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Abstract— In this study we present a Model Predictive Control
(MPC) approach to Energy Management Systems (EMSs)
for multiple residential microgrids. The EMS is responsible
for optimally scheduling end-user smart appliances, heating
systems and local generation devices at the residential level,
based on end-user preferences, weather-dependent generation
and demand forecasts, electric pricing, technical and operative
constraints. The core of the proposed framework is a mixed
integer linear programming (MILP) model aiming at minimiz-
ing the overall costs of each residential microgrid. At each
time step, the computed optimal decision is adjusted according
to the actual values of weather-dependent local generation
and heating requirements; then, corrective actions and their
corresponding costs are accounted for in order to cope with
imbalances. At the next time step, the optimization problem
is re-computed based on updated forecasts and initial condi-
tions. The proposed method is evaluated in a virtual testing
environment that integrates accurate simulators of the energy
systems forming the residential microgrids, including electric
and thermal generation units, energy storage devices and
flexible loads. The testing environment also emulates real-word
network medium conditions on standard network interfaces.
Numerical results show the feasibility and the effectiveness of
the proposed approach.

I. INTRODUCTION

Within the smart grid scenario, microgrids are subsystems of
the distribution grid, which comprise Distributed Energy Re-
sources (DERs), storage devices, and interconnected loads,
operating as a single controllable system either connected
or isolated from the grid. The growing need of satisfying
the increasing energy demand in a sustainable way makes
the concept of microgrid indeed attractive. Distribution com-
panies have to account for more complex load balancing
scenarios so that the quality of electrical supply to consumers
is maintained and the use of non-renewable generation is
minimized. In this scenario, microgrids can efficiently man-
age and coordinate DERs and loads, as well as support high
penetration of renewable energy sources [1].

In recent years, more and more utilities and governments
offer programs that provide incentives for residential con-
sumers to adopt on-site distributed generators and energy
storage systems [2]. A home with local generation and
storing capabilities forms a residential microgrid, which is
capable of generating, storing, buying/selling and sharing
energy in residential areas. However energy storage devices
and renewables are not still common within homes, they
are often included in energy management frameworks of
future environmentally friendly homes [3]. In this paper, we
focus on residential microgrids owning a shared DER and
present an MPC approach to EMS for multiple residential
microgrids, which comprise DERs, Electrical Energy Storage
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(EES) systems and both thermal and electrical loads (e.g.,
heating system, electrical appliances). The proposed system
layout can represent either a residential district where sev-
eral single-family houses with local generation capabilities
owning a shared DER or a smart building where apartments
with heating systems and storage devices share a common
DER. However in the following we commonly refer to the
single subsystems as "houses", we point out that then can
also represent building apartments.

Our MPC-based EMS aims at reducing energy costs and
improve consumers comfort levels. Smart appliances are
basic components of an EMS: they can be switched on or
off in response to price signals and are required if Demand
Response (DR) policies are to be applied. DR policies are
commonly defined as changes in electricity use by consumers
in response to changes in the electricity price over time [4].
Effective energy management of microgrids with demand
response policies can help flattening the aggregated demand
curve and reducing the number of expensive generation
plants used for peak load periods. DR policies can take
advantage of the additional flexibility offered by storage
devices, which are capable to store energy and release it
when it is more convenient [5].

Thus microgrids present several challenges from the stand-
point of control and modeling requirements. Optimal control
and energy management of microgrids is an active field
of research, further complicated by the inherent system
uncertainty in the energy demand, renewable generation and
energy prices, and by flexible loads, which account for
consumers preferences [6], [7]. Model predictive control is
the most common method for addressing forecast errors [3].
All the aforementioned aspects are included in this study.
Both load curtailment and load shifting policies are ac-
counted for and the energy demands are optimized while
achieving a trade-off between demand peak reduction and
user comfort. The overall problem is formulated using
mixed-integer linear programming (MILP), which can be
solved by using commercial solvers [8]. Microgrid oper-
ations are decided on the basis of predictions of future
behavior of the system and renewable power generation and
demand forecasts. We also account for user time preferences
and the possibility to sell stored energy to the grid. The
feedback mechanism introduced through the MPC receding
horizon philosophy allows to compute current imbalances
and corrective actions are taken such that power balance and
user comfort are guaranteed. Further, we consider a scenario
where several residential microgrids can share DERs so to
distribute their costs and benefits and also participate to the



day-ahead energy market through DR Aggregators (see, for
instance, [9]).

The proposed frameworks is flexible and it can easily include
other objectives or more complex technical features, such
as generators minimum up and down times (see [10]). We
would like to remark that our storage modeling rules out the
possibility that the optimal solution contemplates simulta-
neous charging and discharging of the storage, a physically
unrealizable policy.

A case study of a five residential microgrids sharing a micro-
CHP device is implemented to assess the performance of the
proposed EMS framework. The case study is built up in the
Virtual MicroGrid Lab (VMGL), part of the EIT ICT Labs
SES virtual smart grid laboratory activity, where partners
from industry and academia have combined resources to
develop a virtual laboratory for testing ICT infrastructures
within the microgrid [11].

Literature review: Though there is already a vast literature on
microgrids energy management system, there are still many
research and development needs associated to microgrids,
among these one of the most crucial elements is finding the
best operational strategy under uncertainty. Several works
can be found in the literature tackling the problem of energy
management of residential microgrids [12], [13], [14], [15],
[16], [17], [18], [19], [20]. The approaches described in
the aforementioned are commonly based on mixed integer
formulations, either linear or nonlinear, or fuzzy logic. They
proposed scheduling frameworks typically consider a single
microgrid scenario and do not account for uncertainty and
user preferences; moreover modeling details of some of
the components, such as smart appliances, are not included
and the energy demand optimization is not included. Some
studies consider only the scheduling of domestic loads us-
ing genetic algorithms, game theory, particle swarm [21],
[22], [23]; other works deal with the scheduling of the
energy demand (either electrical or thermal) considering
either renewable energy source [24], [25], [26] or storage
devices [27]. The effectiveness of MPC method for appliance
scheduling in alleviating the effect of price uncertainty or in
managing thermal loads with a thermal energy storage is
illustrated respectively in [28] and [29].

The paper is further organized as follows: the multi-
microgrids modeling approach is discussed in Section II; the
MPC-based EMS is then described in Section III; in Section
IV the virtual experimental setup is described and results are
evaluated; finally, conclusions and future works are outlined
in Section V.

II. MODELING

Here we briefly describe the modeling setup of the system
architecture. The ultimate goal is to make the MPC problem
formulation suitable for online computation.

A. Nomenclature

The forecasts, the parameters and the decision variables used
in the proposed formulation are described respectively in

TABLE I

PARAMETERS
Parameters Description
H scheduling horizon

Nappliance,h
Ny

ng
Eij
Bi,j’ Pi-,j
T;;. Ty
D; ;> Di,j
TP;
Cgas
Qs h
Cs,h
c d
ns,h’ ns,h
a1,00,61.80
Ppcak,h
heat heat
P P(I;hp
el PH°
Bchp’ fchp
Pgas’ Pgas

el e
Bhp,h’ PhPah

number of home smart appliances for house i
number of houses

number of energy phases of appliance ¢
energy requirements for energy phase j

of appliance 1%

bounds on energy phase power

bounds on number of time slots for energy phase j
of appliance %

bounds on between-phase delays in the number
of time slots

user time preference interval for appliance ¢
fuel (natural gas) cost for the micro-CHP
storage energy degradation for house h
operating and maintenance cost of the power
exchanged with the storage unit for house h
charging/discharging efficiencies of storage

for house h

parameters of the micro-CHP model

"peak signal" for house h

(i.e., total slot energy upper bound)

bounds on micro-CHP thermal power

bounds on micro-CHP electrical power
bounds on micro-CHP gas power
bounds on heat pump thermal power to house h

bounds on heat pump electrical power to house h

Py, ﬁs,h bounds on the power exchanged with the storage
for house h
Eg s Esn bounds on the storage energy level for house h
TABLE II
FORECASTS
Forecasts Description
Ctariff electricity tariff
Bge‘“, ?Eeat bounds on thermal power demand for house h
(corresponding to the thermal comfort range)
COPyp Coefficient of Performance (COP)
of the heat pump for house h)
Presn power generation from renewables for house h
TABLE III
DECISION AND LOGICAL VARIABLES
Variables Description
dchp off(0)/on(1) state of the micro-CHP
6;11,6;}] storage charging/discharging state for house h
P power profile for each phase
i, indicator of whether a phase is on or off
ti,j indicator of whether a transition is happening
85,5 indicator of whether a phase has been off
Pf“d importing(positive)/exporting(negative) power
from/to the grid for house h
Pgas gas power input to the micro-CHP
Pc}f;‘th micro-CHP thermal power to house h
Pgﬁp h micro-CHP electrical power to house h
Pﬁ‘{fa}f heat pump thermal power to house h
P§p7h heat pump electrical power to house h
P]}l‘ea“t thermal power demand for house h
PSC, h,Pgh charging/discharging power exchanged
with the storage for house h
Esn storage energy level for house h




Tables I, II and III. Power units are Watts. We point out
that the time is discretized into time slots.

In this report a simple method is used for weather forecasts,
namely the method of persistence forecasting. This means
that yesterday’s observations will serve as a forecast for
today. As future extension of this work, more accurate
forecasts can be easily included in the proposed framework.

B. Loads

We consider two types of loads:

o thermal loads, i.e. demand levels related to thermal
indoor comfort;

e electrical loads,
appliances.

i.e. demand levels related to smart

Thermal loads.: Forecasts of the minimum and the maxi-
mum thermal energy required to keep the indoor temperature
in the houses within a given comfort range is computed
through a dynamic house model based on forecasts of the
weather conditions. The house model runs on top of the
Apros process simulation software [30]. The model in-
cludes the energy dynamics of building structure and indoor
temperature and account for the outdoor temperature, the
solar radiation and the internal gains from occupants and
equipment.

Electrical loads.: An appliance operation process is made
up of sub-processes called energy phases. An energy phase
is considered uninterruptible, and it consumes a pre-specified
amount of electric energy in order to finish the physical
task. Several other technical and user specified constraints
are to be included in the problem formulation: i) both the
power assigned to the energy phase at any time slot and
its duration have to take values within a certain range; ii)
all energy phases associated with a single appliance must
be run sequentially; iii) there can be delays between the
energy phases, but the order must be observed; iv) for
safety reason the total power assigned to all appliances at
any moment cannot exceed a limit called peak signal; v)
there might be user specified time preferences, requiring
that certain appliances should be run within some particular
time intervals; vi) there might be user specified preferences
on appliances, e.g., a certain appliance cannot start before
some other appliance finishes. Further details on appliance
modeling and technical specifications are provided in [31].

C. EES system

For a storage unit of house h, we consider the following
discrete time model [32]:

Esn(k+1) = aSthsyh(k)'i_nsc,hPsC,h(k)AT_nsd,hPscfh(k)ATv

ey
with 0 < n°n? < 1 accounting for the energy losses
and AT = t;41 — t; being a constant sampling time. We
introduce binary variables 5S h,5 - to model the following

logical condition and the storage dynamics:

Pe(k)>0 <=, (k)=1 5
Pi(k) >0 =00, (k) = 1. 2)

Then we express the logical conditions above as the follow-
ing mixed integer linear inequalities:

fs h S, h(k) < PC (k) < Pﬂ héq h(k)
7@ h s, h(k) (k) < Ps,has,h(k) (3)
s,h(k) + 6s,h(k) S L.

The last inequality rule out the possibility to have charging
and discharging during the same sampling period.

D. Heat pump

Heat pumps are devices able to transfer thermal energy
by absorbing heat from a cold medium (heat source) and
release it to a warmer one (heat sink). In this study we
consider an electrically operated heat pump, since they are
by far the most frequently used. The thermal efficiency of
heat pump systems depends strongly on the temperature
difference between heat source and sink as well as the overall
operating temperature level. The main performance measure
of heat pumps is the coefficient of performance (COP), which
is a function of temperature level and temperature difference
between source and sink. A black box model is created
that calculates the COP as a function of source and sink
temperature, based on heat pump type specific mean values
for two different sink temperature levels. Further, the air heat
pump is assumed to be controlled locally such that: i) the
power consumption is independent of the source temperature;
ii) the sink temperature is kept constant at 35°C, so that the
COP does only rely on the source temperature. This control
strategy is reasonable assuming an existing thermal buffer
storage and low temperature heating and is implemented by
some manufacturers of heat pumps (e.g. [33]). For further
details on the heat pump modeling and on its control strategy,
we refer the interested reader to the technical report [11].
Thus, at each time slot, forecasts of the COP based on
temperature predictions are integrated in the proposed control
framework in order to predict the future heat generation from
each heat pump.

E. Micro-CHP

The component represents a typical micro combined heat and
power (micro-CHP) unit. the component model was devel-
oped by CREATE-NET and refers to the installation located
in the town of Roncegno (Trento)[34]. The development of
the component followed a data-driven approach, where data
from a real-world deployment were used, in combination
with machine learning and big data techniques.

The micro-CHP model is:

P chp =g - Pgas + (87s) (4)
P(gle}?t _51 : Pgas + B(%

For further details we refer the interested reader to the
technical report [11].
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Supply and demand of electrical and thermal energy are both
modeled and handled. The thermal energy is required to
provide the needed thermal comfort to the house occupants,

while the electrical energy is needed to run the smart
appliances and the heat pump (when required). The natural
gas is instead required to run the shared micro-CHP.

At every time step, the MPC problem is solved and opti-
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Fig. 1. System architecture

F. Photovoltaic system

Currently, photovoltaic (PV) systems are the only renewable
electrical energy sources deployed in the residential sector
with a considerable share. The model integrated in the
proposed framework calculates efficiency changes due to the
given weather data in more detail while further losses are
taken into account as lump values. The system parameters
influencing the output the most are the peak power under
Standard Test Conditions (STC) !, the STC efficiency and
the efficiency of the inverter. An integrated control loop, the
maximum power point (MPP) tracker, keeps the PV system
running with maximum power.

For specific data and further details on the PV model we
refer the interested reader to the technical report [11].

III. MPC-BASED EMS FOR MICROGRIDS

This section details the proposed stochastic MPC controller
for microgrids.

The system under study is a residential multi-microgrid
system with a shared energy source. We recall that each
single microgrid can represent either a single-family house
or an apartment in a building.

As depicted in Figure 1, each house is equipped with
a Home Energy Management System (HEMS), which is
responsible for operating the end-user smart appliances, the
local generation devices and the interaction with the grid
at the residential level according the setpoints computed
by the control system. The MPC controller is responsible
for energy management and energy sources coordination.
The core of the proposed MPC-based control system is an
optimization problem, which consists in taking decisions on
how to optimally schedule production by generators, storage,
as well as controllable loads, to cover the system demand
and minimize the generation costs and the cost of imported
electricity from the distribution grid in the next hours or day.

IStandard Test Conditions: air mass 1.5, irradiance 1000 W/m2, temper-
ature of PV panels 25°C
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mal decision on unit commitment, energy dispatch, storage
schedule and DR policies is computed, based on weather
forecasts and the current system conditions. The computed
optimal decision is then adjusted according to the actual
values of the photovoltaic generation and of the heating
requirements from the house; hence, corrective actions and
the corresponding costs are taken in order to cope with
potential imbalances. At the next time step, the MPC problem
is solved again based on updated forecasts and system
condition.

By using the modeling approach of Section II, the MPC
problem can be formulated as a MILP optimization problem.
We next define the cost function and the constraints of the
MILP.

1) Cost function: The aim is to minimize the cost of
satisfying both the thermal and electrical loads, hence the
objective function is

H Nyn

min » > [(crari (k) - PE(R) + con - (P, + PY,))

k=1h=1
)]
+ Cgas - Pgas(k)] AT.

2) Electrical and thermal power balance: The electrical and
thermal power balances at each house need to be satisfied.
At the current point in time, k, if an appliance is running,
the power assigned to the current energy phase by the
optimization problem solved at the previous time slot must
be considered as a critical load for the current time slot,
which cannot be rescheduled and has to be satisfied, since
an energy phase is uninterruptible. We denote this amount
of power for the house h as Phgsigned,h (k).

The balance between electrical energy production and con-
sumption to be met at each time k for house h, Vh,k is:

Nappliance,h 15

Z Z P%J(k) + Passigned,h(k') + PSC7h — P:h
i=1 j=1

+ Pﬁ}l),h + Pce}!xp,h - Pres,h = P}%rid. (6)

Regarding the thermal energy balance, three energy sources
have to be taken into account to fulfill the thermal require-
ments: the heat pump, the micro-CHP and the waste heat
generated by running appliances. Studies suggest that 70% of
regular household electric use contributes to the household’s
heat demand [35].

The balance between thermal energy production and use to
be met at each time k for house h, Vh, k is:

Pl < 0.7 Possignea.n(k) + PSS + Pt <P (7)



We remark that the thermal energy demand is optimized
through (7) such that the indoor temperature in each house
is within a given comfort range.

3) Appliance model: The appliance model is based on [31],
so the interested reader is referred to those studies for
further details. Here we outline the constraints included
in the MILP problem. Notice that, at each time slot, the
schedulable energy phases and corresponding operational
times and delays are appropriately updated according to the
running appliance and energy phase.

An energy phase being uninterruptible and sequential pro-
cessing of the energy phases can be modeled by using
the auxiliary decision variables s” and imposing additional
constraints; the interested reader is referred to [31].

To make sure that the energy phases fulfill their energy
requirements, the bounds on power assignment and time
limits, the following constraints are imposed, Vi, j, k:

i\ ®)

tij(k) = si(j—1)(k) —

The household user can set up the time preference con-
straints, specifying the time interval a particular appliance
must be finished within. The corresponding constraints are
written as

af < TP}, Vi jk )

Notice that TPiC = 0 if and only if none of the energy phases
of appliance ¢ can be processed during time slot k.

4) EES model: The EES for each house h is modeled
through equations and inequalities (1) and (3).

To consider the bounds on the storage capacity, we include
the following constraint

1)) < E@ h(k) < Es,h

(10)

=s,h

5) Micro-CHP model: The micro-CHP is driven by natural
gas and generates both electric and thermal power.

The following set of constraints model the behavior of the

1

micro-CHP at each time slot &

Bgllnp ’ 5chp(k) Pchp(k) Pchp 5chp(k)
ea ea heat
P’ denp(k) < P (k) < Pe  Genp (k)
Bgas : 6Chp(k) S Pgas(k) S Pgas . 6Chp(k)
Ny
ZPchp h(k) Pchp(k> (11)
h=1
Ny
> PEL (k) = P (k)
h=1
Pl (k) >0
P (k) > 0,
where Pf}llp and ng;t are defined according (II-E). The

constraints above guarantee that the thermal and the electrical
power outputs of the micro-CHP are properly shared among
the houses and the bounds on the power generation and on
the gas power are not exceeded.

6) Heat pump model: The following set of constraints model
the behavior of the heat pump at each time slot k£ and for
each house h

Bisii(k) = COPup (k) - Pip (k)
ea heat
Pﬁpﬁ Py (k) < Py, (12)
Php,h(k) > 0

where COP;,p 1 (k) is the forecasted COP of the heat pump
at time slots £ based on weather forecasts.
7) Interaction with the grid: The following constraint mod-
els the interaction with the distribution grid

_Ppeak,h — Ppeak,h

<=pEid < (13)
The peak signal is provided by the external power grid
operator, which can be a demand response signal. The houses

have the possibility to sell power to the grid (negative Pffrid).

A. MPC problem formulation

In this section we formulate the MPC optimization problem.
At the current point in time, an optimal plan is formulated
based on forecasts in Table II and the current EES storage
level. Only the first sample of the input sequence is im-
plemented, and subsequently the horizon is shifted. At the
next sampling time, a new optimization problem is solved
using updated information on forecasts and system initial
condition. By this receding horizon approach, a feedback
policy is designed and the new optimal plan can potentially
compensate for any disturbance that has meanwhile acted on
the system.

At each time step k, given an initial storage state EASJI(IQ:)
for each house h, the MPC scheme computes the optimal
energy dispatch and unit commitment plan and setpoints to
the energy sources by solving the following optimization



problem, V i, j, k, h:

H—1 Ny
J(Esn(k)) =min Y > " [(cranier (k) - PE (k)
k=0 h=1
+esn - (PERPIL)) + Coas - Peas(k) | AT
subject to (14)
(6) — (13)

By (0) = Eyp (k).

IV. VIRTUAL EXPERIMENTAL EVALUATION

In this section we outline the virtual testing setup and discuss
virtual experimental results.

A. Virtual experimental setup

The VMGL is built by interconnecting emulators of the
microgrid components available in each partner laboratory
using secure connections on top of the public Internet. The
connections are formed using a software package called
LABgw developed by the Technical Research Centre of
Finland (VTT). In addition to the basic connectivity, the
laboratory links can also emulate real-world network medium
conditions on standard network interfaces (e.g., 3G, LTE, or
Wi-Fi) [36].

A case study of five residential microgrids is implemented
and simulated in the virtual laboratory. Each house is con-
nected to the distribution grid and equipped with a heat
pump, a 1 kWh/kWp PV plant [37] and an EES. Three
appliances in each house are to be scheduled: a washing
machine, a dryer and a dishwasher. Time preferences are
considered and washing machines are always required to be
finished before starting dryers.

The implemented heat pumps have a rated electrical power of
2000 W and a minimum electrical power of 500 W. The EESs
have 1.0 kWh capacity and 0.85 as charging/discharging
efficiencies. The implemented micro-CHP for the residential
district/building has 20 kW of maximum electrical power
output and 25kW of maximum thermal power output.

The heating requirements in order to guarantee the indoor
thermal comfort, i.e., indoor temperature within 20 and
26°C, are computed based on weather conditions and occu-
pancy in the houses. All data (weather, electricity prices, pho-
tovoltaic generation) refers to November 2014. The weather
conditions are actual data from a weather station located
in Ostermalm, Stockholm area (SE3). The electricity prices
used in this study are taken from the Nordic market Nordpool
using the Stockholm area (SE3). The price of natural gas for
the micro-CHP is the price from Eurostat (2013, online data
code: nrg-pc-202).

The prediction horizon of the MPC problem is 24 hours (144
time slots) and the sampling time is 10 minutes. A longer
prediction horizon will not usually provide an improvement
because the forecasts degrade as time increases, but the
computational burden can be affordable. The computation of
MILP solution at each iteration took at most 55.6 seconds,
a time shorter than the sampling time of 10 minutes.
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Fig. 2. Electricity price profile over November 2014

The MILP formulation presented in this study is imple-
mented using Matlab. ILOG’s CPLEX 12.0 [38] (an efficient
solver based on the branch-and-bound algorithm) is used
to solve the MILP optimizations [39]. The main advantage
of the branch and bound method is that, if a solution is
reached, the solution is known to be globally optimal. All
computations are done on an Intel Core 2 Duo CPU, 2 GHz.

B. Virtual experimental results

Here we discuss and evaluate the results of three virtual
experiments performed on the VMGL. In the first experiment
we assume that no EES system is available, while in the
second experiment an ESS is connected to each house.
Finally, we ran a third experiment to understand how much
cost saving the proposed energy management framework
can achieve. Thus, the MPC problem (14) is turned into
a worst case problem by changing the cost function from
minimization to maximization.

Each experiment was run for November 2014. Figure 2
depicts the electricity prices in the simulated month.

To understand the benefits in using storage devices, we focus
on the house 4. The appliance time intervals set by users
for house 4 contain a number of price peaks significantly
larger than the time intervals for the other houses; hence,
house 4 shows the most significant differences when the EES
is used. Figure 3 shows the interaction between the fourth
residential microgrid and the distribution grid: notice that
the EES allows to have a more flattened profile of the power
exchanged with the grid. Specifically, with respect to the
experiment without EES, a peak shaving occurs during the
first week, then quite a few peak reductions occur. The stored
energy profile is depicted in Figure 5: as commonly seen,
EES is charged when prices are low and discharged when
prices are high. Notice that PV electrical power can be also
used for running the heat pump when prices are high and
for charging the EES; when there is not PV generation, the
grid and the EES are instead employed to satisfy the heat
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requirements. Further, when EES is deployed, more constant
electrical power is required from the micro-CHP, which can
be more convenient than the grid (see Figure 6).

The advantages of using storage devices can also be seen
from Figure 4, where peaks correspond to the electrical
power assigned to the washing machine energy phases for
all five houses. Commonly, appliances are run when prices
are low, compatibly with user preferences. However, EES
systems allow to reduce peak (see, for instance, the peak
during the evening of the fourth day): the running time of
the appliances is less sensitive to the price profile and it can
be convenient to use the EES and process the appliances also
when prices are higher. This likely produces a benefic effect
on the pricing and on the aggregated demand profile (e.g.,
see Figure 3).

‘We remind that at each time slot, actual thermal and electrical
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power imbalances are computed based on the actual outputs
from the available energy resources; hence, the total costs
include also the cost of corrective actions compensating for
actual power imbalances, needed to meet power balance and
thermal comfort criteria.

The total cost for the case without EES systems is 81.2783€,
for the case with EES systems is 73.57€. Then storage
devices allow a 10.47% of cost saving. The worst case virtual
experiment yields a total cost of 178.48€; thus, the proposed
control framework can achieve up to 58.8% of cost saving.

V. CONCLUSION AND FUTURE STUDIES

In the paper we propose a novel MPC-based EMS for
residential microgrids to optimally manage and coordinate
energy supply and demand in multiple houses, taking user
preferences and user comfort into account. The control
system computes an optimal energy plan based on forecasts
of weather conditions, renewable generation and thermal
demand: imbalances can be compensated through the feed-
back mechanism integrated in our framework. The single
subsystems can represent either single-family houses with
local generation capabilities or apartments in an apartment
building equipped with DERs and storage devices. The
proposed formulation can handle an arbitrary number of



houses/apartments, equipped with several appliances and
local generators. DR policies have been also integrated in the
proposed control framework. A virtual experimental testbed
has been built for evaluating experimental results, which
show the effectiveness of the proposed approach and the
benefits of using storage devices in achieving relevant cost
saving. We are currently working on extending the proposed
framework to include lighting. Future work will also focus on
analyzing the scalability of the proposed control framework
and investigating distributed approaches.
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