
Nonserial Dynamic Programming with Applications in Smart Home
Appliances Scheduling – Part II: Nonserial Dynamic Programming

Kin Cheong Sou, Henrik Sandberg and Karl Henrik Johansson

Abstract— In this paper a dynamic programming (DP) so-
lution approach to a nonconvex resource allocation problem
(RAP) is presented. The problem in this paper generalizes the
smart home appliances scheduling problem introduced in the
companion paper (i.e., Part I). The computation difficulty with
solving the RAP depends on the decision variable coupling,
which can be described by an interaction graph. This paper
proposes a DP algorithm to solve the RAP in the special
setting where the interaction graph is a tree. This extends the
applicability result of DP to RAP beyond the standard serial
case where the interaction graph is a line. The extension of
the result is achieved by establishing that even in the tree case
DP computation effort is polynomial in the number of decision
variables. For RAP in its general form, this paper proposes
a modification to the nonserial DP procedure originally intro-
duced by Bertele and Brioschi. Contrary to that of the previous
method, the computation effort of the proposed method can be
characterized by a well-known minimum feedback vertex set
problem. Case studies on known examples indicate that both
nonserial DP methods are similarly efficient.

I. INTRODUCTION

A. Problem Statement

This paper is concerned with the dynamic programming
(DP) solution procedure to the following nonconvex resource
allocation problem:

minimize
x1,x2,...,xn

m
∑

k=1
Fk(Xk)

subject to Xk ⊂ {x1,x2, . . . ,xn}, ∀ k,
n
∑
j=1

g j(x j)≤ b,

x j ∈C, j = 1,2, . . . ,n,

(1)

where Xk are subsets of the set of all decision variables and
Fk(Xk) are arbitrary given functions with arguments being
the members of Xk. For instance, if Xk = {x1,x3,x5}, then
Fk(Xk) := Fk(x1,x3,x5). In (1), C is a given finite discrete
set. While it is possible to generalize to the case where
there are different C j for different x j, this paper restricts
the description to the case with the single set C in order
to avoid notation complication. The coupling of the sets
Xk’s can be described by an interaction graph H. H is an
undirected graph, and it has n nodes indexed by 1,2, . . . ,n,
with node i corresponding to decision variable xi. Two nodes

Kin Cheong Sou is with the Department of Mathematical Sciences,
Chalmers University of Technology and the University of Gothenburg, Swe-
den. The other authors are with the ACCESS Linnaeus Center and the Au-
tomatic Control Lab, the School of Electrical Engineering, KTH Royal In-
stitute of Technology, Sweden. kincheong.sou@chalmers.se,
{hsan,kallej}@kth.se

1

2

3

4

5

Fig. 1. The interaction graph of an instance of (1) with five decision
variables. The objective function is F1(x1,x2) +F2(x1,x4) +F3(x1,x3,x5).
Each component of the objective function defines a clique in the interaction
graph.

i and j are connected by an (undirected) edge if and only if
there exists an index k such that both xi and x j are members
of Xk. See Figure 1 for an illustration of the interaction
graph. In (1), g j are arbitrary given functions in the resource
budget constraint. b is a given scalar. It is assumed that there
exists a discrete set B whose elements are nonnegative integer
multiples of some ∆b > 0 such that b ∈ B and g j(x j) ∈ B for
all x j ∈C and all j = 1,2, . . . ,n.

B. Motivations

The resource allocation problem in (1), a resource-
constrained version of the problem studied in [1], was consid-
ered in [2]. Problem (1) is also motivated from the following
smart home appliances scheduling problem described in the
companion paper [3], as the later problem can be reduced
into problem (1) (see Appendix A for more detail):

minimize
t1,t2,...,tn

n
∑

i=1
fi(ti)

subject to li j ≤ t j− ti ≤ ui j, ∀ {i, j}

ti ∈C, ∀ i,
n
∑

i=1
gi(ti)≤ b,

(2)

where fi are arbitrary given functions, li j and ui j are given
constants (li j can be −∞ and ui j can be +∞ to indicate that
the corresponding constraints are in fact absent), C is a given
discrete set, and the resource budget constraint is the same
as the one in (1), except that the symbols for the decision
variables have changed. Problem (2) is one of the smart home
appliances scheduling problems which have received much
attention recently (e.g., [4]–[10]). Appliances scheduling
forms an integral part of the automatic decision support sys-
tem in smart grid applications. Appliances scheduling allows
household consumers to consciously control their energy
consumption patterns without being overwhelmed by the
amount of information provided by smart grid technologies

(e.g., the demand response signals from smart meters). This
in turn enables the power network operators to indirectly
control the peak energy demand, a task particularly relevant
in situations with high level of renewable energy penetration.
Thus, an efficient algorithm for (1) (and hence for (2)) is a
critical component for the realizability of smart grid.

C. Contributions of the Paper

Problem (1) is NP-hard in general [2]. In [2], the standard
DP procedure was used to solve problem (1) in the case
where Xk’s are separable. That is, m = n, Xk = {xk} for
all k and the corresponding interaction graph consists of
isolated nodes. The computation effort for this specialization
is O(n|B||C|). It is also known that in a more general case
where Xk are serial with Xk = {xk,xk+1} for k = 1, . . . ,n−1
(i.e., the corresponding interaction graph is a single line),
the standard DP can still be utilized with computation effort
being O(n|B||C|2) [1]. In this paper, it is demonstrated that a
generalization of the serial case still admits DP solution with
similar computation effort of O((n−1)|B|2|C|2). This is the
case where the interaction graph is a tree (i.e., a connected
graph without cycles). The details will be presented in
Section II.

In addition to generalizing the result on the applicability
of DP, the DP solution procedure in Section II is also needed
for the proposed nonserial DP procedure for the general
version of (1) with no restriction on the interaction graph.
The proposed nonserial DP procedure will be described in
Section III. This procedure, a modification of the original
nonserial DP method in [1], organizes the solution finding
of (1) into a combination of enumeration and DP with tree
interaction graph which is the method described in Section II.
Even though in the worst case the computation effort required
is exponential in problem size because of the enumeration,
the computation effort of the proposed approach in Section
III can be characterized by solving the well-studied minimum
feedback vertex set problem on the interaction graph. This
characterization is much more straightforward than the one
required by the original nonserial DP in [1]. Case studies on
example instances indicate that the presented approach has
the same computation effort requirement as the one in [1].

II. DYNAMIC PROGRAMMING WITH TREE INTERACTION
GRAPH

In this section the interaction graph H of (1) is assumed
to be a tree. The solution procedure to be described can in
fact handle the case where H is a forest (i.e., an acyclic
graph with more than one connected components). If H is a
forest, the separate connected components can be connected
by artificial edges by adding constant objective function
components to the original objective function. For example,
suppose node 1 and node 2 are on separate connected
components, the added objective function component can be
F1,2(x1,x2)≡ 0.

The tree structure of the interaction graph H of (1) implies
that in the most compact description it holds that (a) the
number of objective function components Fk’s is n−1 (i.e.,

m = n− 1), and (b) each distinct Fk is associated with a
distinct pair of nodes {ik, jk} corresponding to an edge in
H. Therefore, each function Fk(Xk) can be specialized to
Fik, jk(xik ,x jk), where ik and jk are the two end nodes of the
edge associated with Xk. The argument for the claims can be
found in Appendix B. The proposed DP approach to solve (1)
with tree interaction graph is described next, and after that
Figure 2 shows an illustration of the proposed DP approach.

step 0 (initialization):
• Set H ′ := H.
• Set u to be the index of a leaf node in H ′ (i.e.,

a node with only one neighbor).
• For all k = 1,2, . . . ,n, set successor counter

sk = 0. Set successor stack Sk = [].
• For all (xk,bk) ∈C×B with k = 1,2, . . . ,n, set

J0
k (xk,bk) according to

J0
k (xk,bk) =

{
0 if gk(xk)≤ bk,

∞ if gk(xk)> bk.
(3)

• Go to step 1.
step 1 (finding predecessor): If the leaf node u does not

have any neighbor, then go to step 3. Otherwise,
set v to be the index of the neighbor of u (there
can be only one neighbor since u is a leaf node),
and go to step 2.

step 2 (absorbing leaf nodes):
2-1: Let Nl(v) denote the index set of all neighbors
of v which are leaf nodes of H ′.
2-2: For each w ∈ Nl(v), perform the following:
• For each pair (xv,bv) ∈C×B, solve the mini-

mization problem

minimize
xw∈C, bw∈B

Fv,w(xv,xw)+ Jsw
w (xw,bw)

+Jsv
v (xv,bv−bw),

(4)

where sv and sw are the most updated successor
counters for v and w, respectively. Also, let

(x?w,b
?
w) := (x?w(xv,bv),b?w(xv,bv)) denote

a minimizing pair of (4).
(5)

• Define Jsv+1
v (xv,bv) as the optimal objective

value of (4). That is,

Jsv+1
v (xv,bv) = Fv,w(xv,x?w)+ Jsw

w (x?w,b
?
w)

+Jsv
v (xv,bv−b?w).

(6)
• Increment sv ← sv + 1 and update successor

stack Sv(sv) = w. That is, w is the latest suc-
cessor of v (or v is the predecessor of w).
Also, update H ′ by deleting nodes w and edges
{w,v}. The process in 2-2 is referred to as
“absorbing” the leaf node w ∈ Nl(v). Note that
after w is absorbed it disappears from H ′.
Hence, Sw and sw will not change again. Sw
is an ordered list of the successors of w (in the
order of absorption), and sw is the number of
members in Sw.

2-3: Find a leaf node u in the updated H ′ (u can
always be found since the updated H ′ is still a tree).
With the updated u and updated H ′, go to step 1.

step 3 (optimal solution backtracking):
• Let v1 denote the only node in H with no

predecessor (the precedence relationship was
defined in step 2-2). Define a graph T

sv1
v1 with

the nodes in H. Let (u,v) be a directed edge
of T

sv1
v1 if and only if u is a predecessor of v.

It will be shown that T
sv1

v1 is connected.
• Perform a breadth-first search (BFS) on T

sv1
v1

starting from v1 with three additional rules:
(a) define xopt

v1 as a minimizer of J
sv1
v1 (·,b) and

bopt
v1 = b. (b) when a node has more than one

unexplored successors, BFS always explores
the successor which is absorbed last (i.e., ex-
ploration in the reverse order of Sv for any node
v). (c) when the k-th successor of a node v (i.e.,
Sv(k)) is explored, define

xopt
Sv(k)

= x?Sv(k)

(
xv

opt,bopt
v −

sv
∑

l=k+1
bopt

Sv(l)

)
,

bopt
Sv(k)

= b?Sv(k)

(
xv

opt,bopt
v −

sv
∑

l=k+1
bopt

Sv(l)

)
.

(7)
• After the modified BFS, the optimal solution is

returned as xopt
k for all k. This will be certified

in Theorem 2.
An illustration of the step 1/step 2 loop for the DP approach
applied to an example problem instance with an 8-node
tree interaction graph is shown in Figure 2. The graph T

sv1
v1

defined in step 3 is important in the subsequent analysis and
it has the following property:

Lemma 1: The graph T
sv1

v1 defined in step 3 is a directed
tree rooted at v1.

Proof: The fact that T
sv1

v1 is a tree when the edge
directions are ignored is established because an edge (u,v)
in T

sv1
v1 corresponds to an edge {u,v} in H (and H is a tree).

Since every node other than v1 has a unique predecessor and
T

sv1
v1 is a tree, for each node u there is a unique directed path

from v1 to u. Therefore, T
sv1

v1 is rooted at v1.
Associated with T

sv1
v1 the following concept is important

in the analysis: For each node v in T
sv1

v1 and k such that 0≤
k ≤ sv, let T k

v , referred to as the (cumulative) partial subtree
rooted at v with index k, denote a subgraph of T

sv1
v1 with

the following properties: The set of nodes of T k
v , denoted

N(T k
v), includes node v, the first k successors of v (i.e.,

Sv(1), . . . ,Sv(k)) and all descendants of these successors. The
set of edges of T k

v , denoted E(T k
v), includes the edges of T

sv1
v1

whose both ends are in N(T k
v). The concept T k

v generalizes
that of T

sv1
v1 since the latter is indeed the former with v = v1

and k = sv1 . By definition, Sv(0) is an empty stack and hence
T 0

v for any node v contains node v itself. Figure 3 illustrates
some topological concepts associated with T k

v with the 8-
node example in Figure 2.

Associated with each partial subtree T k
v , xv ∈C and bT k

v
∈

1

2

3

4

5 6

7 8

u

v

2

5 6

7 8 v

u

(a)

(b)

Fig. 2. Illustration of the DP approach applied to an example problem
instance with a tree interaction graph with eight nodes. In step 0 the
initialization picks node 1 as the leaf node, designated u in subfigure (a). In
step 1, node 1 is found to have a neighbor node 2, which is designated v,
the predecessor of u. Subfigure (b) shows the result at the end of one pass
of step 2. All leaf-neighbors of node v = 2 (i.e., 1, 3 and 4 but not 5 or 7)
are “absorbed” into v during step 2. The order in which nodes 1, 3 and 4 are
absorbed is arbitrary, but this information is recorded in the successor stack
S2 (e.g., S2 = [1,3,4]). The intermediate interaction graph H ′ is updated:
nodes 1, 3 and 4, as well as the edges {1,2}, {2,3} and {2,4} are deleted
in the updated H ′, as shown in (b). Not shown in (b), the functions J j

2(·, ·)
are also defined as in (6), for j = 1,2,3. Since in the updated H ′ node 2 is
not a leaf, a new leaf node (i.e., node 6) is designated u at the end of step
2. The new leaf node always exists, because by construction the updated H ′
is also a tree, and every tree contains at least one leaf node. The procedure
continues to iterate through step 1 and step 2, absorbing the nodes in the
order of 6, 5, 2, 7. Note that during this process, node 2 is again designated
as v (as the predecessor of node 5) and the corresponding J4

2 (·, ·) is defined.
Finally only node 8 is left in the latest version of H ′. step 3 is then executed
until the DP procedure is complete.

8

7

2

5

6

134

v
1

Fig. 3. Illustration of T 1
8 , the directed tree rooted at node 8. The successors

of node 2 include 5, 4, 3 and 1, ranked according to the reverse order of
absorption. The descendants of node 2 include 1, 3, 4, 5 and 6. The partial
subtree S3

2 includes nodes 2, 1, 3, 4 and edges (2,1), (2,3), (2,4).

B, the subproblem P(T k
v ,xv,bT k

v
) is defined as

P(T k
v ,xv,bT k

v
) :

minimize
xu : u∈N(T k

v)
xu∈C

∑

(i, j)∈E(T k
v),

or (j,i)∈E(T k
v)

Fi, j(xi,x j)

subject to ∑
u∈N(T k

v)

gu(xu)≤ bT k
v

xv given.

(8)

By convention, if E(T k
v) is empty (i.e., when T k

v is a
single node), then the objective is a constant zero function.
P(T

sv1
v1 ,xv1 ,b) is the original resource allocation problem

in (1) except that xv1 is fixed. Therefore, an enumeration
over xv1 with P(T

sv1
v1 ,xv1 ,b) leads to a solution to (1),

provided that the optimal choices for the rest of the decision

variables in (8) can be determined. Analogous to standard
DP, the minimization of P(T

sv1
v1 ,xv1 ,b) is carried out through

a “cost-to-arrive” function, which turns out to be J
sv1
v1 (xv1 ,b)

defined in step 2. Indeed, the following statement asserts
that Jk

v (xv,bT k
v
) is the optimal objective value of subproblem

P(T k
v ,xv,bT k

v
).

Theorem 1: Consider applying the DP algorithm with the
loop between step 1 and step 2 finishes. Let v be a node in
T

sv1
v1 and let k be an integer such that 0≤ k≤ sv with sv being

the number of successors of v in T
sv1

v1 . Let T k
v denote a partial

subtree rooted at v. For any given xv ∈C, bT k
v
∈ B, the value

of Jk
v (xv,bT k

v
) is the optimal objective value of subproblem

P(T k
v ,xv,bT k

v
) defined in (8). In addition, for k ≥ 1, w :=

Sv(k), it holds that

Jk
v (xv,bv) = Fv,w(xv,x?w)+ Jsw

w (x?w,b
?
w)+ Jk−1

v (xv,bT k
v
−b?w),

(9)
where (x?w,b

?
w) are defined by (5) with xv and bv := bT k

v
.

Proof: The proof is based on the induction of the
function Jsv

v over nodes with increasing depths. The depth
of a node v in T

sv1
v1 is the length of the longest directed path

(in terms of number of traversed edges) among all paths from
v to a descendant of v without successor (e.g., the depth of
node 2 in Figure 3 is two, and the depth of node 3 is zero).
Let u be any node in T

sv1
v1 with zero depth, then J0

u (xu,bT 0
u
), as

defined in (3), is the optimal objective value of P(T 0
u ,xu,bT 0

u
)

which is either 0 or ∞. This shows the base case of induction.
Next, consider any node v with depth d, and assume:

H1: for every node u with depth less than d, for any
(xu,bT su

u
) ∈ B×C, the function value Jsu

u (xu,bT su
u
)

is the optimal objective value of P(T su
u ,xu,bT su

u
).

The induction is completed and the desired statement can be
shown if for any 0 ≤ k ≤ sv, and for any (xv,bT k

v
) ∈ B×C,

the function value Jk
v (xv,bT k

v
) is the optimal objective value

of P(T k
v ,xv,bT k

v
). The proof of this follows from another

induction on the function Jk
v over k. For the base case,

J0
v (xv,bT 0

v
) is the optimal objective value of P(T 0

v ,xv,bT 0
v
).

Now assume another induction hypothesis:

H2: for any 0≤ l < k, and for any (xv,bT l
v
)∈ B×C, the

function value Jl
v(xv,bT l

v
) is the optimal objective

value of P(T l
v ,xv,bT l

v
).

Let w := Sv(k), subproblem P(T k
v ,xv,bT k

v
) is expressed into

minimize
xu : u∈N(T sw

w)∪N(T k−1
v)

∑

u ∈ N(T sw
w)

gu(xu)+ ∑

u ∈ N(T k−1
v)

gu(xu)≤b
T k
v

{
Fv,w + ∑

(i, j)∈E(T sw
w),

or (j,i)∈E(T sw
w)

Fi, j(xi,x j)

+ ∑

(i, j)∈E(T k−1
v),

or (j,i)∈E(T k−1
v)

Fi, j(xi,x j)

}
.

(10)
Pulling out the minimization w.r.t. xw and introducing an

extra decision variable bw, problem (10) can be written as

minimize
xw,bw

{
Fv,w + minimize

xu : u∈N(T sw
w)\{w}

∑

u : ∈N(T sw
w)

gu(xu)≤bw

{
∑

(i, j)∈E(T sw
w),

or (j,i)∈E(T sw
w)

Fi, j(xi,x j)

}

+ minimize
u : ∈N(T k−1

v)

∑

u : ∈N(T k−1
v)

gu(xu)≤b
T k
v
−bw

{
∑

(i, j)∈E(T k−1
v),

or (j,i)∈E(T k−1
v)

Fi, j(xi,x j)

}}
.

(11)
Note that the second and third minimization problems in
(11) are subproblems P(T sw

w ,xw,bw) and P(T k−1
v ,xv,bT k

v
−

bw) respectively. Therefore, by the induction hypotheses H1
and H2 respectively, (11) can be rewritten as

minimize
xw,bw

{
Fv,w + Jsw

w (xw,bw)+ Jk−1
v (xv,bT k

v
−bw)

}
.

(12)
Thus, subproblem P(T k

v ,xv,bT k
v
) can be written as (12). In

addition, according to (4) and (6) in step 2, Jk
v (xv,bT k

v
) is

the optimal objective value of (12) with (x?w,b
?
w) being an

optimizing pair (k− 1 and bT k
v

in (12) are, respectively, sv
and bv in (4) and (6)). Therefore, the proof is completed.
As a consequence of Theorem 1, the optimal objective value
of (1) can be obtained by a one-dimensional minimization
of the cost-to-arrive function J

sv1
v1 (·,b).

Corollary 1: The value min
x∈C

J
sv1
v1 (x,b) is the optimal ob-

jective value of the resource allocation problem in (1).
Proof: Theorem 1 states that J

sv1
v1 (x,b) is the optimal

objective value of P(T
sv1

v1 ,x,b) for any given x ∈ C and b.
Since the minimum optimal objective value of P(T

sv1
v1 ,x,b)

with respect to x ∈C is the optimal objective value of (1),
the desirable statement is obtained.

In addition to the optimal objective value, it is desirable
to obtain an optimal solution to (1). The following statement
certifies that step 3 provides the desirable optimal solution:

Theorem 2: The procedure in step 3 defines xopt
i for each

i = 1,2, . . . ,n exactly once. In addition, assuming that (1) is
feasible, xopt

i , i = 1,2, . . . ,n form an optimal solution to (1).
Proof: The fact that T

sv1
v1 is a tree ensures that the BFS

in step 3 explores each node exactly once. Hence, xopt
i for

each i = 1,2, . . . ,n is defined exactly once. Let v2,v3, . . . ,vq
denote all successors of v1 with the order visited by the
BFS procedure. By Corollary 1 and the definition of xopt

v1 ,
the optimal objective value of (1) equals

min
x∈C

J
sv1
v1 (x,b)

= J
sv1
v1 (xopt

v1 ,b)

= Fv1,v2(x
opt
v1 ,xopt

v2)+J
sv2
v2 (xopt

v2 ,bopt
v2)+J

(sv1−1)
v1 (xopt

v1 ,b−bopt
v2).

The second equality above is due to (7) and (9). Similarly,
the term J

(sv1−1)
v1 (xopt

v1 ,b−bopt
v2) can be expanded into

J
(sv1−1)
v1 (xopt

v1 ,b−bopt
v2)

= Fv1,v3(x
opt
v1 ,xopt

v3)+J
sv3
v3 (xopt

v3 ,bopt
v3)+J

(sv1−2)
v1 (xopt

v1 ,b−bopt
v2

−bopt
v3).

Expand J
(sv1−2)
v1 (xopt

v1 ,b−bopt
v2 −bopt

v3) and continue until

J1
v1
(xopt

v1 ,b−bopt
v2 − . . .−bopt

vq−1)

= Fv1,vq(x
opt
v1 ,xopt

vq)+ J
svq
vq (xopt

vq ,bopt
vq)+ J0

v1
(xopt

v1 ,b−bopt
v2 −

. . .−bopt
vq).

This leads to a decomposition of J
sv1
v1 (xopt

v1 ,b) into

J
sv1
v1 (xopt

v1 ,b)

=
(

Fv1,v2(x
opt
v1 ,xopt

v2)+Fv1,v3(x
opt
v1 ,xopt

v3)+ . . .

+Fv1,vq(x
opt
v1 ,xopt

vq)
)
+
(

J
sv2
v2 (xopt

v2 ,bopt
v2)+ . . .

+J
svq
vq (xopt

vq ,bopt
vq)
)
+ J0

v1
(xopt

v1 ,b−bopt
v2 − . . .−bopt

vq).

(13)
Since (1) is assumed to be feasible, min

x∈C
J

sv1
v1 (x,b) < ∞.

Then (3) implies that J0
v1
(xopt

v1 ,b− bopt
v2 − . . .− bopt

vq) = 0 and
gv1(x

opt
v1)+bopt

v2 + . . .+bopt
vq ≤ b. Therefore, (13) simplifies to

J
sv1
v1 (xopt

v1 ,b)

=
(

Fv1,v2(x
opt
v1 ,xopt

v2)+Fv1,v3(x
opt
v1 ,xopt

v3)+ . . .

+Fv1,vq(x
opt
v1 ,xopt

vq)
)
+
(

J
sv2
v2 (xopt

v2 ,bopt
v2)+ . . .

+J
svq
vq (xopt

vq ,bopt
vq)
)
,

(14)

with
gv1(x

opt
v1
)+bopt

v2
+ . . .+bopt

vq ≤ b. (15)

Again by (7) and (9), for each k = 2,3, . . . ,q s.t. svk > 0
the term J

svk
vk (xopt

vk ,bopt
vk) can be further expanded in a fashion

similar to (14) and (15). The expansion is applied recursively
until the scenario where if Jsu

u appears in the expression then
su = 0. In the end, J

sv1
v1 (xopt

v1 ,b) is decomposed into

J
sv1
v1 (xopt

v1 ,b) = ∑

i, j (i, j)∈E(T
sv1
v1) or (j,i)∈E(T

sv1
v1)

Fi, j(x
opt
i ,xopt

j)

+ ∑

i∈N(T
sv1
v1):si=0

J0
i (x

opt
i ,bopt

i),

(16)
with the additional fact that

g(xopt
v)+

sv

∑
k=1

bopt
vSv(k)

≤ bopt
v ∀ v ∈ N(T

sv1
v1) : sv > 0. (17)

Summing up all inequalities in (17) leads to

∑
i∈N(T

sv1
v1)

gi(x
opt
i)≤ bopt

v0
= b. (18)

(16) and (18) together imply that xopt
i for i= 1,2, . . . ,n define

an optimal solution to the resource allocation problem in (1).

The computation effort of the DP approach is dominated
by the minimization of (4) in the step 1/step 2 loop. For
each node w being absorbed, (4) needs to be solved for each
pair (xv,bv) ∈C×B, where v is the predecessor of w. This
accounts for O(|B|2|C|2) comparisons. Since each node in
H is absorbed once except for v1. The overall computation
effort is O((n−1)|B|2|C|2) = O(m|B|2|C|2). Therefore, it is

established that problem (1) with tree interaction graph can
still be solved with computation effort polynomial in the
number of decision variables.

Corollary 2: With tree (or forest) interaction graph, the
resource allocation problem in (1) can be solved with O((n−
1)|B|2|C|2) = O(m|B|2|C|2) comparisons.

Proof: Theorem 1 and Theorem 2 assert the correctness
of the presented algorithm to solve (1). Since the algorithm
requires O((n−1)|B|2|C|2) =O(m|B|2|C|2) comparisons, the
statement is obtained.

Remark 1: While Corollary 2 states that problem (1) with
tree or forest interaction graph can be solved in polynomial-
time in the number of decision variables and constraints, it
does not mean that problem (1) can be solved in polynomial-
time in problem size, since |B| and |C| need not be bounded
from above by any polynomial function in problem size.

In certain cases, the computation effort for the minimiza-
tion in (4) can be reduced. For instance, if sw = 0 (i.e., w is
a leaf node in the interaction graph H), then

(4)⇔minimize
xw∈C

Fvw(xv,xw)+ Jsv
v
(
xv,bv−gw(xw)

)
.

Similarly, if sv = 0 (i.e., v has never absorbed any other node
before), then

(4)⇔minimize
xw∈C

Fvw(xv,xw)+ Jsw
w
(
xw,bv−gv(xv)

)
.

In both cases, as well as the joint event, the computation cost
for minimizing (4) reduces to O(|B||C|2) comparisons. In the
description of step 0 and step 2-3 there is no mentioning of
which leaf node to be chosen in case there are multiple leaf
nodes. The choice of the leaf nodes affects the corresponding
values of sv and sw in (4), when the leaf nodes are absorbed.
This in turn affects the computation effort of DP. See Figure
4 for an illustration. It is possible to optimize over the order

21 3 4(a)

21 3 4(b)

Fig. 4. Subfigure (a): the order of absorbed nodes is 1, 2, 3. Each time
a node is absorbed, in the corresponding minimization in (4) sv = 0. With
this order of absorption, DP costs O(|B||C|2) comparisons. Subfigure (b):
the order of absorption is 1, 4, 3. When node 3 is absorbed into node 2, both
sv = 1 and sw = 1. Therefore, DP costs O(|B|2|C|2) units of comparisons in
this case. This figure demonstrates that the order in which the leaf nodes
are absorbed can affect the computation cost for DP.

of absorbing leaf nodes in order to minimize the computation
effort for DP. This, however, is not pursued in this paper.

III. DYNAMIC PROGRAMMING WITH ARBITRARY
INTERACTION GRAPH

The DP approach described in Section II does not apply
to the instances of (1) where the interaction graphs contain
cycles. For instance, consider the minimization of

minimize
x1,x2,x3

F12(x1,x2)+F23(x2,x3)+F31(x1,x3)

subject to g1(x1)+g2(x2)+g3(x3)≤ b.
(19)

The interaction graph of this problem is a 3-cycle. The
initialization step 0 in the DP algorithm in Section II fails
to find any starting leaf node that can be absorbed in
step 2. However, if problem (19) is posed as a sequential
optimization problem as follows:

minimize
x1

(
min
x2,x3

F12(x1,x2)+F23(x2,x3)+F31(x1,x3)︸ ︷︷ ︸
:=h23(x2,x3 x1)

)
subject to g1(x1)+

(
g2(x2)+g3(x3)

)
≤ b,

(20)
where h23(x2,x3 x1) denotes a function of x2 and x3 when x1
is given, then the inner optimization problem (with respect
to x2 and x3) can be solved using the DP approach in
Section II, because the interaction graph associated with the
inner problem is a tree with two nodes (considering h23).
The process of pulling out the optimization with respect to
x1 and forming the inner problem with x2 and x3 has an
interaction graph interpretation. Pulling out x1 amounts to
deleting node 1 and all edges connected to node 1 from the
interaction graph in (19). By removing enough nodes from
the interaction graph, any arbitrary interaction graph can be
made acyclic. In general, with any permutation i1, i2, . . . , in of
1,2, . . . ,n, problem (1) for any interaction graph can always
be solved sequentially by

minimize
xi1

(
minimize

xi2

· · ·
(

minimize
xir ,...,xin

m
∑

k=1
Fk

))
,

s.t. gi1(xi1)+

(
gi2(xi2)+ . . .+

(
gir(xir)+ . . .)

))
≤ b,

(21)
where the innermost problem with respect to xir , . . . ,xin is
associated with an acyclic interaction graph, and hence can
be solved using the DP approach in Section II. However, the
minimization with respect to xi1 ,xi2 , . . . ,xir−1 must be carried
out by computationally intensive enumerations. Therefore,
the fundamental problem regarding the minimization of the
computation effort of (21) is to minimize the number vari-
ables xi1 ,xi2 , . . . ,xir−1 which require enumerations. In terms
of interaction graph, the problem is to find the minimum
cardinality subset of nodes to remove in order to render
the remaining graph acyclic. This problem is well studied,
and is known as the minimum feedback vertex set problem
(MFVS problem) [11]. Even though the MFVS problem is
NP-hard [12], numerous exact and approximation algorithms
are available (e.g., [11]).

Using the proposed MFVS based organization of compu-
tation, problem (21) can be solved in O(|B|2|C||Vmfvs|+2) units

of basic computation, where |Vmfvs| denotes the cardinality
of the minimum feedback vertex set of the interaction graph.
The characterization of computation effort in terms of the
well-studied quantity |Vmfvs| is a main advantage over the
original nonserial DP approach in [1]. The computation effort
of the approach in [1] is described through the optimal
solution of a secondary optimization problem, which is not
trivial to solve. In addition, using the proposed MFVS based
approach to organize the computation in (21) appears to
result in the same computation effort (in terms of asymptotic
analysis) as in the method described in [1]. Figure 5 shows
the interaction graph of an example instance of (1), for which
the proposed method and the one in [1] require the same
computation effort to solve (1) without the budget constraint.

1

2 3 4

5 6 7

Fig. 5. An instance of interaction graph with seven nodes. The example is
originally from [1]. A minimum feedback vertex set is {2,4}. This results
in O(|C|2+2) computation effort in solving (21) without budget constraint.
This requires the same effort as that in [1].

IV. CONCLUSIONS

With the current result it is now evident that, in addition to
the serial case where the interaction graph of the problem is a
line, the more general resource allocation problem with tree
or forest interaction graph can still be solved by DP with
computation effort polynomial in the number of decision
variables. Though this does not mean polynomial-time in
problem size, since the numbers of quantization steps for
the decision variable value and budget axises need not be
bounded from above by any polynomial function in prob-
lem size. Also, it appears that the nonserial DP procedure
introduced in [1] can be modified, resulting in a procedure
whose computation effort is similar to that of the one in [1].
Yet the computation effort of the modified procedure can be
characterized by the well-known minimum feedback vertex
set problem instead of the secondary optimization problem
required by [1]. Though a more detailed study is needed
to examine the full potential of the proposed nonserial DP
approach.

APPENDIX A

Given an instance of (2), a corresponding instance of
(1) can be constructed as follows: the decision variables
ti’s become xi’s. The resource budget constraint remains
the same except for the change of the symbols of the
decision variables. The interaction graph H for (1) is the
undirected version of the time precedence graph G for (2).
If in G two nodes are connected by two separate edges

in different directions, then in H there is only one edge
connecting the two nodes. For each {i, j} where a time
precedence constraint li j ≤ t j − ti ≤ ui j is present in (2),
an indicator function Ii j(ti, t j) can be defined such that
Ii j(ti, t j) = 0 if li j ≤ t j− ti ≤ ui j, otherwise Ii j(ti, t j) = ∞. The
integer m (i.e., the number of objective function components
Fk’s) is the number of time precedence constraints plus
the number of “isolated” decision variables (i.e., decision
variables not involved in any time precedence constraint). For
each isolated decision variable xi, there is a corresponding
k with Fk(xi) = fi(xi). For each time precedence constraint
li j ≤ t j−ti≤ ui j involving nodes i and j, the corresponding Fk
is defined as Fk(xi,x j)= Ii j(xi,x j)+

1
deg(i) fi(xi)+

1
deg(j) f j(x j),

where deg(i) and deg(j) are, respectively, the degrees of
nodes i and j in the interaction graph H. By construction,
a feasible choice of t1, t2, . . . , tn in (2) corresponds to a
choice of x1,x2, . . . ,xn in (1) with the same objective function
value. On the other hand, an infeasible choice of t1, t2, . . . , tn
in (2) leads to a choice of x1,x2, . . . ,xn in (1) which is
either infeasible or results in infinite objective function value.
Therefore, it suffices to consider solving (1) instead of (2).

Finally, note that there exists instances of (1) that cannot
be stated as instances of (2). For example, if Fk’s in (1)
involve products of decision variables, then this instance of
(1) cannot be an instance of (2).

APPENDIX B

To see the claims, notice that each Xk defines a clique in
H. Any clique with more than two nodes leads to cycles,
contradicting the assumption that H is a tree. This implies
that |Xk| ≤ 2. On the other hand, |Xk|= 1 means that either
there is another Xk′ such that Xk ⊂ Xk′ , or H has an isolated
node. The first case means that the Xk can be assimilated into
the corresponding Xk′ , and the second case is not allowed
because H is assumed to be connected. Therefore, after all
redundant Xk’s have been processed, each set Xk has exactly
two members. By definition, these two members correspond
to two end nodes of an edge in the interaction graph H.
This fact implies (b). Since each Xk requires an edge in H
to match and there are no more than n− 1 edges in a tree
with n nodes, it holds that m≤ n−1. To complete the claim
in (a), it suffices to notice that each edge in H also requires
a set Xk (for some k) to match. Hence, m≥ n−1 and (a) is
shown.

REFERENCES

[1] U. Bertele and F. Brioschi, Nonserial Dynamic Programming. Or-
lando, FL, USA: Academic Press, Inc., 1972.

[2] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
Approaches, no. 4 in Foundations of Computing Series. The MIT
Press, Cambridge, MA, 1988.

[3] K. C. Sou, H. Sandberg, and K. H. Johansson, “Nonserial
dynamic programming with applications in smart home appliances
scheduling – part I: Precedence graph simplification,” preprint,
available at the first author’s homepage, 2013. [Online]. Available:
http://www.math.chalmers.se/∼cheong/NSDPpart1.pdf

[4] K. C. Sou, J. Weimer, H. Sandberg, and K.H. Johansson, “Scheduling
smart home appliances using mixed integer linear programming,” in
Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, dec. 2011, pp. 5144 –5149.

[5] K.C. Sou, M. Kördel, J. Wu, H. Sandberg, and K.H. Johansson,
“Energy and co2 efficient scheduling of smart home appliances,” in
European Control Conference, 2013.

[6] A. Esser, A. Kamper, M. Frankje, D. Most, and O. Rentz, “Scheduling
of electrical household appliances with price signals,” in Operation
Research Proceedings, 2006, pp. 253–258.

[7] T. Bapat, N. Sengupta, S. K. Ghai, V. Arya, Y. B. Shrinivasan,
and D. Seetharam, “User-sensitive scheduling of home appliances,”
in Proceedings of the 2nd ACM SIGCOMM workshop on Green
networking, 2011, pp. 43–48.

[8] N. Gatsis and G. Giannakis, “Residential demand response with
interruptible tasks: Duality and algorithms,” in Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on, dec. 2011.

[9] P. Du and N. Lu, “Appliance commitment for household load schedul-
ing,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 411–419,
2011.

[10] G. Xiong, C. Chen, S. Kishore, and A. Yener, “Smart (in-home) power
scheduling for demand response on the smart grid,” in Innovative
Smart Grid Technologies (ISGT), 2011 IEEE PES, 2011, pp. 1–7.

[11] F. Fomin, S. Gaspers, A. Pyatkin, and I. Razgon, “On the minimum
feedback vertex set problem: Exact and enumeration algorithms,”
Algorithmica, vol. 52, no. 2, pp. 293–307, 2008.

[12] R. Karp, “Reducibility among combinatorial problems,” in 50 Years of
Integer Programming 1958-2008, M. Junger, T. M. Liebling, D. Nad-
def, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. A. Wolsey, Eds., 2010, pp. 219–241.

http://www.math.chalmers.se/~cheong/NSDPpart1.pdf

	Introduction
	Problem Statement
	Motivations
	Contributions of the Paper

	Dynamic Programming with Tree Interaction Graph
	Dynamic Programming with Arbitrary Interaction Graph
	Conclusions
	References

