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10.1 Introduction

It is well-known that buildings contribute a large portion of the overall energy use
worldwide. Buildings need to be more sustainable and environmentally friendly and
the role of buildings in the next-generation energy grids has to be rethought. In fact, as
shown in Fig. 10.1, smart buildings should be designed to integrate not just loads but
also distributed generation (e.g., storage systems and renewable energy resources);
to sense, compute, communicate, and actuate; to purchase, generate, and sell power
to and from its energy suppliers; to take advantage of local generation to implement
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Fig. 10.1 Technologies that can enable building-to-grid integration

demand response and optimize the energy usage. Loads of a smart building can be
divided either into non-flexible ...or flexible (instead of schedulable) (critical) or
schedulable loads, which implies that the decision-making algorithms should aim
not only to lower the energy use without sacrificing the comfort of the occupants,
but also try to support the network operator and reduce the overall environmental
impact.

Hence, designing Energy Management Systems (EMS) for achieving sustainable
building operation requires that several challenges are addressed. The EMS must
be able to deal with the complexity such as conflicting objectives, decision-making
and coordination of decisions distributed over multiple units. The increased Infor-
mation and Communication Technology (ICT) capabilities can enable a wider, more
sophisticated range of intelligent methods and innovative schemes to facilitate the
management of energy demand and generation, including demand response, smart
appliances, and price and carbon-based signals.

An EMS for smart building will: (1) respond to signals from the grid and take
action on this basis (e.g., decreasing energy usewhen prices are high or automatically
shifting consumption to times when prices are lower); (2) manage local generation
facilities, such as solar panels, and feedback into the grid any energy; (3) optimally
schedule storage devices, which can be used to balance out the smart grid and respond
to price signals to help decrease the electricity bills [1].

Besides, this EMS needs to incorporate users into the design (to be responsive
to occupants and improve their comfort) and to take advantage of the flexibility
opportunities offered by storage devices (to counteract the intermittent behavior of
renewable generation by providing ancillary services). These functionalities could
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represent new business case opportunities for various market actors such as aggre-
gators, energy service companies, and network operators. An advanced EMS should
not come with tailored configurations, but rather be cost-effective in order to be
deployed by a wide range of consumers.

Such an innovative and advanced EMS would make buildings smart and smart
buildings are an essential element of smart grids. Although advanced control and
automation systems are becoming quite widespread, standardized and holistic solu-
tions are still not available [1].

In this chapter, we describe the design of and scheduling frameworks for opti-
mal management of smart buildings. In Sect. 10.2 we illustrate novel stochasticMPC
schemes forHVACsystems anddiscuss their performance alongwith practical imple-
mentation issues. In Sect. 10.3, we illustrate how to integrate local generation capa-
bilities and storage systems into a holistic building energy management framework.
In Sect. 10.4, we briefly describe three demonstrators located in Sweden and UK that
support ongoing research activities and experiments on an EMS for smart buildings.
In Sect. 10.5, we show that data centers can play several different schemes typical
of residential smart buildings data centers and they can act as bridges between three
types of networks: electrical, thermal and information networks. Finally, in Sect. 10.6
we draw some conclusions.

10.2 Control of HVAC Systems via Scenario-Based
Implicit and Explicit MPC

In this section, we discuss the design and the implementation of stochastic MPC
approaches for the effective control of HVAC systems. HVAC systems are employed
to maintain acceptable thermal comfort and CO2 levels in buildings. A relevant share
of the overall energy use in buildings is for ventilation, space heating and cooling;
effective control of building HVAC, used to maintain acceptable thermal comfort
and indoor air quality, is seen as an attractive approach to cost-efficiently decrease
the energy use and increase the sustainability in the built environment, and has
been the object of relevant research effort in recent years [2]. An improved building
management can potentially lead to energy savings estimated between 5 and 30% of
the total energy use [3, 4]. HVAC control systems performance can be improved by
using predictive strategies.

In particular, MPC schemes are expected to become a common solution for build-
ings in a few years because of their capability to incorporate time-dependent energy
costs, bounds on the control actions, comfort requirements, and account for uncertain-
ties, e.g., in the models and in the forecasts [5–7]. Successful implementations will
likely be basedon stochasticMPCschemeswith probabilistic constraints since indoor
air conditions are intrinsically affected by stochastic disturbances, e.g., weather con-
ditions and occupancy levels.
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In this section, we propose MPC formulations that take into account uncertain-
ties in the weather predictions and occupancy levels, and adopt the scenario-based
distribution-free approach described in [8]. This approach does not require to assume
Gaussian disturbances, as commonly done in the literature. This assumption makes
the problems easier to solve, but it is often an invalid assumption in practical situa-
tions, especially for solar radiation and occupancy processes.

To address all the issues above and yet obtain an effective and computation-
ally tractable MPC problem, we propose a stochastic MPC (SMPC) scheme that
comprises two linear stochastic MPC problems and a dynamical approach for learn-
ing the statistics of the uncertainties. This SMPC scheme aims at controlling both
indoor temperature and CO2 concentration levels and is described in more detail
in Sect. 10.2.3. The control action is computed by considering a given number of
uncertainty samples and does not require any a-priori assumptions on the distribu-
tions of the uncertain variables. This implicit MPC formulation and its experimental
evaluation are then discussed in Sect. 10.2.4.

The drawback associated with the proposed implicit MPC scheme is its online
computational burden, whose implementation on cheap hardware platforms (such as
in Programmable Logic Controllers (PLCs)) and integration in Building Automation
Systems (BASs) may become prohibitive. In addition, scenario-based approaches
require generation of a large number of scenarios online, further increasing the com-
putational burden. A possible solution is to determine off-line the explicit solution
of the MPC problem as a function of the current building state. This leads to explicit
solutions from multiparametric programs [9, 10] where the state vector is treated
as a vector of parameters, so that the optimal control profile becomes a Piecewise
Affine (PWA) function of the initial state. In this way, the computational require-
ments of the MPC scheme reduce to a function evaluation problem, which can be
implemented using simple software and cheap hardware. We formulate and describe
such an explicit MPC scheme for controlling the HVAC system in Sect. 10.2.5.

Before presenting both our implicit and explicit MPC schemes, we review the
relevant literature in Sect. 10.2.1. Various physical and control-oriented models of
the thermal and CO2 concentration dynamics are then described in Sect. 10.2.2. For
further details, we refer the interested reader to [11–13] and point out that, even if we
focus on one single room or thermal zone, extensions to whole building enclosures or
to room networks are possible since the overall building energy use can be computed
as the sum the energy usages of individual thermal zones [14].

10.2.1 Review of Control Strategies for HVAC Systems

HVAC control has been extensively explored by both researchers and practitioners.
Typical practice does not require coordination between HVAC control and blinds and
lighting control; nonetheless, it has been experimentally shown that coordinationmay
lead to significant energetic benefits [15].
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The HVAC control problem is usually divided into a hierarchical cascade of two
problems: HVAC scheduling and HVAC regulation (see [16] and references therein).
More precisely,

scheduling means deciding both when and in which mode to operate the various
HVAC subsystems (e.g., on or off), and which values should be assigned to the
setpoints of subsystems (e.g., the temperature and CO2 levels of thermal zones);

regulation means rejecting disturbances so that the actual conditions in the built
environment follow closely the setpoints specified by the scheduling algorithm.

The regulation part is usually performed by means of low-level Proportional-
Integral Derivative (PID) controllers, which generally provide satisfactory tracking
performance, mainly because temperature and CO2 dynamics are slow (see, for
example, [13], where experimental evidence shows that temperature and CO2 con-
centration have time constants of minutes in a laboratory of approximately 80 m2).

The schedulingpart is interesting from researchperspectives, and iswhere the state
of the art and the common practice differ. We can categorize the existing strategies
as follows:

rule-based strategies: the control inputs are computed through rules of the type “if
condition then action”where the condition statement typically involves thresholds
and other numerical values that play the role of control parameters. Rule-based
strategies may be (see also [15] and references therein):

open-loop, which do not make use of information to change the scheduling
outcomes;

reactive, which use information on the current and past states of the system to
change the scheduling outcomes;

predictive, which change the scheduling outcomes if forecasts of building usage
change.

Predictive approaches are the most powerful ones; their main drawback is that
they are associated to a larger set of rules and parameters, and this increases the
difficulty in tuning [15];

model-based predictive strategies: the control strategy is determined by com-
bining an opportune model of the building with forecasts of the disturbances to
facilitate a search for the input steering the forecast system trajectory to minimize
a certain objective function. This category may be divided into:

control-oriented strategies, wheremodeling of the dynamics is typically a gray-
or black-box model, potentially trained using some system identification pro-
cedure;

machine-learning-oriented strategies, where models are typically non-
parametric and data-driven (e.g., learned through opportune neural networks).
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We notice that evaluations of model-based predictive strategies in smart buildings
consistently show increased performance with respect to non-predictive control
strategies [7, 17]. The current trend seems to add to these predictive strategies
robustness with respect to uncertainties in the forecasts [18, 19].

10.2.2 HVAC System Modeling

The model used in this chapter is derived by using thermodynamics laws with a
thermal network approach, as described in Sect. 10.2.2.1. Compared to data-driven
approaches, this approach provides a clear physical interpretation and features greater
modeling generality, allowing thus a straightforward adjustment to other buildings.

Unfortunately, physical-based equations describing indoor CO2 and temperature
dynamics include nonlinearities. Posing then the problem of minimizing the energy
use while keeping both indoor CO2 and thermal comfort as one single problem
results in a non-convex problem, and this would eventually lead to problems at the
implementation stage. In Sect. 10.2.2.2, we thus address this issue by first deriving
control-orientedmodels of both the CO2 and thermal dynamics, and then formulating
the overall HVAC control problem as a cascade of two linear (and thus more easily
implementable) problems.

10.2.2.1 Physical Modeling of HVAC Systems

To model the energy flows in a thermal zone, we consider the flows through its enve-
lope (i.e., walls and windows), the flows generated within the zone (e.g., occupants,
lights, and equipment), and the flows provided by the heating and cooling systems via
the ventilation and the heating emission systems. Ourmain assumptions are then that:

• there are no air latent heat, e.g., from vapor production, is neglected infiltrations,
so that the inlet airflow in the zone equals the outlet airflow;

• the air in the zone is well mixed;
• latent heat, e.g., from vapor production, is neglected;
• there are no thermal bridges.

Given the assumptions above, the dynamics of the room temperature can be cal-
culated by computing the energy balance equations of the zone, the latter modeled
as a lumped node, i.e.,

mair,zonecpa
dTroom
dt

= Qventing + Qint + ∑
j Qwall,j

+∑
j Qwin,j + Qheating + Qcooling.

(10.1)
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In (10.1), the left-hand side represents the heat stored in the air of the zone, Qventing

is the heat flow due to ventilation, Qint are the internal gains (the sum of the heat
flows due to occupancy, equipment, and lighting), Qwall,j and Qwin,j represent the
heat flows exchanged between walls and room and windows and room, respectively,
Qcooling and Qheating are the cooling and heating flows necessary to keep the within
thermally comfortable conditions.

The explicit dependence between room the variation of the temperature Troom and
the heat flows is then obtained by manipulating (10.1):

dTroom
dt

= ṁventingΔTventing
mair,zone

+
∑

j

hi A
j
wall

(
T j
wall,i − Troom

)

mair,zonecpa

+
∑

j

(
Tamb − Troom

)

R j
winmair,zonecpa

+ cNs

mair,zonecpa

+
∑

j G
j A j

win I
j

mair,zonecpa
+ AradhradΔTh,rad

mair,zonecpa

(10.2)

where

Qventing = ṁventingcpaΔTventing = ṁventingcpa
(
Tair,sa − Troom

)
,

Qint = cNpeople,

Qheating = AradhradΔTh,rad = Aradhrad
(
Tmr − Troom

)
.

The parameters involved in (10.2) are described in Table10.1, reported in the appen-
dix and presenting the parameters in alphabetical order for reading convenience.
The indoor wall temperature T j

wall,i in the j-th surface is calculated with a further
energy balance on the outdoor wall surface and on the indoor wall surface, with
walls modeled as three resistance and two capacitance (3R2C) systems [20, 21].

The air mass flow for ventilation ṁvent in (10.2) is determined by the CO2 con-
centration in the room, calculated after the model proposed in [22] as:

V
dCCO2

dt
= (

ṁventCCO2,i + gCO2Npeople
) − ṁventCCO2 . (10.3)

The models above capture the main features of the dynamics of the temperature
and CO2 concentrations. Their constants determine then the physical characteristics
of a generic room, and this allows a straightforward adaptation of the models to other
rooms. For example, the surface of a heating emission system may be conveniently
modeled with a parameter Arad accounting for different sizes of the heating units.
We notice that, however, heating systems with a relevant thermal mass, like floor
heating, are characterized by delays that should not be neglected. In this case, the
models should be adapted to account for ad-hoc time delays.
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Table 10.1 Summary of the parameters involved in the building model

Arad [m2] Emission area of the radiators

A j
wall [m2] Wall area on the j-th surface

A j
win [m2] Area of the window on the j-th surface

c [W ] Constant related to equipment and occupants activity

CCO2,i [ppmV] Inlet air CO2concentration, assumed equal to outdoor CO2
concentration

CCO2 [ppmV] Concentration of CO2 within the room

cpa [J/kg°C] Specific heat of the dry air

gCO2 [m3
CO2

/pers.] Generation rate of CO2 per person

G j [−] G-value (SHGC) of the window on the j-th surface

hi [W/m2°C] Indoor heat transfer coefficient

hrad [W/m2°C] Heat transfer coefficient of the radiators

I j [W/m2] Solar radiation on the j-th surface

mair,zone [kg] Air mass in the room

ṁvent [kg/s] Ventilation mass flow

Npeople [−] Number of occupants in the room

R j
win [°C/W ] Thermal resistance of the window on the j-th surface

Tair,sa [°C] Supply air temperature

Tamb [°C] Outdoor temperature

T j
i [°C] Indoor surface temperature of the wall on the j-th surface

Tmr [°C] Mean radiant temperature of the radiators

V [m3] Volume of the air inside the room

10.2.2.2 Control-Oriented Modeling of HVAC systems

As mentioned above, we aim at rewriting the nonlinear equations. (10.2) and (10.3)
as linear equations and at developing control-oriented models of both the CO2 and
thermal dynamics. We start by pointing out that: (i) the CO2 concentration dynamics
are independent of the thermal ones; (ii) CO2 comfort has priority, entailing that the
ventilation level cannot be lower than the one ensuring an acceptable CO2 level in
the room.

This allows us to address two separated subproblems: (i) the CO2-SMPCproblem,
which aims at minimizing energy use while keeping CO2 levels in given comfort
bounds; (ii) the T-SMPC problem, controlling instead the indoor temperature and
deciding the additional ventilation level guaranteeing the thermal comfort. The output
of the sequenceof theCO2-SMPCproblem is a sequenceof air flow rates coming from
the ventilation system over the whole prediction horizon, which is then integrated
into the T-SMPC problem to account for the corresponding heat flow.

In the following, we present the control-oriented models incorporated into the
CO2-SMPC and T-SMPC problems.
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Control-oriented model of the CO2 concentration dynamics

The model state xCO2 and the model output yCO2 are equal to the nonnegative differ-
ence between the CO2 concentration in the room and the inlet air CO2 concentration
(the latter one assumed to be equal to the outdoor CO2 concentration levels). The
model disturbance wCO2(k) represents instead the number of occupants.

We derive an equivalent linear model of the CO2 concentration dynamics by
introducing the auxiliary input uCO2 := ṁCO2

venting · xCO2 representing the reduction

in the indoor CO2 concentration levels induced by ṁCO2
venting. To satisfy the physical

bounds on the original control input ṁCO2
venting, we introduce the following additional

constraints on the auxiliary input uCO2 ,

ṁmin
venting · xCO2(k) ≤ uCO2(k) ≤ ṁmax

venting · xCO2(k). (10.4)

The CO2 concentration dynamics can eventually be described by the discrete-time
Linear Time Invariant (LTI) system

xCO2(k + 1) = axCO2(k) + buCO2(k) + ewCO2(k)

yCO2(k) = xCO2(k).
(10.5)

Control-oriented model of the thermal dynamics
The state of the model is the vector of the temperatures of the room, walls, floor, and
ceiling. Themodel disturbances represent the outdoor temperature, the incident solar
radiation, the internal gains, and the heat flows due to occupancy, equipments, and
lighting. The control inputs required to actuate the HVAC system are the temperature
of the supplied air, Tsa, the mean radiant temperature of the radiators, Tmr, and the
additional air flow rate required for guaranteeing the thermal comfort, Δṁventing,
defined as Δṁventing := ṁventing − ṁCO2

venting.
We derive an equivalent linear model of the thermal dynamics by introducing the

nonnegative variables ΔTh, ΔTc, Δuh and Δuc as auxiliary inputs s.t.

ΔTh − ΔTc := Tsa − Troom
ΔTh + ΔTc := ∣

∣Tsa − Troom
∣
∣

Δuh − Δuc := Δṁventing
(
Tsa − Troom

)

Δuh + Δuc := Δṁventing

∣
∣Tsa − Troom

∣
∣.

By introducing the auxiliary inputs above, the heat flows in (10.2) can be rewritten as

Qventing = ṁCO2
ventingcpa

(
ΔTh − ΔTc

) + cpa
(
Δuh − Δuc

)

Qheating = AradhradΔTh,rad.

We consider the following additional constraints to meet physical bounds on the
original control inputs
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0 ≤ ΔTh(k) ≤ Tmax
sa −Troom(k)

0 ≤ ΔTc(k) ≤ Troom(k)−Tmin
sa (10.6)

0 ≤ Δuh(k) ≤ Δṁmax
venting(k)ΔTh(k)

0 ≤ Δuc(k) ≤ Δṁmax
venting(k)ΔTc(k). (10.7)

where Δṁmax
venting(k) := ṁmax

venting − ṁCO2
venting(k). Constraints (10.6) and (10.7) rule out

the possibility of simultaneous heating and cooling modes, which can happen when
Troom is greater than Tmin

sa or smaller that Tmax
sa or when it is convenient to require a

stronger but unfeasible cooling/heating action. Bounds on Tsa have to be carefully
defined and the physical bounds on the supply air temperature should be considered.

With the newly introduced variables, the dynamics of the indoor temperature can
be modeled with the discrete-time LTI system

xT(k + 1) = ATxT(k) + BT(k)uT(k) + ETwT(k)

yT(k) = CTxT(k),
(10.8)

where the state xT(k) contains the temperatures of the room and of the inner and
outer parts of the walls, uT(k) is the input vector, as defined above, and wT(k) is
the vector of random disturbances (outdoor temperature, solar radiation, and internal
heat gains). The output yT(k) is the indoor temperature at time k. We notice that the
input matrix BT(k) is time-varying since it depends on ṁCO2

venting(k).

10.2.3 SMPC Problem Formulation for HVAC Systems

In Sect. 10.2.3.1, we formulate the stochastic MPC problem for optimizing HVAC
operation and illustrate how a scenario-based approximation can be derived in
Sect. 10.2.3.2.

10.2.3.1 Chance-Constrained MPC formulation

We start considering a generic discrete-time LTI systemswith uncertainty of the form

x(k + 1) = Ax(k) + B(k)u(k) + Ew(k)

y(k) = Cx(k),
(10.9)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, w(k) ∈ Rr is
the stochastic disturbance and y(k) ∈ Rp is the output. Notice that, depending on
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the controller under consideration (CO2-SMPC or T-SMPC), (10.9) can represent
either (10.5) or (10.8).

We define x := [
x(1)T, . . . , x(N )T

]T
the vector representing the state evolution

over the prediction horizon N . Similarly, we define u, y and w. Prediction dynamics
matrices CA,CB,CE easily follow from (10.9) and the definitions of x, u, y and w.
Hence, we can express the output as a function of the initial state x(0), i.e.,

y0 = CAx(0) + CBu + CEw, (10.10)

with x(0) the current measured value of the state.
Constraints (10.4) and (10.6) canbewritten in a compact formasmixed constraints

on inputs and outputs. Using y0, we can write both comfort constraints and mixed
constraints on inputs and outputs over the whole prediction horizon asGuu+Gww ≤
g, with the left-hand side being bi-affine functions in the vector of decision variablesu
and random variablesw, andGu ,Gw and g beingmatrices of appropriate dimensions.

Constraints on inputs (e.g., (10.7) over thewhole prediction horizon can bewritten
as Fu ≤ f , where F and f are matrices of appropriate dimensions.

To summarize, the linear constraints on the inputs and outputs (comfort con-
straints) over the prediction horizon are

Guu + Gww ≤ g

Fu ≤ f .
(10.11)

As introduced above, since it is possible to assume that these random constraints
can be violated with a predefined probability α ∈ [0, 1], uncertainties can be handled
by formulating the random constraints (10.11) as probabilistic constraints of the form

P

[
Guu + Gww ≤ g

]
≥ 1 − α.

To formulate the chance-constrained MPC problem we define a linear cost func-
tion over the whole prediction horizon as J (x(0),u) = ∑N−1

k=0 J (u(k)). The control
problem is formally stated as

min
u

J (x(0),u)

s.t. P

[
Guu + Gww ≤ g

]
≥ 1 − α

Fu ≤ f .

(10.12)

10.2.3.2 Scenario-Based Approximation

Unless the uncertainties follow specific distributions, e.g., Gaussian or log-concave,
chance constraints problems as (10.12) are generally non-convex and thus numer-
ically difficult to handle [23]. Uncertainties like solar radiation and occupancy do
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not usually follow probability distributions that allow us to formulate equivalent
deterministic problems and make MPC problems more tractable.

The scenario-based optimization approach [8, 24] provides a way of approximat-
ing the solution of chance-constrained optimization problems, and is based on finding
the optimal solution under a finite number of sampled outcomes of uncertainty. This
approach does not require explicit knowledge of the uncertainty set, as in robust
optimization, nor of its probability distribution, as in stochastic programming; the
only requirement is that one should be able to extract a sufficient number of indepen-
dent random samples from the distribution of uncertainty. The number of samples is
selected to guarantee the feasibility of the solution so that the solution of the scenario
problem has generalization properties, i.e., it satisfies with high probability unseen
scenarios. Therefore, the original program is approximated with a deterministic one,
called the scenario problem, which is obtained from the original by replacing the
chance constraint with the S sampled deterministic constraints. By construction, the
scenario problem is deterministic and convex and thus it can be solved efficiently
by standard numerical algorithms. In our specific HVAC control problem, the sce-
nario approach leads to a simple linear problem to be solved at each time step; we
follow this approach and extract a set of S i.i.d. disturbances samples or scenarios,
w1, . . . ,wS , with wi := [

wT
i (0), . . . ,w

T
i (N − 1)

]T
, i = 1, . . . , S. These generated

scenarios correspond to a set of different realizations of exogenous disturbance vari-
ables w which represent weather conditions and occupancy. These quantities are
extracted from a learned multidimensional probability distribution trained from his-
torical data by using copulas formalisms, see, e.g., [11–13]. We remark that posing
Gaussianity assumptions limit the dependencies that can be captured by restricting
the types of admitted behaviors in the tails of marginal distributions. References
[11–13] also show that in HVAC control frameworks Gaussianity assumptions may
be unrealistic, especially when modeling occupancy or solar radiation effects.

Hence, Problem (10.12) is approximated with the following scenario-based prob-
lem:

min
u

J (x(0),u)

s.t. Guu ≤ g − max
i=1,...S

Gwwi

Fu ≤ f .

(10.13)

Recently, authors in [25] have obtained useful results on the closed-loop constraint
violations in a scenario-basedMPC framework. In this work, these results are used to
set a lower bound on the number of scenarios providing guarantees on the probability
of constraint violation. Furthermore, since in this manuscript we formulate a cascade
of two scenario-based optimization problems, we apply the results provided in [26]
to guarantee the feasibility of the cascaded solution of the two individual problems
(see Theorem 7 in [26]).
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10.2.4 Implicit SMPC Formulation for HVAC Control

We now describe our implicit SMPC formulation by illustrating the control archi-
tecture of our SMPC for HVAC systems in Sect. 10.2.4.1 and the two scenario-
based optimization problems in Sect. 10.2.4.2 (as for the CO2-SMPC problem) and
in Sect. 10.2.4.3 (as for the T-SMPC problem). We then discuss some experimental
results in Sect. 10.2.4.4.

10.2.4.1 Control Architecture

The architecture of the proposed control system is illustrated in Fig. 10.2. Here the
indoor temperature and the air CO2 concentration levels (both to be considered
as comfort indicators) are controlled through the ventilation system and radiators,
while the latter two elements are actuated using low-level proportional-integral (PI)
controllers. The proposed SMPC scheme computes then at each time instant the set
points for the low-level controllers using newmeasurements and updated information
about weather and occupancy patterns.

The inputs of our SMPC for HVAC systems are, at every time step: (i) occupancy
levels, (ii) weather conditions, and (iii) measurements of the building current state.
The output is a heating, cooling and ventilation plan for the next N hours (with N
being a prediction horizon chosen by the user when designing the control system).
Consistently with the MPC paradigm, at every time step k only the first step of
this control plan is applied to the HVAC system. After that, the whole procedure
is repeated based on new measurements and updated forecasts and scenarios. This
introduces feedback into the system, since the control action is a function of the

RoomActuators

Low-Level
Controllers

SMPC

Room
Schedule

Weather
Forecasts

Scenarios

• Building Dynamics
• Inputs Constraints
• Comfort Ranges

sensors measurementscontrol inputs

actuation
commands fresh air

heating
cooling

Fig. 10.2 Architecture of the control system implemented on the testbed (reprinted with permis-
sion, from [13])
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current system state and the currently acting disturbances. In our case the computed
outputs are, at every time step k: (i) a mass air flow rate ṁventing(k); (ii) a supply air
temperature Tsa(k); (iii) a radiators mean radiant temperature Tmr.

10.2.4.2 CO2-SMPC Problem

The generic model (10.9) is replaced in this case with (10.5). The CO2 concentration
over the prediction horizon, denoted by yCO2

, can be expressed as a function of the
initial state xCO2(0) as in (10.10).

The cost function is
JCO2(uCO2(k)) = uCO2(k)Δk, (10.14)

where Δk the sampling period. The bounds on the input uCO2(k) are of the form
umin
CO2

≤ uCO2(k) ≤ umax
CO2

, while the comfort constraints on the indoor CO2 concen-
tration can be set as 0 ≤ yCO2(k) ≤ ymax

CO2
. These bounds can be expressed as polytopic

constraints FCO2uCO2(k) ≤ fCO2 and Gy
CO2

yCO2(k) ≤ gy
CO2

, respectively.
Constraints (10.4) can bewritten in a compact form asmixed constraints on inputs

and outputs. By expressing yCO2
as a function of xCO2(0), we can write both comfort

constraints and mixed constraints on inputs and outputs over the whole prediction
horizon as Gu

CO2
uCO2 +Gw

CO2
wCO2 ≤ gCO2

, where Gu
CO2

, Gw
CO2

and gCO2
are matrices

of appropriate dimensions.
The CO2-SMPC problem can thus be formulated as in (10.12):

min
uCO2

JCO2(xCO2(0),uCO2)

s.t. Gu
CO2

uCO2 ≤ gCO2
− max

i=1,...S
Gw

CO2
wCO2,i

FCO2uCO2 ≤ f CO2
.

(10.15)

After solving the CO2-SMPC problem, we can easily derive ṁCO2
venting(k). The current

measurement of the indoor CO2 level is used to compute the control input for the
current point in time.

10.2.4.3 T-SMPC Problem

The system model (10.9) is in this case (10.8). The indoor temperature yT over
the prediction horizon can be expressed as a function of the initial state xT(0) as
in (10.10).

The control objective is to minimize the thermal energy use

JT(uT(k)) =(
ρventing

∣
∣Qventing(k)

∣
∣ + Qheating(k)

)
Δk = (10.16)

=(
cT(k)uT(k)

)
Δk, (10.17)
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where uT(k) :=
[
ΔTh(k),ΔTc(k),Δuh(k),Δuc(k),ΔTh,rad(k)

]
and c(k) are,

respectively, the input and the cost vectors at time k and ρventing is a factor mod-
eling the higher energy cost of the ventilation system with respect to the radiators in
the heating mode.

We define bounds on the input uT(k) of the form umin
T ≤ uT(k) ≤ umax

T , and on
the comfort constraints on the indoor temperature as 0 ≤ yT(k) ≤ ymax

T . Bounds
on inputs along with constraints (10.7) can be expressed as polytopic constraints
FTuT(k) ≤ fT, while comfort constraints can be written as Gy

TyT(k) ≤ gy
T.

Constraints (10.6) can bewritten in a compact form asmixed constraints on inputs
and outputs. By expressing yT as a function of xT(0), we can write both comfort
constraints and mixed constraints on inputs and outputs over the whole prediction
horizon as Gu

TuT + Gw
TwT ≤ gT, where G

u
T, G

w
T and gT are matrices of appropriate

dimensions.
The T-SMPC problem can thus be formulated as in (10.12):

min
uT

JT(xT(0),uT)

s.t. Gu
TuT ≤ gT − max

i=1,...S
Gw

TwT,i

FTuT ≤ f T.

(10.18)

After solving the T-SMPC problem, we can easily derive the control variables Tsa(k),
Tmr(k) and Δṁventing(k). The total air flow rate at the current point in time, k, can be
computed as ṁCO2

venting(k) + Δṁventing(k). Current measurements of the temperatures
in the room and in the ventilation system are used to compute control inputs for the
current point in time.

10.2.4.4 Experimental Evaluation

Here we describe the experimental setup, the KTHHVAC testbed, and discuss exper-
imental results.

Experimental setup

The KTH HVAC testbed is hosted on the KTH main campus and is located in the
ground floor of a seven-story office building with a concrete heavyweight structure.
The testbed consists of four rooms: a laboratory and three student offices; the results
presented in this work refer to the laboratory room, which has a limited windows
surface and one external wall, facing southeast. The rooms are all equipped with
a Supervisory Control And Data Acquisition (SCADA) and Programmable Logic
Controllers (PLCs), a wireless sensor network, an actuator network, and a weather
station.

The installed sensors enable continuous monitoring of the status of the system,
i.e., CO2 temperatures, humidity, and external weather conditions as in Fig. 10.3. The
implemented platform also gathers data from weather forecasts services and is inte-
grated with the rooms web-based scheduling services of the occupancy (calendars).
Occupancy is measured through a photoelectric based people counter.
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Fig. 10.3 Scheme of the HVAC system of one of the rooms of the KTH HVAC testbed (reprinted,
with permission, from [13])

The HVAC system of the rooms consists of a ventilation system supplying fresh
air plus a radiator heating system. Air is ventilated into the rooms by a central fan (not
controllable in the current experimental setup) running by default between 8:00 and
15:00 during weekdays. A central balanced ventilation system with heat recovery
preconditions fresh air from the outdoor environment, distributing it at a temperature
of about 20–21°C. Approximately 70% of the total air flow is directly conveyed into
the rooms from the central air handling unit, while the remaining part can be further
cooled by a local cooling coil. The ventilation airflow is controlled via two dampers
that regulate the opening of the inlet and outlet ducts; the ventilation air temperature
is controlled actuating on a cooling coil. When the central fan is on, a minimum air
flow is distributed into the rooms due to building regulations independently from their
occupancy. The heating system uses standard waterborne radiators as heat emission
units. Heat is provided by district heating, with supply temperature of the water
dependent on the outdoor temperature. Heat emission from radiators is controlled
acting on the valve that regulates the hot water flow.

Experimental results

Here we discuss and evaluate the results of experiments performed on the KTH
HVAC testbed.

We point out that the thermal model used for control has been implemented in
MATLAB and verified against the results provided by IDA-ICE 4.5 [27], a commer-
cial software program for energy and comfort calculations in buildings. Furthermore,
the temperature and CO2 models have been successfully validated against measure-
ments from the testbed [11, 13].
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Three different controllers have been tested on the HVAC system in the testbed
main room during three different days (see Fig. 10.4):

1. the current practice, which corresponds to a simple control logic with PI control
loops and switching logic, indicated in the following by the acronym AHC (the
controller from Akademiska Hus, the company managing the building of the
testbed);

2. a Deterministic Model Predictive Control (DMPC) neglecting information on the
uncertainties in the forecasts, and computing the control inputs by solving the
HVAC control problem with deterministic constraints obtained by replacing
the unknown disturbances with their forecasts;

3. our SMPC introduced above.

The three controllers have been tested between April and June 2014 for 7h each
day, from 8:00 to 15:00. The sampling time for the MPC-based controllers is 10min,
while the predictions horizon is 8h. The comfort range of the indoor temperature
is [20, 22] °C. The controllers have been tested during spring and summer, when
cooling was required.

Figure10.4 depicts the results of the three controllers tested in 3 days in April
and May. The horizontal axis reports the time period of the experiments. Each row

Fig. 10.4 Disturbances, indoor temperature and control input profiles for tests on April 7, May 16
and 28
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of the figure depicts the disturbances (i.e., outdoor temperature and occupancy), the
control inputs (i.e., supply air temperature and air mass flow) and the controlled
indoor temperature. The left column compares results between SMPC and AHC,
while the right column shows the results of MPC against AHC. The solid lines
of both columns represent disturbances, input and output profiles of MPC-based
strategies while the dashed lines are related to the current practice AHC.

The MPC-based controllers clearly improve the thermal comfort with respect to
the AHC one: indeed, despite the fact that the MPC-based controllers have to com-
pensate for higher internal gains from occupants and higher outdoor temperatures,
they also show almost no violations to the comfort constraints, while AHC yields
significant violations of the thermal comfort upper bound. Notice in particular the
experiment in the first column of Fig. 10.4, it can be seen that our SMPC had to
compensate for a higher outdoor temperature, a more challenging situation when
cooling.

The differences in the performance of the twoMPC-based controllers thus empha-
size the added value of incorporating information on the disturbances that affect
the system: the SMPC computes its control inputs based on a worst-case scenario
approach, which leads to a more robust behavior against unknown disturbances. As
a consequence, the SMPC is able to keep the temperature closer to the upper bound
and violates less with respect to the DMPC. The advantages of this behavior are more
stressed when occupancy is higher.

In general, we can notice that, when the outdoor temperature and the occupancy
are higher, SMPChas better performance in terms of violations of the thermal comfort
with respect to the DMPC. See, for instance, the temperature profile resulting from
DMPC, represented by the solid line in the right column and the last row of Fig. 10.4:
the DMPC is not able to compensate for the occupancy peak at 11:00–12:00 am,
resulting in violations of the thermal comfort.

10.2.5 Explicit SMPC Formulation for HVAC Systems

Implicit MPC strategies come with an online computational burden, intensified by
the scenario generation procedure. A possible solution is to determine explicitly,
off-line, the solution of the MPC optimization problem as a function of the current
building state by solving multiparametric programs [9, 10]. In the following, we
outline the explicit formulation of the SMPC for HVAC control (10.13).

10.2.5.1 Computing the Explicit Solution

We adopt a two states thermal model of a single thermal zone (or room). We model
a thermal zone as a network of two nodes, one accounting for the dynamics of the
air within the zone, and the other one accounting for the dynamics of the walls. This
model and its validation against measurements are described in detail in [12].
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Problems (10.15) and (10.18) can be treated as multiparametric linear problems
by considering initial state vectors, respectively, xCO2(0) and xT(0) as vectors of
parameters.

By solving the multiparametric CO2-SMPC and T-SMPC problems, we obtain
explicit state-feedback laws that are expressed as PWA functions of the initial state
vectors.

Hence, the explicit CO2-SMPC and T-SMPC control laws have, respectively,
the form

uECO2(x) = QECO2
i x + qECO2

i if HECO2
i xCO2(0) ≤ K ECO2

i
uET (x) = QET

j x + qET
j if HET

j xT(0) ≤ K ET
j

where the polyhedral sets X ECO2
i :=

{
HECO2
i x ≤ K ECO2

i

}
and X ET

j :=
{
HET

j x ≤
K ET

j

}
, with j = 1 . . . NET are partitions of the set of states, with i = 1, . . . , NECO2

and j = 1, . . . , NET .
To guarantee that the overall procedure satisfies the requirements on the min-

imum mass flow needed to maintain comfortable CO2 levels, we proceed as fol-
lows: the set of admissible values of the mass flow is partitioned using standard
algorithms (e.g., Lloyd algorithm [28]) and Q quantized values are computed,
ṁCO2

1,quantized, . . . , ṁ
CO2
Q,quantized. Then, for each ṁCO2

i,quantized, a corresponding explicit Ti -

SMPC problem that takes ṁCO2
i,quantized as lower bound on the mass flow is solved.

The scenario-based controller can be then implemented online according to
Algorithm 1.

Algorithm 10.1 On-line Implementation
1: for k = 1, 2, . . . do
2: measure xCO2 (k) and xT(k)
3: compute uECO2

(
xCO2 (k)

)
and derive ṁCO2

venting(k)

4: identify the quantized value ṁCO2
i,quantized(k)

5: compute uET
(
xT(k)

)
by using the solution of the explicit Ti -SMPC problem and derive the

setpoints
(
ṁventing(k), Tsa(k), Tmr(k)

)

6: send the computed setpoints to the low-level PI controllers
7: end for

10.3 Building Generation-Side and Demand-Side
Management

As highlighted in Sect. 10.1, smart buildings can integrate not just flexible loads, but
also storage systems and generation capabilities. Energy management frameworks
for smart buildings should support multiple performance criteria (load shaping, eco-
nomic costs, comfort, power imbalances minimization), along with more standard
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objectives (control of the indoor air quality and thermal comfort), and optimize the
flexibility provided by onsite generation (e.g., Photovoltaic (PV)), storage systems,
and Demand Response (DR) policies [1] (commonly defined as changes in electric-
ity use by consumers in response to changes in the electricity price over time [29]).
Effective energy management with DR policies can help flattening the aggregated
demand curve and reducing the number of expensive generation plants used for peak
load periods. In recent years, more and more utilities and governments offer pro-
grams that provide incentives for residential consumers to adopt on-site distributed
generators and energy storage systems [30]. However energy storage devices and
renewables are not still common within homes, they are often included in energy
management frameworks of future environmentally friendly homes [31].

In this section, we describe a novel MPC-based EMS for smart buildings to opti-
mally manage and coordinate energy supply and demand in multiple houses, taking
user preferences into account. The control system computes an optimal energy plan
based on forecasts of weather conditions, renewable generation and thermal demand;
imbalances can be compensated through the feedback mechanism integrated into our
framework. The feedback mechanism introduced through theMPC receding horizon
philosophy allows us to compute current power imbalances, and thus take corrective
actions to guarantee power balance and user comfort. Smart appliances are included
since we consider DR, which can take advantage of the additional flexibility offered
by storage devices, to store energy and release it when it is more convenient [32].

We consider a system representing either a residential district made up of several
single-family houses with local generation capabilities owning a shared DER, or a
smart building composed of apartments with heating systems and storage devices
sharing a common Distributed Energy Resource (DER).

We illustrate the modeling and MPC problem formulation for the system
described above in Sect. 10.3.1. An extension of this framework, including the user
behavior uncertainty in scheduling shiftable appliances, is outlined in Sect. 10.3.2.
Lastly, we sketch in Sect. 10.3.3 a distributed approach to solve the problem of coor-
dinating a set of smart appliances located in N apartments sharing an Energy Storage
System (ESS).

10.3.1 MPC-Based EMS for Smart Buildings

As mentioned above, we consider a system representing either a residential district
or a smart building. The subsystems we account for are then either single-family
houses or apartments owning a shared DER and comprising heat pumps, ESSs and
both thermal and electrical loads (e.g., heating system, electrical appliances).

We remark that the proposed EMS framework can be easily adapted to other
energy systems (e.g., networks of microgrids, industrial facilities) and extended to
include otherDERand control objectives (e.g., electrical vehicles, fuel cells, emission
reduction).
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We would like to mention that a virtual experimental testbed has been built for
evaluating experimental results, the VirtualMicroGrid Lab [33], where partners from
industry and academia have combined resources to develop a virtual laboratory inter-
connecting partner laboratory premises using secure connections on top of the public
Internet. A case study of five residential microgrids is implemented and simulated
in the virtual laboratory; simulation results show that the storage devices allow a
10.47% cost savings and the proposed control framework can achieve up to 58.8%
cost savings.

In the following, we describe the modeling of the system components and we
formulate the MPC problem.

10.3.1.1 Modeling

Here we briefly describe the modeling framework of the considered system.
As depicted in Fig. 10.5, each subsystem is equipped with a Home Energy Man-

agement System (HEMS), which is responsible for operating the end-user smart
appliances, the local generation devices and the interaction with the grid at the res-
idential level according to the setpoints computed by the control system. The MPC
controller is responsible for coordinating the energy sources, and deals with the long-
term behavior of the system (e.g., from 10min to 1h). This implies that the controller

Fig. 10.5 Schematics of the architecture of the system under consideration (reprinted, with per-
mission, from [34])
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Table 10.2 Parameters

Parameters Description

H Scheduling horizon

Nappliance,h Number of home smart appliances for house h

Nh Number of houses

ni Number of energy phases of appliance i

Ei, j Energy requirements for energy phase j of appliance i

Pi, j , Pi, j Bounds on energy phase power

T i, j , T i, j bounds on number of time slots for energy phase j

of appliance i

Di, j , Di, j Bounds on between-phase delays in the number

of time slots

TPi User time preference interval for appliance i

cgas Fuel (natural gas) cost for the micro-CHP

αs,h Storage energy degradation for house h

cs,h Operating and maintenance cost of the power exchanged with the storage
unit for house h

ηcs,h, η
d
s,h Charging/discharging efficiencies of storage for house h

α1,α0,β1,β0 Parameters of the micro-CHP model

Ppeak,h “Peak signal” for house h (i.e., total slot energy upper bound)

Pheat
chp , P

heat
chp Bounds on micro-CHP thermal power

Pel
chp, P

el
chp Bounds on micro-CHP electrical power

Pgas, Pgas Bounds on micro-CHP gas power

Pheat
hp,h, P

heat
hp,h Bounds on heat pump thermal power to house h

Pel
hp,h, P

el
hp,h Bounds on heat pump electrical power to house h

Ps,h, Ps,h Bounds on the power exchanged with the storage for house h

E s,h, E s,h Bounds on the storage energy level for house h

is weakly dependent on the transient behavior of the fast dynamics and a steady-state
assumption for the components can be safely made without much loss of accuracy.
Thus, the most relevant dynamics are the building thermal dynamics and the storage
dynamics.

The forecasts, parameters and decision variables used in the proposed formulation
are described, respectively, in Tables10.2, 10.3, and 10.4 reported in the appendix.
For further details on the components modeling we refer the interested reader to the
technical report [33].

Forecasts of PV generation are computed by considering efficiency changes due
to the given weather data and taking also other losses (e.g., inverter) into account.

We consider two types of loads:

• thermal loads, i.e., demand levels related to thermal indoor comfort;
• electrical loads, i.e., demand levels related to smart appliances.
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Table 10.3 Forecasts

Forecasts Description

ctariff Electricity tariff

Pheat
h , P

heat
h Bounds on thermal power demand for house h

(corresponding to the thermal comfort range)

COPhp,h Coefficient of Performance (COP)

Pres,h Power generation from renewables for house h

Table 10.4 Decision and logical variables

Variables Description

δchp Off(0)/on(1) state of the micro-CHP

δcs,h,δ
d
s,h Storage charging/discharging state for house h

Pi, j Power profile for each phase

xi, j Indicator of whether a phase is on or off

ti, j Indicator of whether a transition is happening

si, j Indicator of whether a phase has been off

Pgrid
h Importing(positive)/exporting(negative) power from/to the grid for

house h

Pgas Gas power input to the micro-CHP

Pheat
chp,h Micro-CHP thermal power to house h

Pel
chp,h Micro-CHP electrical power to house h

Pheat
hp,h Heat pump thermal power to house h

Pel
hp,h Heat pump electrical power to house h

Pheat
h Thermal power demand for house h

Pc
s,h,P

d
s,h Charging/discharging power exchanged with the storage for house

h

Es,h Storage energy level for house h

symbol description
s scenario index
S number of scenarios

Thermal Loads

Forecasts of the minimum and the maximum thermal energy required to keep the
indoor temperature in the houses within a given comfort range are computed through
a dynamic house model based on forecasts of the weather conditions. The house
model runs on top of the Apros process simulation software [35]. Themodel includes
the energy dynamics of building structure and indoor temperature and account for
the outdoor temperature, the solar radiation and the internal gains from occupants
and equipment. A further extension of the described EMS will include the HVAC
controller described in the previous section.
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Electrical loads

An appliance operation process ismade up of sub-processes called energy phases. An
energy phase is considered uninterruptible, and it consumes a pre-specified amount
of electric energy in order to finish the physical task. Several other technical and
user-specified constraints are included in the problem formulation: (i) both the power
assigned to the energy phase at any time slot and its duration have to take valueswithin
a certain range; (ii) all energy phases associated with a single appliance must be run
sequentially; (iii) delays between the energy phases are considered, but the ordermust
be observed; (iv) for safety reasons, the total power assigned to all appliances at any
moment cannot exceed a limit called peak signal; (v) user-specified time preferences
are included, requiring that certain appliances should be run within some particular
time intervals; (vi) user-specified preferences on appliances are modeled, e.g., a
certain appliance cannot start before some other appliance finishes. Further details
on appliance modeling and technical specifications are provided in [36, 37].

Energy Storage System Modeling

For a storage unit of house h, we consider the following discrete-time model:

Es,h(k + 1) = αs,hEs,h(k) + ηc
s,hP

c
s,h(k)ΔT − ηd

s,hP
d
s,h(k)ΔT,

with 0 < ηc, ηd < 1 accounting for the energy losses and ΔT = tk+1 − tk being a
constant sampling time.We introduce binary variables δcs,h,δ

d
s,h to model the charging

and discharging behavior and rule out the possibility of charging and discharging
during the same sampling period, as expressed in the following constraints

P s,hδ
c
s,h(k) < Pc

s,h(k) < P s,hδ
c
s,h(k)

P s,hδ
d
s,h(k) < Pd

s,h(k) < P s,hδ
d
s,h(k)

δcs,h(k) + δds,h(k) ≤ 1.

Bounds on the storage capacity are included in the modeling, along with limits on
the total number of daily charging and discharging cycles in order to take the state of
health of the ESS into account. Further details on a comprehensive storage modeling
are provided in [36, 37].

Heat pump modeling

Heat pumps are devices able to transfer thermal energy by absorbing heat from a
cold medium (heat source) and releasing it to a warmer one (heat sink). We consider
an electrically operated heat pump, since they are by far the most frequently used.
Since thermal efficiency of heat pump systems depends strongly on the temperature
difference between heat source and sink as well as the overall operating temperature
level, at each time slot, forecasts of the COP based on temperature predictions are
integrated in the proposed control framework in order to predict the future heat
generation from each heat pump (see [34]).
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The following set of constraints model the behavior of the heat pump at each time
slot k and for each house h

Pheat
hp,h(k) = COPhp,h(k) · Pel

hp,h(k)

Pheat
hp,h ≤ Pel

hp,h(k) ≤ P
heat
hp,h

Pel
hp,h(k) ≥ 0,

where COPhp,h(k) is the forecasted COP of the heat pump at time slots k based on
weather forecasts.

Micro-CHP modeling

The component represents a typical micro combined heat and power (micro-CHP)
unit. Themodeling of the component adopts a data-driven approach, where data from
a real-world deployment was used [38], in combination with machine-learning and
Big Data techniques (see [34]). The micro-CHP model is:

Pel
chp =α1 · Pgas + α0

Pheat
chp =β1 · Pgas + β0. (10.19)

10.3.1.2 MPC Problem Formulation

This section outlines the MPC problem formulation. The optimization problem con-
sists of taking decisions on how to optimally schedule production by generators,
storage, as well as controllable loads, to cover the system demand and minimize
the generation costs and the cost of imported electricity from the distribution grid
in the next hours or day. Supply and demand of electrical and thermal energy are
both modeled and handled. The thermal energy is required to provide the needed
thermal comfort to the house occupants, while the electrical energy is needed to run
the smart appliances and the heat pump. The natural gas is required to run the shared
micro-CHP.

At each MPC iteration, the problem is solved based on weather forecasts and the
current system conditions. The computed optimal decision is then adjusted according
to the actual values of the photovoltaic generation and of the heating requirements
from the subsystems. Hence, corrective actions and the corresponding costs are taken
in order to cope with potential imbalances. At the next time step, the MPC problem
is solved again based on updated forecasts and system condition.

The MPC problem can be formulated as a Mixed Integer Linear Program (MILP)
optimization problem. We point out that all the models and constraints described
in Sect. 10.3.1.1 are constraints of theMPC problem.We next define the cost function
and additional constraints included in the optimization problem to be solved at each
MPC iteration. Further details can be found in [34].
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Cost function

The aim is to minimize the cost of satisfying both the thermal and electrical loads,
hence the objective function is

min
H∑

k=1

[ Nh∑

h=1

(
ctariff(k) · Pgrid

h (k) + cs,h · (Pc
s,h + Pd

s,h)
) + cgas · Pgas(k)

]
ΔT .

Electrical and thermal power balance

The electrical and thermal power balances at each house need to be satisfied. At the
current point in time, k, if an appliance is running, the power assigned to the current
energy phase by the optimization problem solved at the previous time slot must be
considered as a critical load for the current time slot, which cannot be rescheduled and
has to be satisfied, since an energy phase is uninterruptible. We denote this amount
of power for the house h as Passigned,h(k).

The balance between electrical energy production and consumption to be met at
each time k for house h, ∀h, k is

Nappliance,h∑

i=1

ni∑

j=1

Pi, j (k) + Passigned,h(k) + Pc
s,h − Pd

s,h + Pel
hp,h + Pel

chp,h − Pres,h = Pgrid
h .

Regarding the thermal energy balance, three energy sources have to be taken into
account to fulfill the thermal requirements: the heat pump, the micro-CHP and the
waste heat generated by running appliances. Studies suggest that 70% of regular
household electric use contributes to the household’s heat demand [39].

The balance between thermal energy production and use to be met at each time k
for house h, ∀h, k is

Pheat
h ≤ 0.7Passigned,h(k) + Pheat

hp,h + Pheat
chp,h ≤ P

heat
h . (10.20)

We remark that the thermal energy demand is optimized through (10.20) such that
the indoor temperature in each house is within a given comfort range.

Micro-CHP model

The micro-CHP is driven by natural gas and generates both electric and thermal
power. The following set of constraints model the behavior of the shared micro-CHP
at each time slot k:

Pel
chp · δchp(k) ≤ Pel

chp(k) ≤ P
el
chp · δchp(k)

Pheat
chp · δchp(k) ≤ Pheat

chp (k) ≤ P
heat
chp · δchp(k)

Pgas · δchp(k) ≤ Pgas(k) ≤ Pgas · δchp(k)
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Nh∑

h=1

Pel
chp,h(k) = Pel

chp(k)

Nh∑

h=1

Pheat
chp,h(k) = Pheat

chp (k)

Pheat
chp,h(k) ≥ 0

Pheat
chp,h(k) ≥ 0,

where Pel
chp and Pheat

chp are defined according (10.19). The constraints above guarantee
that the thermal and the electrical power outputs of the micro-CHP are properly
shared among the houses and the bounds on the power generation and on the gas
power are not exceeded.

Interaction with the grid

The following constraint governs the interaction with the distribution grid

−Ppeak,h <= Pgrid
h <= Ppeak,h.

The peak signal is provided by the external power grid operator, which can be a
demand response signal. The houses have the possibility to sell power to the grid
(i.e., Pgrid

h can be negative).

10.3.2 Modeling User Behavior Uncertainty

The MPC problem described in Sect. 10.3.1 can be extended by taking into account
the user behavior uncertainty in scheduling shiftable appliances. The idea is to map
the uncertainty on the decision variables (e.g., starting time of appliances) to an
equivalent uncertainty in the weighted sum tariff, which is illustrated in Fig. 10.6.
Deviating from starting times x1 and x2 by at most M time slots (MΔt) turns into a
variability of the tariff by at most Δy1 and Δy2, respectively. The parameter M can
then be defined based on empirical models of the users, e.g., trained from historical
data.

Deviating from the optimal start time of appliances can be considered as variability
in the tariff curve. A reasonable expression for defining this uncertainty for each time
slot k,i.e., εk , is

εk =
max(Ck

λ,
k+M∑

i=k−M

Ci
λ

2M+1 ) − Ck
λ

max(Ck
λ,

k+M∑

i=k−M

Ci
λ

2M+1 )

which is a function of the tariff curve within an interval of ±MΔt minutes in the
neighborhood of time slot k.



280 A. Parisio et al.

Fig. 10.6 Converting the user behavior uncertainty to tariff uncertainty (reprinted,with permission,
from [36])

When considering uncertain parameters in the cost function, a robust approach
can be applied in order to obtain schedules of shiftable loads that are less sensitive
to uncertainty in the user preferences. A robust solution should be feasible in all
scenarios that uncertain parameters variations could define, i.e., all the possible tariff
curves described by εk . This comes at the cost of a degradation of the objective
value, which could be excessive as some of the uncertain scenarios rarely occur. This
increase in cost over the nominal solution is the so-called price of robustness [40].
In order to prevent overly conservative solutions, the robust optimization approach
described in [41, 42] is applied,which considers a tunable degree of robustness. In this
formulation, the degree of uncertainty and the level of conservatism of the solution,
and the increase in cost, can be regulated by a parameter. The authors in [40, 41]
prove that the obtained robust solution will be feasible with high probability. Details
on this robust scheduling framework for shiftable loads can be found in [36].

We remark that the proposed framework can be generally applied to other scenar-
ios where different sources of uncertainty and different optimization criteria must be
considered. For instance, εk can represent the variation from the day-ahead price at
time slot k in the real-time energy market, while different optimization criteria can
account for the user comfort or the demand peak reduction.
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Fig. 10.7 Schematic of interconnected apartments and aggregator (reprinted, with permission,
from [37])

10.3.3 A Distributed Approach for Coordinating Shiftable
Loads and Storage Systems

When the number of subsystems increases, the centralized approach described so far
can be prohibitive and a reasonable solution is to design distributed control architec-
tures, which allow more flexibility in operation and simplified design and tuning.

In this section, we outline a distributed approach to solve the problem of coordi-
nating a set of smart appliances located in N apartments sharing an ESS, as shown in
Fig. 10.7. Each apartment can profit from the use of the shared storagewhile technical
and operational constraints, as well as user preferences, are satisfied. Since storage
devices are still expensive, a reasonable solution to afford the expense and benefit
from the use of an ESS would be to share it among several consumers. Therefore,
households should be coordinated by an aggregator, which acts as mediators between
users and the utility operator [43]. In order to manage a large set of appliances, we
propose an iterative hierarchical approach. We distribute the decision-making mech-
anism by formulating problems at apartment and aggregator levels. Each apartment
is equipped with an HEMS for scheduling the shiftable loads by taking the user
preferences and all the technical and operational constraints into account. The local
HEMSs are coordinated by the aggregator in order to provide economical incentives
to the users on reshaping their demand profiles, guaranteeing that the benefits of
using a shared resources are fairly allocated to the users. The framework includes
the possibility of buying/selling from/to the distribution grid. The steps of the pro-
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posed algorithm are detailed in Algorithm 2. In the initialization step, the aggregated
demand profile is computed by the aggregator considering the overall energy require-
ments from the users, the shared ESS technical and operational constraints, and the
interaction with the grid, while each user sends to the aggregator the preferred indi-
vidual energy profile based on their own needs and preferences, without accounting
for the shared resources. The maximum profit obtainable by optimally utilizing the
shared resource is then calculated. At subsequent iterations, the aggregator requires
each user to shift their energy demand taking also their preferred profile into account,
while each individual user aims at optimizing their shiftable load schedule accounting
for the requests from the aggregator, based on pre-arranged incentives and penalties.
The profit obtainable by the use of the shared resource and the interaction with the
grid is calculated at each iteration and equally allocated to the users. Problems at user
levels aim at minimizing the energy costs, while the problem at aggregator level max-
imizes the overall profits. The algorithm terminates when either all the users accept
the energy shift requests, or when a maximum number of iterations is reached. The
solution computed at each iteration l ≥ 2 is then guaranteed to be feasible and to
ensure fair allocation of profits.

Algorithm 10.2 Distributed algorithm
1: Initialization and computation of the aggregated demand profile
2: for l = 1, 2, . . . ,MaxIteration do
3: each user level HEMS computes and sends its preferred power profile to the aggregator
4: the aggregator calculates the optimal power shift requests aiming at maximizing the overall

profits
5: the aggregator calculates the individual user profits
6: based on these individual profits, each user adjusts its own power profile
7: if all the users accept the power shifts requested by the aggregator then stop, otherwise

compute a new aggregated power profile and repeat the cycle
8: end for

Preliminary simulation results considering four apartments with three appliances
and one shared storage device show that the electricity cost resulting from the final
iteration of Algorithm 2 is only 1.3% higher than the centralized optimal solution.
On the other hand, the computational time has decreased by two orders of magnitude
with respect to the solution time of the centralized formulation.

We point out that the proposed algorithm is suitable for model predictive control
frameworks and it can be adapted to provide DR services to the grid operator. Further
details can be found in [37].

10.4 Smart Building Demonstrators

In this section, we briefly describe three demonstrators located in Sweden and UK
that support ongoing research activities and experiments on EMS for smart buildings:
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1. the Live-In Lab, a platform for research, development and education in the build-
ing sector;

2. the Manchester Corridor, the Manchester’s cosmopolitan hub and world-class
innovation district;

3. the SICS ICE, a large-scale testing and experimentation data center facility that
supports fully flexible experiments.

10.4.1 KTH Live-In Lab

The KTH Live-In Lab is a platform for research, testing and education to promote
innovation in the building sector and it consists of both virtual and physical test
environments.

The Live-In Lab consists of a set of three residential buildings, currently under
construction, for approximately 300 studio apartments; it is located in the main
campus at KTH, Stockholm, Sweden. Heating and cooling power to the buildings are
provided by ground-source heat pumps. Heat is distributed airborne to the apartments
through a TermoDeckTM [44] system that provides ventilation and heat distribution at
the same time. In the TermoDeckTM system, air for ventilation is delivered through
pipes embedded in the concrete slabs, allowing pre-heating or pre-cooling of the
slabs before air is introduced in the living spaces; these features make it crucial
for efficient energy management to effectively control the delays introduced by the
thermal masses. Electricity is generated locally with PV panels installed on the flat
roof, and the installation of storage systems, in particular batteries for electricity, is
under discussion.

The buildings comprise so-called Passive and Active parts. The Passive part
accounts for the majority of the floor area and is designed to be extensively equipped
with state-of-the-art sensor devices to accurately log indoor and outdoor environmen-
tal parameters (e.g., temperature, humidity, light, etc.) for continuous and real-time
monitoring of indoor comfort and energy use. In the initial phase of the project, the
Passive part will be used only for monitoring. The Active part accounts for approx-
imately 300m2 and will be used for more active testing: the experimental setup,
including the layout of the apartments comprised in this area, will be periodically
changed, allowing a holistic approach to research in buildings. The Active part has a
dedicated heating and cooling system and the energy is provided with a separate heat
pump and boreholes; advanced monitoring and control will be tested and fine-tuned
there to be then applied to the rest of the building.

10.4.2 Manchester Corridor

The Corridor is Manchester’s innovation district, a unique business location at the
heart of the knowledge economy, generating around 20% of the city’s economic
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output. It covers some 243 hectares, with a 60000-strong workforce (over 50% are
employed in knowledge-based sectors), 72000 students and is the location of the
largest clinical academic campus in Europe. It is home to a dense clustering of inno-
vative science and technology businesses, world-class research centers, universities,
leading NHS trusts, with a large-scale and transformational infrastructure investment
committed to 2020. It provides an ideal testbed for innovation as a microcosm of city
activity, driven by the thought leaders on its doorstep and in its institutions.

Corridor Manchester is working toward becoming one of the most sustainable
urban locations in Europe and an exemplar for other cities. One of the main objective
is to reduce the carbon footprint through the more sustainable management of energy
andwaste. TheCorridorManchester area is currently one of the demonstrator sites for
the Triangulum project [45], a Horizon 2020 Lighthouse project running until 2019,
to demonstrate smart green growth across energy, mobility, and ICT. The Innovate
UK Internet of Things City Demonstrator project, CityVerve [46], will also be taking
place in the CorridorManchester area with Environment &Energy being a key theme
within this project.

10.4.3 SICS ICE

The Swedish Institute for Computer Science (SICS) Infrastructure and Cloud data
center test Environment (ICE) research data center project [47] aims at supporting
universities and industries with a large-scale data center infrastructure and cloud
facility to be used for research, testing and demonstration purposes, especially on
topics related to energy efficient software, hardware and infrastructure management
(thus also its HVAC systems). The data center can be used by anybody with the for-
mula pay-per-usage to perform tests and experimentation, and enables us to perform
large-scale tests to generate realistic data.

The ICE data center is composed of different modules located in neighboring
rooms and dedicated to different types of potential tests. Upon completion, forecasted
in 2017, ICE will host around 5000 servers plus all the infrastructure needed to
support running these devices (e.g., batteries forUninterruptible Power Supply (UPS)
purposes,ComputerRoomAirConditioning (CRAC)units, SupervisoryControlAnd
Data Acquisition (SCADA) systems, and data visualization facilities) for a total of
approximately 2MW peak electrical power consumption.

The facility is located in themunicipality of Luleå, in northern Sweden, a favorable
location for placing data centers due to the extensive optic fiber capacity, the positive
local electrical energy balance (mainly based on renewable energies), and the extreme
stability and redundancy of the local electrical network.

As specified in Sect. 10.5, this facility can be used for performing tests related to
the coordination of the electrical loads of different buildings. The facility supports
remote experimentation, in the sense that researchers can deploy control software
and perform experiments remotely.
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10.5 Coordinating Data Centers and Buildings
for a More Effective Load Management

Data centers are “facilities that centralize an organization’s Information Technology
(IT) operations and equipment, and where they store, manage, and disseminate their
data” [48]. In practice, they are facilities hostingmassive amount of computer systems
running IT applications, and they can be placed in containers, in dedicated rooms,
or even in dedicated buildings.

We can schematize a data center as in Fig. 10.8. IT requests are processed by the
various servers, and this produces heat that must be rejected to prevent overheating
and thus failure of the servers. An essential component in the control of a data center
is played by the IT scheduling algorithm, that decides which server should process a
certain IT load. The importance of the IT scheduler can be appreciated noticing the
usual structure of an air-cooled data center1 in Fig. 10.9a and b: allocating IT loads
in a place that is currently overheated or difficult to cool may induce hot-spots (and
thus failures) and thermal inefficiencies. The IT allocation should thus account also
for the thermal dynamics in a data center.

Single data centers may reach electrical power consumptions of more than 100
MW [49] and have industrial-scale operations. They thus have big impacts world-
wide: for example, in Europe in 2013 data centers accounted for 3% of the total
electric energy consumption (for corresponding emissions of 38.6 million metric
tons of CO2) [50], and it is moreover forecast that by 2020 in Europe 60 other large
data centers with more than 1000 servers racks will be built.

Depending on the data center structure and technology, cooling of the server
halls accounts for up to 40% of the electrical consumptions. Heat recovery is not
yet a widespread solution in data centers management, since the currently dominant
cooling strategy is indeed air-based with exhaust coolants having a quite low exergy
(air up to 45 °C and with a dew point between 5.5 and 15 °C). A noticeable exception
to this trend is the open district heating project in Stockholm [51], where data centers
from different companies (e.g., Ericsson) are currently providing heat to the district
heating system; the exergy of the exhausts is in this case topped up by means of
heat pumps. Forecasts are that in the next decade more and more data centers will
switch to liquid cooling technology (due to higher energy density servers, that will
eventually demand liquid cooling) and thus be integrated into the district heating
networks.

10.5.1 Data Centers as Smart Buildings

Data centers can play several different schemes typical of residential smart buildings.
Indeed:

1Same considerations can be drawn in liquid-cooled data centers.
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Fig. 10.8 Schematic representation of the operations involved in a data center. Users require some
IT services, that are executed by the servers. The corresponding IT load is sorted by the IT scheduler
that associates a certain load to a certain physical server. The server thus generates heat that may
be recovered or rejected by the Cooling Technologies devices. Both servers and CT devices use
electrical power

when considered as elements of the electrical grid, data centers can provide ancil-
lary services like load shifting and load shedding. Indeed data centers’ electrical
consumptions are mainly due to running the servers and the infrastructure for
cooling the servers. Given that it is possible to play pre-cooling schemes like in
other smart residential buildings, it is thus possible to perform load shifting and
load shedding in data centers in a similar way one does it in other smart buildings;

when considered as elements of the thermal grid, data centers can sometimes act
as deferrable prosumers: data centers may figure in this case either in the produc-
tion or in the consumption sides of the network, especially when connected to
cooling grids. In any case pre- and post- cooling, plus temporal shift of deferrable
IT loads means to defer thermal production/consumption loads;

when considered as elements of the information grid: moving photons is cheaper
than moving electrons. Under favorable electricity price conditions, networks of
data centers may use the Internet to communicate and potentially exchange tasks
among them, an operation commonly referred to as geographical load balancing.
Geographical load balancing thus does not just shift IT loads from one location
to an other, but also electrical load requests and potential thermal generation
capability.
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(a) Schematic representation of the typical organization of an air-cooled computer room: warm and cold
aisles alternate each other so to diminish disturbances in the cold-air generation unit.
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(b) Schematic representation
of the typical organization of
an air-cooled computer rack:
servers are piled on each other
so to diminish disturbances in
the cold-air generation unit.

Fig. 10.9 a Schematic representation of the typical organization of an air-cooled computer room:
warm and cold aisles alternate each other so to diminish disturbances in the cold-air generation unit
b Schematic representation of the typical organization of an air-cooled computer rack: servers are
piled on each other so to diminish disturbances in the cold-air generation unit
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Fig. 10.10 Data centers are consumers in the electrical network, are potential producers in the
thermal network, and are prosumers in the information network

The schemes listed above explain why data centers can act as bridges between
three types of networks: electrical, thermal and information networks, as graphically
shown in Fig. 10.10. This means that data centers are viable players in the smart city
environment: obviously, depending on the data center type and electrical/thermal
network conditions, one may interplay different types of coordination and synergies.
The simplest one is when a single building contains a data center room, as in [52],
where heat recovery and electric consumptions can be coordinated directly at a single
building’s level. More complicated situations may instead require networked control
strategies.

10.6 Conclusions and Future Directions

Implementing the next-generation smart energy grids requires buildings that can
manage flexible loads, multiple performance criteria, local generation, storage sys-
tems and DR policies. These buildings, moreover, shall embed user comfort and
preferences during their daily operations. All these requirements entail the need of
control schemes that are predictive and allow seamless coordination among differ-
ent entities. Buildings can indeed help flatten the aggregated demand curve in the
electrical network and thus reduce the number of expensive generation plants used
for peak load periods.
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A natural scheme for optimally operating buildings while accounting for all these
aforementioned requirements is MPC, since it allows for flexibility in the design of
control objectives.

In this chapter we showed how the basic idea of using a MPC strategy for the
management of a smart building can be further refined following some specific direc-
tions: the first is taking into account uncertainties, i.e., making the control scheme
robust against imprecise models or imprecise knowledge about the future. Numer-
ical experiments performed in daily-life conditions then showed that our approach
of following a scenario-based SMPC approach led to effective results in terms of
energy savings versus keeping comfortable conditions in the building.

The second direction is formulating the controller so that its implementation
complexity is sufficiently low to be implementable in real-world situations. Also in
this case, we performed numerical experiments and found that converting the implicit
MPCs mentioned above into their explicit versions was leading to effective control
schemes.

Furthermore, we described how local generation and storage systems can be inte-
grated into a building energy management framework.

Ongoing and future studies aim at extending the proposed EMS framework to
other energy systems and additional DER and control objectives. In particular, it
is possible to design distributed, integrated and holistic approaches for the man-
agement of networks of thermal and electrical energy systems in coordination with
network operators. With this approach the overall energy management problem can
be solved in a distributed fashion, aiming to compute feasible solutions to the energy
management problem addressing the issue of scalability and taking advantage of
opportunities afforded by flexibility services and distributed generation.
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