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Abstract—In this paper, we propose a robust approach for sched-
uling of smart appliances and electrical energy storages (EESs) in
active apartments with the aim of reducing both the electricity bill
and the CO emissions. The proposed robust formulation takes the
user behavior uncertainty into account so that the optimal appli-
ances schedule is less sensitive to unpredictable changes in user
preferences. The user behavior uncertainty is modeled as uncer-
tainty in the cost function coefficients. In order to reduce the level
of conservativeness of the robust solution, we introduce a param-
eter allowing to achieve a trade-off between the price of robustness
and the protection against uncertainty. Mathematically, the robust
scheduling problem is posed as a multi-objective Mixed Integer
Linear Programming (MILP), which is solved by using standard
algorithms. The numerical results show effectiveness of the pro-
posed approach to increase both the electricity bill and CO emis-
sions savings, in the presence of user behavior uncertainties. Math-
ematical insights into the robust formulation are illustrated and the
sensitivity of the optimum cost in the presence of uncertainties is
investigated. Although home appliances and EESs are considered
in this work, we point out that the proposed scheduling framework
is generally applicable to many use cases, e.g., charging and dis-
charging of electrical vehicles in an effective way. In addition, it is
applicable to various scenarios considering different uncertainty
sources, different storage technologies and generic programmable
electrical loads, as well as different optimization criteria.

Note to Practitioners—This paper has been motivated by the
problem of reducing electricity bill and CO emissions related
to the energy consumption in active apartments equipped with
automation system, smart appliances, and EESs such as batteries.
By considering users in the center of automation processes, it
is fundamental for industrial practitioners to take uncertainties
related to the user behavior into account. This means that users
might decide to run appliances earlier or later than the optimal
starting times computed by the automation system, based on
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given user preferences. Thus, neglecting the uncertainties related
to the user behavior can considerably reduce the effectiveness
of the optimal solution and lead to an actual expensive or not
environment friendly schedule. To address this issue, we propose
a robust optimization approach to the scheduling problem. The
robust problem is posed as a MILP and solved by CPLEX (using
the YALMIP MATLAB interface), which is a commercial imple-
mentation of a branch-and-bound algorithm. Having real energy
consumption data from active apartments in the Stockholm Royal
Seaport project, a numerical study is conducted in this paper.
Simulation evaluations show that the proposed robust approach
can improve both the CO emissions and electricity bill savings to
a large extent.
Index Terms—Demand response, mixed-integer linear pro-

gramming, multi-objective robust optimization, robust scheduling
of smart appliances, user behavior uncertainty.

NOMENCLATURE

In the following, superscript means time slot .
Continuous decision variables:

Energy of phase of appliance .

Exchanged power with the grid.

Level of energy stored in the EES.

Power exchange for charging the EES.

Power exchange for discharging the EES.

Binary decision variables:

Indicates whether an energy phase is being
processed or not.

Indicates whether an energy phase is already
finished.

Indicates whether the EES is charging.

Indicates whether the EES is discharging.

Indicates the transition time slots to start charging.

Indicates the transition time slots to start
discharging.

User input parameters:

Preferable finishing operation time of appliance .

Maximum deviation from optimal starting time.

Weighting parameter in the cost function.

1545-5955 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



248 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 1, JANUARY 2016

Known (or computed based on user input) parameters:

Number of appliances.

Number of time slots in one day.

Each time slot duration.

Normalized electricity bill.

Normalized CO foot-print.

Maximum charging and discharging cycles
during one day.

Weighted sum of electricity tariff and CO
footprint.

Uncertain weighted sum of electricity tariff and
CO footprint.

Uncertainty level.

Protection (robustness) level.

I. INTRODUCTION

A. Motivation

R ESIDENTIAL areas are responsible for nearly 40% of
the energy consumption and CO emission in developed

countries. These areas are known to have significant potential
for energy and cost savings, as well as load shifting (loads are
classified as controllable (interruptible and non-interruptible)
and uncontrollable), compared to industry and transportation
[1]. Therefore, automation systems can be used to assist res-
idents to take advantage of these potentials [2], [3]. Demand
response (DR) has received increased attention in recent years
since it can efficiently support load balancing and econom-
ical/environmental cost reduction [4], [5]. DR is commonly
defined as changes in electricity use by consumers in response
to changes in the electricity price over time [4], and help power
markets set efficient energy prices, mitigate market power,
improve economic efficiency, and increase safety [6]. Several
studies have investigated the potential changes in residential
electricity use under time-varying price rates by rescheduling
smart (possible to control remotely) appliances [7]–[9]. The
electricity use can also be sensitive to dynamic CO intensity
that is included in the demand response [10]. Thus, several
works have focused on CO emission factors and its potential
impacts on the changes in household load profile, e.g., see
[11], and proposed load management strategies accounting for
both price and CO information (e.g., see [3], [12]–[14] and
the Stockholm Royal Seaport project1). To achieve energy and
cost savings and have effective DR policies, home appliances
are required to be smart and have the ability of being switched
on or off remotely and in response to price and CO signals.
Furthermore, electrical energy storage (EES) technologies
[15] can be integrated with DR policies to store energy and
release it when it is more convenient [3], [16], [17]. Thus, in

1[Online]. Available: http://www.stockholmroyalseaport.com/en/

this work, we consider active apartments (which are apart-
ments where effective DR policies are enabled through the
integration of smart appliances, scheduling algorithms, energy
management systems, and information exchange over wireless
communication technologies), to be equipped with also EES.
We then take advantage of the modeling capabilities and the
computational advances of Mixed Integer Linear Programming
(MILP) algorithms for stating a scheduling problem for smart
home appliances and EESs that aims at achieving a trade off
between electricity costs and CO emission savings.
However, effective DR policies for automated active apart-

ments equipped with smart appliances and EESs have to face
several sources of uncertainty.

B. Literature Review

Uncertainties in DR strategies may cause considerable deteri-
oration in the expected outcomes (electricity bill and CO emis-
sion savings), and should be taken into account. Some of these
uncertainties are related to the DR signals, in which electricity
tariff and CO footprint are subject to real-time amendment or
forecasting errors. Coping with these uncertainties has been in-
vestigated in previous studies [6], [18]–[20]. Other sources of
uncertainty handled in the literature are related to the user be-
havior. In [21], optimization of energy demand in residential
areas is carried out for different occupant behavior scenarios
(i.e., occupancy patterns or operation schemes). The authors
propose a mechanisms that will provide building designers with
solutions that are robust against these unknown occupant behav-
iors. An everyday energy-related behavior in 57 Swedish homes
has been studied in [22]. The majority of residents in that work
showed different energy-related behaviors, which indicates that
strategies to influence the behaviors are required.
One should notice that, by considering the multi-user be-

havior and applying multi-strategies to influence the behavior,
it is still unrealistic to assume perfect knowledge of users'
energy need. An optimization-based real-time residential load
management algorithm has been proposed in [23], which takes
into account uncertainties related to the power consumption
and starting time of uncontrollable loads, in order to minimize
the energy payment for each user. In addition, the authors of
[16] propose an energy efficient scheduling algorithm taking
into account the uncertainty in appliances energy consumption.
The novelty in that work is the introduced energy consumption
adaptation variable, which is used to model the stochastic
energy consumption patterns for various household appliances.
Based on our knowledge, in the literature only uncertainties

related to the predicted starting time of uncontrollable appli-
ances, or uncertainties related to the amount of consumed en-
ergy by each appliance have been considered. It is important
to also take into account the customer behavior uncertainty in
scheduling of controllable appliances, which is our focus.

C. Statement of Contribution

The minimum value of the cost function achieved by solving
the scheduling problem might increase too much if the users
decide to run appliances earlier or later than the optimal starting
times computed by the automation system.



PARIDARI et al.: ROBUST SCHEDULING OF SMART APPLIANCES IN ACTIVE APARTMENTS WITH USER BEHAVIOR UNCERTAINTY 249

The main contribution of this paper is to cope with the uncer-
tainty in the customer behavior for scheduling non-interruptible
controllable appliances. It is known that the uncertainty can
be handled by stochastic programming and robust approach,
and stochastic programming generally requires higher compu-
tational burden (e.g., see numerical evaluations in [6], which
indicates that the scenario based stochastic approach intro-
duces higher computational burden than the robust approach).
However a robust approach is more computationally appealing,
it can lead to a conservative and potentially more expensive
scheduling of appliances. This shortcoming can be effectively
handled by the approach described in [24] and [25], which is
adopted in this study. In this paper, uncertainty in the customer
behavior is considered as a disturbance on the control signal
(starting time of appliances), and we map this disturbance to the
uncertainty in the cost function coefficients. After this mapping,
the robust optimization approach described in [24] and [25] is
applied, which considers a tunable degree of robustness, and it
can decrease the price of robustness [26].
Another contribution here is the numerical study based on

real energy consumption data from active apartments. We in-
vestigate the impact of DR policies on electricity price and CO
savings in the presence of user behavior uncertainties. Simula-
tion results show that the proposed robust scheduling algorithm
increases the electricity bill saving and CO saving compared
to the non-robust one, when variability in the tariff (uncertainty
level) is high.
We point out that the proposed scheduling framework is ap-

plicable to scenarios with various uncertainty sources, storage
technologies, generic programmable electrical loads, as well as
different optimization criteria. The remainder of this paper is or-
ganized as follows.

D. Outline

Section II presents the problem formulation and describes
how the proposed scheduling framework can be applied to
relevant practical use cases. To cope with the uncertainty in
the customer behavior in scheduling of controllable appliances,
Section III proposes a robust scheduling algorithm for smart
appliances and EESs. Section IV presents numerical results
and discusses performance of the proposed robust approach
in terms of sensitivity analysis, electricity price, and CO
emission savings. Finally, Section V provides conclusions and
suggestions for future studies.

II. PROBLEM FORMULATION AND MODELING

The aim of scheduling smart appliances in active apartments
is to reduce the electricity bill and CO emission. As it was
mentioned in [3] and [14], there exists a tradeoff between elec-
tricity costs and CO emission in certain countries including
Sweden. During the daytime, Sweden utilizes its relatively clean
energy sources such as hydro power plants and nuclear power
plants, while during nighttime it imports relatively inexpensive
but CO intense energy from Denmark, Germany and Poland
whose primary energy source is combustive fuel power plants
[14]. Thus, to minimize electricity bills and CO emission at the

same time, different methods have been proposed for optimal
scheduling of appliances to deal with this possible conflict and
tradeoff. Weighted sum and -constrained approaches are two
of these methods that have mostly been used in the literature
[3], [13], [14], [27]. Thus, the problem is a multi-objective min-
imization of electricity bill and CO emission, and there exist
constraints on the user preferences and operation process of ap-
pliances. This means that we are concerned with the scheduling
of a number of home appliances in a certain period of time, in
which the user can specify precedence relations between certain
appliances (user preferences). In this scheduling framework, the
operation process of an appliance is divided into a set of sub-
tasks (energy phases) of the appliance operation (i.e. movement,
pre-heating, and heating, for washing machines [13]) and it is
considered that, once an energy phase starts, it must continue
until it is finished. In addition, there exists a flexible delay be-
tween energy phases of each appliance that is modeled by amin-
imum and maximum delay time (constraints on the operation
process of appliances). In this paper, we formulate the smart
home appliances scheduling problem with EES in a mixed-in-
teger linear programming (MILP) framework, as was discussed
in [3], which considers the minimum electricity cost and CO
emission, and satisfies technical operation constraints of smart
appliances and EES, and consumer preferences. To extend the
formulation proposed in [3], uncertainties related to the cus-
tomary running of appliances have been considered here, and a
robust MILP framework is proposed. Electricity tariff and CO
footprint signals are assumed to be piecewise constant, and the
MILP scheduling problem is solved using CPLEX (using the
YALMIP MATLAB interface [28]), which is a commercial im-
plementation of a branch-and-bound algorithm.

A. Optimal Scheduling of Appliances and EESs

In the mathematical formulation for scheduling of smart ap-
pliances in [3], the appliances execution period is discretized
into uniform time slots (e.g. minutes per slot).
The number of appliances considered for scheduling is denoted
by , and for , denotes the number of un-
interruptible energy phases for each appliance. The energy as-
signed to energy phase of appliance during the whole period
of time slot is denoted by . In addition, auxiliary binary
decision variables are required to indicate whether a par-
ticular energy phase is being processed or not. Moreover, two
other sets of binary decision variables are needed to model the
decision problem. One is denoted as , with a value of one in-
dicating that, in appliance , energy phase is already finished
by time slot . The other set is denoted as . These decision
variables are used to indicate whether, at time slot , appliance
is making a transition between running phase to . In

that paper, to minimize the electricity bill and CO emission, a
multi-objective optimization problem is proposed subject to the
following constraints.
The constraint that is enforced to make sure that the energy

phases fulfill their energy requirement is as

(1)
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where is the energy requirements for energy phase in
appliance . To determine that the lower and upper power lim-
itation being assignment to the phase are satisfied, during time
slot , the constraint

(2)

is enforced, and the and are the lower and upper limits.
Also, the power safety constraint can be imposed as

(3)

is the upper limit of the total energy assigned at time slot .
The limits on energy phases process time are imposed as

(4)

where the and are the lower and upper limits of the
number of time slots for energy phase in appliance to be
processed. To satisfy the sequential processing of the energy
phases of an appliance and also sequential operation between
appliances, the following constraints are imposed respectively

(5)

where is the index of the appliance which must be finished be-
fore the appliance with index can start running. To make sure
that the energy phases are uninterruptible the following con-
straint is imposed:

(6)

To increase the benefits fromDR signals, delays between energy
phases are considered to be flexible in the smart appliances. This
gives the smart appliances the capability of flexible electricity
consumption to help the consumers to reduce electricity bill and
CO emission. To count the number of time slots spent between
the energy phases in an appliance and impose lower and upper
limits (which are technical specifications of each appliance and
are provided by companies) on these numbers, the constraints

(7)

(8)

are considered, where and are between-phase delay
lower and upper bounds, respectively. Finally, to meet the
household preferences and finishing a particular appliance
within a specified time interval, the constraint

(9)

is enforced, and is the time preference interval.

To include an EES in this framework, the following set of
constraints is defined in [3].
The level of energy stored in the EES at time slot , should

always satisfy the lower and upper limitations

(10)

where is the state of charge of the EES in time slot .
Moreover, to meet the lower and upper limitations on power ex-
changed with the EES when it is charging or discharging during
time slot , the two constraints

(11)

are enforced, in which the auxiliary binary decision variables
and indicate whether the EES is charging or discharging

in time slot , respectively. The power exchanged with the EES
during time slot is denoted by (or ) when the EES is
charging (or discharging). In addition, the constraint

(12)

should be satisfied to make sure that the EES is not charging and
discharging at the same time slot. To take the state of health of
EESs into account, the total number of charging and discharging
cycles during a day should be limited to a determined number

, and the constraints

(13)

should be satisfied, where the binary decision variables and
determine the transition time slots to start charging and dis-

charging, respectively. The dynamic system constraint

(14)

describes the evolution of energy stored in the EES, in which
the is a constant stored energy degradation in each sampling
interval, and and are efficiencies accounting for the losses
during charging and discharging. To satisfy the power balance
in the system, the constraint

(15)

is enforced, where the exchanged power with the grid is denoted
by , and it should satisfy lower and upper limitations

(16)

where the lower limit is negative to allow energy selling to the
grid. Finally, it is reasonable to assume that the initial and the
final energy levels ( and respectively) in the EES are the
same, since the final energy level is also the initial condition
for the next day scheduling. Hence, the following equality con-
straint on the initial and final is enforced

(17)
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Moreover, the initial level should be sufficiently high to allow a
flexible use of the EES: in this study, we assume

. One can also consider as a variable, corresponding
to the measured energy level of the EES at the beginning of the
day. Now the proposed multi-objective optimization problem of
jointly scheduling smart appliances and EES could be written as

(18)

which is called nominal problem (NOM) in this paper. In the
objective function, the weighted sum of electricity tariff and
CO footprint is denoted by , and
is the total energy exchanged by the grid at time slot . Note
that the cost function is parameterized by the weighting param-
eter (that would be chosen by end-users), in which

implies end-users only care about the electricity bill,
while for they only take CO emission into account.
Thus, by changing the parameter from 0 to 1, and solving the
minimization problem in (18), the convex hull for the Pareto
curve [29] of our multi-objective minimization problem would
be generated. The following normalizations are applied in (18)
to yield

(19)

where and denote the electricity bill and CO foot-print
for time slot respectively and based on given 24-h ahead tariff
curves (which are piecewise constant).

B. Use Cases
Here, we describe how the proposed scheduling framework

can be applied to relevant practical use cases and capture rele-
vant real-world scenarios.
1) Power Consumption of Active Apartments: One appli-

cation area of the proposed scheduling framework is active
apartments. To show the effectiveness of the proposed approach
(to increase electricity bill and CO emission savings), we
consider the active apartments in the residential area in the
Stockholm Royal Seaport (SRS) project in this paper. Since
some real data of electricity consumption from SRS project
are available, a numerical study based on that is done in this
paper (see Section IV). Utility companies and the automated
active apartments are the players in this study. In each of
those apartments, effective DR policies (which are defined by
the utilities) are enabled through the integration of necessary
components including smart appliances, ESS, scheduling algo-
rithm and energy management system. In addition to the DR

signals (which are sent by utilities), information exchange over
wireless communication technologies among the components
is part of flow in this study. Precisely, the proposed scheduling
algorithm take as inputs the day-ahead electricity tariff and
CO footprint [which are released by utility companies and are
normalized in (19)], and also household time preferences (to be
applied in (9)). Then to minimize the electricity bill and CO
emission of electricity consumption of an active apartment, an
operation scheduling for the smart appliances and EES should
be generated by the algorithm to minimize the cost function
in (18). This operation scheduling should meet the energy
constraints of smart appliances [the constraints from (1)–(3)],
the time constraints of smart appliances [the constraints from
(4)–(9)], and the operational constraints of the EES [the con-
straints from (10)–(17)].
2) Power Consumption of Electric Vehicles (EVs): Another

application area of our mathematical framework is transporta-
tion, which is the other major contributor to energy use. Trans-
portation increases green house gas in the atmosphere and is
one of the largest fossil fuel users in the world [30]. Thus, EVs
have the potential of reducing fuel consumption and CO emis-
sion, and optimal scheduling for charging and discharging the
batteries in the EVs is a key to integrate large numbers of them
in the smart grid. By optimal scheduling, EVs could function
as distributed generation and energy storage, supply loads, and
smooth the unpredictable renewable generation (e.g. wind and
solar energy). The same formulation discussed in this section is
applicable for the EVs, which can be considered as chargeable
batteries. The formulation discussed in this section can be appli-
cable for EVs with a slight modification considering that an EV
may drive during some periods in a day. Thus, to integrate EVs
in the automation systems, time preferences for EV batteries are
to be modeled in the problem formulation [similar to the time
preferences introduced for smart appliances in (9)]. Hence, the
following constraints have to be added to the constraint defined
from (10) –(14), the constraints

(20)

where and characterize time preference intervals for
charging and discharging of EV battery respectively. By con-
sidering users in the center of automation process for energy
consumption of active apartments and EVs, it is important for
industrial practitioners to take uncertainties related to the user
behavior into account (see Section III).
3) Carbon Pricing: In addition to the application areas of our

framework discussed above, another relevant application area
concerns environmental-related taxes and carbon pricing. The
global increase in emissions raises the need of designing an ef-
fective set of environmental-related taxes that effectively reduce
the global energy-related CO emissions, which should be based
on the carbon content of fossil fuels that are purchased and con-
sumed. In this context, carbon pricing is a central issue. Current
prices put on carbon by means of taxes or emissions trading sys-
tems in developed countries, including Sweden, are generally
much lower than those needed to limit the global average tem-
perature increase. Governments should therefore take measures
to reduce the entire carbon footprint rather than their territorial
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emissions; namely, an optimal policy for global pollutants like
CO must consider the implications of international trade [31],
[32]. Further, since households have generally a relevant im-
pact on the carbon footprint, changing household consumption
patterns is central to achieving sustainable development and in-
centivize substantial behavioral adjustments to be successful in
the climate change challenge. Consider Sweden, for instance.
In Sweden, the majority of the impact on the carbon footprint
is caused through households (76%) [33]. In the current institu-
tional Swedish setting, a low carbon lifestyle is not sufficiently
rewarded. Besides, the biggest portion, 43%, of the total costs
for electricity currently paid by the Swedish consumer are en-
vironmental taxes (i.e., an energy tax and a quota obligation
assigned to the electricity end-users for renewable electricity)
and a value added tax; however, these environmental taxes for
households account for other external effects than CO emis-
sions, such as noise, congestion and road wear from traffic [34].
In this scenario, our framework can provide useful insights

into behavioral adjustments for households and a more effective
carbon pricing, which accounts for the global damage of emis-
sions. In the following, we show how the objective function of
the problem NOM can be modified to include carbon pricing.
Consider, for instance, that the carbon price is set as CO Euro
per kg of CO emitted; hence, the emission cost per kWh of ex-
changed power at each time slot is CO Euro. The
objective function of (18) can be slightly modified to include
the environmental taxes as , where
and are obtained by normalizing respectively and with
respect to the total electricity price per kWh for the consumers
at time slot . By doing so, lambda can be interpreted as the per-
centage of the total cost associated to the carbon content of the
electricity consumed; thus, our framework can give indications
of how to incentivize a desired user behavior.

III. ROBUST OPTIMAL SCHEDULING OF SMART
APPLIANCES AND EESS

In the optimization problem (NOM) discussed in the pre-
vious section, there exist several sources of uncertainty. For
example, electricity tariff and CO footprint are subject to
real-time amendment or forecasting errors, and it is unrealistic
to assume perfect knowledge of users' energy need. Thus,
the minimum value of the cost function achieved by solving
NOM problem, might increase too much according if the user
behavior deviates from the forecasted one.
In this section we apply some robust optimization techniques

to the scheduling problem of smart appliances and EESs in order
to produce robust solutions which are in a sense immune against
bounded uncertainty.
In the recent works that focus on reducing the monetary ex-

pense of customers, CO emission, and peak-to-average ratio of
the system based on scheduling of appliances, the uncertainties
related to customary energy consumption are not considered,
which is however quite important. That means, by running the
optimization scheduling algorithm, the automation system will
achieve optimal points of running appliances, but there exists
uncertainty in the user behavior, and they might run the appli-
ances earlier or later. Thus, in the MILP problem that we are
faced with, the uncertainty is on the decision variables, while

in the literature the coefficients of the inequality constraints are
assumed to have uncertainty [24]–[26]. The idea here is to map
the uncertainty on the decision variable to an equivalent uncer-
tainty in the weighted sum tariff, which is illustrated in Fig. 1.
As should be clear from this figure, deviating from starting times

and by at most time slots , turn into a vari-
ability of the tariff by at most and , respectively. The
parameter can be defined based on the empirical model of the
users, by having the historical data related to the uncertainties
in their behaviors. This means deviating from the optimal start
time of appliances, would affect the cost function, and could
be equivalently considered as variability of the tariff curve that
depends on the behavior of the curve in the neighborhood of
starting time. Thus, the variability in the tariff curve is consid-
ered as the uncertainty in , and similar to what is done in [25]
the NOM problem in (18) can be expressed in a generalized way
as follows:

(21)

in which the uncertain data range in the interval

(22)

where the parameter is an uncertainty level at time . To
apply the following robust method, is needed to be defined
properly. As was mentioned, deviating from the optimal start
time of appliances, would affect the cost function in accordance
to the behavior of the tariff curve in the neighborhood of starting
time. Thus, in this paper, for time slot , is given as

(23)

which is a function of the tariff curve within an interval of
120 min in the neighborhood of time slot .

Fig. 2 shows that the more variation we have in the tariff curve
in the neighborhood of a time slot, the larger the we have
for that time slot. The uncertain parameter in (22) appears
as linear coefficient in the above inequality constraint and
the robust optimization technique which is described in the
following can be applied for that. Here, it is assumed that the
scheduling of the EES is done by the automation system in the
active apartments and only scheduling of the smart appliances
is faced with uncertainty. The reason is that, the automation
system recommends users when to run the appliances, but
they can choose to ignore the recommendation and run the
appliances earlier or later, but the EES would be scheduled
by the automation system. One should notice that, when the
exchanged power limitation in (16) is low, then customer
scheduling will also affect the battery scheduling, as they are
dependent regarding the (15). This is not the case for Sweden,
and, as the upper limitation in (16) is sufficiently high, the EES
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Fig. 1. Mapping the user behavior uncertainty to tariff uncertainty.

Fig. 2. behavior for different time slot.

will charge when the weighted sum tariff is low and discharge
when it is high and is independent of appliances scheduling.
As is proved in [25], by using the worst-case values of the un-

certain parameter , the problem in (21) can be written equiv-
alently as

(24)

which is called robust optimization problem (ROB) in this
paper. A concern with this approach is that it might be too con-
servative, i.e. it produces solutions whose objective function
value is much worse than the nominal one. Effectively, when
considering uncertain parameters we provide a robust solu-
tion that is feasible in all scenarios that uncertain parameters
variations could define, which are all the possible tariff curves
in Fig. 2; however, this comes at the cost of a degradation of
the objective value, which could be excessive as some of the
uncertain scenarios rarely occur. This increase in cost over
the nominal solution is the so called price of robustness [26].
In order to prevent too conservative solutions, we follow the
approach proposed in [6], [24], [35]. We then formulate an
optimization problem where the degree of uncertainty can be

regulated by a parameter denoted by . The aim of the proposed
approach is to compute schedules that are insensitive against
the variation of at most time slots. By varying , the level
of conservatism of the solution, and then the increase in cost,
can be controlled. The authors in [24] and [26] prove that, even
when more than elements vary, the robust solution will be
feasible with highprobability.
Problem ROB is then modified such that the weighted sum

tariff can be uncertain in at most time slots as follows:

(25)

which is called flexible robust problem . The pa-
rameter is also defined as protection level of the schedule cost
against uncertainty in the user behavior. This parameter can be
defined based on the empirical model of the users, by having
the historical data related to the uncertainties in their behaviors.
Problem stays a MILP and can be still solved by com-
mercial solvers such as CPLEX.
Notice that, in the problem, by having

the problem turns to the NOM problem and represents the most
optimistic case, and the influence of user behavior uncertainty
on the cost variations is completely ignored. On the other hand,
by having , user behavior uncertainty at all time slots
will be considered for possible cost variations, which is the most
conservative case ([24] and [26]) and the problem is equivalent
to the ROB problem.
We remark that the proposed framework can be generally ap-

plied to other scenarios where different sources of uncertainty
and different optimization criteria must be considered. For in-
stance, can represent the variation from the day-ahead price
at time slot in the real-time energy market, while different
optimization criteria can account for the user comfort or the de-
mand peak reduction.

A. Mathematical Insights Into the Protection Level
Here we will provide some insights into the robust formula-

tion in (25). In particular, we aim at understanding the effect on
the robust schedule of increasing or decreasing the protection
level defined in the previous section.
1) Model of Cost Uncertainty: As described in [24], we

assume that each entry , takes values in
, where represents the variation from

the nominal cost coefficient, . We allow the possibility to
have , since can be zero for some . We
remind that, in this study, cost variations model the uncertainty
in the user behavior.
As in [24], the parameter previously introduced controls

the protection level for the objective function against cost
variations.



254 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 1, JANUARY 2016

Let ; is assumed to be integer and takes
values in , where 0 indicates the nominal solution and

the most conservative solution. Generally, represents a
tradeoff between the level of conservativeness and the cost of
the robust solution: the higher is , the less sensitive is the so-
lution to cost variations at the cost of a higher nominal cost.
In the next section, we will investigate more into detail the

robust counterpart of problem (24) in order to understand the
effect on the robust schedule of increasing or decreasing the
protection level .
In the following, vectors are denoted by bold letters.
2) Interpreting the Robust Counterpart of the Scheduling

Problem: In the RO methodology, the best solution which is
feasible for any realization of the data uncertainty in the given
set is computed through the solution of the robust counterpart
optimization problem. In our study, the robust counterpart of the
scheduling problem (18) can be written as

(26)

where is the protection function of the objective,
and . To solve the robust

counterpart optimization problem, we will show how to convert
the objective function of the problem (26) to a linear one by
following the approach in [24] and resorting to the duality.
The protection function equals the objective function of the

following linear optimization problem:

(27)

Notice that is nonnegative in our study, hence ; in
the following we will drop the absolute value.
Subsequently, we consider the dual problem of (27), which is

then the primal.
We recall that in a dual problem a variable is introduced for

each constraint in the primal so that the number of variables
in the dual is equal to the number of constraints in the primal.
Then the variable is associated to the first constraint of (27),
which involve the protection level as right-hand side, and a
variables is associated to each constraint defining the upper
bound on . Notice that the dual variables and are the
ones introduced in problem .
Consider then the dual of the problem (27) as

(28)

Substituting into problem (26), we obtain that problem (26) is
equivalent to problem (25). We refer the reader to [24] for fur-
ther details.

We now aim at gaining some insights into the optimal value of
the protection function and how increasing the protection level
affects the robust solution.
We start with some definitions and assumptions.
Given a vector , let be the optimal primal solution and

the optimal dual solution for problems (27) and (28) re-
spectively (under non-degeneracy, the primal and dual optimal
solutions are unique. In case of multiple optima, an unique op-
timal point can be selected by the help of appropriate tie-break
rules, e.g., the lexicographic order [36]).
Without loss of generality, we assume that the indices are

ordered in such that . Further,
assume that there are time slots corresponding to the same
value of the cost variation due to the uncertainty level, which we
denote by .
Define the following sets of indices for time steps :

with . Notice that the set contains the time steps
with the highest values of , while the set is the set of time
steps with the same value of the cost variation, defined above as
.
We will now compute the optimal values of the primal vari-

ables in and the dual variables in .
Notice that the dual variable measures how the primal

objective function will change if the increases. If increasing
the value of the objective function changes, the corresponding
dual, , is positive. On the other hand, if when the primal
problem is solved, the constraint with is not active, this means
that increasing is not going to improve the objective function;
hence . If , increasing would be beneficial;
this means that the corresponding constraint should be active
at optimality. This relationship between dual variables and
constraints in the primal must satisfy the complementary con-
ditions, which mathematically state what has been explained
above. At optimality, the complementary conditions must hold

.
1) .
2) .
3) .
Consider the case when . From the complementary

conditions, we can derive the optimal solution of the primal and
dual problems (27) and (28) as

Notice that, if , there will be multiple optimal
solutions, since any combination such that
is an optimal solution of problem (26), corresponding to the
same value of the objective function.



PARIDARI et al.: ROBUST SCHEDULING OF SMART APPLIANCES IN ACTIVE APARTMENTS WITH USER BEHAVIOR UNCERTAINTY 255

The optimal values of and are then

If , at optimality there are clearly not time steps such
that . This means that we need only two sets of
indices: i) , containing time steps with
the highest values of ; ii) . In this
case, .
Summarizing, at optimality, given the optimal appliances

power assignment , the optimal value of the protection
function in (24) is

(29)

where and is the cardinality of set
.
From the discussion above and, in particular, from (29), we

can draw some conclusions about the effect of changing the pro-
tection level on the robust solution, which are given here.
• As grows, decreases and increases, since
the number of time steps with , i.e., , become
larger. This means that the robust optimal solution is af-
fected more and more by the uncertain cost profile
and less by the nominal cost profile . Then,
the power assignment is generally shifted from time steps
with the lowest values of to time steps with lower

values of , mainly where variations are small or zero,
despite the nominal tariff is higher.

• When the protection level is small, the solution is less
robust against cost variations. This entails that the optimal
value of is strictly positive and it can be used to assign
power to time steps with low nominal tariffs and still high
values of cost variations. When increases, the optimal
solution of problem (28) is required to be less and less
sensitive to cost variations: hence, a larger number of
are to be strictly positive and a larger amount of power
is assigned to time steps with small or zero variations. It
can be interesting to notice that, in cases when and
have similar profiles , the nominal and the robust
schedules get closer as grows. In this cases, having a high
protection level does not bring any benefit.

• If is larger than the number of time steps when
, and the set collects all of the time steps such
that . In this case, the robust solution of problem
(25) does not depend on and stays constant as grows.

• For a certain value of , the constraint with in (27) is not
active and then . This occurs when a protection is
required for a number of time slots larger than the number
of time slots when it is convenient to have a positive cost
variation, which entails that it is convenient to buy or sell
energy from/to the grid despite a positive uncertainty level.
Since the constraints on the overall energy requirements,
the power limits and the process times do not depend on
and stay the same both in the nominal and in the ro-

bust formulations, the number of time slots with a posi-
tive cost variation associated to the optimal nominal power

Fig. 3. Estimated average hourly power consumption of two active apartments
for appliances versus other consumptions (for March 2013–January 2014).

schedule can provide a rough estimation of this value of .
Increasing further will not change the solution of the ro-
bust optimization problem .

IV. SIMULATION RESULTS
Here, impact of the automation system on the electricity bill

and CO savings, under user behavior uncertainty, is investi-
gated through simulations. To do this investigation, it is neces-
sary to have the information related to hourly energy consump-
tion in apartments without automation system, and the portion
of household appliances in this energy consumption.
Within the SRS project, which is a new and environmentally

sustainable city district being built in Stockholm, actual hourly
energy consumption of two active apartments is available from
March 2013 to January 2014. These data have been kindly pro-
vided by Fortum Corporation. As mentioned in [3], to determine
the hourly power consumption of household appliances versus
other consumptions, a comparison with previous works is done
[37].
Based on this comparison, estimated average hourly power

consumption of appliances versus other consumptions for the
two active apartments is shown in Fig. 3. Two points are im-
portant to be noted here: one of them is that the loads in this
figure have not been optimally scheduled and is related to the
consumption before using automation system. The other one is
the total amount of energy being used in one day in the active
apartments, which is approximately 9.9 kWh on average, and in
comparison with the apartments that were studied in [37] (con-
suming 12.6 kWh on average) has decreased more than 20%.
This reduction in power consumption is reasonable based on the
modern home appliances that are used in the active apartments.
Based on the energy consumption of those two active apart-

ments and previous works [3], [37], a numerical study of 10000
active apartments (which is close to the number of active homes
being built in the SRS project) for the evaluation of DR pro-
grams and prediction of bill and CO savings of households
under user behavior uncertainty is considered in this paper.
In this numerical study, effectiveness of the proposed
approach is shown in the simulation results. User time prefer-

ences are uncertain, which means for each appliance the starting
time, and consequently end time, are supposed to vary within
an interval of 120 min from their nominal value.
Then we apply both the nominal and the RO approaches and
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we compare the computed schedules in terms of costs and sen-
sitivity to variations of the time preferences from their nom-
inal values. The nominal schedule is computed by solving the
problem ROB with . The robust scheduling problem
is solved with different choices of the parameter in order to
find the best schedule accounting for an uncertain user behavior
with a reasonably small increase in cost compared to the nom-
inal schedule. All of the problems in this paper are solved by
CPLEX.
In the simulations, the technical specifications of the smart

appliances (e.g., dishwasher, washing machine, and dryer) have
been extracted from [13]. Moreover, as it was mentioned in [3],
hourly price tariffs for June 2013 are downloaded from Nord-
pool website.2 In addition, the SVK website3 provides us with
electricity generation by fuel type data, electricity import, and
electricity export for 2013. Hourly CO foot print curves can
be computed based on these data [10]. In addition, by investi-
gating the available batteries for the houses equipped with solar
panels,4 the following specifications (the same as [3]) is applied
for battery consideration in this work.
• Storage capacity: 1700 Wh.
• Maximum power exchange: 1000 W.
• Maximum Depth Of Discharge (DOD): 30%.
• Stored energy degradation : negligible.
• Charging and discharging efficiency: 90%.
• Maximum charging and discharging cycles: Five (per day).
To generate scenarios for simulating user behavior uncer-

tainties in the proposed robust approach, a sampling method
can be used, in which the starting time of the first energy
phase of each appliance is considered as a variable or
input, that is allowed to vary within an interval of

. Here, the is the optimum starting time for the first
energy phase of th appliance scheduled by ROB ap-
proach. The most common sampling method is indisputably
the pure Monte Carlo, mainly because of its simplicity [38].
However, as the number of samples are limited because of
the computational time, this method is known to have poor
space filling properties, and leaving large unsampled regions.
In this paper, the Latin hypercube sampling (LHS) method
[39] which is an extension of stratified sampling is utilized to
generate the scenarios. The LHS method ensures that each of
the input variables has all of its range represented, and par-
tition it into the equally probable intervals. In this method, a
LHS of size (number of partitions for each input, which
is the number of time slots within the interval of ,
that is equal to ) with number of inputs (each
input is the start time of one of the appliances in this work,
and by having three appliances, the number of inputs is three
here), is obtained from a random selection of values (one
per stratum) for each input. Thus we achieve -tuples
that form the columns of the matrix of scenarios
generated by LHS, that means the th row of this matrix con-
tains one of the partition for each input variable and will cor-
respond to the th scenario [40].

2[Online]. Available: http://www.nordpoolspot.com/
3[Online]. Available: http://www.svk.se/
4[Online]. Available: http://www.voltaicsystems.com/blog/all/

Fig. 4. Sensitivity analysis of approach for various degree of con-
servatism . By having , the problem turns to the NOM problem and
represents the most optimistic case in which user behavior uncertainty is com-
pletely ignored (high sensitivity to uncertainty), and is related to the
most conservative approach and the problem is equivalent to the ROB problem.

A. Sensitivity Analysis of Robust Approach

Here, the impact of the robust approach on the electricity bill
and CO emission savings, in the presence of user behavior un-
certainty, is investigated. By applying the approach,
the sensitivity of the electricity bill with respect to the uncer-
tainty and degree of robustness , for June 14, 2013,
in Sweden is depicted in Fig. 4 in which 10 min. The
figure shows that the robust schedules outperform the nominal
schedule, i.e. the one corresponding to in terms of costs
in presence of user uncertainty. In particular, the best uncertain
cost could be achieved when and having a value of

does not bring any benefit in terms of costs; this is be-
cause the variable is zero when , which implies that
increasing the protection level does not change the solution.
For the sensitivity analysis, different values of have been

discussed here, while in the future by having historical data re-
lated to the user behavior and the uncertainties, it would be pos-
sible to determine the related for each user and subsequently
defining more precisely.
Day-ahead and uncertain tariff, and also scheduling of appli-

ances by applying approach with and ,
for , are depicted in Fig. 5. As it is shown in this figure,
the scheduled dryer has been shifted from the evening to the
morning to avoid the possible occurrence (in the presence of
user behavior uncertainty) with the high price of electricity be-
tween 22:00 and 23:00. The number of binary variables, contin-
uous variables and constraints (which are the most important in-
dicators in MILP problem), in the problem,
are 6624, 3027, and 22461, respectively. It takes 1.57 s to solve
this problem by CPLEX in MATLAB R2014b.

B. Impact of DR Signals on the Electricity Bill and CO
Saving in the Robust Approach

As was discussed in previous sections, DR signals provide
costumers an opportunity to save electricity bill and CO emis-
sion by shifting consumption and using batteries. To illustrate
potential future benefits of automation systems in active houses,
10 000 apartments are considered as a numerical study in [3].
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Fig. 5. Scheduling of appliances by applying approach with
(turns to NOM problem, and user behavior uncertainty is completely ignored)
and (in which dryer has been shifted from the evening to the morning
to avoid the possible occurrence with the high price of electricity between 22:00
and 23:00, in the presence of user behavior uncertainty).

For that numerical study, three different scenarios including ref-
erence apartments (without automation system), test apartment
(equipped with automation system), and test apartment with bat-
tery (equipped with automation system and battery) have been
taken into account and compared with each other. Throughout
that comparison, average hourly power consumption data from
the mentioned two real active apartments without automation
system (Fig. 3) is used and is considered as the average hourly
power consumption of the reference apartment. For each sce-
nario in [3], the number and types of the smart appliances that
are running in one day in those 10 000 apartments, is calcu-
lated from the technical specification, average hourly power
consumption data from the two real active apartments in the
day, and considering the fact that 4% of energy consumption
is devoted to the washing machine and dryer and 4% for the
dishwasher.
In [3], average hourly power consumption curves related to

smart appliances and battery, and the total bill and CO sav-
ings in these 10000 apartments for the test apartment and test
apartment with battery, is shown for June 2013. In that work, it
has been shown that, caring only about the electricity price by
consumers, causes CO emission to be increased. So, consid-
ering the CO intensity signal can help avoid carbon emissions
increases, and it should also be taken into account. In addition,
simulation results in that study show optimized use of the bat-
tery can further increase daily cost saving and CO emission
reduction.
In this paper, by considering the both CO intensity and elec-

tricity tariff signals, the effect of robust scheduling on bill and
CO emission savings in the automated apartment equipped
with batteries is investigated. Taking into account the impact
of user time preferences on the load shift, the scheduling of
appliances have been computed for time preferences between

Fig. 6. Impact of robust approach on bill and CO savings in 10 000 active
apartments with user behavior uncertainty (convex hull for the Pareto curve
([29]) of the multi-objective minimization problem).

08:00 and 24:00 hours. Note that this time interval has been
chosen based on Fig. 3, which shows that families in active
apartments aremore interested to run their household appliances
within this period. In Fig. 6, impact of approach on
bill and CO savings for 10 000 apartments (with user behavior
uncertainty consideration) in June 2013 is investigated. In this
figure, savings with the nonrobust approach (there exists un-
certainty, but the NOM approach has been applied), with ro-
bust approach (there exists uncertainty, but approach
has been applied), and performance bound (there is no uncer-
tainty on user behavior and is the case that discussed in [3], that
we can have maximum saving) are compared for different atti-
tude ( ) of users toward electricity cost and CO sav-
ings. Despite of having relatively small variability in the elec-
tricity tariff and CO foot-print signals (low uncertainty level)
in June 2013, the simulation results show, that the proposed
robust scheduling algorithm increases CO emissions and the
electricity bill savings (in the presence of user behavior uncer-
tainty) in comparison with nonrobust approach.
As it is mentioned previously, and is also shown in this figure,

there exists a tradeoff between electricity costs and CO emis-
sion in certain countries including Sweden. This means, the
more caring about the electricity price, the more CO emission
is produced. Thus, the automation system will provide the users
with the cost of electricity and CO emission for different choice
of (e.g., for , 0.25, 0.5, 0.75, 1), and they can decide
which one is of their interest. For example, by choosing in
the middle range (e.g., for , 0.5 in Fig. 6) for the case
under study, users will have both bill and CO emission savings.
By choosing (or ), despite the CO (or bill)
saving, electricity cost (or CO emission) increases.
Simulations are all done on a 64-bit Windows system with

an Intel Core i7-3770, 3.40 GHz and 16.0 GB of RAM, in
MATLAB R2014b. Simulation results show that computational
time difference for solving the NOM problem and
problem (for the same number of appliances with the same
characteristics, and same user input) is negligible. In [3],
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computation time for solving the NOM problem, for different
scenarios (with increasing number of appliances, in which each
appliance has five energy phases) is investigated. In that work,
a comparison with related papers that apply DP and MCA for
scheduling of smart appliances has been studied.

V. CONCLUSION AND FUTURE STUDIES
This paper proposes a new robust approach for scheduling

smart home appliances and batteries. The novel robust optimal
scheduling formulation is posed as a multi-objective MILP,
which not only aims to decrease the CO emissions and the
electricity bill, but also takes the uncertain behavior of users
into account. A numerical study for 10 000 active apartments
in the Royal Seaport project was investigated for assessing the
impacts of DR signals on load shifting and bill and CO saving
factors. This assessment is based on different attitudes of users
toward the environmentally and economic benefits (different
) and considering customary scheduling of smart appliances.

That means, by running the scheduling algorithm, the automa-
tion system will achieve optimal times for running appliances,
but there exists uncertainty on the user behavior, and they might
run the appliances earlier or later. Since these uncertainties
may cause considerable distortion to the optimal solution, it is
important to take them into account. Simulation results show,
despite of having relatively smooth curve for electricity tariff
and CO footprint signals (low uncertainty level) in most of the
days (in June 2013), the proposed robust scheduling algorithm
increases CO emissions and the electricity bill savings (in
the presence user behavior uncertainty). Thus, having more
volatility in these signals will increase uncertainty and make
this method more important. It has also been shown that, the
more consumers care about the electricity price, the more CO
emission is produced (for close to one). An optimized use
of the battery can further increase daily cost saving and CO
emission reduction. As a future study, the other uncertainties
such a huge load shifting by using automation system in a
large number of apartments (which causes the real-time tariff
to vary more from the day-ahead one) could be taken into
account, and interpreted as the level of uncertainties . In
addition, as it was discussed, only 8% of power consumption
of the active apartments is devoted to the smart appliances, and
almost half of it is related to the lightning, heating and cold
appliances. Thus, by taking these consumptions into account
in automated systems, the bill and CO savings could be
significantly increased.
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