gaussian memoryless sources,” IEEE Trans. Inf.
Theory, vol. 30, no. 3, pp. 485–497, May 1984.

[20] J. Lim, “Optimal bit allocation for noisy channels,” Electron. Lett., vol.
41, no. 7, pp. 405–406, Mar. 2005.

[21] B. Widrow, “Statistical analysis of amplitude-quantized sampled-data
systems,” Amer. Inst. Elect. Eng., Pt.II (Appl. Ind.), pp. 555–568, 1961.

[22] D. F. Delchamps, “Stabilizing a linear system with quantized state
feedback,” IEEE Trans. Autom. Control, vol. 35, no. 8, pp. 916–924,
Aug. 1990.

[23] F. Fagnani and S. Zampieri, “Stability analysis and synthesis for scalar
linear systems with a quantized feedback,” IEEE Trans. Autom. Con-
trol, vol. 48, no. 9, pp. 1569–1584, Sep. 2003.

[24] S. Tatikonda and S. Mitter, “Control under communication con-
straints,” IEEE Trans. Autom. Control, vol. 49, no. 7, pp. 1056–1068,
Jul. 2004.

[25] D. Liberzon, “Stabilization by quantized state or output feedback: a
hybrid control approach,” Proc. IFAC 15th Triennial World Congr., pp.
79–84, 2002.

[26] A. V. Savkin, “Analysis and synthesis of networked control systems:
topological entropy, observability, robustness and optimal control,”
Automatica, vol. 42, pp. 51–62, 2006.

[27] S. Yüksel and T. Basar, “Minimum rate coding for LTI systems over
noiseless channels,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp.
1878–1887, 2006.

[28] G. N. Nair, F. Fagnani, S. Zampieri, and R. Evans, “Feedback control
under data rate constraints: an overview,” Proc. IEEE, pp. 108–137,
Jan. 2007.

[29] A. Sahai and S. Mitter, “The necessity and sufficiency of anytime ca-
pacity for stabilization of a linear system over a noisy communication
link—part I: Scalar systems,” IEEE Trans. Inf. Theory, vol. 52, no. 8,
pp. 3369–3395, 2006.

[30] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[31] C. D. Charalambous and A. Farhadi, “LQG optimality and separation
principle for general discrete time partially observed stochastic systems
over finite capacity communication channels,” Automatica, vol. 44, pp.
3181–3188, 2008.

[32] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”
IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 323–349, 2009.

[33] E. I. Silva, J. Østergaard, and M. Derpich, “On the minimal average
data-rate that guarantees a given closed loop performance level,”
in Proc. 2nd IFAC Workshop on Estimation and Contr. Netw. Syst.
(NecSys), 2010.

[34] P. Antsaklis and J. Baillieul, “Special issue on technology of networked
control systems,” Proc. IEEE, vol. 95, no. 1, pp. 5–8, Jan. 2007.

[35] R. A. Gupta and M. Y. Chow, “Networked control systems: Overview
and research trends,” IEEE Trans. Indust. Electron., vol. 57, no. 7, pp.
2527–2535, 2010.

[36] L. Bao, M. Skoglund, C. Fischione, and K. H. Johansson, “rate al-
location for quantized control over binary symmetric channels” (full
version) Royal Inst. Technol., Stockholm, Sweden, Tech. Rep. IR/EE/
2011:054, 2011.



3202 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

[37] N. Farvardin, “A study of vector quantization for noisy channels,”
IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 799–809, 1990.

[38] K. Zeger and V. Manzella, “Asymptotic bounds on optimal noisy
channel quantization via random coding,” IEEE Trans. Inf. Theory,
vol. 40, no. 6, pp. 1926–1938, Nov. 1994.

[39] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[41] M. Chiang, Geometric Programming for Communication Sys-
tems, Foundations and Trends in Communications and Information
Theory. New York: Now, 2005.

[42] M. Aoki, Optimization of Stochastic Systems—Topics in Dis-
crete-Time Systems. New York: Academic, 1967.

[43] L. Bao, M. Skoglund, C. Fischione, and M. Skoglund, “On rate alloca-
tion for multiple plants in a networked control system,” in Proc. Amer.
Control Conf. (ACC), 2012.

[44] B. Farber and K. Zeger, “Quantization of multiple sources using in-
teger bit allocation,” in Proc. IEEE Data Compress. Conf., 2005, pp.
368–377.

[45] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. New York: Dover, 1998.

[46] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization
of linear systems,” IEEE Trans. Autom. Control, vol. 45, no. 7, pp.
1279–1289, Jul. 2000.

Lei Bao (S’04–M’09) received the M.Sc. degree in
electrical engineering with specialization in digital
communication from Chalmers university of Tech-
nology, Gothenburg, Sweden, in 2003, and the Ph.D.
degree in telecommunication from the Royal Institute
of Technology (KTH), Stockholm, Sweden, in 2009.
She is currently with Ericsson Research. Her re-

search interests include communication theory and
coding theory for networked control.

Mikael Skoglund (S’93–M’97–SM’04) received the
Ph.D. degree in 1997 from Chalmers University of
Technology, Sweden. In 1997, he joined the Royal
Institute of Technology (KTH), Stockholm, Sweden.
He was appointed to the Chair in Communica-

tion Theory in 2003 at KTH, where he heads the
Communication Theory Lab and is also the Assis-
tant Dean for Electrical Engineering. His research
interests are in the theoretical aspects of wireless
communications. He has worked on problems in
source-channel coding, coding and transmission for

wireless communications, Shannon theory, and statistical signal processing.
He has authored and coauthored almost 300 scientific papers. He has also
consulted for industry, and he holds six patents.
Dr. Skoglund has served on numerous Technical Program Committees for

IEEE conferences. During 2003–2008, he was an Associate Editor with the
IEEE TRANSACTIONS ON COMMUNICATIONS. He is presently on the editorial
board for IEEE TRANSACTIONS ON INFORMATION THEORY. He has authored
many papers that have received awards, invited conference presentations, and
papers ranking as highly cited according to the ISI Essential Science Indicators.

Carlo Fischione (M’02) received the Ph.D. degree
in electrical and information engineering in May
2005 from the University of L’Aquila, Italy, and the
Dr.Eng. degree in electronic engineering (Laurea,
summa cum laude, 5/5 years) in April 2001 from the
same University.
He is a tenured Associate Professor with the Elec-

trical Engineering and ACCESS Linnaeus Center,
Automatic Control Lab, KTH Royal Institute of
Technology, Stockholm, Sweden. He held research
positions at the University of California at Berkeley

(2004–2005 and 2007–2008) and the KTH (2005–2007). His research interests
include optimization, wireless sensor networks, networked control systems,
and system level design of wireless networks. He has coauthored more than
70 publications in international journals and conferences and an international
patent.
Dr. Fischione received the Best Paper award from the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS of 2007, the Best Paper awards at the IEEE Inter-
national Conference on Mobile Ad-hoc and Sensor System ’05 and ’09 (IEEE
MASS 2005 and IEEE MASS 2009), the Best Business Idea Award from Ven-
tureCup East Sweden 2010, the “Ferdinando Filauro” Award from the Univer-
sity of L’Aquila, and the “Higher Education” Award from the Abruzzo Region
Government, Italy. In 2008 he received an Individual Junior Research Grant
from the Swedish Research Council. He has chaired or served as a Technical
Member of Program Committees of several international conferences and is
serving as referee for technical journals. Meanwhile, he also has offered his
advice as a consultant to numerous technology companies such as Berkeley
Wireless Sensor Network Lab, Ericsson Research, Synopsys, and United Tech-
nology Research Center. He is member of the Society for Industrial and Applied
Mathematics (SIAM) and ordinary member of DASP (academy of history Dep-
utazione Abruzzese di Storia Patria).

Karl Henrik Johansson (SM’08) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Lund University, Sweden.
He is Director of the ACCESS Linnaeus Centre

and Professor at the School of Electrical Engi-
neering, Royal Institute of Technology, Stockholm,
Sweden. He is a Wallenberg Scholar and has held
a Senior Researcher Position with the Swedish
Research Council. He has held visiting positions at
University of California at Berkeley (1998–2000)
and the California Institute of Technology, Pasadena

(2006–207). His research interests are in networked control systems, hybrid
and embedded control, and control applications in automation, communication,
and transportation systems.
Dr. Johansson was a member of the IEEE Control Systems Society Board

of Governors 2009 and Chair of the IFAC Technical Committee on Net-
worked Systems 2008–2011. He has been on the Editorial Boards of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROl and the IFAC journal Automatica.
He is currently on the Editorial Boards of IET Control Theory and Applications
and the International Journal of Robust and Nonlinear Control. He was the
General Chair of the ACM/IEEE Cyber-Physical Systems Week (CPSWEEK)
2010 in Stockholm. He has served on the Executive Committees of several
European and national research projects in the area of networked embedded
systems. He was awarded an Individual Grant for the Advancement of Research
Leaders from the Swedish Foundation for Strategic Research in 2005. He
received the triennial Young Author Prize from IFAC in 1996 and the Peccei
Award from the International Institute of System Analysis, Austria, in 1993.
He received Young Researcher Awards from Scania in 1996 and from Ericsson
in 1998 and 1999.


