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Abstract—We address the problem of estimating the number
of people in a room using information available in standard
HVAC systems. We propose an estimation scheme based on two
phases. In the first phase, we assume the availabilty of pilot
data and identify a model for the dynamic relations occurring
between occupancy levels, CO2 concentration levels and room
temperature signals. In the second phase, we make use of the
identified model to formulate the occupancy estimation as a
deconvolution problem. In particular, we aim at obtaining an
estimated occupancy pattern by trading off between adherence
to the current measurements and regularity of the pattern.
To achieve this goal we employ a special instance of the so-
called fused lasso estimator, which promotes piecewise constant
estimates by including an `1 norm-dependent term in the
associated cost function. We extend the proposed estimator to
include different sources of information, namely the actuation
level of the ventilation system and door opening / closing events.
We also provide conditions under which the occupancy estimator
provides correct estimates within a guaranteed probability. We
test the estimator running experiments on a real testbed, in order
to both compare it with a few occupancy estimation techniques
and assess the value of having additional information sources.

Index Terms—Occupancy estimation, System Identification,
Deconvolution, Regularization

Note to Practitioners—Home automation systems benefit from
automatic recognition of human presence in built environments.
Since dedicated hardware is costly, it may be preferable to have
software-based occupancy detection systems which do not require
the installation of additional devices. The object of this study
is the reconstruction of occupancy patterns in a room using
measurements of CO2 concentration, temperature and fresh air
inflow. Additionally, door opening / closing events are considered.
All these signals are information sources often available in
HVAC systems of modern buildings. We assess the value of such
information sources in terms of their relevance in detecting the
room occupancy. The proposed estimation scheme is composed
of two distinct phases. The first is a training phase where the
goal is to derive a mathematical model relating the number of
occupants with the CO2 concentration. In the second phase,
we use the derived model to design an online software which
collects measurements of the environmental signals and provides
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the number of people currently in the room. Other applications
of our algorithms include the estimation of occupancy flows in
buildings.

I. INTRODUCTION

Estimating occupancy levels in rooms is essential for home
automation purposes, e.g., to automate the control of lighting,
thermostats, security locks, home entertainment systems, and
to improve the energetic performance of Heating, Ventilation
and Air Conditioning (HVAC) systems [1], [2], [3]. Estimating
occupancy is thus a key enabling factor for improving comfort
in smart buildings and energy efficiency.

Direct experience indicates that some standard off-the-shelf
dedicated hardware for occupancy estimation (such as cameras
and Radio-Frequency Identification (RFID) tags) suffer from
several problems. First they may be insufficiently accurate for
the employment in HVAC control systems. Second, they may
induce large additional deployment and maintenance costs.
Last, they may have installation feasibility problems in old
buildings. Moreover, hardware-based occupancy detectors may
trigger privacy concerns.

Consequently, it is interesting to study how and to what
extent hardware-based people counters can be replaced by
software-based occupancy estimators that only employ avail-
able information in standard HVAC systems (such as CO2

concentration and temperature), which information sources
have to be considered, and what type of statistical processing
leads to efficient estimators.

The main objective of this paper is to address the above
questions by proposing occupancy estimators that provide with
information on the number of occupants using commonly
available signals, namely measurements of CO2 concentration
and temperature, HVAC actuation levels (i.e., the amount of
fresh air injected in a room), and information on door opening
/ closing events.

Literature review: the proposed strategies for estimating the
occupancy levels in rooms and buildings can be categorized
into hardware-based and model-based approaches.

The first category includes methods working with dedicated
hardware such as cameras, RFIDs, etc. [4], [5], [6]. As men-
tioned before, the applicability of these methods are restricted
to certain situations due to their potential drawbacks.

In the second category occupancy levels are inferred in-
directly using dynamical models that relate environmental
signals with occupancy. These models may be obtained by
employing data-driven techniques (i.e., identification-based
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methods) or by exploiting knowledge of the underlying phys-
ical laws (i.e., physics-based methods). The latter techniques
comprise strategies based on mass balance equations or first
principle considerations to derive dynamical models relating
the number of occupants, CO2 concentration, temperature and
humidity [7], [8], [9], [10]. Identification-based approaches
aim at estimating input-output models from datasets of past
measured data. Other successful approaches exploit machine
learning techniques such as Support Vector Machines (SVMs),
Neural Networks (NNs) and Hidden Markov Models (HMMs)
based on CO2 features (e.g., averages of the signals in time,
first / second-order temporal differences) [11], [12].

Statement of contributions: this paper, extension of [13],
describes a two-tier software-based occupancy estimation
scheme.

The first tier assumes the availability of both environmental
signals and true occupancy levels (as pilot data) for a short
and well defined period of time. Black box modeling is then
used to model the room under consideration, i.e., no other a
priori knowledge on the room properties is assumed.

The second tier formulates the occupancy estimation prob-
lem as an inverse problem, i.e., it searches for the occupancy
pattern that best explains the measured data given the identified
model. In this tier we exploit the fact that the occupancy signal
is piecewise constant and integer, in order to formulate the
estimation problem in a fused-lasso framework [14].

A contribution of the manuscript is to derive different
estimators based on the availability of the various information
sources. More specifically, we consider the case of adding
knowledge of HVAC actuation signals (how much air is
injected in the room), and the case of adding a boolean signal
accounting for door opening / closing events.

Another contribution is the analysis of the statistical per-
formance of the estimators. We compute bounds on the
probability of obtaining incorrect estimates, given the levels
of measurement noise, the identified model and the design
parameters of the estimators.

Structure of the manuscript: Section II formulates the
mathematical problem and the solution methodology. Sec-
tions III and IV describe respectively how to identify the
model of the room from a training set, and how to exploit
this model for estimation purposes. Section V characterizes
the performance of the estimator from a statistical perspective.
Section VI describes how to modify the original estimation
strategy when considering also HVAC actuation levels and
information on door opening and closing. Section VII in-
troduces the considered estimation performance indexes, the
experimental setup, the results of the estimation processes, and
some comparisons with standard tools of Machine Learning.
Section VIII then wraps some conclusions, remarks, and ideas
for future directions. Proofs are collected in the Appendix.

II. PROBLEM DEFINITION AND METHODOLOGY

We consider the following schematic representation of the
dynamics of the concentration of the CO2 and temperature in
a room under well-mixed air assumptions (i.e., these quantities
are assumed to be spatially constant).

G
c (CO2)

t (temperature)

(ventilation) v
(occupancy) o

disturbances

In the above scheme c(k) represents the concentration of CO2,
t(k) the temperature, v(k) the amount of injected fresh air,
o(k) the occupancy, all at time k. G represents an initially
unknown dynamic system relating disturbances, events, ven-
tilation and building occupancy levels with temperature and
CO2 concentration signals. In addition, we consider a variable
e(k) which is a boolean measurement of door opening and
closing events, defined as follows

e(k) =

{
1 if the door is open,
0 if the door is closed. (1)

The problem we consider in this paper is to find an effective
algorithm that transforms measurements of c(k), c(k − 1), . . .
and t(k), t(k − 1), . . . into estimates of o(k). Our proposal is
the following two-tier estimator:
• Tier 1, training phase: identify a Linear Time Invariant

(LTI) system that captures the dynamics of G from pilot
data of c(k), t(k), and o(k), (Section III);

• Tier 2, test phase: estimate o(k) from measurements
of c(k) and t(k) and the estimated model of the room
(Section IV).

The first phase addresses a system identification problem,
while the second phase addresses a deconvolution problem.

A contribution of this paper is the characterization of the
proposed estimator in terms of detection error, i.e., probability
of obtaining wrong estimates as a function of the parameters
of the estimator. We also study extensions of the estimator
to include information on venting levels v(k), v(k − 1), . . .,
and door opening / closing events e(k), e(k−1), . . .. We shall
see that, while including venting levels does not change the
structure and main properties of the estimator, accounting for
door opening and closing requires some modifications of the
problem by adding some opportune constraints.

III. IDENTIFICATION OF THE ROOM MODEL

In this section we describe how to obtain a model for G
starting from pilot data of c(k), t(k), and o(k).

As in [15], [16], [17], [18], [19], we assume the environ-
mental signals to be stationary, the dynamics of the room to
be discrete LTI, measurement devices to be synchronized and
operating at the same sample time. We further assume that
Ttr samples of the aformentioned signals have been collected
during an experimental phase.

The dynamics of the room can be expressed as[
c(k)
t(k)

]
=

[
Gc

(
q−1
)

Gt

(
q−1
)]c(k − 1)

t(k − 1)
o(k − 1)

+

[
wc(k)
wt(k)

]
, (2)

where, without loss of generality,

Gc

(
q−1
)
:=
[
Gcc
(
q−1
)
Gtc
(
q−1
)
Goc
(
q−1
)]
,

Gt

(
q−1
)
:=
[
Gct
(
q−1
)
Gtt
(
q−1
)
Got
(
q−1
)]
,
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are matrix polynomials with all the entries having the same
order. The processes wc(k), wt(k) are white Gaussian noises,
independent of each other, representing the innovation process,
i.e., part of c(k) and t(k) that cannot be predicted from past
measurements.

To estimate the polynomials Gc

(
q−1
)

and Gt

(
q−1
)

we
consider a Prediction Error Method (PEM) paradigm. We
define the best linear one-step-ahead predictor of the outputs,
namely [

ĉ(k|k − 1)

t̂(k|k − 1)

]
=

[
Gc

(
q−1
)

Gt

(
q−1
)]c(k − 1)

t(k − 1)
o(k − 1)

 , (3)

obtained by simply neglecting the noise processes. Then, using
PEM-based techniques we can obtain Ĝc

(
q−1
)

and Ĝt

(
q−1
)
,

such that the variance of the prediction errors c(k)− ĉ(k|k−1)
and t(k)− t̂(k|k−1) on the data collected during the training
phase, is minimized. From (3) it follows that the predictors
ĉ(k|k− 1) and t̂(k|k− 1) exploit the same information of the
past.

Figure 1 plots the correlation functions defined in (4),
and computed using the dataset considered throughout the
manuscript. In (4), c̄(·), ō(·) and t̄(·) represent signals stripped
of the mean, m is a time lag, and Ttr denotes the size of the
dataset:

rc,o(m) :=

∑Ttr
k=0 c̄(k)ō(k −m)√(∑TTs

k=0 c̄(k)2
)(∑TTs

k=0 ō(k)2
) ,

rt,o(m) :=

∑Ttr
k=0 t̄(k)ō(k −m)√(∑TTs

k=0 t̄(k)2
)(∑TTs

k=0 ō(k)2
) , (4)

The functions rc,o(m) and rc,o(m) indicate the dependency
of the occupancy signal, as a function of the time distance,
m, on the CO2 concentration and temperature, respectively. It
can be promptly seen that the signal mostly correlated with
the occupancy is the CO2 level. For this reason, in the rest of
the paper we shall consider only the predictor ĉ(k|k− 1) and
thus focus on the identification of Ĝc

(
q−1
)
.
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Figure 1. Empirical cross-correlations between occupancy and either tem-
perature (rt,o(m)) or CO2 (rc,o(m)), computed using the dataset considered
throughout the manuscript (sampling time ts = 5 minutes). To highlight the
features of the correlation signals we use a time scale finer than the ones used
in the subsequent figures.

A. Nonparametric identification of the CO2 dynamics

In this paper we adopt a nonparametric approach to the
problem of identifying the CO2 room dynamics. Instead of

directly searching for the coefficients of the polynomials
Goc
(
q−1
)
, Gtc

(
q−1
)

and Gcc
(
q−1
)
, we aim at estimating the

system impulse responses, which are defined in the time
domain and which are related to the frequency domain de-
scription of the system through the relations

Goc
(
q−1
)

=
∑+∞
k=1 go(k)q−k,

Gtc
(
q−1
)

=
∑+∞
k=1 gt(k)q−k,

Gcc
(
q−1
)

=
∑+∞
k=1 gc(k)q−k,

(5)

where go(k), gt(k), gc(k) are the impulse responses having the
occupancy, temperature and CO2 as inputs, respectively. We
can simplify the problem by truncating the impulse response
to a fixed large index p and estimate the first p coefficients of
each impulse response. The estimated coefficients can then be
used to form the aforementioned polynomials1. To make the
estimation problem well-posed, we define a suitable hypothesis
space for the unknown impulse responses. Such a space is
a Reproducing Kernel Hilbert Space (RKHS) [20], and its
associated kernel is the so-called stable spline kernel [21],
[22], defined as[

Kβ

]
i,j

= βmax{i,j}, 0 < β < 1 , (6)

where β is a hyperparameter tuning the decay rate. The choice
of this kernel is motivated by the fact that the associated
RKHS contains smooth and exponentially decaying functions.
These are desirable properties in impulse responses modeling
physical systems such as those considered in this problem.
We refer to [23] for a thorough description of kernel-based
methods in system identification.

Let the training set be indexed by the time instances
0, 1, . . . , Ttr and gc, gt, and go be column vectors containing
the impulse responses related to c(k), t(k), and o(k), respec-
tively, and

g :=
[
gTc gTt gTo

]T
,

φc(k) :=
[
c(k − 1) . . . c(k − p)

]
,

φt(k) :=
[
t(k − 1) . . . t(k − p)

]
,

φo(k) :=
[
o(k − 1) . . . o(k − p)

]
,

(7)

with c(k) = t(k) = o(k) = 0 if k ≤ 0. Defining

Φ :=


φc(1) φt(1) φo(1)
φc(2) φt(2) φo(2)

...
...

...
φc(Ttr) φt(Ttr) φo(Ttr)

 ,
ctr :=

[
c(1) c(2) . . . c(Ttr)

]T
,

we can exploit the theory of function estimation in RKHS [20]
and formulate the problem as

ĝ=argmin
g∈R3p

‖ctr−Φg‖22 + γ
(
‖gc‖2P +‖gt‖2P +‖go‖2P

)
, (8)

i.e., as a regularized Least-Squares (LS) where:
• ‖g‖2P = gTPg with P a positive definite weighting

matrix penalizing candidate impulse responses which do
not decay to zero for large values of the time index. In
this way, P favors outcomes ĝ that well represent impulse

1In this paper we set p = 50.
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responses of stable systems. Here we set the matrix P
as P = K−1

β ; the choice of the hyperparameter β is
discussed below;

• γ is a positive real number representing a trade-off
between variance and bias of the estimator, leading to
the LS estimate of g for γ = 0.

The optimal values of γ and β can be computed via either
cross validation-based strategies [24] or empirical Bayes tech-
niques [25], [21]. Once these values have been established, the
solution can be computed in closed form [26] as

ĝ =
(
ΦTΦ + γDP

)−1
ΦT ctr , (9)

where DP is block diagonal with four blocks all equal to P .

Remark 1 The impulse response estimator (8) may be seen
also as a Maximum a Posteriori (MAP) estimator under
a Gaussian prior assumption of the unknown impulse re-
sponses. Then, the choice of such a prior is well motivated
by the underlying theory of the RKHS induced the stable
spline kernel.

IV. DECONVOLUTION OF THE OCCUPANCY LEVELS

In this section we derive an estimator ô(k) of o(k) as a
function of the measurements c(k) and t(k) and the estimated
room dynamics Ĝcc, Ĝ

t
c, Ĝ

o
c . Let

ĉ(k|k − 1) = Ĝc

(
q−1
)c(k − 1)

t(k − 1)
o(k − 1)

 , (10)

and consider the CO2 levels prediction error

ε(k) := c(k)− ĉ(k|k − 1). (11)

Under the stated assumptions ε(k) is a zero-mean Gaussian
white noise [27]. Substituting (10) into (11) and rearranging
properly, we obtain

Ĝoc
(
q−1
)
o(k − 1)

= c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
) ] [c(k−1)

t(k−1)

]
−ε(k),

(12)

where the unknowns are only o(k − 1) and ε(k), since

c̃(k) := c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
) ] [c(k − 1)

t(k − 1)

]
,

can be computed given the available information. Thus (12)
becomes

c̃(k) = Ĝoc
(
q−1
)
o(k − 1) + ε(k), (13)

which shows that the problem of estimating the unknown
o(·) is a deconvolution problem, i.e., the unknown occupancy
signal ô(k) can be estimated as the signal best describing the
observed output c̃(k), given the knowledge of the transfer
function Ĝoc . Since ε(k) is assumed white and Gaussian,
the natural approach to this problem would be to employ
a LS estimator of o(·), becasue this would minimize the
residual error [24, Ch. 7]. More specifically, let Ĝoc

(
q−1
)

=

g1q
−1+. . .+gpq

−p; we consider two variants of the occupancy
estimation problem:

1) online monitoring;
2) offline estimation.

We begin by dealing with the first case. At each time instant
we consider a window in the past of N data samples of each
signals, from k − N + 1 to k, with N ≥ p. Considering the
auxiliary notation

Ĝ :=



g1 0 . . . 0
g2 g1

...
. . . . . .

...
gp · · · g2 g1

. . . . . . . . .
0 gp · · · g2 g1


õ :=

o(k −N)
...

o(k − 1)


c̃ :=

c̃(k −N + 1)
...

c̃(k)


(14)

a basic occupancy estimator can be formulated as the LS-type
problem

ô = arg min
õ∈RN+

∥∥c̃− Ĝ õ
∥∥2

2
. (15)

The performance of this estimator is usually unsatisfactory,
since the estimates are noisy, due to the high variance, and they
do not reflect suitable room occupancy patterns. To overcome
this issue we account for the prior information that o(k) is non-
negative, integer, and piecewise constant and we formulate
the deconvolution problem as the problem of finding the
least-changing positive piecewise constant input signal giving
a prescribed mismatch between the estimated and measured
outputs of the system. Let us define

∆o(i) := o(i)−o(i−1), ∆o :=

∆o(k −N + 1)
...

∆o(k − 1)

 . (16)

The estimation problem then becomes

ô(k − 1) = arg min
õ∈NN+

∥∥∆õ
∥∥

0

s.t.
∥∥c̃− Ĝ õ

∥∥2

2
≤ ρ , (17)

where:
• ô(k − 1) is a N -dimensional vector with the estimated

values of occupancy at the time instants k−1, . . . , k−N
(for online estimation purposes one might consider to use
just its first entry ô(k − 1));

• the cost function ‖·‖0, the `0 norm, counts the number
of variations of the candidate inputs, thus penalizing
candidate inputs with frequent variations;

• the LS-type term accounts for adherence to data and
tries to match the estimated and measured outputs of
the system, up to a precision given by the user-choice
parameter ρ.

Problem (17) can be reformulated as follows [28]

ô(k − 1) = arg min
õ∈NN+

∥∥c̃− Ĝ õ
∥∥2

2
+ λ
∥∥∆õ

∥∥
0
, (18)

where λ is a regularization parameter (strictly related to ρ) that
trades off the two previous terms, how to choose λ is discussed
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in details in Section IV-A. Unfortunately, Problem (18) is a
non-convex non-linear integer program; to solve it directly
one must search through all possible combinations of non-zero
element in ∆õ. Hence, the search space is increasing expo-
nentially in the number of parameters and the problem cannot
be solved efficiently [29]. To circumvent this computational
drawback we adopt two relaxations. First, we substitute the `0
norm with the `1 norm [30, Ch. 3.4], which represents its best
convex relaxation. Second, extend the domain of the plausible
inputs to RN+ instead of NN+ , so that the estimation problem
becomes

ô(k − 1) =

⌊
arg min

õ∈RN+

∥∥∥c̃− Ĝ õ
∥∥∥2

2
+ λ
∥∥∆õ

∥∥
1

⌉
, (19)

with b·e the vector-wise rounding operator. Problem (19) is a
particular case of fused-lasso estimator, where the solution is
searched among sparse regressor vectors where less frequent
jumps (i.e., non-zero impulses in the derivatives) are preferred,
and the strength of this preference is dictated by the regular-
ization parameter λ.

Remark 2 The estimator in (19) can be also seen as a MAP
estimator of the occupancy (when the rounding operator
is removed). In this case, the prior distribution on the
unknown process is Laplacian with independent components
(see e.g., [31]), that is

p (∆o) =
1

α

N−1∏
i=1

exp

(
−|∆õ(i)|

α

)
, (20)

where α is a user parameter that tunes the sharpness (and so
the sparsity) of the pdf. Since ε(k) is white and Gaussian,
then the distribution of the vector c̃ given ∆õ is Gaussian,
with mean Ĝ õ and variance σ2I , where σ2 is the predic-
tion error variance and I is the identity matrix. The MAP
estimation of õ can thus be formulated as

ô(k − 1) = arg max
õ∈RN+

log (p (c̃|∆õ) p (∆õ))

= arg min
õ∈RN+

1

σ2

∥∥∥c̃− Ĝ õ
∥∥∥2

2
+

2

α

∥∥∆õ
∥∥

1
. (21)

The above expression reveals that the regularization param-
eter λ = 2σ2

α is the ratio of the noise variance and the user
parameter α regulating the (prior) sparseness of the derivative
of the occupancy.

The parameter N plays an important role in (19), since it
defines the amount of data employed for estimating ô(k − 1)
(and in particular ô(k − 1)) at each time instant. Clearly, a
large value of N yields more accurate estimates, since more
information is used. However, a large value of N brings com-
putational issues which could make the computation of (19)
too slow for online operations. Thus, as will be discussed in
Section VII-B, a good choice of N should consider both these
aspects.

The derivation of the offline estimator is straightforward.
Let the test set be indexed by the time instants 1, . . . , Tts.

Redifining the vectors introduced in (14) and (16), so that
they include all the Tts measurement of the test set, we can
reutilize the estimator defined in (19). In this case, its output
will be a vector ô containing the estimated occupancy pattern
for the time instants 0, . . . , Tts − 1.

A. Finding the optimal regularization parameter λ

The regularization parameter λ establishes the typical vari-
ability of the room occupancy signal. Large values of λ
penalize changes in the value of estimated occupancy, leading
to estimates that are constant for long periods. Small values
of λ, instead, yield occupancy signals with high frequency
components, thus behaving similarly to the outcomes of the
LS estimator (which is obtained by setting λ = 0).

A reasonable value of λ is computed by finding the value
of such a parameter giving the best estimation performance
during the training phase. This optimal value can then be
computed by the following algorithm:

1) define a grid Λ of candidate values of λ;
2) for each λ ∈ Λ solve Problem (19) using the c(k), t(k)

and v(k) collected during the training phase, obtaining
ô(λ), i.e., an occupancy estimate as function of λ;

3) compute the optimal regularization parameter as

λ̂ = arg min
λ∈Λ
‖ô(λ)− o‖22 , (22)

with o being the occupancy signal collected during the
training phase.

Remark 3 To find the set Λ one can start by first finding an
opportune λmax for which the problem (19) leads to constant
occupancy estimates. Consider moreover the cardinality of
Λ be given; then one can define the set Λ between 0 and
the obtained λmax exploiting a logarithmic grid. The main
advantage of logarithmic gridding is that the grid will be
finer for smaller values of λ, where the sensitivity is usually
higher (see Figure 4).

V. CHARACTERIZATION OF THE OCCUPANCY ESTIMATOR

In this section we derive relations between the probability
of obtaining wrong occupancy estimates and the quantities pa-
rameterizing the estimator, namely the identified linear models,
the noise level of the measurements, and the regularization
parameter λ.

Our first result regards the performance of the estimator
when the occupancy is constant in a window of N past values.

Proposition 4 Let σε be the variance of the noise in (13), N
the window length in the estimator, and λ the regularization
parameter. Assume that o(k) is a constant signal. Define

∆ :=

−1 1
. . . . . .

−1 1

 ∈ RN−1×N (23)
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and V T :=
(

∆Ĝ−1
)†

, where (X)
† denotes the Moore-

Penrose pseudoinverse of X . Then ô(k) is detected as
constant with probability of at least α if

λ2 > σ2
εχ
−1
α (N)‖Vm‖2 (24)

where χ−1
α (N) is the inverse of the chi-square Cumulative

Distribution Function (CDF) with N degrees of freedom for
the corresponding probability α and ‖Vm‖2 := maxi ‖Vi‖2,
with Vi the i-th row of V .

The following result studies the case where o(k) has a
variation.

Proposition 5 Let σε be the variance of the noise in (13),
N the window length in the estimator, λ the regularization
parameter. Define ∆̄ ∈ RN−1×N−1, obtained removing the
first column of ∆ and V̄ T :=

(
∆̄H̄−1

)−1
. Assume that the

first value of the estimated occupancy is set to the true one,
i.e., ô(k − N) = o(k − N), and that o(k) has a unique
discontinuity given by a variation of one unit. Then, ô(k)
is detected as constant, i.e., there is a missed change with
probability of at least α if

λ2 > σ2
εχ
−1
α (N)‖V̄1‖2 + (1 + o(k −N)

2
)‖V̄1‖4 , (25)

where V̄1 is the first row of V̄ .

0 0.2 0.4 0.6 0.8 1
0

10
20
30
40

P [ô(k) is constant]

λ
m

in

Figure 2. Graphical representation of bound (24) as functions of the
probability α for a given σ2

ε.

Figure 2 shows the behavior of the bound derived in
Proposition 4 as a function of the probability that the detected
occupancy pattern is constant.

The previous results can easily be extended to the more
general case where the true occupancy is piecewise constant
with ρ discontinuities of +1 units. The sufficient condition to
estimate a constant signal in this case is

λ2 > σ2
εχ
−1
α (N)‖V1‖2 + (ρ+ o(k −N)2)‖V1‖4.

VI. ACCOUNTING FOR ADDITIONAL INFORMATION

In this section we address the cases where the available in-
formation contains the additional signals v(k) (venting levels)
and e(k) (door events, defined in (1)).

A. Accounting for venting levels

When the signal v(k) is available, a straightforward gener-
alization of (10) yields

ĉ(k|k − 1) = Ĝc

(
q−1
)

c(k − 1)
t(k − 1)
v(k − 1)
o(k − 1)

 , (26)

Ĝc

(
q−1
)

=
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
)
Ĝvc
(
q−1
)
Ĝoc
(
q−1
)]
.

Consequently, we can extend the system identification proce-
dure of Section III, with g :=

[
gTc gTt gTv gTo

]T
, and

ĝ=argmin
g∈R4p

‖ctr−Φg‖22+γ
(
‖gc‖2P +‖gt‖2P +‖gv‖2P +‖go‖2P

)
.

The same extension applies to the deconvolution step: the
estimator (13) remains structurally the same as soon as c̃(k)
is redefined as

c̃(k) := c(k)−
[
Ĝcc
(
q−1
)
Ĝtc
(
q−1
)
Ĝvc
(
q−1
) ]c(k − 1)

t(k − 1)
v(k − 1)

 .
B. Accounting for door opening and closing events

Assume now the knowledge of e(k), i.e., a boolean signal
measuring door opening and closing events. Using the defini-
tion in (1) we infer that e(k) = 0 implies o(k) = o(k − 1),
while no deduction on the behavior of o(k) can be made when
e(k) 6= 0.

As for the system identification problem, information on
e(k) is non-influential, i.e., it does not modify the derivations
in Section III, since during the identification the occupancy
levels are assumed known. In other words, o(k) contains
already the information in e(k).

As for the deconvolution problem, knowing e(k) changes
the structure of the estimator, since e(k) naturally constraints
the estimand occupancy levels to be identical when e(k) =
0. More precisely, knowing e(k) corresponds to knowing the
sparsity pattern of the to-be-reconstructed signal. This imply
that the regularization term ‖∆õ‖0 in (18) is a constant factor
that does not depend on the decision variables; thus (18) is
equivalent to the Integer Quadratic Program (IQP)

ô(k − 1) = arg min
õ∈NN+

∥∥c̃− Ĝ õ
∥∥2

2

s.t. ∆õ(k) = 0 for all e(k) = 0.
(27)

Following the motivations that brought from (18) to (19), (27)
can be relaxed with

ô = arg min
õ∈RTts+

⌊ ∥∥c̃− Ĝ õ
∥∥2

2

⌉
s.t. ∆õ(k) = 0 for all e(k) = 0.

(28)

Due to the lack of the regularization term, (28) does not require
tunings of regularization parameters.

Estimator (28) is based on the hypothesis that the noise pro-
cess ε(k) is white and Gaussian. Such an assumption may be
unrealistic, since the identification phase is likely to yield non-
exact models (due to disturbances and unmodeled dynamics).
One way to address this issue and robustify the estimator is
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to further modify (28) adding back the `1 regularization term
λ‖∆õ‖1 to obtain

ô = arg min
õ∈RTts+

⌊ ∥∥c̃− Ĝ õ
∥∥2

2
+ λ‖∆õ‖1

⌉
s.t. ∆õ(k) = 0 for all e(k) = 0.

(29)

As noticed before, this regularization term corresponds thus to
favor, in the occupancy signal, small changes to big ones, with
the strength of this preference dictated by the regularization
parameter λ. Obviously, implementing estimator (29) requires
to find the optimal λ, as described in Section IV-A.

VII. EXPERIMENTS

We have tested the proposed estimator on one of the rooms
of the KTH ACL-HVAC testbed, see http://hvac.ee.kth.se/
for more information. The collected information, available
at http://hvac.ee.kth.se/datasets.html, comprises two weeks of
measurements of CO2 and temperature levels from HDH sen-
sors, and of venting, cooling, and heating actuation levels from
the central HVAC system. Occupancy levels were manually
registered for the whole period. To uniform the sampling times
of the various signals (5 minutes), or in case of missing
measurements, the information was resampled using linear
interpolation schemes. The first week was used as a training
set, while the second week was used as a test set.

A. Definition of the performance indexes

We consider four performance indexes: i) the Mean Squared
Error (MSE) (30), characterizing the relative estimation errors;
ii) the accuracy (32), reporting how many times the estimator
returns the correct value; iii) the false positive / false nega-
tive occupancy detection rates (35), describing the ability of
discriminating the presence / absence of occupants in terms
of false positives (when the room is estimated to be occupied
while it is not) and false negatives (when the room is estimated
to be empty while it is not).

The MSE associated with o and ô is

MSE (ô) :=
‖ô− o‖22
‖o‖22

. (30)

To define the other performance indexes we then transform
the signals o, ô with codomain N+ (number of occupants) to
signals with codomain {0, 1} (room is not occupied, room is
occupied) through indicator function

1 (o(k)) :=

{
1 if o(k) > 0

0 otherwise
, 1 (o) :=

 1 (o(1))
...

1 (o(N))

 . (31)

Given (31), the accuracy of the estimate ô is

Acc (ô) :=
N −

∑N
k=1 1 (o(k)− ô(k))

N
. (32)

To define the false positive / negative rates we introduce

Nθ := {t s.t. 1 (o(k)) = θ} , (33)

dividing the time indexes in two sets: N0, for the time indexes
k for which the room was not occupied, and N1, for the k’s for

which the room was occupied. Using this definition we may
capture the mistakes “the room is estimated to be occupied
while it is empty”, “the room is considered empty while it is
occupied” with

β̂(θ) :=
1

|Nθ|
∑
k∈Nθ

1 (ô(k)) , (34)

where we remark that the summation is performed over the
set Nθ. With (34) the false positive and false negative rates
become

FP (ô) := β̂(0), FN (ô) := 1− β̂(1). (35)

B. Summary of the results

1) Evaluation of the importance of additional information:
We assume the parameters λ and N are optimally scaled (we
discuss tuning of these parameters in the following subsec-
tions). Table I then numerically assesses the value of knowing
the ventilation levels v(k) and the door openings / closing
flags e(k), while Figure 3 depicts graphically the realizations
of the results. From Table I, it can be seen that adding
the information regarding ventilation levels can improve the
accuracy of the estimator. Moreover, the estimator (29) has
the best performance in terms of MSE. It is worth mentioning
that due to the constraint on ∆õ in (29), the `1 regularization
term does not impose (further) sparsity, however, it shrinks the
estimates of the occupancy. It is well known that shrinking
may improve the MSE [30]; we can get similar results with
other shrinkage methods such as the ridge regression [30].

Estimator MSE Accuracy FP FN

(19) 0.208 0.822 0.039 0.028
(19)+v 0.124 0.888 0.007 0.018

(28) 0.217 0.884 0.001 0.028
(29) 0.109 0.886 0.006 0.008

Table I
COMPARISON OF THE PERFORMANCE OF ESTIMATORS (19), (19) WITH

KNOWLEDGE OF VENTILATION LEVELS v(k), (28) AND (29).

1
3 measured

(19)

1
3 measured

(19)+v

1
3 measured

(28)

1
3 measured

(29)

oc
cu

pa
nc

y

Figure 3. Realizations of the estimates for the test set considered in our
experiments for the various estimators proposed in this manuscript.
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2) Evaluation of the sensitivity to the regularization param-
eter λ: We evaluate the effectiveness of selection strategy for
the parameter λ described in Section IV-A. Since the best value
of such a parameter for the test set may be different from its
best value in the training set, it is important to evaluate the
effects of this unavoidable mismatch.

Figure 4 plots the MSE for different λ’s for estima-
tor (19)+v for both the training and test sets. The dependency
on λ appears relatively weak in the test set, and the MSE of
the training and test sets attain their minima at approximately
the same point. This suggests that the proposed estimation
strategy for λ is reliable and effective.

10−0.6 10−0.4 10−0.2 100
0

0.2

0.4

λ

M
SE

Training
Test

Figure 4. Sensitivity of the performance of estimator (19)+v w.r.t. the choice
of λ.

3) Evaluation of the sensitivity to the optimization horizon
N : N trades-off computational requirements with informa-
tion: the larger the optimization horizon, the more information
the estimators have about the dynamics of the system. Intuition
suggests that, after a certain horizon length, adding more
information does not improve the estimation performance, i.e.,
after this horizon the old dynamics do not influence the current
estimates. The results shown in Figure 5 indicate that this
length is, in our experiments, of about 5 days.

0

0.2

0.4

M
SE

1 2 3 4 5 6
0.8

0.9

optimization horizon [days]

A
cc

ur
ac

y 0
0.02
0.04

FP

1 2 3 4 5 6
0

0.02
0.04

optimization horizon [days]

FN

Figure 5. Dependency of the performance of estimator (29) w.r.t. the choice
of N .

C. Alternative occupancy estimation methods

We here consider two classical Machine Learning strategies
and compare them against estimator (19) with knowledge of
ventilation levels v(k).

1) Estimation using Support Vector Machine (SVM): In
their basic form, SVMs perform classification tasks as follows:
given a dataset D of samples (xk, yk) for k = 0, . . . , N
with xk ∈ Rn and yk ∈ {−1,+1}, try to find a separating
hyperplane in Rn+1) that: (i) separates the points of the form
(xk,+1) from those of the form (xk,−1); (ii) maximizes

its minimum distance from the xi’s. This concept can then
be extended to cope with non-linear and imperfect separation
rules, and with multi-classes classification tasks [32, Part II].

SVMs have already been exploited for building occupancy
estimation tasks, e.g., in [11], [12]. The most common ap-
proach is to let xk contain functions of the current and past
CO2, temperature and ventilation levels (e.g., the average of
c(k), . . . , c(k−n)). yk instead usually represents the building
occupancy level o(k). With these definitions it is possible to
train a general multi-class SVM on the couples (xk, yk) that
form the training set. After this step one can then estimate the
unknown building occupancy by applying the trained SVM on
the xk that form the test set.

The SVM implemented in our tests that led to the best esti-
mation error performance is a C-SVM exploiting a polynomial
kernel of order 3. As features, it considers current and past
values of the temperature, CO2, and ventilation levels up to 1
hour in the past, and their first and second derivatives in time.

2) Estimation using Neural Network (NN): The Neural
Networks (NNs) maps considered in this manuscript are of
the form [33, Sec. 44]

yk = Ψ′′

(∑
i

ω′′i hi (xk) + θ′′

)

hi (xk) = Ψ′i

∑
j

ω′jxk,j + θ′i


with yk and xk having the same meanings of Section VII-C1.
The structures of the functions Ψ′′, Ψ′i, hi are design parame-
ters, that usually remind how biological neurons electrically
react to external stimuli. Once the design parameters have
been chosen, training the network corresponds to search that
particular set of weights w for which the corresponding NN
best fits the training examples. Once this function has been
learned, it can be used for prediction purposes as did in the
SVM case.

The NN implemented in our tests that led to the best esti-
mation error performance is a complete feed-forward network
with Sigmoid activation rules and one hidden layer composed
by 8 neurons. It considers the same features exploited to train
the SVM based estimator.

3) Results of comparisons: We compare the performance
of estimator (19) with knowledge of ventilation levels against
the performance of the NN and Support Vector Classification
(SVC) strategies described above. All these estimators are
comparable in the sense that they use the same amount of
information. It can then be noticed that the estimation strategy
proposed in this manuscript outperforms the more classic
Machine Learning strategies on the considered dataset.
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Estimator MSE Accuracy FP FN

(19)+v 0.124 0.888 0.007 0.018
SVM 0.342 0.826 0.018 0.277
NN 0.268 0.811 0.067 0.095

Table II
COMPARISON OF THE PERFORMANCE OF ESTIMATOR (19) WITH

KNOWLEDGE OF VENTILATION LEVELS AGAINST THE PERFORMANCE OF
EQUIVALENT NN AND SVC STRATEGIES.

VIII. CONCLUSIONS

We have proposed methods for estimating occupancy lev-
els in closed environments. These methods exploit different
sources of information, and are aimed at understanding which
of such sources are mostly meaningful in the addressed task
of estimating how occupancy levels change in time. The main
standing assumption is that the estimator can, for system
identification purposes, access to direct measurements of the
true occupancy levels for a limited period.

The proposed estimation scheme first obtains Linear Time
Invariant (LTI) model by a suitable identification method.
Then, it formulates the occupancy estimation problem as a
regularized deconvolution problem (where the regularization
exploits prior information on the features of the searched
signal). The obtained results show that adding information on
ventilation and door opening / closing events can significantly
improve the performance of the estimator.

We also analyzed the theoretical statistical performance of
the estimators, and showed that the probability of obtaining
wrong estimates can be suitably bounded when we know spe-
cific design parameters and the measurement noise variance.

The idea considered in this paper can be extended towards
the construction of occupancy estimators for whole buildings,
and towards the identification of building occupancy pattern
models. Moreover it may be possible to adapt the models
identified in a single room to other rooms of the same building,
by an opportune rescaling of the identified impulse responses
accounting variations in the structural properties of rooms.

APPENDIX

A. Proof of Proposition 4

The proof is divided in 3 main parts: i) rewrite (19), derive
the dual of the new problem and the structure of its solution.
ii) find some analytical relations between the estimated and
the true occupancy levels. iii) exploit these relations to derive
bounds that characterize the statistical performance of the
estimator.

i): Introduce the variable z := ∆õ and rewrite (19) as

arg min
õ ∈ RN+

z ∈ RN−1

1

2

∥∥∥c̃− Ĝõ∥∥∥2

2
+ λ
∥∥z∥∥

1

s.t. z = ∆õ ,

(36)

where, for the purposes of the proof, the function b·e (the
vector-wise rounding operator) is omitted. The Lagrangian

of (36) is then

L (õ, z,u) =
1

2

∥∥c̃− Ĝ õ
∥∥2

2
+ λ
∥∥z∥∥

1
+ uT (∆õ− z) , (37)

where u is the Lagrange multiplier. The dual problem, ob-
tained minimizing L w.r.t. õ and z, is [34]

arg min
u∈RN

1

2

∥∥∥∥c̃− (∆Ĝ−1
)T

u

∥∥∥∥2

2
s.t. |u|∞ ≤ λ.

(38)

We notice that, since Ĝ is a lower triangular matrix, Ĝ
admits inverse as soon as g1 6= 0. This is then satisfied as soon
as there is (only) one delay in the effects of the occupancy on
the CO2 levels of the room.

To obtain the structure of the dual solution, consider again
the derivative of the Lagrangian with respect to z

min
z
L (õ, z,u) = min

z
(λ
∥∥z∥∥

1
− uTz)

=

{
0 if |u|∞ ≤ λ,
−∞ otherwise .

(39)

Let then ûλ be the dual solution and ẑ = ∆ôλ be the primal
solution of (36) for a specific λ. Given the computations above,
it satisfies

ûλ,i ∈

 {+λ} if (∆ô)i > 0,
{−λ} if (∆ô)i < 0,[
−λ, λ

]
if (∆ô)i = 0.

(40)

In other words, to maximize (39), the ith element of the dual
solution, i.e., ûλ,i, should be +λ if the corresponding element
in the primal solution is positive and it should be −λ if
the corresponding element in the primal solution is negative,
see [34]. For those elements of the primal solution with zero
values we can only say that the dual problem must satisfy the
condition |u|∞ ≤ λ.

From (40), one can conclude that |ûλ,i| 6= λ , only if
(∆ô)i = 0.

ii): relax problem (38) by removing the∞-norm constraint.
The resulting problem is a unconstrained Least-Squares (LS)
problem, with solution

uLS =
(

∆Ĝ−1
)T †

c̃. (41)

If ‖uLS‖∞ < λ holds, then two facts hold:
1) uLS is also the solution of problem (38);
2) due to the last implication described in i), ∆ô = 0, i.e.,

the estimated occupancy is a constant signal.
These two facts connect variations in the estimate ∆ô with
the measured signal c̃, considering V T :=

(
∆Ĝ−1

)†
, since

they read as

‖V c̃‖∞ < λ ⇒ ∆ô = 0. (42)

To explicit c̃, consider that the vectorized version of (13)
reads as

c̃ = Ĝo + ε, (43)
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with ε ∈ RTts white and Gaussian innovation, and o the true
occupancy signal. Rewriting V as

V =
(

∆Ĝ−1Ĝ−T∆T
)−1

∆Ĝ−1 (44)

and eventually, substituting (44) into (42), we rewrite the latter
as ∥∥∥∥(∆Ĝ−1Ĝ−T∆T

)−1

∆Ĝ−1
(
Ĝo + ε

)∥∥∥∥
∞
< λ , (45)

which in turn implies ∆ô = 0. As can be seen, (45) relates
conditions on the true occupancy o and the innovation process
ε with conditions on the final estimate ô.

iii): we now analyze the case when the true occupancy is
constant (∆o = 0). In this case condition (45) reads as

‖V ε‖∞ < λ ⇒ ∆ô = 0, (46)

that is equivalent to{
|〈Vi, ε〉|2 < λ2

}
i=1,...,N

⇒ ∆ô = 0 . (47)

The Cauchy-Schwarz inequality yields 〈Vi, ε〉|2 ≤
‖Vi‖2‖ε‖2. Letting ‖Vm‖2 := maxi ‖Vi‖2, the sufficient
condition for (46) becomes

‖Vm‖2‖ε‖2 < λ2 ⇒ ∆ô = 0. (48)

In (48) Vm is known, while ε is white Gaussian noise:
thanks to the Prediction Error Method (PEM) paradigm, εi ∼
N (0, σ2

ε), with σ2
ε estimated during the system identification

phase. It thus follows that∥∥∥∥ ε

σε

∥∥∥∥2

=

Tts∑
i=1

(
εi
σε

)2

∼ χ2 (N) , (49)

where χ2(N) is a Chi-squared distribution with N degrees of
freedom. Thus, with the probability of at least α, ‖ε‖2 will
have the following upper bound

‖ε‖2 ≤ (σε)
2
χ−1
α (N) , (50)

where χ−1
α (N) is the inverse of the chi-square cdf with N

degrees of freedom for the corresponding probability α. Sub-
stituting (50) into (48), we get the statement of the proposition.

B. Proof of Proposition 5

In this case, we impose another constraint on the opti-
mization problem (19) by setting the first element in the
occupancy signal to its true value. Using the same approach
as in the proof of the proposition 1, we will have (36) subject
to õ(1) = o(k −N), where o(k −N) is the true value of the
occupancy signal at time k−N . Substituting the new constraint
õ(1) = o(k −N) into the cost function, one can rewrite (36)
as

arg min
ō ∈ RN+

z ∈ RN−1

1

2

∥∥c̄− H̄ō
∥∥2

2
+ λ
∥∥z − ō∗

∥∥
1

s.t. z = ∆̄ō ,

(51)

where

ō∗ :=
[
o(k −N) 0 · · · 0

]T ∈ RN−1×N−1.

Using the same approach as before the dual problem for (51)
will be

arg min
u∈RN

1

2

∥∥∥c̄− (∆̄H̄−1
)T

u
∥∥∥2

2

s.t. |u|∞ ≤ λ
, (52)

where the Lagrange multipliers satisfy

ûλ,i ∈


{+λ} if

(
∆̄ō− ō∗

)
i
> 0,

{−λ} if
(
∆̄ō− ō∗

)
i
< 0,[

−λ, λ
]

if
(
∆̄ō− ō∗

)
i

= 0.
(53)

Notice that ∆̄ is invertible and thus the condition (45) for this
case reads as∥∥∥(V̄ V̄ T )1 o∗ +

(
V̄ V̄ T

)k ± V̄ ε
∥∥∥
∞
< λ ⇒ ∆̄ō− ō∗ = 0,

(54)
where

(
V̄ V̄ T

)k
is the k-th column of V̄ V̄ T and V̄ =

(H̄∆̄−1)T . Notice that this is a upper triangular Toeplitz
matrix, satisfying (letting V̄j be the j-th row of V̄ )∥∥V̄1

∥∥2 ≥
∥∥V̄2

∥∥2 ≥ . . . ≥
∥∥V̄N∥∥2

. (55)

This implication refers to the case where the estimator makes
the error of not finding the change in the occupancy signal at
time k.

The ∞-norm above can be expanded, as before, to obtain
the component-wise equivalent condition{∣∣〈V̄i, V̄1〉o∗ + 〈V̄i, V̄k〉 ± 〈V̄i, ε〉

∣∣ < λ
}
i=1,...,N

⇒ ∆̄ō = ō∗

(56)
or, using the bilinearity of inner products,{∣∣〈V̄i, V̄1o(k −N) + V̄k ± ε〉

∣∣ < λ
}
i=1,...,N

⇒ ∆̄ō = ō∗.
(57)

Cascading now Cauchy-Schwarz and triangular inequalities
with (55) and (57) it is possible to derive the sufficient
condition∥∥V̄1

∥∥2
(∥∥V̄1

∥∥2
o(k −N)

2
+
∥∥V̄1

∥∥2
+ ‖ε‖2

)
< λ2

⇒ ∆̄ō = ō∗
(58)

or, equivalently,∥∥∥∥ ε

σε

∥∥∥∥2

<
λ2 − (1 + o(k −N)

2
)
∥∥V̄1

∥∥4

σ2
ε

∥∥V̄1

∥∥2 ⇒ ∆̄ō = ō∗.

(59)
Same considerations as in the previous case thus follow
and (59) can be read as

λ2 > σ2
εχ
−1
α (N)‖V̄1‖2 + (1 + o(k −N)

2
)‖V̄1‖4. (60)
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