
Vehicle Applications of
Controller Area Network

Karl Henrik Johansson,1,� Martin Törngren,2,�� Lars Nielsen3

1 Department of Signals, Sensors and Systems, Royal Institute of Technology,
Stockholm, Sweden, kallej@s3.kth.se

2 Department of Machine Design, Royal Institute of Technology, Stockholm,
Sweden, martin@damek.kth.se

3 Department of Electrical Engineering, Linköping University, Sweden,
lars@isy.liu.se

1 Introduction

The Controller Area Network (CAN) is a serial bus communications proto-
col developed by Bosch in the early 1980s. It defines a standard for efficient
and reliable communication between sensor, actuator, controller, and other
nodes in real-time applications. CAN is the de facto standard in a large vari-
ety of networked embedded control systems. The early CAN development was
mainly supported by the vehicle industry: CAN is found in a variety of passen-
ger cars, trucks, boats, spacecraft, and other types of vehicles. The protocol is
also widely used today in industrial automation and other areas of networked
embedded control, with applications in diverse products such as production
machinery, medical equipment, building automation, weaving machines, and
wheelchairs.

In the automotive industry, embedded control has grown from stand-alone
systems to highly integrated and networked control systems [11, 7]. By net-
working electro-mechanical subsystems, it becomes possible to modularize
functionalities and hardware, which facilitates reuse and adds capabilities.
Fig. 1 shows an example of an electronic control unit (ECU) mounted on a
diesel engine of a Scania truck. The ECU handles the control of engine, turbo,
fan, etc. but also the CAN communication. Combining networks and mecha-
tronic modules makes it possible to reduce both the cabling and the number

�The work of K. H. Johansson was partially supported by the European Com-
mission through the ARTIST2 Network of Excellence on Embedded Systems Design,
by the Swedish Research Council, and by the Swedish Foundation for Strategic Re-
search through an Individual Grant for the Advancement of Research Leaders.

��The work of M. Törngren was partially supported by the European Commission
through ARTIST2 and by the Swedish Foundation for Strategic Research through
the project SAVE.



2 K. H. Johansson, M. Törngren, L. Nielsen

Fig. 1. An ECU mounted directly on a diesel engine of a Scania truck. The arrows
indicate the ECU connectors, which are interfaces to the CAN. (Courtesy of Scania
AB.)

of connectors, which facilitates production and increases reliability. Introduc-
ing networks in vehicles also makes it possible to more efficiently carry out
diagnostics and to coordinate the operation of the separate subsystems.

The CAN protocol standardizes the physical and data link layers, which
are the two lowest layers of the open systems interconnect (OSI) communica-
tion model (see Fig. 2). For most systems, higher-layer protocols are needed
to enable efficient development and operation. Such protocols are needed for
defining how the CAN protocol should be used in applications, for example,
how to refer to the configuration of identifiers with respect to application mes-
sages, how to package application messages into frames, and how to deal with
start-up and fault handling. Note that in many cases only a few of the OSI
layers are required. Note also that real-time issues and redundancy manage-
ment are not covered by the OSI model. The adoption of CAN in a variety
of application fields has led to the development of several higher-layer proto-
cols, including SAE J1939, CANopen, DeviceNet, and CAN Kingdom. Their
characteristics reflect differences in requirements and traditions of application
areas. An example is the adoption of certain communication models, such as
either the client-server model or the distributed data-flow model [13].

The progress and success of CAN are due to a number of factors. The
evolution of microelectronics paved the way for introducing distributed con-
trol in vehicles. In the early 1980s there was, however, a lack of low-cost and
standardized protocols suitable for real-time control systems. Therefore, in
1983 Kiencke started the development of a new serial bus system at Bosch,



Vehicle Applications of Controller Area Network 3

Application

CAN
Physical

Data link

Network

Transport

Session

Presentation

Fig. 2. The CAN protocol defines the lowest two layers of the OSI model. There exist
several CAN-based higher-layer protocols that are standardized. The user choice
depends on the application.

1999 2000 2001 2002 2003
0

50

100

150

200

250

300

350

400

Million CAN nodes sold per year

Fig. 3. The number of CAN nodes sold per year is currently about 400 million.
(Data from the association CAN in Automation [3].)

which was presented as CAN in 1986 at the SAE congress in Detroit [8]. The
CAN protocol was internationally standardized in 1993 as ISO 11898-1. The
development of CAN was mainly motivated by the need for new functionality,
but it also reduced the need for wiring. The use of CAN in the automotive
industry has caused mass production of CAN controllers. Today, CAN con-
trollers are integrated on many microcontrollers and available at a low cost.
Fig. 3 shows the number of CAN nodes that were sold during 1999–2003.



4 K. H. Johansson, M. Törngren, L. Nielsen

Node 1

Bus

Node 3Node 2

Fig. 4. Three nodes connected through a CAN bus

The purpose of this chapter is to give an introduction to CAN and some
of its vehicle applications. The outline is as follows. Section 2 describes the
CAN protocol, including its message formats and error handling. The section
is concluded by a brief history of CAN. Examples of vehicle application ar-
chitectures based on CAN are given in Section 3. A few specific control loops
closed over CAN buses are discussed in Section 4. The paper is concluded
with some perspectives in Section 5, where current research issues such as
x-by-wire and standardized software architectures are considered. The exam-
ples are described in more detail in [14]. A detailed description of CAN is
given in the textbook [6]. Another good resource for further information is
the homepage of the organization CAN-in-Automation (CiA) [3]. The use of
CAN as a basis for distributed control systems is discussed in [13].

2 Controller Area Network

The Controller Area Network (CAN) is a serial communications protocol
suited for networking sensors, actuators, and other nodes in real-time sys-
tems. In this section, we first give a general description of CAN including its
message formats, principle of bus arbitration, and error-handling mechanisms.
Extensions of CAN, such as application-oriented higher-layer protocols and
time-triggered CAN, are described, followed by a brief history of CAN.

2.1 Description

A CAN bus with three nodes is depicted in Fig. 4. The CAN specification [4]
defines the protocols for the physical and the data link layers, which enable
the communication between the network nodes. The application process of a
node, e.g., a temperature sensor, decides when it should request the trans-
mission of a message frame. The frame consists of a data field and overhead,
such as identifier and control fields. Since the application processes in gen-
eral are asynchronous, the bus has a mechanism for resolving conflicts. For
CAN, it is based on a non-destructive arbitration process. The CAN protocol
therefore belongs to the class of protocols denoted as carrier sense multiple
access/collision avoidance (CSMA/CA), which means that the protocol listens



Vehicle Applications of Controller Area Network 5

Data ACKCRC EOFSOF Identifier RTR Control

Fig. 5. CAN message frame

to the network in order to avoid collisions. CSMA/CD protocols like Ether-
net have instead a mechanism to deal with collisions once they are detected.
CAN also includes various methods for error detection and error handling.
The communication rate of a network based on CAN depends on the physical
distances between the nodes. If the distance is less than 40 m, the rate can be
up to 1 Mbps.

Message formats

CAN distinguishes four message formats: data, remote, error, and overload
frames. Here we limit the discussion to the data frame, shown in Fig. 5. A data
frame begins with the start-of-frame (SOF) bit. It is followed by an eleven-bit
identifier and the remote transmission request (RTR) bit. The identifier and
the RTR bit form the arbitration field. The control field consists of six bits
and indicates how many bytes of data follow in the data field. The data field
can be zero to eight bytes. The data field is followed by the cyclic redundancy
checksum (CRC) field, which enables the receiver to check if the received bit
sequence was corrupted. The two-bit acknowledgment (ACK) field is used
by the transmitter to receive an acknowledgment of a valid frame from any
receiver. The end of a message frame is signaled through a seven-bit end-of-
frame (EOF). There is also an extended data frame with a twenty-nine-bit
identifier (instead of eleven bits).

Arbitration

Arbitration is the mechanism that handles bus access conflicts. Whenever the
CAN bus is free, any unit can start to transmit a message. Possible conflicts,
due to more than one unit starting to transmit simultaneously, are resolved by
bit-wise arbitration using the identifier of each unit. During the arbitration
phase, each transmitting unit transmits its identifier and compares it with
the level monitored on the bus. If these levels are equal, the unit continues to
transmit. If the unit detects a dominant level on the bus, while it was trying to
transmit a recessive level, then it quits transmitting (and becomes a receiver).
The arbitration phase is performed over the whole arbitration field. When it
is over, there is only one transmitter left on the bus.

The arbitration is illustrated by the following example with three nodes
(see Fig. 6). Let the recessive level correspond to “1” and the dominant level
to “0”, and suppose the three nodes have identifiers Ii, i = 1, 2, 3, equal to



6 K. H. Johansson, M. Törngren, L. Nielsen

Node 1

O

Bus

Node 3

Node 2

ControlIdentifier

R
T
R

1110987654321F

S

Fig. 6. Example illustrating CAN arbitration when three nodes start transmitting
their SOF bits simultaneously. Nodes 1 and 2 stop transmitting as soon as they
transmit one (recessive level), and Node 3 is transmitting zero (dominant level). At
these instances, Nodes 1 and 2 enter the receiver mode, indicated in grey. When
the identifier has been transmitted, the bus belongs to Node 3 which thus continues
transmitting its control field, data field, etc.

I1 = 11001101010, I2 = 11001011011, I3 = 11001011001.

If the nodes start transmitting simultaneously, the arbitration process illus-
trated in the figure takes place. First all three nodes send their SOF bit. Then,
they start transmitting their identifiers and all of them continue as long as
they are equal. The sixth bit of I1 is at the recessive level, while the corre-
sponding bits are at the dominant level of I2 and I3. Therefore, Node 1 stops
transmitting immediately and continues only listening to the bus. This listen-
ing phase is indicated in Fig. 6 with the grey field. Since the tenth bit of I2

is at the recessive level while it is dominant for I3, Node 3 is the transmitter
that has access to the bus after the arbitration phase and thus continues with
the transmission of the control and data fields, etc.

There is no notion of message destination addresses in CAN. Instead each
node picks up all traffic on the bus. Hence, every node needs to filter out
the interesting messages on the bus. The arbitration mechanism of CAN is
an effective way to resolve bus conflicts. Note that a minimum amount of
address data is transmitted and that no extra bus control information has to
be transmitted. A consequence of the arbitration mechanism, however, is that
units with low priority may experience large latency if high-priority units are
very active.

Error handling

Error detection and error handling are important for the performance of CAN.
Because of complementary error detection mechanisms, the probability of hav-
ing an undetected error is very small. Error detection is done in five different



Vehicle Applications of Controller Area Network 7

ways in CAN: bit monitoring and bit stuffing, as well as frame check, ACK
check, and CRC. Bit monitoring simply means that each transmitter monitors
the bus level, and signals a bit error if the level does not agree with the trans-
mitted signal. (Bit monitoring is not done during the arbitration phase.) After
having transmitted five identical bits, a node will always transmit the oppo-
site bit. This extra bit is neglected by the receiver. The procedure is called
bit stuffing, and it can be used to detect errors. The frame check consists of
checking that the fixed bits of the frame have the values they are supposed
to have, e.g., EOF consists of seven recessive bits. During the ACK in the
message frame, all receivers are supposed to send a dominant level. If the
transmitter, which transmits a recessive level, does not detect the dominant
level, then an error is signaled by the ACK check mechanism. Finally, the
CRC is that every receiver calculates a checksum based on the message and
compares it with the CRC field of the message.

Every receiver node obviously tries to detect errors within each message. If
an error is detected, it leads to an immediate and automatic retransmission of
the incorrect message. In comparison to other network protocols, this mech-
anism leads to a high data integrity and a short error recovery time. CAN
thus provides elaborate procedures for error handling, including retransmis-
sion and reinitialization. The procedures have to be studied carefully for each
application to ensure that the automated error handling is in line with the
system requirements.

2.2 Protocol extensions

CAN provides the basic functionality described above. In many situations,
it is desirable to use standardized protocols that define the communication
layers on top of the CAN. Such higher-layer protocols are described below to-
gether with CAN gateways and the time-triggered extension of CAN denoted
TTCAN, which allows periodic access to the communication bus with a high
degree of certainty.

Higher-layer protocols

The CAN protocol defines the lowest two layers of the OSI model in Fig. 2.
In order to use CAN, protocols are needed to define the other layers. Field-
bus protocols usually do not define the session and presentation layers, since
they are not needed in these applications. The users may either decide to
define their own software for handling the higher layers, or they may use a
standardized protocol. Existing higher-layer protocols are often tuned to a
certain application domain. Examples of such protocols include SAE J1939,
CANopen, and DeviceNet. It is only SAE J1939 that is specially developed
for vehicle applications. Recently, attempts have been made to interface CAN
and Ethernet, which is the dominant technology for local area networks and
widely applied for connecting to the Internet.



8 K. H. Johansson, M. Törngren, L. Nielsen

SAE J1939 is a protocol that defines the higher-layer communication con-
trol. It was developed by the American Society of Automotive Engineers
(SAE) and is thus targeted to the automotive industry. The advantage of
having a standard is considerable, since it enables independent development
of the individual networked components, which also allows vehicle manufac-
turers to use components from different suppliers. SAE J1939 specifies, e.g.,
how to read and write data, but also how to calibrate certain subsystems.
The data rate of SAE J1939 is about 250 kbps, which gives up to about 1850
messages per second [6]. Applications of SAE J1939 include truck-and-trailer
communication, vehicles in agriculture and forestry, as well as navigation sys-
tems in marine applications.

CANopen is a standardized application defined on top of CAN and widely
used in Europe for the application of CAN in distributed industrial automa-
tion. It is a standard of the organization CAN in Automation (CiA) [3].
CANopen specifies communication profiles and device profiles, which enable
an application-independent use of CAN. The communication profile defines
the underlying communication mechanism. Device profiles exist for the most
common devices in industrial automation, such as digital and analog I/O
components, encoders, and controllers. The device can be configured through
CANopen independent of its manufacturer. CANopen distinguishes real-time
data exchange and less critical data exchange. It provides standardized com-
munication objects for real-time data, configuration data, network manage-
ment data, and certain special functions (e.g., time stamp and synchronization
messages).

DeviceNet is another standardized application defined on top of CAN for
distributed industrial automation. It is mainly used in the U.S.A. and Asia
and was originally developed by Rockwell Automation. DeviceNet, Control-
Net, and transmission control protocol/Internet protocol (TCP/IP) are open
network technologies that share upper layers of the communication protocol,
but are based on lower layers: DeviceNet is built on CAN, ControlNet on a
token-passing bus protocol, and TCP/IP on Ethernet.

CANKingdom is a high-layer protocol used for motion control systems.
It is also used in the maritime industry, as described in a boat example in
Section 3. CANKingdom allows the changing of network behavior at any time,
including while the system is running. For example, CANKingdom allows the
system troubleshooter to turn off individual nodes. The CAN node identifiers
and the triggering conditions for sending messages can be changed while the
system is running. One instance when real-time network reconfiguration is
used is during failure conditions. An example is a loss of a radio link ECU
in a maritime application. The network monitor, also known as the King,
in that case first shuts off the radio node to keep it from sending any more
commands, and then tells the appropriate nodes to get data from the King.
This operation eliminates the problem of a node receiving two simultaneous
but conflicting commands. It also eliminates the problem of two nodes sending
the same CAN id.



Vehicle Applications of Controller Area Network 9

The high-level protocols described above have been developed with differ-
ent applications and traditions in mind, which is reflected, for example, in their
support for real-time control. Although SAE J1939 is used for implementing
control algorithms, it does not provide explicit support for time-constrained
messaging. In contrast, such functionalities are provided by CANKingdom
and CANopen, which handle explicit support for inter-node synchronization.
CANKingdom and CANopen allow static and dynamic configuration of the
network, whereas SAE J1939 provides little flexibility.

CAN gateways

Gateways and bridges enable CAN-based networks to be linked together or
linked to networks with other protocols. A gateway between a CAN and
another communication network maps the protocols of the individual net-
works. There exist many different types of CAN gateways, e.g., CAN-RS232
and CAN-TCP/IP gateways. The latter can provide remote access to a CAN
through the Internet, which allows worldwide monitoring and maintenance.
The networks connected through a gateway or a bridge are disconnected in
terms of their real-time behavior, so obviously the timing and performance
of the complex inter-connected network can be hard to predict even if the
individual networks are predictable.

Ethernet (or rather Ethernet/IP) is quite a different communication proto-
col compared to CAN, but is still of growing importance in industrial automa-
tion either in constellations with CAN or on its own. Traditionally, Ethernet
is used in office automation and multimedia applications, while CAN domi-
nates in vehicles and in certain industrial automation systems. The strength
of Ethernet is the ability to quickly move large amounts of data over long
distances and that the number of nodes in the network can be large. CAN, on
the other hand, is optimized for transmitting small messages over relatively
short distances. A drawback with a network based on the Ethernet protocol
is that the nodes need to be quite powerful and complex (and therefore more
expensive) in order to handle the communication control. Another drawback
with Ethernet is that during network traffic congestion the delay jitter can be
severe and unpredictable, although at low network load Ethernet gives almost
no delay.

Time-triggered communication on CAN

Traditional CAN communication is event based: asynchronous events are trig-
gered by node applications that initialize each transmission session. In many
cases, this strategy is an efficient way to share the network resource. There
are a variety of applications, however, that require a guaranteed access to the
communication bus with a fixed periodic rate. This constraint is typical for
sampled-data feedback control systems. In the automotive industry, x-by-wire



10 K. H. Johansson, M. Törngren, L. Nielsen

systems are examples of such control systems with deterministic communica-
tion behavior during regular operation.

By introducing the notion of global network time, the standard ISO 11898-
4 defines the extension Time-triggered communication on CAN (TTCAN).
It is built on top of the traditional event-triggered CAN protocol and en-
ables existing CAN nodes to work in parallel with TTCAN nodes. The global
clock requires hardware implementation; otherwise, TTCAN is a pure soft-
ware extension of CAN. The synchronization in TTCAN takes place through
a periodic reference message, which all TTCAN nodes recognize and use to
synchronize their clocks. The nodes are configured to know when to send their
message after the reference message. The period time of the transmission of a
periodic node should be a multiple of the reference period. Traditional CAN
nodes (or event-based TTCAN nodes) compete for the access of the free win-
dows between the reference messages, along the line of the conventional CAN
protocol. This mechanism is thus the reason why time-triggered and event-
triggered scheduling is possible simultaneously in TTCAN.

The sender of the reference message is obviously a crucial node in TTCAN
to guarantee clock synchronization. Therefore, an automatic procedure is pro-
vided for letting another node take over if the reference sender fails, and taking
the reference back when the original clock master recovers. It is possible to
use an external clock, for example, from the global positioning system (GPS).

2.3 A brief history

The evolution of microelectronics paved the way for introducing distributed
control systems in vehicles. In the early 1980s there was, however, no low-cost
and standardized protocol that was suitable for real-time control systems.
Therefore, as we stated before, in 1983 Kiencke started the development of a
new serial bus system at Bosch, which was presented as CAN in 1986 at the
SAE congress in Detroit [8]. The development of CAN was mainly motivated
by the need for new functionalities, but it also substantially reduced the need
for wiring. The Bosch CAN Specification 2.0 was published in 1991 and then
two years later the CAN protocol was internationally standardized as ISO
11898-1. The need for higher-layer protocols was recognized early. In 1991,
CAN Kingdom was introduced by Kvaser. DeviceNet, another higher-layer
protocol, was introduced by Allen-Bradley in 1994, and CANopen by CAN in
Automation (CiA) in 1995. CiA is an international users and manufacturers
group, which was founded in 1992. Mercedes-Benz has been using CAN in its
passenger cars since 1992. Originally, CAN was used only for engine control,
but today there are a variety of CAN nodes not only for powertrain and chassis
control but also for body electronics and infotainment systems. Many other car
manufacturers base their control architecture on CAN, including BMW, Fiat,
Renault, SAAB, Volkswagen, and Volvo. The CAN architecture for a Volvo
passenger car is described in the next section. The notion of time-triggered
protocols for real-time systems was introduced by Kopetz and co-workers [10].



Vehicle Applications of Controller Area Network 11

Time-triggered extensions of CAN were discussed in the late 1990s and early
2000s. This led to the standardization of TTCAN as ISO 11897-4 in 2004.
Currently, there are intensive activities on utilizing TTCAN in a variety of
vehicle applications.

3 Architectures

In this section, four vehicular examples of distributed control architectures
based on CAN are presented. The architectures are implemented in a passen-
ger car, a truck, a boat, and a spacecraft.

3.1 Volvo passenger car

In the automotive industry, there has been a remarkable evolution over the
last few years in which embedded control systems have grown from stand-
alone control systems to highly integrated and networked control systems.
Originally motivated by reduced cabling and the specific addition of function-
alities with sensor sharing and diagnostics, there are currently several new
x-by-wire systems under development that involve distributed coordination of
many subsystems.

Fig. 7 shows the distributed control architecture of the Volvo XC90. The
blocks represent ECUs and the thick lines represent networks. The actual lo-
cation of an ECU in the car is approximately indicated by its location in the
block diagram. There are three classes of ECUs: powertrain and chassis, info-
tainment, and body electronics. Many of the ECU acronyms are defined in the
figure. Several networks are used to connect the ECUs and the subsystems.
There are two CAN buses. The leftmost network in the diagram is a CAN for
power train and chassis subsystems. It connects for example engine and brake
control (TCM, ECM, BCM, etc.) and has a communication rate of 500 kbps.
The other CAN connects body electronics such as door and climate control
(DDM, PDM, CCM, etc.) and has a communication rate of 125 kbps. The
central electronic module (CEM) is an ECU that acts as a gateway between
the two CAN buses. A media oriented system transport (MOST) network de-
fines networking for infotainment and telematics subsystems. It consequently
connects ECUs for multimedia, phone, and antenna. Finally, local intercon-
nect networks (LINs) are used to connect slave nodes into a subsystem and are
denoted by dashed lines in the block diagram. The maximum configuration
for the vehicle contains about 40 ECUs [7].

3.2 Scania truck

There are several similarities between the control architecture in passenger
cars and trucks. There are also many important differences, some of which



12 K. H. Johansson, M. Törngren, L. Nielsen

Powertrain and chassis Body electronics
TCM Transmission control module CEM Central electronic module
ECM Engine control module SWM Steering wheel module
BCM Brake control module DDM Driver door module
BSC Body sensor cluster REM Rear electronic module
SAS Steering angle sensor SWM Steering wheel module
SUM Suspension module DDM Driver door module
AUD Audio module PDM Passenger door module

REM Rear electronic module
Infotainment/Telematics CCM Climate control module

MP1,2 Media players 1 and 2 ICM Infotainment control
PHM Phone module UEM Upper electronic module
MMM Multimedia module DIM Driver information module
SUB Subwoofer AEM Auxiliary electronic
ATM Antenna tuner module

Fig. 7. Distributed control architecture for the Volvo XC90. Two CAN buses and
some other networks connect up to about 40 ECUs. (Courtesy of Volvo Car Corpo-
ration.)

are due to the fact that trucks are configured in a large number of physical
variants and have longer expected life times. These characteristics impose
requirements on flexibility with respect to connecting, adding, and removing
equipments and trailers.

The control architecture for a Scania truck is shown in Fig. 8. It consists
of three CAN buses, denoted green, yellow, and red by Scania due to their
relative importance. The leftmost (vertical) CAN contains less critical ECUs
such as the audio system and the climate control. The middle (vertical) CAN
handles the communication for important subsystems that are not directly
involved in the engine and brake management. For example, connected to this



Vehicle Applications of Controller Area Network 13

Green bus Yellow bus
AUS Audio system LAS Locking and alarm system
CSS Crash safety system AWD All wheel drive system
ACC Automatic climate control ICL Instrument cluster system
WTA Auxiliary heater water-to-air TCO Tachograph system
ATA Auxiliary heater air-to-air VIS Visibility system
CTS Clock and timer system APS Air processing system
RTG Road transport info gateway BWS Body work system
RTI Road transport info system BCS Body chassis system

Red bus
GMS Gearbox management system COO Coordinator system
ACS Articulation control system
EMS Engine management system
EEC Exhaust emission control
BMS Brake management system
SMS Suspension management system
SMD Suspension management dolly

Fig. 8. Distributed control architecture for a Scania truck. Three CAN buses (de-
noted green, yellow, and red due to their relative criticality) connect up to more
than twenty ECUs. The coordinator system ECU (COO) is a gateway between the
three CAN buses. (Courtesy of Scania AB.)



14 K. H. Johansson, M. Törngren, L. Nielsen

bus is the instrument cluster system. Finally, the rightmost (horizontal) bus
is the most critical CAN. It connects all ECUs for the driveline subsystems.
The coordinator system ECU (COO) is a gateway between the three CAN
buses. Connected to the leftmost CAN is a diagnostic bus, which is used to
collect information on the status of the ECUs. The diagnostic bus can thus
be used for error detection and debugging. Variants of the truck are equipped
with different numbers of ECUs (the figure illustrates a configuration close to
maximum). As for passenger cars, there are also subnetworks, but these are
not shown in the figure.

SAE J1939 is the dominant higher-layer protocol for trucks. It facilitates
plug-and-play functionality, but makes system changes and optimization diffi-
cult, partly because the priorities for scheduling the network traffic cannot be
reconfigured. Manufacturers are using loopholes in SAE J1939 to work around
these problems, but their existence indicates deficiencies in the protocol.

3.3 US Navy boat

There are several maritime applications of CAN. Here we give an example on
unmanned seaborne targets provided by the United States Navy. The Navy
has developed a distributed electronics architecture denoted SeaCAN, which
is installed in all new seaborne targets and has been retrofitted into a num-
ber of older targets. A SeaCAN architecture for a 7 m remotely controlled
rigid-hull inflatable boat is shown in Fig. 9. The system implements, for ex-
ample, an autopilot based on a feedback control loop closed over the network.
It involves the nodes Rudder Feedback, GPS Receiver, Pitch/Roll/Heading,
Command/Control, and the two engine throttle nodes. The SeaCAN system
uses a number of CPU boards with Infineon C167 microcontrollers connected
together via a CAN bus running at 125 kbps. The lower communication rate
is chosen to allow longer runs of copper and fiber suitable for larger boats and
ships.

The SeaCAN system utilizes an operating system built around the CAN
bus and based on the higher-layer protocol CANKingdom. The operating
system contains a scheduler for tasks, which is synchronized with a higher-
layer implementation of a global clock. It is thus possible to have coordinated
behavior between two nodes, without any extra network communication. This
functionality is used for generating periodic sampling, used in, e.g., the rudder
servo control loop. In that case, the rudder sensing node samples the rudder
angle at a rate of 10 Hz. The reception of the data messages from the rudder
sensing node at the rudder actuator controller triggers the control loop routine.
Because these messages have high priority on the bus and they are clocked
out at a known rate, the control loop variability and data delay are very low,
which thus enables a well-performing control loop.

Characteristics of SeaCAN include low usage of bandwidth in the order of
5%, global clock with a resolution of about 100 µsec, and special provisions
with respect to safety and fail-safe shut-down. Network scheduling based on



Vehicle Applications of Controller Area Network 15

Fig. 9. Distributed control architecture for a boat. The block diagram shows a
SeaCAN system for a 7 m remotely controlled rigid-hull inflatable boat. (Courtesy
of the US Navy.)

the global clock is used to enforce a mixture of time-triggered and event-
triggered communication.

3.4 SMART-1 spacecraft

The CAN protocol is also used in spacecraft and aircraft. SMART-1 is the first
European lunar mission, where the acronym stands for “small missions for ad-
vanced research in technology.” The spacecraft was successfully launched on
September 27, 2003 by the European Space Agency on an Ariane V launcher.
The Swedish Space Corporation was the prime contractor for SMART-1 and
has developed several of the on-board subsystems including the on-board com-
puter, avionics, and the attitude and orbit control system [2]. The main pur-
pose of SMART-1 is to demonstrate the use of solar-electric propulsion in a
low-thrust transfer from earth orbit into lunar orbit. The spacecraft carries
several scientific instruments, and scientific observations are to be performed
on the way to and in its lunar orbit. Currently (October 2004), SMART-1 is
preparing for the maneuvers that will bring it into orbit [5].

Part of the distributed computer architecture of SMART-1 is presented
in Fig. 10. The block diagram illustrates the decomposition of the system
into two parts: one subsystem dedicated to the SMART-1 control system and



16 K. H. Johansson, M. Törngren, L. Nielsen

Fig. 10. Part of the distributed control architecture for the SMART-1 spacecraft.
The system has two CAN buses: one for the control of the spacecraft and one for the
payload. The spacecraft controllers are redundant and denoted CON-A and CON-B
in the middle of the block diagram. (Courtesy of the Swedish Space Corporation.)

another for scientific experiments. Each of them is using a separate CAN, so
there is one system CAN and one payload CAN. The spacecraft control is
performed by the redundant controllers CON-A and CON-B, in the middle
of the figure. Most control loops are closed over the system CAN with CAN
nodes providing sensing and actuation capabilities. CAN nodes on the system
bus include not only the spacecraft controller, but also nodes for telemetry
and telecommand (earth communication), thermal control, star tracker and
sun sensors, gyro and reaction wheels, hydrazine thruster, power control and
distributions, and electronic propulsion and orientation.

Several provisions have been taken to ensure system robustness. All nodes
are redundant; some in an active, others in a passive fashion. Each CAN
bus has one nominal and one redundant communication path. A strategy
and a hierarchy for error detection, redundancy management, and recovery
have been defined. The spacecraft controller can take the decision to switch
over to the redundant bus (but not back again). Most other nodes will check



Vehicle Applications of Controller Area Network 17

for the life sign message from the spacecraft controller. If the life sign is
not available, the nodes will attempt to switch to the other bus. The power
unit has highest authority in the autonomy hierarchy and will switch to the
redundant spacecraft controller if the primary controller is considered to have
failed. The power unit can also control the activation and deactivation of the
other nodes. As a last means for recovery, ground can intervene manually.

Radiation tolerance and the detection of radiation-induced errors are cru-
cial for SMART-1. It was not possible to use ordinary CAN controllers because
they are not radiation tolerant. Instead, the license to use the VHDL-code for
CAN was purchased from Bosch and was used to implement a CAN con-
troller in a radiation-tolerant field programmable gate array (FPGA). Some
other features were added to the CAN protocol simultaneously, such as specific
error detection and error handling mechanisms. In addition, clock synchroniza-
tion was added, so that the resolution of the global clock became better than
1 msec. Effects due to radiation can still cause corrupted frames. Therefore,
one of the identifier bits was chosen to be used as an extra parity bit for the
identifier field.

4 Control Applications

Two vehicular control systems with loops closed over CAN buses are discussed
in this section. The first example is a vehicle dynamics control system for
passenger cars that is manufactured by Bosch. The second example is an
attitude and orbit control system for the SMART-1 spacecraft discussed in
the previous section.

4.1 Vehicle dynamics control system

Vehicle dynamics control4 systems are designed to assist the driver in over-
steering, under-steering and roll-over situations [15, 9]. The principle of a
vehicle dynamics control (VDC) system is illustrated in Fig. 11. The left
figure shows a situation where over-steering takes place, illustrating the case
where the friction limits are reached for the rear wheels causing the tire forces
to saturate (saturation on the front wheels will instead cause an under-steer
situation). Unless the driver is very skilled, the car will start to skid, meaning
that the vehicle yaw rate and vehicle side slip angle will deviate from what the
driver intended. This is the situation shown for the left vehicle. For the vehicle
on the right, the on-board VDC will detect the emerging skidding situation
and will compute a compensating torque, which for the situation illustrated is
translated into applying a braking force to the outer front wheel. This braking
force will provide a compensating torque and the braking will also reduce the
lateral force for this wheel.

4Also known as electronic stability program, dynamic stability control, or active
yaw control.



18 K. H. Johansson, M. Törngren, L. Nielsen

Fig. 11. Illustration of behavior during over-steering for vehicle with and without
VDC system (left figure). Central components of VDC (right figure). (Based on
figures provided by the Electronic Stability Control Coalition.)

The VDC system compares the driver’s estimated intended course, by
measuring the steering wheel angle and other relevant sensor data, with the
actual motion of the vehicle. When these deviate too much, the VDC will
intervene by automatically applying the brakes of the individual wheels and
also by controlling the engine torque, in order to make the vehicle follow the
path intended by the driver as closely as possible. The central components of
VDC are illustrated on the right in Fig. 11. In essence, the VDC will assist
the driver by making the car easier to steer and by improving its stability
margin. See [9] for details.

A block diagram of a conceptual VDC is shown in Fig. 12. The cascade con-
trol structure consists of three controllers: (1) the yaw/slip controller, which
controls the overall vehicle dynamics in terms of the vehicle yaw rate and the
vehicle side slip angle; (2) the brake controller, which controls the individual
wheel braking forces; and (3) the engine controller, which controls the engine
torque. The inputs to the yaw/slip controller include the driver’s commands:
accelerator pedal position, steering wheel angle, and brake pressure. Based
on these inputs and other sensor data, nominal values for the yaw rate and
the vehicle side slip are computed. They are compared with the measured
yaw rate and the estimated side slip. A gain-scheduled feedback control law
is applied to derive set-points for the engine and brake controllers; for ex-
ample, during over-steering, braking actions are normally performed on the
front outer wheel and for under-steering normally on the rear inner wheel.
The gains of the controllers depend on the driving conditions (e.g., vehicle
speed, under-steering, over-steering). The brake and the engine controllers
are typically proportional-integral-derivative (PID) controllers and also use
local sensor information such as wheel speed. The VDC system has to take



Vehicle Applications of Controller Area Network 19

Fig. 12. Cascade control structure of VDC system

the driver behavior into account as well as disturbances acting on the vehicle,
including cross-wind, asymmetric friction coefficients, and even a flat tire.

The VDC system utilizes the CAN bus, as it is depending on several ECUs,
although the main functionality resides in a specific ECU. The implementa-
tion strongly depends on the choice of braking mechanics (e.g., hydraulics,
pneumatics, electro-hydraulics, or even electro-mechanics), the availability of
a transmission ECU, and the interface to the engine ECU. A separate dis-
tributed control system is often used for the brakes, extending from a brake
control node; for example, trucks often have one ECU per wheel pair and
an additional controller for the trailer. Since some of the control loops of a
VDC system are closed over a vehicle CAN, special care has to be taken with
respect to end-to-end delays and faults in the distributed system.

4.2 Attitude and orbit control system

This section describe parts of the SMART-1 attitude and orbit control system
and how it is implemented in the on-board distributed computer system [2].
The control architecture and the CAN buses of SMART-1 were described in
Section 3. The control objectives of the attitude and orbit control system
are to

• follow desired trajectories according to the goals of the mission,
• point the solar panels toward the sun, and
• minimize energy consumption.

The control objectives should be fulfilled despite the harsh environment and
torque disturbances acting on the spacecraft, such as aero drag (initially when
close to earth), gravitational gradient, magnetic torque, and solar pressure
(mechanical pressure from photons). There are several phases that the control
system should be able to handle, including the phase just after separation from
the launcher, the thrusting phases on the orbit to the moon, and the moon
observation phase.



20 K. H. Johansson, M. Törngren, L. Nielsen

Fig. 13. Structure of SMART-1 spacecraft with sensors and actuators for the atti-
tude and orbit control system. (Courtesy of the Swedish Space Corporation.)

The sensors and actuators used for controlling the spacecraft’s attitude
are illustrated in Fig. 13. Sensors are a star tracker and solid-state angular
rate sensors. The star tracker provides estimates of the sun vector. It has one
nominal and one redundant processing unit and two hot redundant camera
heads, which can be operated from either of the two processing units. Five an-
gular rate sensors are included to allow for detection and isolation of a failure
in a sensor unit. The rate sensors can provide estimates of spacecraft attitude
during shorter outages of attitude measurements from the star tracker. Ac-
tuators for the attitude control are reaction wheels and hydrazine thrusters.
There are four reaction wheels aligned in a pyramid configuration based on
considerations of environmental disturbances and momentum management.
The angular momentum storage capability is 4 Nms per wheel with a reac-
tion torque above 20 mNm. The hydrazine system consists of four nominal
and four redundant 1 N thrusters.

The attitude and orbit control system consists of a set of control functions
for rate damping, sun pointing, solar array rotation, momentum reduction,
three-axis attitude control, and electric propulsion (EP) thruster orientation.
The system has a number of operation modes, which consist of a subset of
these control functions. The operation modes include the following:

• Detumble mode: In this mode, rotation is stabilized using one P-controller
per axis with the aid of the hydrazine thrusters and the rate sensors.

• Safe mode: Here the EP thruster is pointed toward the sun and set to rotate
one revolution per hour around the sun vector. The attitude is controlled
using a bang-bang strategy for large sun angles and a PID controller for
smaller angles. Both controllers use the reaction wheels as actuators and
the sun tracker as sensor. The spacecraft rotation is controlled using a



Vehicle Applications of Controller Area Network 21

PI controller. When the angular velocity of the reaction wheels exceeds a
certain limit, their momentum is reduced by use of the hydrazine thrusters.

• Science mode: In this mode, ground provides the attitude set-points for the
spacecraft and the star tracker provides the actual attitude. The reaction
wheels and the hydrazine thrusters are used.

• Electric propulsion control mode: This mode is similar to the science mode
apart from the additional control of the EP orientation mechanism. This
mechanism can be used to tilt the thrust vector in order to off-load the
reaction wheel momentum about the two spacecraft axes that form the
nominal EP thrust plane. This reduces the amount of hydrazine needed.
The EP mechanism is controlled in an outer and slower control loop (PI)
based on the speed of the reaction wheels and the rotation of the spacecraft
body.

Let us describe the Science mode in some detail. Fig. 14 shows a block di-
agram of the attitude control system in Science mode. As was described for
the Safe mode above, different controllers are activated in the Science mode
depending on the size of the control error. This switching between controllers
is indicated by the block “Mode logic” in the figure. Anti-windup compensa-
tion is used in the control law to prevent integrator windup when the reaction
wheel commands saturate. Also, as in the Safe mode, the hydrazine thrusters
are used to introduce an external momentum when the angular momentum
of the reaction wheels grows too high. The attitude control works indepen-
dently of the thruster commanding. The entire control system is sampled at
1 Hz. The time constant for closed-loop control is about 30 sec for the Science
mode (and 300 sec for the Safe mode). The estimation block in Fig. 14 pro-
vides filtering of signals such as the sun vector and computes the spacecraft
body rates. It includes a Kalman filter with inputs from the star tracker and
the rate sensors. The main purpose is to provide estimates of the attitude
for short periods when the star tracker is not able to deliver the attitude, for
example, due to blinding of the sensor camera heads. The control algorithms
of the attitude and orbit control system reside in the spacecraft controllers of
the control architecture depicted in Fig. 10. With a period of 1 sec, the space-
craft controller issues polling commands over the CAN to the corresponding
sensors, including the gyros and the sun sensors. When all sensor data are
received, the control commands are computed and then sent to the actuators,
including the reaction wheels and the hydrazine thrusters. The maximum nor-
mal utilization of the CAN is about 30%, but under heavy disturbance, due to
retransmission of corrupted messages, it rises to about 40%. The total com-
munication time for communication over the CAN network for attitude and
orbit control sensing and actuating data is approximately 12 msec. It is thus
small compared to the sampling period.

The on-board software can be patched by uploading new software from
ground during operation in space. So far this has been carried out once for the
star tracker node. The need arose during a very intensive solar storm, which



22 K. H. Johansson, M. Törngren, L. Nielsen

Fig. 14. Attitude control system under operation in Science mode. Disturbances
include gravity, particles, and aero drag affecting the spacecraft.

necessitated modification of software filters to handle larger disturbance and
noise levels than had been anticipated.

During operation, the system platform software is responsible for detec-
tion of failing nodes and redundancy management. The control application
is notified of detected errors such as temporary unavailability of data from
one or more nodes. If the I/O nodes do not reply to poll messages for an
extended period of time, the redundancy management will initiate recovery
actions, including switching to the redundant slave nodes and attempting to
use the redundant network.

5 Perspectives

The development of vehicles is going through a dramatic evolution, in their
transition from pure mechanical systems to mechatronic machines with highly
integrated hardware and software subsystems. DaimlerChrysler estimates that
90% of the innovations in the automotive area lie in electronics and software.
A challenge in the development of vehicular embedded control systems is
safety and real-time requirements. The control systems are increasingly be-
ing implemented in distributed computer systems and require a multitude of
competences to be developed and integrated to meet quality requirements in
a cost-efficient way. A major research problem is to develop techniques and
tools to bridge the gap between functional requirements and the final design.
In this section, we describe two particular trends in the vehicular networked
embedded systems, namely, brake-by-wire and other x-by-wire systems, and



Vehicle Applications of Controller Area Network 23

standardized platforms and open-ended architectures for distributed control
units in vehicles.

5.1 X-by-wire systems

X-by-wire is a term for the addition of electronic systems to the vehicle to
improve tasks that were previously accomplished purely with mechanical and
hydraulic systems. Examples of x-by-wire systems are steer-by-wire and brake-
by-wire, where steering and braking data, respectively, are communicated elec-
tronically from the driver to the actuators. For a brake-by-wire control system,
it is common that the information transfer from the brake pedal to the brak-
ing actuator is handled electronically, but that the actuators are hydraulic or
pneumatic. Sometimes the actuators are replaced with electrical motors, so
that a full brake-by-wire system is created.

An early x-by-wire system is the fly-by-wire application in the Airbus
aircraft A310, which has been in use since 1983. Airbus 320, which was cer-
tified in 1988, is the first aircraft that depends entirely on x-by-wire control.
Examples of early x-by-wire systems in the automotive industry include au-
tomated manual transmission, which eliminates the mechanical connection to
the transmission, so that the gears can be chosen manually by pushing but-
tons or automatically by a computer that runs a gear selection program. The
technology, which was first developed for motor sports to relieve the driver
from using the clutch, is available from many passenger car manufacturers in-
cluding Alfa Romeo, BMW, Mercedes-Benz, Porsche and Volkswagen. Several
solutions are also available for heavy vehicles, under names like I-Shift from
Volvo Trucks and Opticruise from Scania. In the marine industry, a recent x-
by-wire system is the throttle-by-wire system available from Mercury Marine,
which is based on dual redundant CAN buses operating at 250 kbps.

Challenges for further applications of x-by-wire systems in the automotive
industry are legislation, safety demands, cost efficiency, and user expectations.
It should be noted that x-by-wire systems in cars are not the same as fly-by-
wire systems. Differences include the sensitivity to frequency of failure in
operations, and the cost sensitivity. Consequently, the technological concepts
used for by-wire systems in airplanes are not necessarily cost efficient for the
automotive industry.

5.2 Standardized software architectures

Standards in the automotive industry have been developed for communica-
tion, but the other parts of the distributed control systems of cars have mainly
remained closed; for example, note that most automotive systems use propri-
etary real-time operating systems. The lack of existing standardization has
generated research projects to standardize diagnostics and measurement sys-
tems, description languages, and software platforms. Two related initiatives
focused on software platforms are OSEK/VDX [12] and AUTOSAR [1].



24 K. H. Johansson, M. Törngren, L. Nielsen

OSEK/VDX is a joint project of the automotive industry that aims at an
industry standard for an open-ended architecture for distributed control units
in vehicles. OSEK stands for Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug (open systems and the corresponding inter-
faces for automotive electronics) and was founded by the German automotive
industry. VDX, which is an acronym for vehicle distributed executive, was
originally defined as part of a joint effort by the French companies PSA and
Renault. In 1995 the OSEK/VDX group presented their first results of a spec-
ification. A goal of OSEK/VDX is to support the portability and reusability
of application software. The open architecture defines three substandards of
communication, network management, and operating system. It includes data
exchange within and between ECUs, network configuration and monitoring,
and real-time executive for ECU software. The basic idea of OSEK/VDX is
to define standardized services, so that the costs are reduced to maintain and
port application software. Obviously, by imposing portability, it should be
possible to transfer application software from one ECU to another ECU. The
application software module can have several interfaces. For example, there
exist interfaces to the operating system for real-time control, but there also ex-
ist interfaces to other software modules. The interfaces should be rich enough
to represent a complete functionality in a system. An OSEK/VDX implemen-
tation language has also been defined. It supports a portable description of
all OSEK/VDX specific objects such as tasks and alarms. It remains to be
seen whether the OSEK/VDX effort will be successful or not.

Automotive Open System Architecture (AUTOSAR) is a development
partnership with the goal of standardizing basic system functions and func-
tional interfaces in vehicles. The initiative is an indication of the difficulties
faced today to fulfill the growing passenger and legal requirements, despite the
increased system complexity. There needs to be a clear notion of how software
components should be specified and integrated in automotive applications.
The AUTOSAR standard is intended to serve as a platform upon which fu-
ture vehicle applications could be implemented. The AUTOSAR project plan
was released in 2003, so extensive test and verification remain to be done
before AUTOSAR can be used in practice.

Acknowledgements

We would like to express our gratitude to the individuals and the companies
that provided information on the examples described in this chapter. In par-
ticular, Per Bodin and Gunnar Andersson, Swedish Space Corporation, are
acknowledged for providing information on the SMART-1 spacecraft. Dave
Purdue, US Navy, is acknowledged for the description of SeaCAN. Jakob Ax-
elsson, Volvo Car Corporation, is acknowledged for information on the Volvo
XC90. Ola Larses, Scania AB, is acknowledged for information on the Scania
truck. Lars-Berno Fredriksson is acknowledged for general advice on CAN.



Vehicle Applications of Controller Area Network 25

References

1. http://www.autosar.org, 2004. Homepage of the development partnership Au-
tomotive Open System Architecture (AUTOSAR).

2. P. Bodin, S. Berge, M. Björk, A. Edfors, J Kugelberg, and P. Rathsman. The
SMART-1 attitude and orbit control system: Flight results from the first mission
phase. In AIAA Guidance, Navigation, and Control Conference, number AIAA-
2004-5244, Providence, RI, 2004.

3. http://www.can-cia.de, 2004. Homepage of the organization CAN in Automa-
tion (CiA).

4. CAN specification version 2.0. Robert Bosch GmbH, Stuttgart, Germany, 1991.
5. http://www.esa.int/SPECIALS/SMART-1, 2004. Homepage of the SMART-1

spacegraft of the European Space Agency.
6. K. Etschberger. Controller Area Network: Basics, Protocols, Chips and Appli-

cations. IXXAT Automation GmbH, Weingarten, Germany, 2001.
7. J. Fröberg, K. Sandström, C. Norström, H. Hansson, J. Axelsson, and B. Villing.

A omparative case study of distributed network architectures for different au-
tomotive applications. In Handbook on Information Technology in Industrial
Automation. IEEE Press and CRC Press, 2004.

8. U. Kiencke, S. Dais, and M. Litschel. Automotive serial controller area network.
In SAE International Congress No. 860391, Detroit, MI, 1986.

9. U. Kiencke and L. Nielsen. Automotive Control Systems. Springer-Verlag,
Berlin, 2000.

10. H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Dordrecht, 1997.

11. G. Leen and D. Heffernan. Expanding automotive electronic systems. Computer,
35(1):88–93, Jan 2002.

12. http://www.osek-vdx.org, 2004. Homepage of a joint project of the automotive
industry on a standard for an open-ended architecture for distributed control
units in vehicles.

13. M. Törngren. A perspective to the design of distributed real-time control ap-
plications based on CAN. In 2nd International CiA CAN conference, London,
U.K., 1995.

14. M. Törngren, K. H. Johansson, G. Andersson, P. Bodin, and D. Purdue. A
survey of contemporary embedded distributed control systems in vehicles. Tech-
nical Report ISSN 1400-1179, ISRN KTH/MMK-04/xx-SE, Dept. of Machine
Design, KTH, 2004.

15. A. T. van Zanten, R. Erhardt, K. Landesfeind, and G. Pfaff. VDC systems
development and perspective. In SAE World Congress, 1998.


