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Abstract— We consider the problem of occupancy estimation
in buildings using available environmental information. In
particular, we study the problem of how to collect data that
is informative enough for occupancy estimation purposes. We
thus propose an application-oriented input design approach for
designing the ventilation signal to be used while collecting the
system identification datasets. The main goal of the method is to
guarantee a certain accuracy in the estimated occupancy levels
while minimizing the experimental time and effort. To take
into account potential limitations on the actuation signals we
moreover formulate the problem as a recursive nonlinear and
nonconvex optimization problem, solved then using exhaustive
search methods. We finally corroborate the theoretical findings
with some numerical examples, which results show that comput-
ing ventilation signals using experiment design concepts leads
to occupancy estimator performing 4 times better in terms of
Mean Square Error (MSE).

Index Terms— Occupancy estimation, CO2 dynamics,
application-oriented input design, minimum-time input design

I. INTRODUCTION

Since knowing occupancy levels leads to more efficient
Heating, Venting and Air Conditioning (HVAC) control
schemes [1]–[4], the problem of occupancy estimation in
buildings has been extensively studied in the literature. In
general, there exist two categories of occupancy estimation
schemes. The first uses dedicated hardware (e.g., [5], [6]),
while the second uses statistical estimation algorithms on top
of information already available in the Building Management
System (BMS) like ventilation signals and measured CO2

levels (e.g., [7], [8]). The drawbacks of the methods belong-
ing to the first category are the need for installation and
maintenance of dedicated hardware plus privacy concerns,
while the drawback within the second strategy of methods
is an usually higher estimation error. There has been thus an
emerging interest in studying if it is possible to improve the
estimation algorithms belonging to this second category.

Literature review: as the scheme in Figure 1 exempli-
fies, estimating occupancy levels from environmental signals
is usually performed by inverting the models of the dynam-
ics. Importantly, CO2 levels are known to be the signals that
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are most informative for occupancy estimation purposes. The
problem is thus to estimate CO2 models. White-box models
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Fig. 1. Example of how to estimate occupancy levels when having a model
of the CO2 dynamics and measurements of the ventilation and CO2 levels.
In this case one may invert the model to find the estimated occupancy as
the signal that best explains the measurements through the model.

of the CO2 dynamics can be obtained directly from physics-
based laws like mass-balance equations under well-mixed
air conditions, as in [3], [7], [8]. One may also use gray-
box models where physics-based concepts are combined with
one-to-one correspondences between the model parameter
vector and the physical parameters characterizing the room
(i.e., room volume and size of the ventilation system), as
in [9]. Alternatively one may also use black-box modelling,
as in [10]–[16] (with the plethora of citations indirectly
reflecting the variegated set of different possibilities for
black-box modelling).

Irrespectively of their nature, CO2 models are always
parametrized with unknown parameters that should be esti-
mated through suitable system identification techniques. The
quality of the identified model will indirectly reflect into the
quality of the consequent occupancy estimates.

An interesting problem is then how to collect model
training data that make the consequent occupancy estimates
accurate. The problem can be seen as an experiment de-
sign [17] problem for the specific occupancy estimation task.
Notice that while the generic goal in experiment design is
to find an optimal input signal that excites the dynamics
of the system, in our setup we focus instead on revealing
the systems dynamics that are mostly interesting for the
occupancy estimation problem. Therefore, we focus on the
problem of application-oriented input design [18], [19].

Statement of contributions: we consider the problem
of designing an algorithm that computes how to optimally
ventilate a room during the collection of a training dataset to
be used for identifying the effects of room occupancy on the
CO2 concentrations in the room. More formally we consider
the problem of application-oriented input design when using
the nonlinear gray-box model proposed in [9]. The main
contributions of this paper are then:

• defining a metric function that measures the degradation



in the accuracy of the estimated occupancy due to the
model error. This is instrumental for obtaining a pre-
specified accuracy in estimated occupancy based on the
defined metric function while minimizing the cost of
the identification experiment;

• defining a metric function for the cost of the identifica-
tion experiment that is proportional to the experiment
time. This is because the identification experiment usu-
ally involves an accurate knowledge of the occupancy
levels, which is usually obtained through temporary
people counters. The cost of the experiment is thus
proportional to the experiment time;

• introducing a time-recursive algorithm which relies on
a short term knowledge of the occupancy signal, so
to lessen the computational burden of the optimization
problem associated with the experiment design.

The overall strategy is tested in a simulated model which
has been identified and validated in [9]. The results show
that using the obtained optimal ventilation signal to ventilate
the room during the training phase can guarantee the achieve-
ment of the required accuracy for the estimated occupancy
signals, while satisfying the limitations of the environmental
signals. Moreover the occupancy estimators obtained using
experiment design concepts are shown to perform at least in
silico 4 times better in terms of Mean Square Error (MSE).

Organization of the manuscript: Section II reviews
how to perform occupancy estimation using models of the
dynamics of the CO2 concentrations in a room. Section III
then presents how to design an identification experiment
considering the specific problem of occupancy estimation.
Section IV then describes the proposed recursive input design
algorithm. Finally, Section V evaluates the effectiveness of
the proposed strategy on a numerical example.

II. OCCUPANCY ESTIMATION USING A GRAY-BOX MODEL
FOR THE CO2 CONCENTRATION LEVELS IN A ROOM

Here we review the physics-based CO2 model that has
been proposed and validated in [9], plus explain how this
model was used in [20] to construct an occupancy estimator.

A. A physics-based model of CO2 dynamics

Assuming that the air is well-mixed (see [21]), the CO2

concentration of a room, denoted by c(t), can be modeled
from mass-conservation considerations as

v
dc(t)

dt
=

(
Q̇vent,sup + Q̇leak,in)c

−
(
Q̇vent,exh + Q̇leak,out)c(t) + g o(t). (1)

In (1), v is the volume of the room; c is the outdoor air
CO2 concentration, which we assume constant and equal to
420 ppm; Q̇vent,sup and Q̇vent,exh are the supply and exhaust
mechanical ventilation rates; Q̇leak,in and Q̇leak,out are the
inflow and outflow air leakages through doors and windows.
The product g o(t) models the occupants CO2 generation in
the room, where g is the CO2 generation rate per person and
o(t) is the number of occupants at time t.

In the case of balanced ventilation it is reasonable to
assume that Q̇vent,sup ≈ Q̇vent ≈ Q̇vent,exh and that Q̇leak,in ≈
Q̇leak ≈ Q̇leak,out. Under suitable assumptions (see [9])
dynamics (1) can be written as

dc(t)

dt
=
Q̇uu(t)

v

(
c− c(t)

)
+
Q̇c

v

(
c− c(t)

)
+
g

v
o(t), (2)

with Q̇u = Q̇vent,max − Q̇vent,min and Q̇c = Q̇vent,min + Q̇leak

where Q̇vent,max and Q̇vent,min are the maximum and minimum
airflow through the ventilation system.

Model (2) can then be discretized using backward-Euler
rules1 and sampling time T . Define moreover c(k) := c(k)−
c and the parameter vector θT := [θ1 θ2 θ3], where

θ1 :=
v

v + TQ̇u
, θ2 :=

Tg

v + TQ̇u
, θ3 :=

TQ̇c

v + TQ̇u
.

Assuming finally that the measurements of CO2 are cor-
rupted by additive white Gaussian noise, so that the measured
CO2 concentration y(k) can be expressed as y(k) = c(k) +
e(k), the overall CO2 dynamics can be rewritten asc(k) =

θ1
1 + θ3u(k)

c(k − 1) +
θ2

1 + θ3u(k)
o(k)

y(k) = c(k) + e(k),

(3)

where θ1, θ2 and θ3 are model parameters, u(k) is the
ventilation signal and o(k) is the occupancy level (see [9]
for more details).

Starting from model (3) it is possible to construct a
deconvolution-based occupancy estimator as follows: com-
pact the notation by introducing θ := [θ1, θ2, θ3]

T , o :=
[o(1), . . . , o(N)]T ,

a(k ; θ) :=
θ1

1 + θ3u(k)
, and b(k ; θ) :=

θ2
1 + θ3u(k)

,

so that (3) becomes

c(k) = a(k ; θ)c(k − 1) + b(k ; θ)o(k). (4)

Expanding recursively (4) back in time, and defining the
auxiliary variables

c̃(k) := c(k)− c(0)

k−1∏
τ=0

a(k − τ ; θ),

B(k, k − h ; θ) := b(k − h ; θ)

h−1∏
τ=0

a(k − τ ; θ)

(with the convention that
∏−1

τ=0 ? = 1 for every ?), it is
possible to express, for any finite N , the Minimum Variance
Unbiased (MVU) estimator of the CO2 levels c(k) as

ĉ (k;θ,o) := y(0)

k−1∏
τ=0

a(k − τ ; θ)

+
[
B(k, 1 ; θ), . . . , B(k, k ; θ)

]
o. (5)

From (5) we will then derive an estimator of o in Sec-
tion II-C.

1This choice is motivated by the fact that the backward Euler discretiza-
tion led to better identification and estimation performance.



B. Prediction Error Method (PEM)-based identification
Estimating o from (5) requires an estimate of the parame-

ter vector θ. Following [22], in this section we describe how
to estimate this vector using a PEM approach plus study the
statistical properties of this estimator.

Assume then the availability of measurements of the occu-
pancy signal thanks to a temporary people counter inside the
room, so that the dataset includes the occupancy levels o(k),
the measured CO2 concentrations y(k), and the ventilation
actuation levels u(k) available, i.e., D := {y,u,o}. Let θ ∈
Rnθ be a generic guess of the model parameters in (3). θ and
D jointly define the difference between the recorded output y
in D and the predicted output ĉ computed through model (5).
Defining the prediction error as ε(k,θ) := y(k)− ĉ (k;θ,o)
and following the PEM paradigm, we measure the quality
of an estimated θ based on the predictions ε(k,θ). Given
our Gaussian assumptions on e(k) in (3) we thus exploit
quadratic costs, i.e.,

θ̂N = argmin
θ∈Θ

VN (θ,D), VN (θ,D) :=
1

2N

N∑
k=1

ε2 (k,θ) ,

with Θ ⊂ Rnθ defined such that for all θ ∈ Θ the model (3)
exists and is stable.

An important asymptotic property of a PEM estimator (in
the sample size N ) is that, assuming that there exists an ideal
parameter vector θ0 from which the data is generated, and
under additional mild assumptions,(

IN
F (θ0)

) 1
2

(
θ̂N − θ0

)
d−→ N

(
0, I

)
(6)

where d means in distribution and where IN
F is the Fisher

Information Matrix (FIM), i.e.,

IN
F (θ0) :=

1

σ2
e

N∑
k=1

Ee

{
ψ (k,θ0)ψ (k,θ0)

T
}

(7)

(see [23] for more details on the assumptions and deriva-
tions). We assume IN

F invertible. The expectation above is
taken with respect to the measurement noise e, and

ψ (k,θ0) :=

[
dĉ (k;θ,o)

dθ1
,
dĉ (k;θ,o)

dθ2
,
dĉ (k;θ,o)

dθ3

]T
=

[
−dε (k;θ)

dθ1
, −dε (k;θ)

dθ2
, −dε (k;θ)

dθ3

]T
(see [17], [22] for details on this derivation). Leveraging
on (6), we can construct a confidence set around the true
parameters θ0 for which, as N → ∞,

Eid(θ0, α) :=
{
θ : (θ − θ0)

T IN
F (θ0) (θ − θ0) ≤ χ2

α(nθ)
}

(8)
where χ2

α(nθ) is the α-percentile of the χ2-distribution with
nθ degrees of freedom. I.e., for large N θ̂N ∈ Eid(θ0, α) with
probability at least approximately α. We then call Eid(θ0, α)
the identification set.

For a given dataset D we can estimate IN
F (θ0) as

IN
F (θ0) ≈ INF (θ0) :=

1

σ2
e

N∑
k=1

ψ (k,θ0)ψ (k,θ0)
T
. (9)

Notice that all the approximations above are based on the fact
that N is “sufficiently large”. Translating this into practical
rules to check the validity of these approximations is well
beyond the scope of this paper. We will thus assume that in
our framework N will always be large enough.

C. Estimating o using θ̂N

Having an estimate θ̂N of θ, measurements of y(k) (i.e.,
estimates of ĉ(k)) and u(k) for a certain time period k =
1, . . . , N , one can then estimate the occupancy levels o by
minimizing the error between the CO2 predicted through
model (5) and the measured one. Following [20] the esti-
mator can then be cast as the regularized program

ô(θ̂N ) = argmin
o

N∑
k=1

(
y(k)− ĉ

(
k; θ̂N ,o

))2

+ λ‖∆o‖1

(10)

where ∆o is the discrete derivative of the vector o and ‖ ·‖1
is `1 norm (see [20] for more details).

III. DESIGNING EXPERIMENTS TO OBTAIN IMPROVED
OCCUPANCY ESTIMATIONS

Assume ô
(
θ̂N

)
to be the occupancy estimate returned

by (10) and where we explicit that the solution is a function
of the identified parameter θ̂N . Let our application-oriented
metric function be

Vapp

(
θ̂N ,θ0

)
:= Eu

{
1

N

∥∥∥ô(
θ̂N

)
− ô (θ0)

∥∥∥2
2

}
, (11)

where we implicitly assume that estimator ô(·) performs
at its best whenever θ̂N = θ0 and where the expected
value is with respect to the ventilation signals used while
estimating the occupancy. The metric function (11) is called
application function and measures how much we pay in
terms of occupancy estimation accuracy if we do not identify
the true parameters. In other words, the accuracy of θ̂N
reflects on the amplitude of Vapp

(
θ̂N ,θ0

)
.

Our focus is now to find how to estimate θ̂N (i.e., how to
collect the training dataset D) so that a pre-specified accuracy
for the estimated occupancy levels can be guaranteed. Notice
that we formulate the problem as an application-oriented
input design problem (see [24]). More explicitly, considering
that D := {y,u,o}, we focus on designing the optimal
ventilation signal u considering the occupancy o as a non-
controllable (and thus given) input and the CO2 levels y the
output of the system.

To specify what “optimal ventilation” means we then use
the metric function Vapp to define the set of admissible
parameters θ as follows: assume that a pre-defined accuracy
γ−1 has been chosen by the user. Then our requirement is

θ̂N ∈ Θapp(θ0, γ) :=
{
θ : Vapp(θ,θ0) ≤ γ−1

}
, (12)

where Θapp(θ0, γ) is the so-called application set.
The problem is thus how to design u so that the dataset

D guarantees that the PEM estimate θ̂N is s.t. θ̂N ∈
Θapp(θ0, γ).



A. Knowledge of true system parameters

One may set up the experiment design problem by lad-
dering on the FIM (7), the identification set (8) and the
application set (12). These quantities, though, depend on the
true parameters θ0, that θ0 is not known a-priori. To cir-
cumvent this problem there are then mainly two approaches:
either performing robust experiment design (e.g., [25], [26])
or adaptive input design (e.g., [27]).

In this paper we use an initial estimate of the true
parameter vectors which can be obtained through either a
cheap identification experiment or physical knowledge of the
system. We denote this initial estimation by θ̂0. We replace
θ0 by θ̂0 in all the necessary expressions in the rest of this
paper. We assume one can make the designed input robust
to the uncertainties in the initial estimates using the robust
application-oriented input design approach in [26, Ch. 9].

B. Application-oriented input design

We define our application-oriented input design problem
in general terms as:

minimize
u

Experimental Cost

subject to θ̂N ∈ Θapp(θ̂0, γ)
u ∈ Input Constraints
y ∈ Output Constraints.

(13)

In the following subsections we then explicit the quantities
mentioned in (13) in mathematical terms.

1) Experimental cost: collecting the dataset D to per-
form system identification requires temporary installation
and maintenance of people counting devices, and this makes
it advantageous to make the system identification phase as
short as possible. To this end, we consider the length of the
identification experiment N as the experiment cost. To put
it another way, we aim at fining the minimum time required
to fulfill the constraints.

2) Model quality constraints: the model quality constraint
requires

θ̂N ∈ Θapp(θ̂0, γ). (14)

Since θ̂N is a stochastic variable, it is not possible to enforce
deterministic bounds on it. We thus replace the constraint
in (14) with the identification set Eid(θ̂0, α) in (8), i.e.,
replace (14) with

Eid(θ̂0, α) ⊆ Θapp(θ̂0, γ), (15)

which ensures θ̂N ∈ Θapp(θ̂0, γ) with probability at least α
assuming N large enough (see also [28] for other formula-
tions of this type of problems).

Unfortunately, though, the set constraint (15) is not nec-
essarily convex: indeed the identification set Eid(θ̂0, α) is
an ellipsoid, as stated in Section II-B, but the application
set Θapp(θ̂0, γ) in (12) can be of any shape. The known
methods to find a convex approximation of this constraint
are the scenario approach [29], [30] and the ellipsoidal
approach [31]. In the scenario approach the application set
is described by a finite number of samples for which the
constraint (14) should be fulfilled. In order to have a good

approximation of the set constraint, the number of scenarios
must be large enough. Thus, the scenario approach requires
several evaluations of the application function.

In this paper we use the ellipsoidal approximation
method which employs a second order Taylor expansion
of Vapp(θ, θ̂0) around θ̂0. Noting that Vapp(θ̂0, θ̂0) = 0

and assuming that θ̂0 ∈ Θ and that Vapp(θ, θ̂0) is twice
differentiable, we can indeed write

Vapp(θ, θ̂0) ≈ Vapp(θ̂0, θ̂0) + V ′
app(θ̂0, θ̂0)(θ − θ̂0)

+
1

2
(θ − θ̂0)

TV ′′
app(θ̂0, θ̂0)(θ − θ̂0)

=
1

2
(θ − θ̂0)

TV ′′
app(θ̂0, θ̂0)(θ − θ̂0).

The application set can thus be approximated by

Θapp(θ̂0, γ) ≈
{
θ : [θ − θ̂0]

TV ′′
app(θ̂0, θ̂0)[θ − θ̂0] ≤

2

γ

}
.

(16)
Using (16) to define Θapp(θ̂0, γ) instead of (12) implies
that the set constraint (15) can be rewritten, after simple
manipulations, as

1

χ2
α(nθ)

IN
F (θ̂0) ≥

γ

2
V ′′

app(θ̂0, θ̂0). (17)

with IN
F (θ̂0) the FIM defined in (7) evaluated at the best

available estimation of the true parameters θ̂0. We further
simplify (17) by replacing IN

F (θ̂0) with its approximation
INF (θ̂0) defined in (9), which makes it possible to compute
the information matrix for a given dataset. In this way the
model quality constraint then becomes

1

χ2
α(nθ)

INF

(
θ̂0

)
≥ γ

2
V ′′

app

(
θ̂0, θ̂0

)
. (18)

This approximation can then be transformed into an alterna-
tive (and more prone to numerical implementations) version
by defining

Ṽ :=
γχ2

α(nθ)

2
V ′′

app

(
θ̂0, θ̂0

)
.

Because Ṽ is at least semi-definite positive, we can indeed
write Ṽ = Ṽ 1/2Ṽ 1/2. The requirement (18) thus becomes

Ṽ −1/2INF

(
θ̂0

)
Ṽ −1/2 ≥ I

or, equivalently,

λmin

(
Ṽ −1/2INF

(
θ̂0

)
Ṽ −1/2

)
≥ 1, (19)

where λmin(X) indicates the minimum eigenvalue of a s.d.p.
matrix X .

3) Input constraints: the set of constraints on the venti-
lation signal u(k) is typically composed by:

• time-invariant box-constraints of the form

u(k) ∈ U , for all k,

where U is the set of admissible values for the ventila-
tion signal. The signal u(k) has the physical meaning of



opening percentage of a ventilation valve. We assume
that the opening is a discrete signal and thus the set U
is a discrete set with finite cardinality;

• restrictions on the number of changes in the ventilation
signal due to concerns on the physical integrity of the
actuators. Assuming the number of possible changes in
the ventilation signal is a constant nc, this constraint
can be formulated as

‖∆u‖0 ≤ nc,

where

∆u :=
[
∆u(1) . . . ∆u(N)

]
,

∆u(k) := u(k)− u(k − 1),

and ‖ · ‖0 is the zero norm, i.e., the number of non-zero
elements in the vector ∆u;

• considering that the final goal of occupancy estimation
is to optimize the performance of controllers and thus
save energy consumption, it is also desirable to use
a low-energy ventilation signal during the identifica-
tion experiment. Unfortunately, this is in contradiction
with the excitation requirements, since more excitation
usually leads to better estimates. We thus capture this
intrinsic trade-off with the constraint

‖u‖22 ≤ (1 + β)‖u∗‖22

where u∗ is the minimum-energy input sequence that
fulfills the input and output constraints, i.e.,

u∗ = argmin ‖u‖22
subject to u ∈ Input Constraints

y ∈ Output Constraints
(20)

and β ≥ 0 is a scalar that determines how much more
energy the experiment-design algorithm is allowed to
use for its identification purposes. Notice that if there
are no restrictions on the energy usage then one can
simply remove this additional constraint from the prob-
lem formulation by putting β = ∞. This formulation is
motivated by the idea behind dual control, see [32].

4) Output constraints: restrictions on the output signal
y(k) are in general due only to requirements on the quality
of the indoor air. However, given our Output Error (OE)
with Gaussian noise model (3), it is not possible to impose
deterministic constraints on y(k). We thus consider

P{y(k) ≤ ymax} ≥ py for every k,

and explain how to deal with this probabilistic constraint in
practice in Section IV-B.

C. Reformulation and comments

Given the results above we can rewrite our application-
oriented input design strategy in (12) as

minimize
u,N

N

subject to λmin

(
Ṽ −1/2INF

(
θ̂0

)
Ṽ −1/2

)
≥ 1

u ∈ U
‖∆u‖0 ≤ nc
‖u‖22 ≤ (1 + β)‖u∗‖22
P{y ≤ ymax} ≥ py.

(21)

Importantly, formulating problem (21) requires knowing the
estimate of the parameters θ̂0, that should thus have been
obtained before the design step; the approximated informa-
tion matrix INF , defined in (9); and the Hessian of the metric
function Vapp, defined in (11).

In their turn computing INF and V ′′
app requires knowing

both the occupancy signal o and the CO2 levels y that
will happen during the experiment under design, a clearly
infeasible request.

Solving problem (21) poses several challenges:
C1) it is required to know quantities that are not necessary

available when the problem should be solved;
C2) the problem is highly non-linear and non-convex, with

associated numerical challenges specially for large N .
In the following section we will describe how to

tackle these issues through a suitable reformulation of the
application-oriented input design problem (21).

IV. RECURSIVE APPLICATION-ORIENTED INPUT DESIGN
FOR OCCUPANCY ESTIMATION

A. Step 1: address challenge C1

Recall that computing INF
(
θ̂0

)
and V ′′

app

(
θ̂0, θ̂0

)
would

require knowing both the occupancy o and the CO2 levels
y that will happen during the datasets collection step. Even
if this sounds impractical, a workaround may be to assume
o to be known a-priori thanks to suitable building schedule
information (e.g., a-priori knowledge that a specific office
will be occupied by a specific number of people at specific
times). Knowing then o and an estimated θ̂0 one may
simulate y as a function of u through (3) and thus get all
the necessary information for computing INF and V ′′

app.
This workflow is nonetheless very prone to errors for

two reasons: first, the occupancy schedules are intrinsically
uncertain; second, the accuracy of the y obtained by simula-
tions through θ̂0 and (3) is greatly affected by the accuracy of
θ̂0 itself. To obtain a more robust experiment design strategy
one can then use a recursive input design algorithm based
on the following key concepts:

1) assume that at each time t we have knowledge of the
past values of the signals, so that it is possible to
compute the information that has been obtained from
this measured data, i.e., to compute the “approximate
FIM up to t”

ItF (θ0) =
1

σ2
e

t∑
k=1

ψ (k,θ0)ψ (k,θ0)
T
; (22)

2) choose a time horizon with a length Nu that is suffi-
ciently small for making persistency-based occupancy



forecasts accurate. I.e., make Nu small enough that
when given the number of occupiers at time k = t the
occupancy levels o(t+1), . . . , o(t+Nu) are very likely
to remain equal to o(t);

3) run an opportunely modified version of (21) that has
a time horizon of Nu steps and that designs the future
u(t+1), . . . , u(t+Nu) so to obtain as much information
as possible during the period t+1, . . . , t+Nu (see the
program (23) at the end of this algorithm);

4) use the computed ventilation signal u(t+1), . . . , u(t+
Nu) to run the experiment for Nu more samples;

5) at time instant t+Nu check the amount of information
that has been collected is enough, i.e., if the exper-
iment design constraint (19) is satisfied (notice that
this constraint refers to the whole time horizon of the
experiment, and not only to the period t+1, . . . , t+Nu);

6) in case (19) is satisfied stop the experiment, otherwise
continue running it.

The optimization problem that we propose to solve recur-
sively for every t in step 3 is thus

maximize
µ,ut

µ

subject to λmin

((
Ṽ −1/2

(
It+Nu

F

)(
θ̂0

)
Ṽ −1/2

))
≥ µ

ut ∈ U
‖∆ut‖0 ≤ nct
‖ut‖22 ≤ (1 + β)‖u∗

t ‖22
P{y ≤ ymax} ≥ py ,

(23)
where

• the variable ut = {u(t+1), . . . , u(t+Nu)} is the vector
of ventilation signal on the considered horizon;

• µ measures the experiment quality, and maximizing µ
is equivalent to maximizing the obtained information;

• nct is the number of allowed changes during the time
horizon [t, t+Nu];

• the vector u∗
t = {u∗(t+1), . . . , u∗(t+Nu)} is obtained

by solving (20) for the time horizon [t, t+Nu];
• the matrix It+Nu

F (θ̂0) is given by (9), i.e.,

It+Nu

F (θ̂0) =
1

σ2
e

t∑
k=1

ψ
(
k, θ̂0

)
ψ
(
k, θ̂0

)T

+
1

σ2
e

t+Nu∑
k=t+1

ψ
(
k, θ̂0

)
ψ
(
k, θ̂0

)T

.

(24)

The first term in the Right Hand Side (RHS) of (24) is
computable given the information available up to time
t (and can thus be computed recursively), while the
second term depends on the decision variable ut.

One main advantage of using the proposed recursive
approach is that one can update the previous information and
thus compensate for possible uncertainties. The algorithm is
eventually summarized in Algorithm 1.

B. Step 2: address challenge C2
To design the optimal ventilation signal in Algorithm 1

one needs to solve (20) and (23) at each iteration. However,

Algorithm 1 Minimum-time application-oriented input de-
sign algorithm

1: Require: V ′′
app(θ0,θ0), α, β, γ, ymax, py , nct

2: Initialization: put t = 0, µ = 0 and ItF (θ̂0) = 0

3: while λmin

((
Ṽ −1/2

(
It+Nu

F

)(
θ̂0

)
Ṽ −1/2

))
≤ 1 do

4: find u∗
t by solving (20)

5: find ut by solving (23)
6: run the experiment using ut

7: compute It+Nu

F using measurements and (22)
8: compute λmin

((
Ṽ −1/2

(
It+Nu

F

)(
θ̂0

)
Ṽ −1/2

))

both (20) and (23) are non-linear and nonconvex. Since U has
finite cardinality and the ventilation signal is only allowed to
change nc times, it is possible to reduce the problem to the
problem of finding optimal change times and levels instead.
Moreover, since the optimization horizon at each iteration has
length Nu, one can solve the problem effectively by finding
all possible ventilation signals and thus using an exhaustive
search approach.

Another challenge in solving the above mentioned opti-
mization problems is evaluating the probabilistic constraint,
P{y(k) ≤ ymax} ≥ py . We then notice that using the
exhaustive search approach, it is possible to evaluate for each
possible signal {u(k)}t+Nu

k=t the probabilistic constraint using
the approximation

P{y(k) ≤ ymax} =

∑t+Nu

k=1 1 (ymax − y(k))

t+Nu
,

where 1 (x) =

{
1 if x > 0,
0 if x ≤ 0

.

V. NUMERICAL RESULTS

We evaluate our proposed input design approach through
a dedicated numerical example where the synthetic data is
generated as follows: as for the model parameters, we use
the values that have been identified in [9] starting from a
dataset collected in a laboratory in KTH, Stockholm, i.e.,
θ1 = 0.8639, θ2 = 10.779 and θ3 = 0.2189. As for the
additive noise in (3) we choose σ2

e = 10, a value that mimics
what has been identified in [9] and we consider Ts = 5
minutes as the sampling time. The used occupancy pattern
is shown in Figure 2.
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Fig. 2. The occupancy pattern during the input design process.



A. Input design for parameter identification

We then use the proposed approach in Section IV to design
the optimal ventilation signal assuming that:
• Nu = 12 (1 hour), plus we are allowed to change the

ventilation signal once each hour, i.e, nct = 1;
• the estimated parameters should lie in the application set

with the probability of at least α = 98%;
• the chosen accuracy is γ = 100;
• the occupancy pattern is assumed to be known during the

time horizons of length Nu;
• the measured output y(k) should not violate ymax = 120

ppm with the probability of at least py = 75%;
• the set of possible values for the ventilation signal is given

by U = {0.1, 0.3, 0.5, 0.7, 0.9}.
We then solve at each iteration the optimization problem (23)
through a combinatorial optimization tool. Notice that since
we are only allowed to change the ventilation signal once at
each iteration, and that the ventilation can only take a finite
number of values, we use an exhaustive search.

We then consider two different cases:
Case 1: the variable β is chosen to be infinity which

means we assume no upper bound on the energy of the
signal being used. In this case the optimal computed
ventilation signal is bang-bang, as for example shown
in Figure 3. This reflects the intuition that, since there
is no constraint on the energy of the ventilation, the
optimal strategy is to maximize the excitation by using
an on-off strategy. Notice that in this specific case the
required excitation is obtained in t = 425 minutes, and
that the energy of the computed signal is ‖u‖22 = 47.24.
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Fig. 3. The obtained optimal ventilation signal for the case β = ∞.

Case 2: the variable β is chosen to be 0.2, that means
that we allow the input-design algorithm to use at most
20% more ventilation energy than the one that would
be used if we were not requiring excitation. Figure 4
then shows that in this case the required time to get
enough excitation is increased to t = 605 minutes. Also
this follows the intuition, since the amount of available
excitation at each iteration is now limited compared to
the previous case. Nonetheless the total energy of the
obtained ventilation signal is ‖u‖22 = 47.28, very close
to the energy of the optimal signal in case 1. Somehow,
from intuitive perspectives, the total amount of energy
seems to remain constant to reach a certain level of
excitation, but for case 2 this energy is spread during
a longer period. It is also clear from Figure 4 how the
algorithm is, for case 2, avoiding ventilation signals with

big changes and thus avoids bang-bang behaviors, again
due to the constraints in the energy usage.
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Fig. 4. The obtained optimal ventilation signal for the case β = 0.2.

B. Parameters and occupancy estimation

We then use 3 different datasets for estimating the param-
eters using the PEM approach described in Section II-B. We
use these 3 different estimated parameters to find 3 different
estimates of the occupancy signal using the regularized
deconvolution method proposed in [9] on an other set of
synthetic data (to do not run estimation of the occupancy
steps on the same set used for estimating the parameters).

The 3 different datasets are then the two described in
Section V-A and the one for which the ventilation signal
is u∗ as in (20), i.e., for which the ventilation signal has
not been designed with the purpose of estimating occupancy
levels but is rather the normal ventilation signal that one may
have in the room (for completeness, the number of samples
in this dataset is equal to the number of samples in case 2).

To assess the effectiveness of the overall input design
procedure we then run 50 Monte Carlo (MC) simulations for
different realizations of the measurement noise, and compute
for each MC run and for each set of estimated parameters
the value of the application function defined in (11). The
results, shown in Figure 5, indicated that for both case 1 and
case 2 the accuracy of the consequent occupancy estimator
is comparable. For the dataset obtained without experiment
design steps, instead, the performances of the occupancy
estimator decay drastically of approximately a factor of 4
in terms of the MSE (see [9]) of the estimators. This thus
indicates how important is to perform experiment design.
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∥ ∥ ∥ô( θ̂
N

) −
ô
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Fig. 5. Estimation errors of occupancy estimators trained in the datasets
obtained in cases 1 and 2 in Section V-A and using u∗, i.e., without applying
experiment design concepts.

VI. CONCLUSIONS

We studied how to optimally ventilate a room during the
collection of a training dataset to be used for identifying the



effects of room occupancy on the CO2 concentrations in the
room so that the generated datasets are informative enough
for designing occupancy estimation algorithms.

In other words, we developed an application-oriented input
design approach for designing the ventilation signal dedi-
cated to the problem of occupancy estimation. The method
not only guarantees a certain accuracy in the estimated
occupancy levels when using the collected data, but also tries
to minimize the experiment time and effort, and account for
potential restrictions on the CO2 levels and the ventilation
signal (due, e.g., to requirements on indoor air quality and
actuators limitations). Finally, the problem is formulated as
a nonlinear and nonconvex optimization problem that can be
solved using a time recursive strategy. This eventually makes
it possible to employ exhaustive search methods, and makes
the overall scheme implementable in standard computers.

In-silico analyses of the results of the scheme confirm
several intuitions: if the user does not limit the amount of
excitation that the input design algorithm can use, the result-
ing ventilation signal becomes a bang-bang signal. If instead
the user puts a limit on how much energy shall be used
per time unit by the input, the computed ventilation signal
becomes smoother and (at the same time) the experimental
time becomes longer. Interestingly, though, the integral of
the amount of energy spent by the system seems to remain
practically constant. Finally, as expected, using input design
methodologies lead to consequent occupancy estimators that
perform approximately 4 times better in terms of the MSE.

Our future efforts are implementing and testing the strat-
egy in real settings, and performing robust input designs.
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