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Introduction

Periodic or Aperiodic: That’s the question!

e Paradigm shift: Periodic control — Aperiodic control

IR R

e Technological motivation:
Resource-constrained large-scale cyber-physical systems
— Computation time on embedded systems
— Network utilisation in NCSs
— Battery power in WCSs
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Introduction

Periodic or Aperiodic: That’s the question!

e Paradigm shift: Periodic control — Aperiodic control
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e Technological motivation:
Resource-constrained large-scale cyber-physical systems

— Computation time on embedded systems
— Network utilisation in NCSs
— Battery power in WCSs

e Fundamental motivation:

— What is “optimal” sampling pattern for control purposes?
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Output-based ETC

~ Physical System Sensor

Controller

o What if full state x not available for feedback, but only output 4?

/department of mechanical engineering



Output-based ETC

Illustrative example

Controller

e Consider

e Parameter: 0 = 0.5
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Output-based ETC

Illustrative example
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Output-based ETC

Possible remedies
o Adopt alternative ETMs instead of ||y — ¢||* < o||y||?

— Absolute: ||y —g|* < e
—- Mixed: [ly — g[I* < of|y||* +¢
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Output-based ETC

Possible remedies
o Adopt alternative ETMs instead of ||y — ¢||* < o||y||?

— Absolute: ||y —g|* < e
—- Mixed: [ly — g[I* < of|y||* +¢

e Time regularization
— Enforce minimal inter-event time T’
trer = inf{t > 4, + T | C(y(t),y(t)) = 0}
— Transmission possible only at kh, k € N
tror =nf{t > tp | Cly(t),y(t)) > 0Nt =kh, k€ N}

» Discrete-time ETC (dt plant)
» Periodic Event-Triggered Control (PETC) (ct plant)
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Possible remedies
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Output-based ETC

Possible remedies
o Adopt alternative ETMs instead of ||y — ¢||* < o||y||?

- Mixed: ||y — 12 < ollyl* + < [1]

e Time regularization
— Transmission possible only at kh, k € N
trp1 = inf{t >t | C(y(t),y(t)) > 0Nt =kh, k € N}
» Periodic Event-Triggered Control (PETC) (ct plant) [2]

— Tutorial paper has a categorization

[1] Donkers, Heemels, CDC 2010 & TAC 2012
[2] Heemels, Donkers, Teel, CDC 2011 & TAC 2013
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The Event-Triggered Control System

System Description
Objective:

o Setup an output-based event-triggering mechanism (ETM)
e Guaranteed m.i.e.t > 0
o Mixed ETM: ||y — 9||*> < olly||* + ¢

e General setup: decentralized ETM

controller
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The Event-Triggered Control System

System Description

controller

N -

e Outputs and inputs grouped into sensor (and actuator) nodes
e y and y networked version: y # y

e Signals in y corresponding to node i given by 3’

e Node i communicates at time ¢} for k;-th time

J'(t) =y (t,) forallt € (¢t 1]
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The Event-Triggered Control System

System Description
e Node i communicates at time t = ¢;_for k;-th time

. “(t), when j =
pie = { V10 when =
y'(t), when j #£i
o Compact notation using ETM-induced errore =y — y att =t

hen 7 — i
0,whenj =1 e(t7) = Aje(t

el(t") = {ej(t), when j # i
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The Event-Triggered Control System

System Description

: B E
] - Controller [«
.

o c(tt) = Ne(t)att = tzz_
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The Event-Triggered Control System

System Description

E;M" M)
; -
] —| Controller [«

.

o e(th) = Ne(t) att =t
o Eventtime ¢}, is determined by

ty = nf{t > 6 |18 = VII° > o] v'|]* + e}
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The Event-Triggered Control System

Towards a complete model
e Combining the plant, the controller ...

= Ay,x, + Byu + B,w
y =Gty
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The Event-Triggered Control System

Towards a complete model
e Combining the plant, the controller ...

{:bp = Ay,x, + Byu + B,w
y = Cpayp

e ... the update at event times ...

e(t™) = Ne(t)
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The Event-Triggered Control System

Towards a complete model
e Combining the plant, the controller ...

{:bp = Ay,x, + Byu + B,w
y = Cpayp

e ... the update at event times ...
e(t™) = Ne(t)
e .... and the event-triggering mechanism

le'||* = ai||ly'||* + <; then event “;”
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The Event-Triggered Control System

Towards a complete model
e Combining the plant, the controller ...

{:bp = Ay,x, + Byu + B,w
y = Cpayp

e ... the update at event times ...
e(t™) = Ne(t)
e .... and the event-triggering mechanism
le'||* = ai||ly'||* + <; then event “;”

e ... using state variable z = (z,, z., e) with e = y — y yields

T = Az + Bw, for z €C
z" Gif, for z € D;
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Closed-loop model

Impulsive System

+ Bw, for z €C
for z € D,

[1] Goebel, Sanfelice, Teel, CSM’09
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Closed-loop model

Impulsive System

+ Bw, for z €C
for z € D,

e Connectionto Partl?

[1] Goebel, Sanfelice, Teel, CSM’09
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Perturbed system model

e The LTI plant and controller are given by

T, = Az, + Byu+ Byw r. = Acx. + By
Yy = Cpxp u = C.x,

— y =y + e with e ETM-induced error

- T = (Ipa Te)

e Perturbed system model:

AP BPCC T+ Bp e -+ Bw
-~ \B.C, A, 0 0

Cpx
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Perturbed system model

e The LTI plant and controller are given by

T, = Az, + Byu+ Byw r. = Acx. + By
Yy = Cpxp u = C.x,

— y =y + e with e ETM-induced error

-z = (T, )
e Perturbed system model:
| A, B,C. B, B,
.T;(Bccp Ac)x—I—(O)e—i-(O)w
Y Cpx
e Bounds one lell> < ollyl]* +¢

ket = E{E > G 119 =y I = ailly']]* +ei}

:ei
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Perturbed system model

e The LTI plant and controller are given by

T, = Az, + Byu+ Byw r. = Acx. + By
Yy = Cpxp u = C.x,

— y =y + e with e ETM-induced error
- T = (l’p, l'c)

e Perturbed system model:
| A, B,C. B, B,
x(BCC’p Ac)x+(0)e+<0
Y Cpx

e Bounds one lell> < ollyl]* +¢

e Observation: ¢ not included in PS

oz = (zyx.)inPSand z = (x,,z.e)in IS
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Stability and £..-gain Analysis

T+ Bw, for z €C
for z € D,

e The compact set A is globally asymptotically stable (GAS) if

— the set A is Lyapunov stable, and
- z(t) - Awhent — oo

e ‘ultimate boundedness’ or ‘practical stability’

o L.-gain smallest v such that || z|| ... < v||w| .. + 5(z(0))

/department of mechanical engineering



Stability and £..-gain Analysis

T = Az + Bw, for z € C
zt =Gz, for x € D;

e The compact set A is globally asymptotically stable (GAS) if

— the set A is Lyapunov stable, and
- z(t) - Awhent — oo

e ‘ultimate boundedness’ or ‘practical stability’
o L.-gain smallest v such that || z|| ... < v||w| .. + 5(z(0))
e Two approaches

— Perturbed system (PS) approach
— Impulsive system (IS) approach

Technische Universiteit
. . . U e Eindhoven
/department of mechanical engineering I University of Technology



Stability Analysis via PS

A, B,C. .
(5, )=+ (

Cpx

e Bounds one lell*> < ollyl]* +¢

/department of mechanical engineering



Stability Analysis via PS

A, B,C. .
(5, )=+ (

Cpx
e Bounds one lell*> < ollyl]* +¢

e Perturbed system GES (w = 0) and H../£,-gain frometoy < 3
V < —aV(z) = llyll* + Blle]l”
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Stability Analysis via PS

A, B,C. .
(5, )=+ (

Cpx
e Bounds one lell*> < ollyl]* +¢

e Perturbed system GES (w = 0) and H../£,-gain frometoy < 3
V< —aV(z) —|lyl* + Blel’
e Small gain: If 50 < 1 then ultimate boundedness
V < —aV(z) = [yl + Blellyl® + ) < —aV(z) + Be

e GASofset A={x e R" | V(z) S%}
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Stability Analysis via IS

e Tools from hybrid system theory!
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Stability Analysis via IS

T+ Bw, for z €C
for z € D,
z2=Cr+ Dw

e Tools from hybrid system theory!
e Stability: Lyapunov function W (z)
o A={z| W(z)=0}

- W(z) > 0when = ¢ A (positive definite)

- W(x)<Owhenz & Aandz € C

- W(G;z) < W(x)when z € D,

e proves GAS of A
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Stability Analysis via IS

T+ Bw, for z €C
for z € D,
z=Cx+ Dw

e Tools from hybrid system theory!
e Stability: Lyapunov function W (z)
o A={z | W(z)=0}

- W(z) > 0when = ¢ A (positive definite)

- W(x)<Owhenz & Aandz € C

- W(G;z) < W(x)when z € D,
e proves GAS of A

e Constructive LMI conditions based on
N

W (z) = max{0,z' Pz — Z
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Comparison and observations

e Comparison [1]

— IS framework less conservative than PS approach
— IS describes ETC closed loop more accurately than PS
— PS framework (numerically) simpler to use and more insightful

[1] Donkers, Heemels, TAC’12
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Comparison and observations

e Comparison [1]

— IS framework less conservative than PS approach
— IS describes ETC closed loop more accurately than PS
— PS framework (numerically) simpler to use and more insightful

e Observations for ETM |[[e’[|? < o;||v?]|? + &

— o, affect the ultimate boundedness
— g; only influence the ‘size’ of A
—¢g; = 0alliyields A = {0}, but also zero inter-event times

— Tradeoff between number of events and ultimate bound
through o, and ¢;

[1] DOn ke rS, H eem e lS) TAC, 1 2 Technische Universiteit
indhoven
/department of mechanical engineering T U e Sniversitv of Technology



Minimum Inter-Event Time

Guaranteeing a non-zero lower bound

ke = mf{t > 6 [ 197 = y'|I° = oilly'||* + i}

e Lower bound A’

min

> () for node : for z(0) in bounded set, i.e.

min

o~ 2 B
e Only when ¢; > 0, we have h! ;> 0
e More transmissions if | z(0)|| or ||w|| . are larger

e More transmissions if ; are smaller
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lllustrative Examples

Example 1: Comparison to existing method
« Consider i(t) — [_02 ;}x(t) + ma(@ and a(t) = [1 )i (1)

e Centralised state feedback as considered in [1]

o We look for largest o for which ETC system is stable: |le||* < oz

o hmin

Results from [1] 0.0030 | 0.0318
By minimising the £,-gain | 0.0273 | 0.0840
Impulsive System 0.0588 0.1136

[1] Tabuada, TAC’07
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lllustrative Examples

Example 2: £, = 0 zero inter-event times!
e Consider
=[5 ot 1]
y = [-1 4]z,

[ ETM H@ZHQ = UiH’UiHQ +&;

e Parameters: oy =0, =102 ande; =, =0

100

y, node i =1
50 u, node i = 2

107°
0 \

-50

10—10

-100 node i =1
* nodei=2
-150 10715 |

0 0.05 0.1 0.15 0.2 0 0.05 0.1 015 0.2

time ¢ time ¢
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lllustrative Examples

Example 2: Need for extending ETM including ¢,

e Consider
for=[ o s
y = [-1 4]%
o ETM: [l = o3 [ + =

e Parameters: oy =0y, =102 ande; =, = 1073
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lllustrative Examples
Example 3: What ETC is all about!

e Consider

{;cp - i e A R

y =1 [ 2 | @,
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lllustrative Examples
Example 3: What ETC is all about!

e Consider

{;cp - i e A R

y =1 [ 2 | @,

I ‘ I : out; )ll“ 2
0 disturbance w
x4 \/ \/ VAV

10 15 20 25 30
time ¢

e Act when needed!
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Part IIB: Periodic ETC

o Adopt alternative ETMs instead of ||y — 9||* < o||y||?
- Mixed: [ly — gl| < olly|l +¢

e Time regularization

— Transmission possible only at kh, k € N
thy1 = lnf{t>tk‘0((> ()>>0/\t—kh kEN}

» Discrete-time ETC (dt plant)
» Periodic Event-Triggered Control (PETC) (ct plant) [1,2]

—— Combining the best of two worlds !?

[1] Heemels, Donkers & Teel, CDC/ECC’11 [2] Heemels, Donkers & Teel , TAC 13

Techn h Un
E dh
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Output-Based Decentralised PETC

¥ = APxP + BPu + BYw
Plant:
y = CPaP
—y J
$2+1 — Acl’i; _|_chAk _ -C troll
u(tk) = U = Ccazi + Dcﬁ(tk)

Controller: {

e Fort, = kh, k € N, and h sampling period: Fort € (t,t.1]

() = {yw, 1y (86) — 3 (86) | > ol ()|
§(10). T 9 () — ()] < 099 (8]
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Output-Based Decentralised PETC

e Continuous Event-Triggered Control (CETC):

forzeD, (e y — il > aulyl)
4

ACH Bw] when 7 € [0, h]

1

whenrt=h

(G766
0

={il¢eDi}={illly' - {1y 11

Gy =

/department of mechanical engineering



Output-Based Decentralised PETC

e Impulsive model

o &= (aF 2 y)

when 7 € [0, A

whenrt=h
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Output-Based Decentralised PETC

e Impulsive model

o &= (aF 2 y)

when 7 € [0, A

[ A¢ + Bw
1

whenrt=h

0

:Gﬂf)f]

e Stability and £,-gain analysis
— Discrete-time perturbed linear system approach

— Discrete-time PWL system approach

— Impulsive system approach: Riccati differential equation lead-
ing to Lyapunov/storage function ' P(7)¢

/department of mechanical engineering



Numerical example

Actuator i Physical System Sensor

Ll

1 — 4]z

e Sampling times: ¢, = kh with h = 0.05. For t € (., tj.1]

when |[9(tx) — y(tx)|| > olly(te)]]
when ||g(ty) — y(tp)|| < olly(ty)]

/department of mechanical engineering



Numerical example

e

1 — 4]z

yt) =

{y(tw, when [|5(t,) — y(t)[| > olly(ty)]

y(tr),  when [l(ty) —y(te)l| < olly(t)]

e £, gain analysis z = [0 1]z

/department of mechanical engineering



Numerical example

e

1 — 4]z

— — - disturbance w
output z

e Inter-event times: 0.05 to 0.85 (17 times h)!!!!
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Extensmn Model based PETC

Try1 = Axy + Buy + Ewy,

O: x5 = Az + Bu, + L(yr, — Cay)

Az + Buy, when z; is not sent
Az} + Buy, when z; is sent

. c —
Pr $k+1{

ETM*: zjissent & |z} — x| > o5l

Kz}, when x; is not sent
Up = .
Kaxj, when zj is sent

/department of mechanical engineering



e THM1: Output-based + relative triggering: Zero m.i.e.t (Zeno)

e Adopt alternative event-triggering mechanisms

= Mixed: |ly — 9|l < olly|l +¢

e Time regularization
— Periodic Event-Triggered Control (PETC)
e Impulsive system models
e THM2: IS less conservative than PS
o Capturing sensitivity properties in £, and £,-gains (intersample)

e THM3: Model-based predictions further enhance comm. savings

Technische Universiteit
. . . U e Eindhoven
/department of mechanical engineering I University of Technology



Final comments

e Open issues:
— Demonstrating improvement beyond periodic control quantita-
tively (Jeonts Jeomm) — [1,2,3]
— Impulsive: Improving performance estimates
— Practical deployment

e More information:
— Invited sessions on Thursday (ThBO1, ThC01)
— Tutorial paper providing overview

— Homepage
http://www.dct.tue.nl/heemels

[1] Antunes, Heemels, Tabuada, CDC12 ThC01.4
[2] Gommans, Heemels, Donkers, Tabuada, submitted
[3] Barradas-Berglind, Gommans, Heemels, NMPC12
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