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Periodic or Aperiodic: That’s the question!

• Paradigm shift: Periodic control −→ Aperiodic control

• Technological motivation:
Resource-constrained large-scale cyber-physical systems

– Computation time on embedded systems

– Network utilisation in NCSs

– Battery power in WCSs

Introduction
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Periodic or Aperiodic: That’s the question!

• Paradigm shift: Periodic control −→ Aperiodic control

• Technological motivation:
Resource-constrained large-scale cyber-physical systems

– Computation time on embedded systems

– Network utilisation in NCSs

– Battery power in WCSs

• Fundamental motivation:

– What is “optimal” sampling pattern for control purposes?

Introduction
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• What if full state x not available for feedback, but only output y?

Output-based ETC
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Illustrative example

• Consider {
ẋp =

[
1 −1
10 −1

]
xp +

[
1
1

]
u

y = [1 0 ]xp
u = −2ŷ

• ETM: ‖y − ŷ‖2 ≥ σ‖y‖2

• Parameter: σ = 0.5

Output-based ETC
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Illustrative example

Output-based ETC
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Possible remedies
• Adopt alternative ETMs instead of ‖y − ŷ‖2 ≤ σ‖y‖2

– Absolute: ‖y − ŷ‖2 ≤ ε

– Mixed: ‖y − ŷ‖2 ≤ σ‖y‖2 + ε

Output-based ETC
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Possible remedies
• Adopt alternative ETMs instead of ‖y − ŷ‖2 ≤ σ‖y‖2

– Absolute: ‖y − ŷ‖2 ≤ ε

– Mixed: ‖y − ŷ‖2 ≤ σ‖y‖2 + ε

• Time regularization

– Enforce minimal inter-event time T

tk+1 = inf{t > tk + T | C(y(t), ŷ(t)) ≥ 0}

– Transmission possible only at kh, k ∈ N

tk+1 = inf{t > tk | C(y(t), ŷ(t)) ≥ 0 ∧ t = kh, k ∈ N}

I Discrete-time ETC (dt plant)
I Periodic Event-Triggered Control (PETC) (ct plant)
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Possible remedies
• Adopt alternative ETMs instead of ‖y − ŷ‖2 ≤ σ‖y‖2

– Mixed: ‖y − ŷ‖2 ≤ σ‖y‖2 + ε [1]

• Time regularization

– Transmission possible only at kh, k ∈ N

tk+1 = inf{t > tk | C(y(t), ŷ(t)) ≥ 0 ∧ t = kh, k ∈ N}

I Periodic Event-Triggered Control (PETC) (ct plant) [2]

−→ Tutorial paper has a categorization

[1] Donkers, Heemels, CDC 2010 & TAC 2012
[2] Heemels, Donkers, Teel, CDC 2011 & TAC 2013

Output-based ETC
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System Description
Objective:

• Setup an output-based event-triggering mechanism (ETM)

• Guaranteed m.i.e.t > 0

• Mixed ETM: ‖y − ŷ‖2 ≤ σ‖y‖2 + ε

• General setup: decentralized ETM

The Event-Triggered Control System
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System Description

• Outputs and inputs grouped into sensor (and actuator) nodes

• y and ŷ networked version: ŷ 6= y

• Signals in y corresponding to node i given by yi

• Node i communicates at time tiki for ki-th time

ŷi(t) = yi(tiki) for all t ∈ (tiki, t
i
ki+1]

The Event-Triggered Control System
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System Description
• Node i communicates at time t = tiki for ki-th time

ŷj(t+) =

{
yi(t), when j = i

ŷi(t), when j 6= i

• Compact notation using ETM-induced error e = ŷ − y at t = tiki

ej(t+) =

{
0, when j = i

ej(t), when j 6= i
e(t+) = Λie(t)

The Event-Triggered Control System



9/29

/w

System Description

• e(t+) = Λie(t) at t = tiki

The Event-Triggered Control System
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System Description

• e(t+) = Λie(t) at t = tiki

• Event time tiki+1 is determined by

tiki+1 = inf{t > tiki | ‖ v̂
i − vi︸ ︷︷ ︸
=ei

‖2 ≥ σi‖vi‖2 + εi}

The Event-Triggered Control System
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Towards a complete model
• Combining the plant, the controller ...{

ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

The Event-Triggered Control System
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Towards a complete model
• Combining the plant, the controller ...{

ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

• ... the update at event times ...

e(t+) = Λie(t)

The Event-Triggered Control System
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Towards a complete model
• Combining the plant, the controller ...{

ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

• ... the update at event times ...

e(t+) = Λie(t)

• .... and the event-triggering mechanism

‖ei‖2 = σi‖yi‖2 + εi then event “i”

The Event-Triggered Control System
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Towards a complete model
• Combining the plant, the controller ...{

ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

• ... the update at event times ...

e(t+) = Λie(t)

• .... and the event-triggering mechanism

‖ei‖2 = σi‖yi‖2 + εi then event “i”

• ... using state variable x̄ = (xp, xc, e) with e = ŷ − y yields{
˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di

The Event-Triggered Control System
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Impulsive System
˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

[1] Goebel, Sanfelice, Teel, CSM’09

Closed-loop model
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Impulsive System
˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• Connection to Part I ?

[1] Goebel, Sanfelice, Teel, CSM’09

Closed-loop model
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• The LTI plant and controller are given by{
ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

– ŷ = y + e with e ETM-induced error

– x = (xp, xc)

• Perturbed system model:

ẋ =

(
Ap BpCc
BcCp Ac

)
x +

(
Bp

0

)
e +

(
Bw

0

)
w

y = Cpx

Perturbed system model
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• The LTI plant and controller are given by{
ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

– ŷ = y + e with e ETM-induced error

– x = (xp, xc)

• Perturbed system model:

ẋ =

(
Ap BpCc
BcCp Ac

)
x +

(
Bp

0

)
e +

(
Bw

0

)
w

y = Cpx

• Bounds on e ‖e‖2 ≤ σ‖y‖2 + ε

tiki+1 = inf{t > tiki | ‖ ŷ
i − yi︸ ︷︷ ︸
=ei

‖2 = σi‖yi‖2 + εi}

Perturbed system model
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• The LTI plant and controller are given by{
ẋp = Apxp + Bpu + Bww

y = Cpxp

{
ẋc = Acxc + Bcŷ

u = Ccxc

– ŷ = y + e with e ETM-induced error

– x = (xp, xc)

• Perturbed system model:

ẋ =

(
Ap BpCc
BcCp Ac

)
x +

(
Bp

0

)
e +

(
Bw

0

)
w

y = Cpx

• Bounds on e ‖e‖2 ≤ σ‖y‖2 + ε

• Observation: ė not included in PS

• x = (xp, xc) in PS and x̄ = (xp, xc, e) in IS

Perturbed system model
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˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• The compact setA is globally asymptotically stable (GAS) if

– the setA is Lyapunov stable, and

– x̄(t)→ A when t→∞

• ‘ultimate boundedness’ or ‘practical stability’

• L∞-gain smallest γ such that ‖z‖L∞ 6 γ‖w‖L∞ + β(x̄(0))

Stability and L∞-gain Analysis
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˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• The compact setA is globally asymptotically stable (GAS) if

– the setA is Lyapunov stable, and

– x̄(t)→ A when t→∞

• ‘ultimate boundedness’ or ‘practical stability’

• L∞-gain smallest γ such that ‖z‖L∞ 6 γ‖w‖L∞ + β(x̄(0))

• Two approaches

– Perturbed system (PS) approach

– Impulsive system (IS) approach

Stability and L∞-gain Analysis
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ẋ =
(

Ap BpCc

BcCp Ac

)
x +

(
Bp

0

)
e +
(
Bw

0

)
w

y = Cpx

• Bounds on e ‖e‖2 ≤ σ‖y‖2 + ε

Stability Analysis via PS
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ẋ =
(

Ap BpCc

BcCp Ac

)
x +

(
Bp

0

)
e +
(
Bw

0

)
w

y = Cpx

• Bounds on e ‖e‖2 ≤ σ‖y‖2 + ε

• Perturbed system GES (w = 0) and H∞/L2-gain from e to y ≤ β

V̇ ≤ −αV (x)− ‖y‖2 + β‖e‖2

Stability Analysis via PS
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ẋ =
(

Ap BpCc

BcCp Ac

)
x +

(
Bp

0

)
e +
(
Bw

0

)
w

y = Cpx

• Bounds on e ‖e‖2 ≤ σ‖y‖2 + ε

• Perturbed system GES (w = 0) and H∞/L2-gain from e to y ≤ β

V̇ ≤ −αV (x)− ‖y‖2 + β‖e‖2

• Small gain: If βσ < 1 then ultimate boundedness

V̇ ≤ −αV (x)− ‖y‖2 + β(σ‖y‖2 + ε) ≤ −αV (x) + βε

• GAS of setA = {x ∈ Rn | V (x) ≤ βε
α }

Stability Analysis via PS
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• Model:


˙̄x = Āx̄ + B̄w, for x̄ ∈ C
x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• Tools from hybrid system theory!

Stability Analysis via IS
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• Model:


˙̄x = Āx̄ + B̄w, for x̄ ∈ C
x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• Tools from hybrid system theory!

• Stability: Lyapunov function W (x̄)

• A = {x̄ | W (x̄) = 0}

– W (x̄) > 0 when x̄ 6∈ A (positive definite)

– Ẇ (x̄) < 0 when x̄ 6∈ A and x̄ ∈ C
– W (Gix̄) ≤ W (x̄) when x̄ ∈ Di

• proves GAS ofA

Stability Analysis via IS
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• Model:


˙̄x = Āx̄ + B̄w, for x̄ ∈ C
x̄+ = Ḡix̄, for x̄ ∈ Di
z = C̄x̄ + D̄w

• Tools from hybrid system theory!

• Stability: Lyapunov function W (x̄)

• A = {x̄ | W (x̄) = 0}

– W (x̄) > 0 when x̄ 6∈ A (positive definite)

– Ẇ (x̄) < 0 when x̄ 6∈ A and x̄ ∈ C
– W (Gix̄) ≤ W (x̄) when x̄ ∈ Di

• proves GAS ofA

• Constructive LMI conditions based on

W (x̄) = max{0, x̄>Px̄−
N∑
i=1

µiεi
α }

Stability Analysis via IS
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• Comparison [1]

– IS framework less conservative than PS approach

– IS describes ETC closed loop more accurately than PS

– PS framework (numerically) simpler to use and more insightful

[1] Donkers, Heemels, TAC’12

Comparison and observations
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• Comparison [1]

– IS framework less conservative than PS approach

– IS describes ETC closed loop more accurately than PS

– PS framework (numerically) simpler to use and more insightful

• Observations for ETM ‖ei‖2 ≤ σi‖vi‖2 + εi

– σi affect the ultimate boundedness

– εi only influence the ‘size’ ofA
– εi = 0 all i yieldsA = {0}, but also zero inter-event times

– Tradeoff between number of events and ultimate bound
through σi and εi

[1] Donkers, Heemels, TAC’12

Comparison and observations
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Guaranteeing a non-zero lower bound

tiki+1 = inf{t > tiki | ‖ŷ
i − yi‖2 = σi‖yi‖2 + εi}

• Lower bound himin > 0 for node i for x̄(0) in bounded set, i.e.

tiki+1 − tiki ≥ himin

• Only when εi > 0, we have himin > 0

• More transmissions if ‖x̄(0)‖ or ‖w‖L∞ are larger

• More transmissions if εi are smaller

Minimum Inter-Event Time
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Example 1: Comparison to existing method

• Consider ẋ(t) =
[

0 1
−2 3

]
x(t) +

[
0
1

]
û(t) and û(t) = [1 −4]x̂(t)

• Centralised state feedback as considered in [1]

• We look for largest σ for which ETC system is stable: ‖e‖2 ≤ σ‖x‖2

σ hmin

Results from [1] 0.0030 0.0318
By minimising the L2-gain 0.0273 0.0840
Impulsive System 0.0588 0.1136

[1] Tabuada, TAC ’07

Illustrative Examples
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Example 2: εi = 0 zero inter-event times!

• Consider{
ẋp =

[
0 1
−2 3

]
xp +

[
0
1

]
û

y = [−1 4 ]xp

{
ẋc =

[
0 1
0 −5

]
xc +

[
0
1

]
ŷ

u = [1 −4 ]xc

• ETM: ‖ei‖2 = σi‖vi‖2 + εi

• Parameters: σ1 = σ2 = 10−3 and ε1 = ε2 = 0

i
i

“tempimage˙temp” — 2010/10/26 — 9:40 — page 1 — #1 i
i

i
i

i
i

0 0.05 0.1 0.15 0.2
-150

-100

-50

0

50

100

u, node i = 2
y, node i = 1

time t

i
i

“tempimage˙temp” — 2010/10/26 — 9:40 — page 1 — #1 i
i

i
i

i
i

0 0.05 0.1 0.15 0.2
10−15

10−10

10−5

node i = 2
node i = 1

time t

Illustrative Examples
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Example 2: Need for extending ETM including εi

• Consider{
ẋp =

[
0 1
−2 3

]
xp +

[
0
1

]
û

y = [−1 4 ]xp

{
ẋc =

[
0 1
0 −5

]
xc +

[
0
1

]
ŷ

u = [1 −4 ]xc

• ETM: ‖ei‖2 = σi‖vi‖2 + εi

• Parameters: σ1 = σ2 = 10−3 and ε1 = ε2 = 10−3i
i

“tempimage˙temp” — 2010/10/26 — 9:38 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30

-60

-40

-20

0

20

40

60

time t

i
i

“tempimage˙temp” — 2010/10/26 — 9:38 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

node i = 2
node i = 1

time t

Illustrative Examples
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Example 3: What ETC is all about!

• Consider{
ẋp =

[
0 1
−2 −3

]
xp +

[
0
1

]
û +

[
0
1

]
w

y = [ 1 0 ]xp

{
ẋc =

[
−2 1
−13 −3

]
xc +

[
−2
−5

]
ŷ

u = [ 5 2 ]xc

• Taking σ1 = σ2 = 10−3 and ε1 = ε2 = 10−3, yields L∞-gain of 0.46
i

i
“tempimage˙temp” — 2010/10/26 — 9:38 — page 1 — #1 i

i

i
i

i
i

0 5 10 15 20 25 30
10−2

10−1

100

101

node i = 2
node i = 1

time t

Illustrative Examples
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Example 3: What ETC is all about!

• Consider{
ẋp =

[
0 1
−2 −3

]
xp +

[
0
1

]
û +

[
0
1

]
w

y = [ 1 0 ]xp

{
ẋc =

[
−2 1
−13 −3

]
xc +

[
−2
−5

]
ŷ

u = [ 5 2 ]xc

• Taking σ1 = σ2 = 10−3 and ε1 = ε2 = 10−3, yields L∞-gain of 0.46
i

i
“tempimage˙temp” — 2010/10/26 — 9:38 — page 1 — #1 i

i

i
i

i
i

0 5 10 15 20 25 30
10−2

10−1

100

101

node i = 2
node i = 1

time t

• Act when needed!

Illustrative Examples



21/29

/w

• Adopt alternative ETMs instead of ‖y − ŷ‖2 ≤ σ‖y‖2

– Mixed: ‖y − ŷ‖ ≤ σ‖y‖ + ε

• Time regularization

– Transmission possible only at kh, k ∈ N

tk+1 = inf{t > tk | C(y(t), ŷ(t)) ≥ 0 ∧ t = kh, k ∈ N}

I Discrete-time ETC (dt plant)
I Periodic Event-Triggered Control (PETC) (ct plant) [1,2]

−→ Combining the best of two worlds !?

[1] Heemels, Donkers & Teel, CDC/ECC’11 [2] Heemels, Donkers & Teel , TAC 13

Part IIB: Periodic ETC
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Plant:
{
ẋp = Apxp + Bpû + Bww

y = Cpxp

Controller:
{
xck+1 = Acxck + Bcŷk

u(tk) = uk = Ccxck + Dcŷ(tk)

• For tk = kh, k ∈ N, and h sampling period: For t ∈ (tk, tk+1]

ŷj(t) =

{
yj(tk), if ‖yj(tk)− ŷj(tk)‖ > σj‖yj(tk)‖
ŷj(tk), if ‖yj(tk)− ŷj(tk)‖ 6 σj‖yj(tk)‖

Output-Based Decentralised PETC
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• Continuous Event-Triggered Control (CETC):{
˙̄x = Āx̄ + B̄w, for x̄ ∈ C

x̄+ = Ḡix̄, for x̄ ∈ Di (i.e. ‖yi − ŷi‖ > σi‖yi‖)

⇓[
ξ̇

τ̇

]
=

[
Āξ + B̄w

1

]
when τ ∈ [0, h][

ξ+

τ+

]
=

[
ḠJ (ξ)ξ

0

]
when τ = h

where
J (ξ) = {i | ξ ∈ Di} = {i | ‖yi − ŷi‖ > σi‖yi‖}

and
Ḡ∅ = I

Output-Based Decentralised PETC
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• Impulsive model

• ξ = (xp, xc, ŷ)

[
ξ̇

τ̇

]
=

[
Āξ + B̄w

1

]
when τ ∈ [0, h][

ξ+

τ+

]
=

[
ḠJ (ξ)ξ

0

]
when τ = h

Output-Based Decentralised PETC
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• Impulsive model

• ξ = (xp, xc, ŷ)

[
ξ̇

τ̇

]
=

[
Āξ + B̄w

1

]
when τ ∈ [0, h][

ξ+

τ+

]
=

[
ḠJ (ξ)ξ

0

]
when τ = h

• Stability and L2-gain analysis

– Discrete-time perturbed linear system approach

– Discrete-time PWL system approach

– Impulsive system approach: Riccati differential equation lead-
ing to Lyapunov/storage function ξ>P (τ )ξ

[1] H Heemels, Donkers & Teel , TAC 13

Output-Based Decentralised PETC
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d
dtx =

[
0 1

−2 3

]
x +

[
0

1

]
u +

[
1

0

]
w u = ŷ

y = [1 − 4]x

• Sampling times: tk = kh with h = 0.05. For t ∈ (tk, tk+1]

ŷ(t) =

{
y(tk), when ‖ŷ(tk)− y(tk)‖ > σ‖y(tk)‖
ŷ(tk), when ‖ŷ(tk)− y(tk)‖ ≤ σ‖y(tk)‖

Numerical example
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d
dtx =

[
0 1

−2 3

]
x +

[
0

1

]
u +

[
1

0

]
w u = ŷ

y = [1 − 4]x

ŷ(t) =

{
y(tk), when ‖ŷ(tk)− y(tk)‖ > σ‖y(tk)‖
ŷ(tk), when ‖ŷ(tk)− y(tk)‖ ≤ σ‖y(tk)‖

• L2 gain analysis z = [0 1]x

i
i

“tempimage˙temp” — 2011/8/12 — 15:10 — page 1 — #1 i
i

i
i

i
i

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

γ

σ

Numerical example
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d
dtx =

[
0 1

−2 3

]
x +

[
0

1

]
u +

[
1

0

]
w u = ŷ

y = [1 − 4]x

i
i

“tempimage˙temp” — 2011/8/12 — 15:10 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1
output z
disturbance w

time t

i
i

“tempimage˙temp” — 2011/8/12 — 15:11 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

time t

• σ = 0.2

• Inter-event times: 0.05 to 0.85 (17 times h)!!!!

Numerical example
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xk+1 = Axk + Buk + Ewk

O : xsk+1 = Axsk + Buk + L(yk − Cxsk)

Pr : xck+1 =

{
Axck + Buk, when xsk is not sent
Axsk + Buk, when xsk is sent

ETM s : xsk is sent ⇔ ‖xsk − xck‖ > σs‖xsk‖

uk =

{
Kxck, when xsk is not sent
Kxsk, when xsk is sent

Extension: Model-based PETC
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• THM1: Output-based + relative triggering: Zero m.i.e.t (Zeno)

• Adopt alternative event-triggering mechanisms

– Mixed: ‖y − ŷ‖ ≤ σ‖y‖ + ε

• Time regularization

– Periodic Event-Triggered Control (PETC)

• Impulsive system models

• THM2: IS less conservative than PS

• Capturing sensitivity properties in L∞ and L2-gains (intersample)

• THM3: Model-based predictions further enhance comm. savings

Conclusions
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• Open issues:

– Demonstrating improvement beyond periodic control quantita-
tively (Jcont, Jcomm) – [1,2,3]

– Impulsive: Improving performance estimates

– Practical deployment

• More information:

– Invited sessions on Thursday (ThB01, ThC01)

– Tutorial paper providing overview

– Homepage
http://www.dct.tue.nl/heemels

[1] Antunes, Heemels, Tabuada, CDC12 ThC01.4
[2] Gommans, Heemels, Donkers, Tabuada, submitted
[3] Barradas-Berglind, Gommans, Heemels, NMPC12

Final comments
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