
Contents lists available at SciVerse ScienceDirect
Signal Processing

Signal Processing ] (]]]]) ]]]–]]]
0165-16

doi:10.1

$ The

the 19

pp. 117
n Corr

fax: þ3

E-m

stankov

kallej@k

Pleas
Ratio
journal homepage: www.elsevier.com/locate/sigpro
Consensus based distributed change detection using Generalized
Likelihood Ratio methodology$
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In this paper a novel distributed algorithm derived from the Generalized Likelihood

Ratio is proposed for real time change detection using sensor networks. The algorithm is

based on a combination of recursively generated local statistics and a global consensus

strategy, and does not require any fusion center. The problem of detection of an

unknown change in the mean of an observed random process is discussed and the

performance of the algorithm is analyzed in the sense of a measure of the error with

respect to the corresponding centralized algorithm. The analysis encompasses asym-

metric constant and randomly time varying matrices describing communications in the

network, as well as constant and time varying forgetting factors in the underlying

recursions. An analogous algorithm for detection of an unknown change in the variance

is also proposed. Simulation results illustrate characteristic properties of the algorithms

including detection performance in terms of detection delay and false alarm rate. They

also show that the theoretical analysis connected to the problem of detecting change in

the mean can be extended to the problem of detecting change in the variance.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the typical tasks of sensor networks, which is in
the focus of many researchers, is distributed detection, e.g.,
[1,2]. The classical multi-sensor distributed detection
schemes require the existence of a fusion center, which
collects relevant information from all the sensors and
where the final decision is made. In [3] distributed
detection has been broadly divided into three classes,
where the aforementioned parallel architecture with a
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fusion center represents the first class. Removal of a
global fusion center brings, in principle, many advantages,
consisting of increased reliability and reduced commu-
nication requirements, in spite of a certain loss of perfor-
mance with respect to the optimal centralized system.
The second class includes some recent attempts to apply
consensus techniques to the distributed detection problem
in order to eliminate the need for a fusion center [4].
However, the dynamic agreement process is introduced
after all data had been collected, implying inapplicability to
real time change detection problems. Namely, two detec-
tion phases are assumed: the sensing phase, where each
sensor collects observations over a period of time, and the
communication phase, where sensors subsequently run
the consensus algorithm to fuse their local statistics.

The third class of distributed detection algorithms
assumes that both the sensing and the communication
phase occur in parallel, at the same time step. This class is
mostly linked to the concept of ‘‘running consensus’’,
tributed change detection using Generalized Likelihood
pro.2012.01.007
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which has been introduced in the algorithms proposed
and discussed in [5,6], assuming a consensus scheme with
symmetric consensus matrices. An analysis of such algo-
rithms based on the large deviations theory has been
presented in [3]. An algorithm that combines minimum-
variance distributed estimation (based on the so-called
diffusion) with Neyman–Pearson detection has been pro-
posed in [7]. In [8], a running consensus algorithm has
been proposed for solving the quickest detection problem,
based on the CUSUM (cumulative sum) statistic [9]. It
represents a powerful practical tool for real time change
detection, but it contains a nonlinearity used in the
resetting rule of the algorithm, implying difficulties in
the theoretical analysis of the algorithm. In [10], a novel
class of distributed consensus-based real time change
detection algorithms has been proposed, based on a
combination of recursive geometric moving average con-
trol charts [9] with a consensus algorithm. Along with its
inherent tracking capability, it introduces a more general
setting of asymmetric consensus matrices. However, it
assumes, as all of the aforementioned algorithms lying in
the third class, that the parameter value after change
is known.

In this paper, as a continuation of the work in [10], two
new algorithms are proposed for distributed detection of
unknown changes in (a) the mean and (b) the variance of a
piecewise stationary random process, while monitoring the
environment using a sensor network. Both algorithms have
recursive forms derived from the expressions for the Gen-
eralized Likelihood Ratio (GLR) statistics for hypothesis
testing, where the hypothesis H0 corresponds to the constant
known parameter value before change, and the hypothesis
H1 to the unknown parameter value after change. In [11] a
window-truncated version of the GLR statistic for sequential
multiple hypothesis testing which does not allow recursive
structure has been proposed. Herein a constant forgetting
factor in the derived recursions is introduced, resulting in
algorithms belonging to the class of moving average control
charts, applicable to the on-line change detection problem
[9] (abrupt changes from H0 to H1). The obtained recursive
form is structurally similar to the one discussed in [10], but
with a much more complex innovation term. It is to be
emphasized that the GLR is taken here as a starting point in
the derivation of the algorithm in order to circumvent the
restrictions inherent to the approach in [10], and to allow
tracking of unknown parameter jumps. Furthermore, follow-
ing [10], a dynamic consensus scheme is introduced, and
algorithms which asymptotically provide nearly equal beha-
vior of all the nodes are obtained, i.e., any node can be
selected for testing the decision variable w.r.t. a pre-specified
threshold.

The derived algorithm for change detection in the mean

is analyzed theoretically for both constant and randomly
time varying asymmetric consensus matrices characteriz-
ing the network. The analysis is focused on the error
between the generated distributed decision variables and
the corresponding centralized statistics. The aforemen-
tioned complexity of the innovation term makes the
analysis more complicated than the one from [10]. More-
over, it has been found to be necessary to introduce novel
performance criteria. It is shown that under hypothesis H1
Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
the ratio of the norm of the mean square error matrix and
the mean square value of the centralized decision variable
is bounded in the case of constant consensus matrices by
K1

1ð1�aÞ
2, where 0oao1 is the forgetting factor of the

algorithm, while in the case of random consensus
matrices it is bounded by K1

2ð1�aÞ, where K1
1 and K1

2 are
finite constants. Under hypothesis H0, it is shown that the
aforementioned ratio is bounded in the case of constant
consensus matrices by K0

1ð1�aÞ, while in the case of
random consensus matrices it is bounded by K0

2, where
K0

1 and K0
2 are finite constants. In the case of time varying

forgetting factors (behaving like t=ðtþ1ÞÞ, corresponding
to the initial hypothesis testing problem, the correspond-
ing bounds are also found, following the analogy between
t�1 and the term 1�a from the constant forgetting factor
case. A number of simulation results are given as an
illustration of the characteristic properties of the pro-
posed algorithm, including detection performance in
terms of detection delay and false alarm rate.

The algorithm for change detection in the variance is
designed similarly as the change in the mean algorithm,
starting from the derivation of a recursive form of the
GLR. Since the obtained innovation term in the recursions
is very difficult to analyze, properties of the change in the
variance algorithm are analyzed by means of simulation,
showing that, qualitatively, all the results of the analysis
connected to the change in the mean case hold also for
the detection of the change in the variance.

The outline of the paper is as follows. Section 2 begins
with local recursive algorithm derived from the GLR con-
nected to the change in the mean case (Section 2.1). A novel
distributed change detection scheme based on a consensus
algorithm is given (Section 2.2), as well as an analysis of the
error between the statistics generated by the proposed
algorithm and the corresponding centralized scheme (for
both constant and time varying forgetting factors— Sections
2.3 and 2.4, respectively). A change in the variance detection
algorithm is proposed in Section 3 while Section 4 deals
with some illustrative simulation examples.

2. Recursive distributed detection of change in the mean

2.1. Local recursions

Assume that we have a sensor network containing n

nodes, in which the measurement signal of the i-th node
is given by

yiðtÞ ¼ yiþEiðtÞ, ð1Þ

where EiðtÞ �Nð0,s2
i Þ,i¼ 1, . . . ,n, are mutually independent

iid processes. At first, consider a binary hypothesis problem,
where the goal of the i-th node is to discriminate between
the hypothesis Hi

0 that yi ¼ y0
i ¼ 0 and the hypothesis Hi

1

that yi ¼ y1
i a0. In the case when y1

i , i¼ 1, . . . ,n, is not a
priori known, it is possible to apply the GLR methodology
for hypothesis testing and to obtain the following local
statistics based on N successive measurements [9,12]

sl
iðNÞ ¼max

y1
i

XN

t ¼ 1

log
py1

i
ðyiðtÞÞ

py0
i
ðyiðtÞÞ

¼
N

2
yiðNÞ

2s�2
i , ð2Þ

where yiðNÞ ¼ ð1=NÞ
PN

t ¼ 1 yiðtÞ.
tributed change detection using Generalized Likelihood
pro.2012.01.007
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Calculation of sl
iðNÞ can be performed on-line, recur-

sively. Introducing t for current time, we obtain, using
[12], the following basic recursion for the local decision
function

sl
iðtþ1Þ ¼

t

tþ1
sl

iðtÞþ
s�2

i

tþ1

�
ðtþ1Þyiðtþ1Þ�

1

2
yiðtþ1Þ

�
yiðtþ1Þ,

ð3Þ

where yi is also generated recursively by

yiðtþ1Þ ¼
t

tþ1
yiðtÞþ

1

tþ1
yiðtþ1Þ, yið0Þ ¼ 0: ð4Þ

2.2. Centralized and consensus based recursive algorithm

The global centralized decision function for the whole
sensor network, which should make distinction between the
hypothesis H0 : yi ¼ y0

i ¼ 0, i¼ 1, . . . ,n, and the hypothesis
H1 : yi ¼ y1

i a0, i¼ 1, . . . ,n, is defined as a sum of the local
statistics given in (2).1 After neglecting the second term in
the brackets at the right hand side of (3), we obtain the
following recursion for the centralized decision function:

scðtþ1Þ ¼
t

tþ1
scðtÞþ

Xn

i ¼ 1

s�2
i yiðtþ1Þyiðtþ1Þ, scð0Þ ¼ 0:

ð5Þ

The statistics given in (3) and (5) can distinguish
between the two hypotheses, but cannot track parameter
changes. Therefore, we introduce an approximation which
replaces t=ðtþ1Þ by a constant a close to one (which acts
as a forgetting factor), in order to address the change
detection problem. Namely, our goal is to detect a change
from the hypothesis H0 to the hypothesis H1, which occurs
simultaneously at all sensors at unknown time t0 (it is
also possible to assume that the change occurs for a non-
empty subset of the network nodes [10]). Denoting

xiðtÞ ¼ yiðtÞyiðtÞ, ð6Þ

where

yiðtþ1Þ ¼ ayiðtÞþð1�aÞyiðtþ1Þ, yið0Þ ¼ 0, ð7Þ

the centralized decision function now becomes

scðtþ1Þ ¼ ascðtÞþ
Xn

i ¼ 1

wixiðtþ1Þ, scð0Þ ¼ 0, ð8Þ

where wi are nonnegative weights, equal to s�2
i in (5). Note

that the obtained centralized decision function (8) is essen-
tially one variant of the geometric moving average algo-
rithm [9] with non-normalized weights, in which the
application of the GLR results into a specific form of the
function xi, allowing tracking of unknown parameter jumps.
For the sake of convenience, we shall further adopt that the
weights are normalized in such a way that

Pn
i ¼ 1 wi ¼ 1;

accordingly, in (8) we introduce wi ¼ s�2
i ð
Pn

i ¼ 1 s�2
i Þ
�1. The

global detection procedure is based on testing the decision
function sc(t) with respect to an appropriately chosen
threshold lc 40, so that a change is detected when sc(t)
1 It can be easily shown that the corresponding vector-valued GLR is

in a form of a sum of the local GLRs connected to the individual nodes.

Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
exceeds lc . Notice that the algorithm requires a fusion

center. It is to be noticed that it is also possible to adopt
xiðtÞ ¼ s�2

i yiðtÞyiðtÞ, resulting in equal weights wi ¼ n�1; this
represents a special case of the above setting.

The aim of this paper is to propose a distributed change
detection algorithm which does not require a fusion center

and in which the output of any preselected node can be
used as a representative of the whole network and tested
w.r.t. a pre-specified common threshold. The basic assump-
tion is that the nodes of the network are connected in
accordance with a time varying directed graph represented
by a weighted adjacency matrix CðtÞ ¼ ½cijðtÞ�n�n, satisfying
cijðtÞZ0, iaj and ciiðtÞ40, i,j¼ 1, . . . ,n (cij(t)) represents the
communication gain from the node j to the node i). We
shall assume, additionally, that matrices C(t) are row-
stochastic, random, iid and statistically independent from
the sequences fxiðtÞg, i¼ 1, . . . ,n.

We propose the following algorithm for generating the
vector decision function sðtÞ ¼ ½s1ðtÞ � � � snðtÞ�

T for the whole
network:

sðtþ1Þ ¼ aCðtÞsðtÞþCðtÞxðtþ1Þ, sð0Þ ¼ 0, ð9Þ

where xðtÞ ¼ ½x1ðtÞ � � � xnðtÞ�
T . The algorithm is derived from

the consensus based state and parameter estimation
algorithms proposed in [13,14]; it is also similar to the
detection algorithm based on ‘‘running consensus’’ pro-
posed in [5,6,8]. Notice that the matrix C(t) performs for
each node ‘‘convexification’’ of the neighboring states and
enforces in such a way consensus between the nodes.
After achieving siðtÞ � sjðtÞ, i,j¼ 1, . . . ,n, change detection
can be done by testing si(t) for any i with respect to the
same lc as in the case of (8), provided (9) achieves a good
approximation of sc(t) generated by (8).

In order to implement the proposed algorithm it is
necessary to set the communication gains in C(t) in
accordance with the communication structure constraints
resulting from the availability of communication links.
We shall assume, in general, that C(t) is realized at each
discrete time instant t as CðkÞ with probability pk,
k¼ 1, . . . ,N, No1,

PN
k ¼ 1 pk ¼ 1 (the case of constant

gains simply follows as a special case). The realization
matrices CðkÞ ¼ ½cðkÞij �n�n, k¼ 1, . . . ,N, i,j¼ 1, . . . ,n, will be
assumed to be constant nonnegative row stochastic
matrices, satisfying cðkÞii 40, i¼ 1, . . . ,n, so that we have

C ¼ EfCðtÞg ¼
XN

k ¼ 1

CðkÞpk: ð10Þ

This formal setting obviously encompasses the asynchro-
nous asymmetric gossip algorithm with one message at a
time, various types of synchronous asymmetric gossip
algorithms, as well as communication faults. We shall not
be concerned here with concrete ways of generating the
realizations of CðkÞ: our further analysis is applicable to
any preselected technical setting satisfying the adopted
network model.

We shall assume further that
(A1)
tribut
pro.2
C has the eigenvalue 1 with algebraic multiplicity 1;
(A2)
 limi-1C
i
¼ 1wT .
ed change detection using Generalized Likelihood
012.01.007
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The first assumption is related to the a priori given
topology of the underlying multi-agent network, implying

that the graph associated with C has a spanning tree and
that C

i
converges to a nonnegative row stochastic matrix

with equal rows when i tends to infinity, e.g., [15,16].
Assumption (A2) establishes a formal connection between
the algorithm (9) and the centralized (8), implying that
the realization matrices CðkÞ, the corresponding probabil-
ities pk and the weight vector w are connected by the
relation

wT C ¼wT
XN

k ¼ 1

CðkÞpk ¼wT : ð11Þ

For an a priori given vector w, according to the require-
ments resulting from the selected centralized detector (8),
Eq. (11) should be solved for CðkÞ and pk. It is a nonlinear
equation, which can be solved in practice by adopting one
set of parameters (probabilities pk, for example) and
solving the linear programming problem for the remain-
ing set of parameters (parameters in CðkÞÞ, or vice versa

[17]. Notice that in the case of the asynchronous rando-
mized gossip algorithm with one communication at a
time, CðkÞ is characterized by only one scalar parameter; in
general, CðkÞ is characterized by more parameters satisfy-
ing the given constraints. It is to be emphasized that
solving (11) in the special case when all wi ¼ n�1 results in
symmetric average consensus matrices C when the com-
munication links allow such a structure; otherwise, we
have an asymmetric C , satisfying (11). The related litera-
ture covers only the symmetric case [5,6,8,18]; the asym-
metric case has been treated in [10,17].

2.3. Analysis of the consensus based algorithm

The theoretical analysis given in this section will be
concerned with the relationship between the proposed
consensus based algorithm (9) and the centralized (8)
taken as a reference. Our goal is to show that the
proposed algorithm generates statistics that are (suffi-
ciently) close to the centralized statistics. Theoretical
analysis of the performance of the proposed algorithm
in terms of standard detection performance measures—-

detection and false alarm rate and detection delay
assumes the knowledge about the distributions of the
generated statistics. It is very difficult and beyond the
scope of this paper to obtain these distributions, having in
mind that we are dealing with a combination of consen-
sus dynamics with the dynamics of a variant of geometric
moving average algorithm. However, the aforementioned
performance measures will be discussed in detail via
simulations in Section 4.

The error vector between the states of the consensus
based algorithm and the centralized scheme is defined as

eðtÞ ¼ sðtÞ�1scðtÞ, ð12Þ

where 1¼ ½1 � � �1�T . Iterating (9) and (8) back to the zero
initial conditions, we get

sðtÞ ¼
Xt�1

i ¼ 0

aijðt�1,t�i�1Þxðt�iÞ, ð13Þ
Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
where jði,jÞ ¼ CðiÞ � � �CðjÞ, iZ j, and

scðtÞ ¼
Xt�1

i ¼ 0

aiwT xðt�iÞ, ð14Þ

wherefrom

eðtÞ ¼
Xt�1

i ¼ 0

ai½jðt�1,t�i�1Þ�1wT �xðt�iÞ: ð15Þ

From (15) we obtain directly

EfeðtÞg ¼
Xt�1

i ¼ 0

aiðC�1wT Þ
iþ1m¼

Xt�1

i ¼ 0

ai ~C
iþ1

m, ð16Þ

where m¼ EfxðtÞg and ~C ¼ C�1wT , having in mind that,
under (A2), we have ðC�1wT Þ

i
¼ C

i
�1wT . Obviously, s(t) is

a biased estimator of 1scðtÞ when mam1, where m is a
given scalar, having in mind that ~Cm¼ 0 for m¼ m1.

Calculating m¼ ½Efx1ðtÞg � � � EfxnðtÞg�
T we obtain from

(6), (7) and (1)

EfxiðtÞg ¼ ð1�aÞ
Xt�1

j ¼ 0

ajyðt�iÞyiðtÞ � y2
i þð1�aÞs

2
i , ð17Þ

where we used the approximation (which will be used
throughout the remainder of this paper) that for t suffi-
ciently large we have 1�at � 1.

By Assumptions (A1) and (A2), it follows that C and
1wT have the same eigenvectors. Therefore, C has the
same eigenvalues as ~C , except for the eigenvalue 1 of C

which is replaced by the eigenvalue 0 of ~C . Having in
mind that cii40, i¼ 1, . . . ,n, it follows that the modules of
all the eigenvalues of ~C are strictly less than 1 [15]. We
denote maxif9lið

~C Þ9g ¼ lM o1. Now we can see that

JEfeðtÞgJr
Xt�1

i ¼ 0

aiJ ~C
iþ1

JJmJr
klMJmJ

1�alM
o

klMJmJ

1�lM
, ð18Þ

having in mind that J ~C
i
Jrklt

M for any matrix norm,
where k is an appropriately chosen constant, and that
lM o1. A comparison with the properties of an analogous
algorithm presented in [10] should be made, where the
upper limit of JEfeðtÞgJ is proportional to 1�a under both
hypotheses.

However, the obtained quality of approximating the
centralized solution can be more adequately expressed by
normalizing JEfeðtÞgJ by the mathematical expectation of
the centralized decision variable itself. In this case we
readily obtain that under both hypotheses

JEfeðtÞgJ

EfscðtÞg
rKð1�aÞ: ð19Þ

where Ko1, having in mind that EfscðtÞg �wT ðm=ð1�aÞÞ.
Under hypothesis H1, the mean of the centralized statis-
tics grows as 1=ð1�aÞ when a approaches 1, while the
upper limit of the error mean remains constant; under
hypothesis H0, the mean of the centralized statistics
remains constant and independent of a, while the error
mean decreases linearly as 1�a (having in mind that
under H0 we have that m� 1�aÞ.

A more complete insight into the quality of approx-
imation can be obtained from an analysis of the mean
tributed change detection using Generalized Likelihood
pro.2012.01.007
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square error matrix

Q ðtÞ ¼ EfeðtÞeðtÞTg: ð20Þ

The following lemma serves as a prerequisite.

Lemma 1. The covariance function riðtÞ ¼ EfðxiðtÞ�miÞ

ðxiðtþtÞ�miÞg for algorithm (5) satisfies

X1
t ¼ 0

9riðtÞ9rK1; i¼ 1, . . . ,n, 0oK1o1: ð21Þ

Proof. Starting from (6) we have

riðtÞ ¼ EfðyiðtÞyiðtÞ�miÞðyiðtþtÞyiðtþtÞ�miÞg

¼ E

( 
ð1�aÞ

Xt�1

j ¼ 0

ajðy2
i þyiðEiðtÞþEiðt�jÞÞ

þEiðtÞEiðt�jÞÞ�ðy2
i þð1�aÞs

2
i Þ

!

ð1�aÞ
Xtþt�1

k ¼ 0

akðy2
i þyiðEiðtþtÞþEiðtþt�kÞÞ

 

þEiðtþtÞEiðtþt�kÞÞ�ðy2
i þð1�aÞs

2
i Þ

!)

¼ E ð1�aÞ2
Xt�1

j ¼ 0

ajyiðEiðtÞþEiðt�jÞÞ

8<
:
�
Xtþt�1

k ¼ 0

akyiðEiðtþtÞþEiðtþt�kÞÞ

)
þdt,0rEE, ð22Þ

where rEE is a part of riðtÞ connected to the mathematical
expectation of the product of the terms ð1�aÞðð

Pt�1
j ¼ 0 aj

EiðtÞEiðt�jÞÞ�s2
i Þ and ð1�aÞðð

Pt�1
k ¼ 0 akEiðtþtÞþEiðtþt�kÞÞ

�s2
i Þ which is non-zero for t¼ 0 and k¼ j,

rEE ¼ ð1�aÞ2 E E4
i ðtÞþ

Xt�1

j ¼ 1

a2jE2
i ðtÞE

2
i ðt�jÞ

8<
:

9=
;�s4

i

0
@

1
A

� ð1�aÞ2 2s4
i þ

a2

1�a2
s4

i

� �

¼ ð1�aÞs4
i

2�a2

1þa : ð23Þ

Since riðtÞ ¼ rið�tÞ, we can see that for t40 we have non-
zero terms in the remaining terms of (22) only in the
cases when k¼ t and k¼ tþ j; for t¼ 0 we have non-zero
terms not only in the cases when k¼0 and k¼ j but also in
the case when j¼0, together with the term connected to
y2

i E2
i ðtÞ which is non-zero for all j and k. Therefore, we

obtain the following expression for riðtÞ (for tZ0Þ:

riðtÞ ¼ ð1�aÞ2E
Xt�1

j ¼ 0

ajy2
i ðatE2

i ðtÞþa
tþ jE2

i ðt�jÞÞ

8<
:

9=
;þdt,0ðrEEþrEÞ

� ð1�aÞ2y2
i s2

i

1

1�a þ
1

1�a2

� �
atþdt,0ðrEEþrEÞ

¼ ð1�aÞy2
i s

2
i

2þa
1þaa

tþdt,0ðrEEþrEÞ, ð24Þ

where

rE ¼ ð1�aÞ2E
Xt�1

k ¼ 0

akðy2
i E

2
i ðtÞþ

Xt�1

j ¼ 0

ajy2
i E

2
i ðtÞÞ

8<
:

9=
;

Please cite this article as: N. Ilić, et al., Consensus based dis
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� ð1�aÞy2
i s

2
i þy

2
i s

2
i : ð25Þ

Having in mind that 0oao1 we have that

riðtÞoð1�aÞy
2
i s

2
i k1atþdt,0ðð1�aÞs4

i k2þð1�aÞy2
i s

2
i þy

2
i s

2
i Þ,

ð26Þ

where k1 and k2 are constants that do not depend on a
(e.g., k1 ¼ k2 ¼ 2Þ. Therefore, (21) is satisfied under both
hypotheses. More precisely, we have under hypothesis H1

that

X1
t ¼ 0

9riðtÞ9oy2
i s

2
i ðk1þ1Þþð1�aÞðs4

i k2þs2
i y

2
i ÞoK1o1,

ð27Þ

where K1 is a constant that does not depend on a (e.g.,
K1 ¼ y2

i s2
i ðk1þ1Þþðs4

i k2þs2
i y

2
i Þ) while under hypothesis

H0 we have only one non-zero term:

X1
t ¼ 0

9riðtÞ9oð1�aÞs4
i k2rK0ð1�aÞo1, ð28Þ

where K0 is a constant that does not depend on a. &

Theorem 1. Let Assumptions (A1) and (A2) hold, and let

JðtÞ ¼
JQ ðtÞJ1

EfscðtÞ
2
g
:

Then, under hypothesis H1, in the case of constant consensus

matrices,

JðtÞrK1
1ð1�aÞ

2,

while in the case of random consensus matrices

JðtÞrK1
2ð1�aÞ;

under hypothesis H0, in the case of constant consensus

matrices,

JðtÞrK0
1ð1�aÞ,

while in the case of random consensus matrices

JðtÞrK0
2,

where K1
1,K1

2,K0
1,K0

2o1 are constants that do not depend on

a and JAJ1 ¼maxi

P
j9aij9, where A¼ ½aij� is a given matrix.

Proof. First, we shall obtain a lower bound for the
variance of the centralized statistics:

varfscðtÞg ¼ E
Xt�1

j ¼ 0

ajwT ðxðt�jÞ�mÞ

0
@

1
A

28<
:

9=
;

¼
Xt�1

j ¼ 0

aj
Xt�1

k ¼ 0

akwT ~Rjkw, ð29Þ

where

~Rjk ¼ diagfr1ðj�kÞ, . . . ,rnðj�kÞg: ð30Þ

From (23)–(25) we can also obtain lower bounds for riðtÞ,
namely

riðtÞ4 ð1�aÞk3a9t9þdt,0ðð1�aÞk4þk5Þ, ð31Þ

where k3, k4 and k5 are constants that do not depend
on a (e.g., k3 ¼

3
2 miniy

2
i s2

i , k4 ¼minið
1
2s

4
i þy

2
i s2

i Þ and
k5 ¼mini y

2
i s2

i Þ. Therefore, under hypothesis H1
tributed change detection using Generalized Likelihood
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varfscðtÞg4
Xt�1

j ¼ 0

aj
Xt�1

k ¼ 0

akð1�aÞa9j�k9
Xn

i ¼ 1

w2
i k3

þ
Xt�1

j ¼ 0

a2j ð1�aÞ
Xn

i ¼ 1

w2
i k4þ

Xn

i ¼ 1

w2
i k5

 !
: ð32Þ

Analyzing the first sum in (32) we have

Xt�1

j ¼ 0

aj
Xt�1

k ¼ 0

aka9j�k9 ¼
Xt�1

j ¼ 0

aj
Xj�1

k ¼ 0

akaj�kþ
Xt�1

k ¼ j

akak�j

0
@

1
A

�
Xt�1

j ¼ 0

ja2jþ
a2j

1�a2

� �
�

2

ð1�a2Þ
2
: ð33Þ

Therefore, we finally obtain that under hypothesis H1

varfscðtÞg4
2ð1�aÞ
ð1�a2Þ

2

Xn

i ¼ 1

w2
i k3

þ
1

1�a2
ð1�aÞ

Xn

i ¼ 1

w2
i k4þ

Xn

i ¼ 1

w2
i k5

 !
4k6ð1�aÞ�1,

ð34Þ

where k6 is a constant that does not depend on a (e.g.,
k6 ¼

1
2

Pn
i ¼ 1 w2

i k5Þ.
Calculation of the lower bound for the variance of the

centralized statistics is simpler under hypothesis H0

(using the fact that riðtÞ4dt,0ð1�aÞk7, where k7ak7ðaÞ,
e.g., k7 ¼

1
2 mini s4

i Þ:

varfscðtÞg4
Xt�1

j ¼ 0

a2jð1�aÞ
Xn

i ¼ 1

w2
i k74k8, ð35Þ

where k8ak8ðaÞ (e.g., k8 ¼
1
2

Pn
i ¼ 1 w2

i k7Þ.
Having in mind that EfscðtÞg �wT ðm=ð1�aÞÞ we obtain

that under hypothesis H1

EfscðtÞ
2
g ¼ EfscðtÞg

2þvarfscðtÞgZm1ð1�aÞ�2, ð36Þ

while under hypothesis H0

EfscðtÞ
2
gZm0, ð37Þ

where m1,m0o1 do not depend on a.
It is to be noticed that it is possible to find, in a similar

way as above, that the upper bounds for the variance of
the centralized statistics have the same form as the
lower bounds (34) and (35), but with different constants.
Therefore, under H1 the variance of the centralized sta-

tistics grows as a is getting closer to 1 (kl
H1

oð1�aÞvar

fscðtÞgoku
H1
Þ, while under H0 it remains within a constant

interval (kl
H0

ovarfscðtÞgoku
H0
Þ.

Further, consider an arbitrary deterministic n-vector y and
analyze the quadratic form yT Q ðtÞy under hypothesis H1.

In the case of constant consensus matrices we have that
Q ðtÞ ¼Q1ðtÞþQ2ðtÞ, in which

Q1ðtÞ ¼FðtÞT ~RðtÞFðtÞ ð38Þ

and

Q2ðtÞ ¼FðtÞT mXðtÞmXðtÞ
TFðtÞ, ð39Þ

where FðtÞ ¼ ½at�1 ~C
t
^at�2 ~C

t�1
^ � � � ^a0 ~C �T , ~RðtÞ ¼ RðtÞ�

mXðtÞmXðtÞ
T , RðtÞ ¼ EfXðtÞXðtÞT g, XðtÞ ¼ ½xð1ÞT � � � xðtÞT �T and

mXðtÞ ¼ EfXðtÞg.
Please cite this article as: N. Ilić, et al., Consensus based dis
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Analyzing first yT Q1ðtÞy, we conclude that ~RðtÞ ¼ ½ ~Rij�,
i,j¼ 1, . . . t, where ~Rij are constant n� n block matrices
defined as (30) and that

lmaxð
~RðtÞÞrJ ~RðtÞJ1rK1o1 ð40Þ

because of the absolute summability of the covariance
functions.

Coming back to (38), we realize further that the expres-

sion yTFðtÞTFðtÞy is in the form of a sum of terms

containing yT ~C
i ~C

iT
y, i¼ 1, . . . ,t. Having in mind that the

modules of all the eigenvalues of ~C are strictly less than 1,

we have now that JyT ~C
i ~C

iT
yJrkl2i

MJyJ2, where ko1,

i¼ 1, . . . ,t and lM ¼maxi f9lið
~C Þ9go1.

Therefore, we have

yTQ 1ðtÞyrk0K1

Xt�1

i ¼ 0

a2il2ðiþ1Þ
M JyJ2rk0K1

l2
M

1�l2
M

JyJ2rk1
1JyJ2,

ð41Þ

where k1
1o1 does not depend on a, while analyzing Q2ðtÞ

we find that

yT Q2ðtÞyr
Xt�1

i ¼ 0

aiJ ~C
iþ1

JJmJ

 !2

JyJ2rk00
lM

1�lM

� �2

JyJ2rk1
2JyJ2,

ð42Þ

where k1
2o1 does not depend on a.

In the case of random consensus matrices the mean
square error matrix is decomposed as Q ðtÞ ¼ Q3ðtÞþQ4ðtÞ,
where

Q3ðtÞ ¼ EfExfeðtÞeðtÞ
T
g�ExfeðtÞgExfeðtÞg

T g ð43Þ

and

Q4ðtÞ ¼ EfExfeðtÞgExfeðtÞg
T gg, ð44Þ

Exf�g denoting the conditional expectation given the
s-algebra generated by fCðtÞg.

We obtain, in analogy with (38) and (39), that

Q3ðtÞ ¼ Ef ~FðtÞT ~RðtÞ ~FðtÞg, ð45Þ

where ~FðtÞ ¼ ½at�1ðjðt�1;0Þ�1wT Þ^ at�2ðjðt�1;1Þ�1wT Þ

^ � � � ^a0ðjðt�1,t�1Þ�1wT Þ�T and

Q4ðtÞ ¼ Ef ~FðtÞT mXðtÞmXðtÞ
T ~FðtÞgg: ð46Þ

Analyzing the term connected to Q3ðtÞ we use (40)
directly as a consequence of independence between
fxðtÞg and fCðtÞg and realize that we are concerned here
with the expression

Ef ~FðtÞT ~FðtÞg ¼
Xt�1

j ¼ 0

Dðt�1,jÞa2ðt�j�1Þ, ð47Þ

where Dðt�1,jÞ ¼ Efðjðt�1,jÞ�1wT Þðjðt�1,jÞ�1wT Þ
T
g. Based

on the result from [10] that norm of the matrices Dðt�1,jÞ,
j¼ 0, . . . ,t�1 has a finite upper bound that does not depend
on a we obtain that

yT Q3ðtÞyrm0K1

Xt�1

i ¼ 0

a2iJyJ2rk1
3ð1�aÞ

�1JyJ2, ð48Þ
tributed change detection using Generalized Likelihood
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where k1
3o1 does not depend on a, while the term

yT Q4ðtÞy can be analyzed analogously. We use the

fact that Ef ~FðtÞT mXðtÞmXðtÞ
T ~FðtÞgr2a2ðt�1ÞEf ðjðt�1;0Þ

�1wT ÞmmT ðjðt�1;0Þ�1wT Þ
T
gþ � � � þ2 a2�0Efðjðt�1,t�1Þ

�1wT ÞmmT ðjðt�1,t�1Þ�1wT Þ
T
g and obtain that

yT Q4ðtÞyrm00
Xt�1

i ¼ 0

a2iJmJ2JyJ2rk1
4ð1�aÞ

�1JyJ2, ð49Þ

where k1
4o1 does not depend on a.

Consequently, by choosing y¼ ei, where ei denotes the
n-vector of zeros with only the i-th entry equal to one, one
obtains that in the case of constant consensus matrices
QiiðtÞrk1

12, where k1
12o1, i¼ 1, . . . ,n. Furthermore,

9QijðtÞ9rmaxi Q iiðtÞ, having in mind elementary
properties of positive semidefinite matrices. In the
case of random consensus matrices, we have that
maxi,j Q ijðtÞrk1

34ð1=ð1�aÞÞ, where k1
34o1. Dividing the

mean square error matrices by the mean square value of
the centralized decision variable (36) we obtain the result.

Under hypothesis H0 we have that constant K1 from (40)
depends on a, namely, K1 � 1�a, so that the inequalities
connected to the quadratic forms (41) and (48) should be
multiplied by 1�a. Moreover, under H0, the mean of x(t)
shows a similar behavior, m� 1�a, so that the inequal-
ities connected to the quadratic forms (42) and (49)
should be multiplied by ð1�aÞ2. Therefore, we have in
the case of constant consensus matrices

yT Q ðtÞyrk0
1ð1�aÞJyJ2

þk0
2ð1�aÞ

2JyJ2ok0
12ð1�aÞJyJ2,

ð50Þ

while in the case of random consensus matrices

yT Q ðtÞyrk0
3JyJ2

þk0
4ð1�aÞJyJ2ok0

34JyJ2: ð51Þ

Thus, the result. &

2.4. Time varying forgetting factor

The recursive algorithms (8) and (9) with constant
forgetting factor a represent essentially tracking algo-
rithms, aimed at coping with abrupt parameter changes
[9]. It is also interesting to analyze the case of time
varying forgetting factor corresponding to the hypothesis
testing problem to see the analogy between 1�a and t�1

(following the methodology from [10]).

Theorem 2. Let in (8) and (9) the forgetting factor be in the

form aðtþ1Þ ¼ t=ðtþ1Þ and let Assumptions (A1) and (A2)
hold. Then, under hypothesis H1, in the case of constant

consensus matrices

JðtÞ ¼ Oðt�2Þ,

while in the case of random consensus matrices

JðtÞ ¼ Oðt�1Þ;

under hypothesis H0, in the case of constant consensus

matrices

JðtÞ ¼ Oðt�1Þ,
Please cite this article as: N. Ilić, et al., Consensus based dis
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while in the case of random consensus matrices

JðtÞ ¼ Oð1Þ:

Proof. First we obtain an expression for the centralized
statistics

scðtÞ ¼
Xt�1

i ¼ 0

t�i

t
wT xðt�iÞ, ð52Þ

having in mind that ðt�1Þ=t � ðt�2Þ=ðt�1Þ � � � � � ðt�iÞ=

ðt�iþ1Þ ¼ ðt�iÞ=t. It is straightforward to show that
EfxðtÞg ¼Oð1Þ under hypothesis H1 and that EfxðtÞg ¼

Oðt�1Þ under hypothesis H0. Similarly as in (36) and (37)
it can be shown that in the case of constant consensus
matrices EfscðtÞ

2
g ¼ Oðt2Þ, while in the case of random

consensus matrices EfscðtÞ
2
g ¼Oð1Þ (notice the analogy

between 1�a and 1=tÞ.
We have now the following expression for the error:

eðtÞ ¼
Xt�1

i ¼ 0

t�i

t
~C

iþ1
xðt�iÞ: ð53Þ

Applying the line of thought of Theorem 1 regarding
hypothesis H1, we can obtain for constant consensus
matrices, similarly as in (38), the following expression:

yT Q1ðtÞy¼ yTCðtÞT ~RðtÞCðtÞy, ð54Þ

where CðtÞ ¼ ½1t
~C

t
^ 2

t
~C

t�1
^ � � � ^ ~C �. Proceeding like in the

proof of Theorem 1, we obtain

yT Q1ðtÞyrk0K1

Xt�1

i ¼ 0

1�2
i

t
þ

i2

t2

 !
l2ðiþ1Þ

M JyJ2
¼Oð1ÞJyJ2,

ð55Þ

where we used Kronecker’s lemma (e.g., [19]) to obtain

lim
t-1

Xt

i ¼ 0

2
i

t
þ

i2

t2

 !
l2ðiþ1Þ

M ¼ 0: ð56Þ

An analogous reasoning can be applied to the term Q2ðtÞ

from (39) to show that yT Q2ðtÞy¼Oð1ÞJyJ2.
In the case of random consensus matrices, one obtains,

proceeding like in Theorem 1,

yT Q3ðtÞyrm0K1

Xt�1

i ¼ 0

1�2
i

t
þ

i2

t2

 !
JyJ2
¼OðtÞJyJ2: ð57Þ

Analogously, one can show that yT Q4ðtÞy¼OðtÞJyJ2.
Under hypothesis H0 inequalities connected to the

terms Q1ðtÞ and Q3ðtÞ should be multiplied by t�1, because
K1 � t�1; the inequalities connected with the terms Q2ðtÞ

and Q4ðtÞ should be multiplied by t�2 because m� t�1,
and therefore their influence can be neglected compared
to the terms Q1ðtÞ and Q3ðtÞ. Similarly as in Theorem 1 we
obtain the result. &

3. Distributed recursive detection of change in the
variance

Assume, without loss of generality, that we have the
following zero-mean system model:

yiðtÞ ¼ EiðtÞ, ð58Þ
tributed change detection using Generalized Likelihood
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where the hypothesis Hi
0 is that EiðtÞ �Nð0,ðs0

i Þ
2
Þ and the

hypothesis Hi
1 that EiðtÞ �Nð0,ðs1

i Þ
2
Þ; fEiðtÞg under each

hypothesis are supposed to be mutually independent iid
processes. In the case when ðs1

i Þ
2 is not a priori known,

the application of the GLR methodology for hypothesis
testing leads to the following statistics based on N

successive measurements [9,12]:

sl
iðNÞ ¼max

s1
i

XN

t ¼ 1

log
ps1

i
ðyiðtÞÞ

ps0
i
ðyiðtÞÞ

¼Nlog
s0

i

s iðNÞ
þ

1

2ðs0
i Þ

2

XN

t ¼ 1

yiðtÞ
2
�

N

2
, ð59Þ

where s iðNÞ
2
¼ ð1=NÞ

PN
t ¼ 1 yiðtÞ

2.
Introducing t for current time, we derive, similarly as

in (3), the following basic local recursions for calculating
sl

iðtÞ:

sl
iðtþ1Þ ¼

t

tþ1
sl

iðtÞþ 1�
1

2ðtþ1Þ

� �
log

ðs0
i Þ

2

s iðtþ1Þ2

þ
1

2

t

tþ1

1

ðs0
i Þ

2
�

t

tþ1

� �2 1

s iðtþ1Þ2

 !
yiðtþ1Þ2

þ
1

2ðs0
i Þ

2
ðs iðtþ1Þ2�ðs0

i Þ
2
Þ: ð60Þ

For t sufficiently large, we introduce the approximations
1=ðtþ1Þ51 and t=ðtþ1Þ � 1 connected to innovation
terms, and, after replacing t=ðtþ1Þ by a close to 1, we
finally obtain the following recursion for on-line change
detection:

sl
iðtþ1Þ ¼ asl

iðtÞþ log
ðs0

i Þ
2

s iðtþ1Þ2
þ

1

2

1

ðs0
i Þ

2
�

1

siðtþ1Þ2

 !
yiðtþ1Þ2

þ
1

2ðs0
i Þ

2
ðs iðtþ1Þ2�ðs0

i Þ
2
Þ, ð61Þ

where s iðtþ1Þ2 is generated recursively by

s iðtþ1Þ2 ¼ as iðtÞ
2
þð1�aÞyiðtþ1Þ2: ð62Þ

Adopting the general approach from [6,10] that the
centralized statistics is defined as a sum of the local
statistics (given in (61)) and denoting logððs0

i Þ
2=ðs i

ðtþ1Þ2ÞÞþ 1
2 ðð1=ðs

0
i Þ

2Þ�ð1=s iðtþ1Þ2ÞÞyiðtþ1Þ2þð1=2ðs0
i Þ

2
Þ

ðs iðtþ1Þ2�ðs0
i Þ

2
Þ as xiðtþ1Þ, we come to the same form of

the centralized (8) and distributed algorithm (9), as in the
case of detecting change in the mean. Obviously, these
algorithms should now use equal normalized weights
wi ¼ 1=n, i¼ 1, . . . ,n. Complexity of the expression for
xiðtþ1Þ (recursively generated s iðtþ1Þ2 in the denomi-
nator, correlated with yiðtþ1Þ2, plus the logarithmic term)
makes any theoretical analysis regarding statistical proper-
ties of xi(t) very difficult. An analysis connected to the
centralized and distributed statistics is even more difficult,
so that the properties of the change in the variance detection
algorithm will be analyzed in the next section by means of
simulation.

One can simplify calculation in the recursions by
replacing xi(t) with xn

i ðtÞ ¼ logðs0
i =s iðtÞÞþ

1
2 ðð1=ðs

0
i Þ

2
Þ�

ð1=s iðtÞ
2
ÞÞyiðtÞ

2. It can be shown that the mathematical
Please cite this article as: N. Ilić, et al., Consensus based dis
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expectation of the term xn

i ðtÞ (assuming that a is sufficiently
close to 1, so that siðtÞ

2 has converged to s1
i ) has the same

sign as xi(t), but with smaller ordinates.

4. Simulation results

4.1. Change in the mean

Let us consider a sensor network with n¼10 nodes,
where the means y1

i (unknown to the designer of the
detection scheme) are randomly taken from the interval
(0,1], and the variances s2

i randomly taken from the
interval [0.5,1.5]; it is assumed that y0

i ¼ 0 in the case of
no change, i¼1,y,n. Communication gains are obtained
by solving Eq. (11) for both constant and time varying
consensus matrices under the constraints that the con-
sensus matrices are row stochastic and possess a pre-
defined structure (places of zeros). The assumed network
topology corresponds to the modified Geometric Random
Graph in which the nodes represent randomly spatially
distributed agents (in this case within a square area), and
they are connected if their distance is less than some
predetermined threshold (in this case half of the side of
the square, see, e.g., [18]), resulting in an initially undir-
ected graph. The modification is that roughly 10%
of the original two-way communications are made to be
one-way. It is highly likely that one-way communica-
tions arise in practise when working with sensor networks.
The weight vector components are chosen as wi ¼

s�2
i ð
Pn

i ¼ 1 s�2
i Þ
�1 (see Section 2.2). In the case of random

consensus matrices the asymmetric asynchronous ‘‘gossip’’
algorithm with one communication at a time is assumed.
The values of the elements of the realizations of the
consensus matrices corresponding to communicating nodes
are taken to be 0.5, so that (11) is solved for the probabilities
of individual realizations, see [17].

Fig. 1 shows, for comparison, one typical realization of
the centralized decision function (8) for a¼ 0:9 and
a¼ 0:99, together with the corresponding realizations
obtained at one randomly selected node in the network
for constant and random consensus matrices (one com-
ponent of (9)). The moment of change is chosen to be
t¼500. In addition, in Fig. 2 the mean 7 one standard
deviation of the global decision function is represented by
dashed lines, together with the decision function of one
randomly selected node (solid line), using 1000 realiza-
tions. It can be seen that the means and the variances of
both centralized and distributed statistics increase with a
getting closer to 1 under the hypothesis H1, and that they
remain within a constant interval under H0.

Fig. 3 (left, solid line) illustrates the dependence of the
error between the proposed algorithm and the corre-
sponding centralized solution on the forgetting factor a
under the hypothesis H1 (see Theorem 1 from Section 2.3).
For the above network with 10 nodes, the ratio of the
mean square error for one randomly selected node and
the mean square value of the centralized statistics at
t¼1000 is calculated using 1000 Monte Carlo runs, as a
function of ð1�aÞ2 in the case of constant consensus
matrices and of ð1�aÞ in the case of random consensus
matrices. Fig. 4 (left, solid line) illustrates the dependence
tributed change detection using Generalized Likelihood
pro.2012.01.007
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Fig. 1. Realizations of decision functions: centralized strategy (top), constant consensus matrices (middle), random consensus matrices (bottom).
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of the error on the forgetting factor a under the hypoth-
esis H0: the aforementioned ratio is calculated as a
function of ð1�aÞ for both cases of constant and random
Please cite this article as: N. Ilić, et al., Consensus based dis
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consensus matrices. The results of Theorem 1 are clearly
justified, since the obtained curves are approximately
linear.
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As the first step in the evaluation of the proposed
algorithm in terms of the detection performance, distri-
butions of the generated statistics under both hypotheses
are estimated using � 105 time samples. Estimated dis-
tributions for one randomly selected node are shown in
Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
Fig. 5. As can be seen, choosing a closer to 1 results in a
greater separation of the statistics under the two hypoth-
eses. Higher dispersion of the statistics in the case of
random consensus matrices is a result of the chosen
communication strategy (one one-way communication
tributed change detection using Generalized Likelihood
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per time sample); communication strategies that assume
exchange of more information per time sample would
give statistics that are closer to the statistics generated in
the case of constant consensus matrices.

Choosing a closer to 1 results in the appearance of an
interval for the threshold values where the probability of
false alarm is practically equal to 0 and the probability of
detection is equal to 1. However, with a increasing, the
detection delay increases as well, so that the detection
delay becomes more important than probability of detec-
tion. Fig. 6 shows detection delay versus false alarm rate,
obtained by testing the statistics over a range of detection
thresholds, for all the nodes in the network (detection
delay is averaged over 500 Monte Carlo runs). Along with
the centralized case and the cases of constant and random
consensus matrices, the case of completely decentralized
local detectors is also shown. It can be seen that the
introduction of the consensus scheme significantly
improves the detection performance of the algorithm
w.r.t. the local case (lower detection delay for a given
false alarm rate), even when working with very sparse
random consensus matrices. In order to see which value
of a is to be chosen, some characteristic values of detec-
tion delays are taken from Fig. 6 and shown in Table 1. As
we claim that any node can be chosen as a final decision
maker, the value of interest is the maximal delay across
the nodes. Obviously, for a relatively high value of the
probability of false alarm, choosing smaller a is a better
solution, while for low false alarm rates a close to 1 is the
right choice, which makes that the detection delay among
all the nodes for the probability of false alarm of 10�4

does not exceed 102 even in the case of random consensus
Please cite this article as: N. Ilić, et al., Consensus based dis
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matrices (its value is 55.83, while the worst delay among
the nodes without consensus is 258.6).

Fig. 7 shows probability of detection versus probability
of false alarm for all the nodes in the network. Cases of
constant and random consensus matrices, as well as the
local case are shown. The probability of detection in the
centralized case for all possible values of the probability
of false alarm is equal to 1 for both a¼ 0:9 and a¼ 0:99. It
could be concluded from the figure that for the cases of
both constant and random consensus matrices choosing a
sufficiently close to 1 results in superb efficiency of the
proposed algorithm. However, this is misleading in the
context of change detection, having in mind the afore-
mentioned increase of the detection delay with the
increase of a; this is the reason why the focus of the
above analysis is not on the probability of detection but
on the detection delay.

4.2. Time varying forgetting factor

As an illustration of the analysis of the error between the
proposed algorithm and the corresponding centralized solu-
tion with time varying forgetting factors connected to
Theorem 2 from Section 2.4, Fig. 3 (right) and Fig. 4 (right)
show the time evolution of the error. The aforementioned
network was used and the ratio of the mean square error for
one randomly selected node and the mean square value of
the centralized statistics under the hypothesis H1 is calcu-
lated using 1000 Monte Carlo runs as a function of t�2 in the
case of constant consensus matrices and of t�1 in the case of
random consensus matrices. The same ratio was calculated
under the hypothesis H0 as a function of t�1 for both cases
tributed change detection using Generalized Likelihood
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Table 1

Detection delay (minimum, mean and maximum across all the nodes in the network) for probability of false alarm pf ¼ 10�4 and pf ¼ 10�1 and for a¼ 0:9

and a¼ 0:99.

Algorithm pf ¼ 10�4 pf ¼ 10�1

a¼ 0:9 a¼ 0:99 a¼ 0:9 a¼ 0:99

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Centr. 10.77 22.37 4.66 11.7

C 10.58 16.7 43.47 21.92 23.78 27.39 4.59 5.27 6.34 10.68 11.72 12.7

C(t) 23.51 84.36 236.9 36.3 47.73 55.83 5.92 9.88 14.22 12.83 18.58 23.13

Local 23.5 213.5 625.6 37.89 98.42 258.6 6.15 14.34 31.06 15.09 33.78 66.82
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consensus (bottom); centralized strategy (dashed line).
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of constant and random consensus matrices. It is also
calculated as a function of t to show that the error converges
to a constant greater than zero in the case of random
consensus matrices unlike the case of constant consensus
matrices where it converges to zero as t�1. The results of
Theorem 2 are clearly justified.

4.3. Change in the variance

A similar network as the one described above is used,
where ðs1

i Þ
2 (unknown to the designer of the detection

scheme) are randomly taken from the interval (0.5,1] and
ðs0

i Þ
2 randomly taken from the interval (0,0.5]. Commu-

nication gains are obtained by solving Eq. (11), with the
weight vector components wi ¼ 1=n, i¼ 1, . . . ,n. Similarly
Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
as above, an analysis of the error under hypotheses H1 and
H0 is given in Figs. 3 and 4, respectively (dashed lines),
confirming that all the theoretical results from Section 2.3
connected to the change in the mean hold qualitatively
also for the detection algorithm of the change in the
variance.

5. Conclusion

In this paper a novel distributed algorithm derived
from the Generalized Likelihood Ratio is proposed for real
time change detection using sensor networks, with the
idea to overcome the basic limitations of the approach in
[10] and allow tracking of unknown parameter changes.
The algorithm is based on a combination of recursively
tributed change detection using Generalized Likelihood
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generated local statistics, having a specific form following
from the GLR, and a global consensus strategy, like in [10].
Problems of detection of an unknown change in either the
mean or the variance of a piece-wise stationary stochastic
process are discussed. Performance of the proposed
detection algorithm for change in the mean is analyzed
in the sense of a measure of the error with respect to the
corresponding centralized algorithm. The given analysis
represents the central point in the paper, since it is much
more complex than the one from [10], due to the specific
form of the algorithm. It is shown that the statistics
generated by the proposed algorithm can be made suffi-
ciently close to the centralized solution. It is also shown
that the generated statistics exhibit different behavior
w.r.t. the forgetting factor a under the two hypotheses.
Namely, the first and the second moment of the recur-
sively generated statistics grow as a approaches 1 under
hypothesis H1, while under H0 they remain bounded
within a constant interval. Therefore, the algorithm with
a close to 1 exhibits high performance in terms of low
false alarm rate and high detection rate. However, with a
increasing, the detection delay also increases, so that a
careful compromise should be made. Simulation results
provide a detailed analysis of this phenomenon, indicat-
ing an adequate choice of a. They also show that all the
analysis connected to the change in the mean detection
problem holds also for the problem of detecting a change
in the variance.

Further work can be aimed at practical aspects of the
implementation of the proposed algorithm in sensor net-
works deployed for different purposes, when it is desirable
to avoid the existence of a fusion center. The algorithm can
Please cite this article as: N. Ilić, et al., Consensus based dis
Ratio methodology, Signal Processing (2012), doi:10.1016/j.sig
also be directly applied to decentralized fault detection
and isolation (FDI) schemes at the stage of distributed
residual evaluation.

References

[1] J.F. Chamberland, V. Veeravalli, Decentralized detection in sensor

networks, IEEE Transactions on Signal Processing 50 (2003)

407–416.
[2] R. Vishwanathan, P. Varshney, Distributed detection with multiple

sensors. Part I. Fundamentals, Proceedings of the IEEE 85 (1997)

54–63.
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