
Distributed Optimization and Control:
Primal–Dual, Online, and Event-Triggered Algorithms

XINLEI YI

Doctoral Thesis
Stockholm, Sweden 2020

TRITA-EECS-AVL-2020:45
ISBN 978-91-7873-640-9

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science

Division of Decision and Control Systems
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i elektro- och
systemteknik onsdag den 14 oktober 2020 klockan 14.00 i sal F3, Lindstedtsvägen 26,
KTH Campus, Stockholm.

c© Xinlei Yi, September 2020.

Tryck: Universitetsservice US AB

Abstract

In distributed optimization and control, each network node performs local computation
based on its own information and information received from its neighbors through
a communication network to achieve a global objective. Although many distributed
optimization and control algorithms have been proposed, core theoretical problems with
important practical relevance remain. For example, what convergence properties can
be obtained for nonconvex problems? How to tackle time-varying cost and constraint
functions? Can these algorithms work under limited communication resources? This
thesis contributes to answering these questions by providing new algorithms with better
convergence rates under less information exchange than existing algorithms. It consists of
three parts.

In the first part, we consider distributed nonconvex optimization problems. It is hard
to solve these problems and often only stationary points can be found. We propose
distributed primal–dual optimization algorithms under different information feedback
settings. Specifically, when full-information feedback or deterministic zeroth-order oracle
feedback is available, we show that the proposed algorithms converge sublinearly to a
stationary point if each local cost function is smooth. They converge linearly to a global
optimum if the global cost function also satisfies the Polyak–Łojasiewicz condition. This
condition is weaker than strong convexity, which is a standard condition in the literature
for proving linear convergence of distributed optimization algorithms. When stochastic
gradient feedback or stochastic zeroth-order oracle feedback is available, we show that
the proposed algorithms achieve linear speedup convergence rates, meaning that the
convergence rates decrease linearly with the number of computing nodes.

In the second part, distributed online convex optimization problems are considered.
For such problems, the cost and constraint functions are revealed at the end of each time
slot. We focus on time-varying coupled inequality constraints and time-varying directed
communication networks. We propose one primal–dual dynamic mirror descent algorithm
and two bandit primal–dual algorithms. It is shown that these distributed algorithms
achieve the same sublinear regret and constraint violation bounds as existing centralized
algorithms.

In the third and final part, in order to achieve a common control objective for a
networked system, we propose distributed event-triggered algorithms to reduce the amount
of information exchanged. Specifically, we propose dynamic event-triggered control
algorithms to solve the average consensus problem for first-order systems, the global
consensus problem for systems with input saturation, and the formation control problem
with connectivity preservation for first- and second-order systems. We show that these
algorithms do not exhibit Zeno behavior and that they achieve exponential convergence
rates.

Sammanfattning

Vid distribuerad optimering och reglering utför varje nätverksnod lokala beräkningar
baserat på sin egen information och information som mottas från sina grannar via ett
kommunikationsnätverk för att uppnå ett globalt mål. Även om många distribuerade
optimerings- och regleralgoritmer har föreslagits kvarstår fundamentala teoretiska problem
av stor praktisk relevans. Till exempel, vilka konvergensegenskaper kan erhållas för icke-
konvexa problem? Hur hanterar man tidsvarierande kostnadsfunktioner och bivillkor? Kan
dessa algoritmer fungera under begränsade kommunikationsresurser? Denna avhandling
bidrar till att svara på dessa frågor genom att ge nya algoritmer med bättre konvergensegen-
skaper med mindre informationsutbyte än befintliga algoritmer. Avhandlingen består av tre
delar.

I den första delen studerar vi distribuerade icke-konvexa optimeringsproblem. Det
är svårt att lösa dessa problem och ofta kan bara stationära punkter hittas. Vi föreslår
distribuerade primal-duala optimeringsalgoritmer under olika förutsättningar för återkop-
pling av information. När återkoppling av fullständig information eller återkoppling
med hjälp av ett deterministiskt nollte ordningens orakel är tillgänglig, visar vi att de
föreslagna algoritmerna konvergerar sublinjärt till en stationär punkt om varje lokal
kostnadsfunktion är slät. De konvergerar linjärt till ett globalt optimum om den globala
kostnadsfunktionen också uppfyller Polyak- Lojasiewicz-villkoret. Detta villkor är svagare
än stark konvexitet, vilket är ett standardvillkor i litteraturen som används för att bevisa
linjär konvergens av distribuerade optimeringsalgoritmer. När återkoppling baserad på
stokastisk gradientinformation eller ett stokastiskt nollte ordningens orakel är tillgänglig
visar vi att de föreslagna algoritmerna uppnår linjära konvergenshastigheter, vilket innebär
att konvergenshastigheterna minskar linjärt med antalet beräkningsnoder.

I den andra delen av avhandlingen studerar vi distribuerad konvex optimering som
utförs i realtid (online). För sådana optimeringsproblem ges kostnadsfunktionen och bivil-
lkoren i slutet av varje tidsperiod. Vi fokuserar på tidsvarierande kommunikationsnätverk
med tidsvarierande kopplade bivillkor angivna som olikheter. Vi föreslår en primal-dual
dynamisk gradientalgoritm och två primal-duala banditalgoritmer. Vår analys visar att
dessa distribuerade algoritmer uppnår samma sublinjära gränser för ånger (eng: regret)
och överträdelse av bivillkor som befintliga centraliserade algoritmer.

I den tredje och sista delen, för att uppnå ett gemensamt reglermål för ett nätverkssystem,
föreslår vi distribuerade händelsestyrda algoritmer för att minska mängden information
som utbyts. Mer specifikt så föreslår vi dynamiska händelseutlösta regleralgoritmer för
att lösa det genomsnittliga konsensusproblemet för första ordningens system, det globala
konsensusproblemet för system med styrsignalssaturation och formationsproblemet med
anslutningsbevaring för första och andra ordningens system. Vi visar att dessa algoritmer
inte uppvisar Zeno-beteende och att de uppnår en exponentiell konvergenshastighet.

Acknowledgments

I would like to use “things to be respected according to Confucian thought” to express
my deepest gratitude to my supervisor Professor Karl Henrik Johansson. Heartfelt thanks
to him for providing me the opportunity to study at KTH and the freedom to explore any
questions that I am interested in. He gives me insightful guidance when I am lost; he
provides me invaluable support when I meet problems; he gives me warm encouragement
when I have achievements no matter how small they are. It is really a great pleasure to
work with him and he is the perfect supervisor in my mind.

I wish to express my sincere gratitude to my co-supervisors Professor John S. Baras
for offering the inspiration and guidance to me, and Professor Dimos V. Dimarogonas
for giving me detailed support in research. I would like to thank Professor Lihua Xie
from Nanyang Technological University for being the opponent for my licentiate defense
and hosting me on a productive exchange trimester, and Professor Mikael Johansson for
being the advance reviewer for both my licentiate and doctoral theses as well as for
chairing the public defence. I also would like to thank Professor Antonis Papachristodoulou
from University of Oxford for being the opponent, and Professor Na Li from Harvard
University, Professor Maurice Heemels from Eindhoven University of Technology, and
Professor Anders Hansson from Linköping University for being the committee members.
I am grateful to Professors Henrik Sandberg and Alexandre Proutiere for willing be the
substitute members.

Heartfelt thanks to my collaborators Wen Du, Jemin George, Matin Jafarian, Xiuxian
Li, Kun Liu, Mohammad Pirani, Jieqiang Wei, Junfeng Wu, Tao Yang, and Shengjun Zhang
for the fruitful discussions with them and their interesting ideas and careful attentions to
our work. Appreciation to Hao Chen for pointing out the mistakes in one proof. Special
thanks to Matin Jafarian, Yuchao Li, Jieqiang Wei, and Tao Yang for proof reading this
thesis, and Robert Mattila for translating the abstract of both my licentiate and doctoral
theses into Swedish.

I would also express my appreciation to all my colleagues (current and former) at
the Division of Decision and Control Systems for creating a friendly environment and an
active working atmosphere, and for their continuous support for everything that I needed.
I also want to thank the administrative staffs in our division Karin Karlsson Eklund,
Felicia Gustafsson, Hanna Holmqvist, Tord Christer Magnusson, Anneli Ström, and Silvia
Cardenas Svensson for their assistance and support.

Last, but not least, I would like to thank my family and friends for their unconditional
love and constant support. I am deeply grateful to my partner, Zhengrong, for her
understanding, support, and love.

Xinlei Yi
Stockholm, September 2020

Contents

Abstract iii

Sammanfattning v

Acknowledgments vii

Contents ix

List of Acronyms xiii

Notations xv

1 Introduction 1
1.1 Motivating examples . 1
1.2 Distributed optimization and control 12
1.3 Problem formulation . 20
1.4 Thesis outline and contributions . 23

2 Preliminaries 33
2.1 Directed graphs . 33
2.2 Undirected graphs . 36
2.3 Convex functions . 38
2.4 Projections . 40
2.5 Smooth functions . 41
2.6 Polyak–Łojasiewicz condition . 42
2.7 Bregman divergence . 43
2.8 Random gradient estimators . 45
2.9 Deterministic gradient estimators . 47
2.10 Useful lemmas on series . 48

ix

x Contents

I Distributed Nonconvex Optimization 55

3 Distributed primal–dual first-order and ADMM algorithms 57
3.1 Introduction . 57
3.2 Distributed nonconvex optimization with full-information feedback . . . 60
3.3 Distributed primal–dual FO algorithm 62
3.4 Distributed ADMM algorithm . 66
3.5 Distributed linearized ADMM algorithm 70
3.6 Simulations . 72
3.7 Summary . 74
3.8 Proofs . 75

4 Distributed primal–dual SGD optimization algorithm 91
4.1 Introduction . 91
4.2 Distributed nonconvex optimization with stochastic gradient feedback . 93
4.3 Distributed primal–dual SGD algorithm 96
4.4 Simulations . 101
4.5 Summary . 106
4.6 Proofs . 106

5 Distributed zeroth-order optimization algorithms 125
5.1 Introduction . 126
5.2 Distributed nonconvex optimization with ZO oracle feedback 130
5.3 Distributed primal–dual DZO algorithm 131
5.4 Distributed primal–dual SZO algorithm 133
5.5 Distributed primal SZO algorithm . 139
5.6 Simulations . 143
5.7 Summary . 146
5.8 Proofs . 148

II Distributed Online Convex Optimization 181

6 Distributed online primal–dual optimization algorithm 183
6.1 Introduction . 184
6.2 Distributed OCO with time-varying coupled inequality constraints . . . 186
6.3 Distributed online primal–dual dynamic mirror descent algorithm . . . 189
6.4 Simulations . 198
6.5 Summary . 201
6.6 Proofs . 201

7 Distributed bandit online primal–dual optimization algorithms 211
7.1 Introduction . 212
7.2 Distributed bandit OCO with time-varying coupled inequality constraints 215

Contents xi

7.3 Distributed bandit online primal–dual algorithm based on one-point
sampling . 217

7.4 Distributed bandit online primal–dual algorithm based on two-point
sampling . 222

7.5 Simulations . 225
7.6 Summary . 227
7.7 Proofs . 227

III Distributed Event-Triggered Control 239

8 Distributed dynamic event-triggered control algorithms 241
8.1 Introduction . 241
8.2 Average consensus for first-order multi-agent systems 244
8.3 Distributed dynamic event-triggered control algorithms 245
8.4 Distributed self-triggered control algorithm 255
8.5 Simulations . 260
8.6 Summary . 266

9 Distributed event-triggered saturation control algorithms 267
9.1 Introduction . 267
9.2 Global consensus for multi-agent systems with input saturation 269
9.3 Distributed continuous-time saturation control algorithm 270
9.4 Distributed event-triggered saturation control algorithm 271
9.5 Distributed self-triggered saturation control algorithm 272
9.6 Simulations . 274
9.7 Summary . 277
9.8 Proofs . 279

10 Distributed event-triggered formation control algorithms 291
10.1 Introduction . 291
10.2 Formation control for multi-agent systems with connectivity preservation 293
10.3 Distributed event-triggered formation control for single integrators . . . 294
10.4 Distributed event-triggered formation control for double integrators . . 302
10.5 Simulations . 310
10.6 Summary . 312
10.7 Proofs . 312

11 Conclusions and future research 327
11.1 Summary . 327
11.2 Future research directions . 331

Bibliography 333

List of Acronyms

ADMM Alternating Direction Method of Multipliers
CC Connected Component
CNN Convolutional Neural Network
DERs Distributed Energy Resources
DNN Deep Neural Network
DZO Deterministic Zeroth-Order
FO First-Order
K–Ł Kurdyka–Łojasiewicz
L-ADMM Linearized Alternating Direction Method of Multipliers
NN Neural Networks
NoSPPI Number of Sampled Points Per Iteration
OCO Online Convex Optimization
P–Ł Polyak–Łojasiewicz
RSI Restricted Secant Inequality
SCC Strongly Connected Component
SGD Stochastic Gradient Descent
SOS Second-Order Stationary
SZO Stochastic Zeroth-Order
ZO Zeroth-Order

xiii

Notations

Real analysis
Rp the real Euclidean space of dimension p
R

p
+ the nonnegative subspace of Rp

Bp the unit ball centered around the origin in Rp

Sp the unit sphere centered around the origin in Rp

em the m-th element of the standard basis of Rp

N0 the set of nonnegative integers
N+ the set of positive integers
n! the factorial of n
[n] the set {1, . . . , n}
O(αt) βt = O(αt) if lim supt→∞(βt/αt) is bounded
o(αt) βt = O(αt) if limt→∞(βt/αt) = 0
PK(·) the projection operator onto set K
[·]+ the projection operator onto Rp

+

〈x, y〉 the standard inner product of two vectors x and y
d·e the ceiling function
b·c the floor function
1(·) the indicator function
| · | the absolute value of a real number or the magnitude of a complex

number
f ∗ the global minimum value of function f
x∗ the global minimum point of function f
X∗ the optimal set of function f , i.e., the set of global minimum points of

function f
∇ f the (sub)gradient of function f
∂ f (x) the set of all subgradients of function f
∇̂1 f the one-point sampling based random gradient estimator
∇̂2 f the two-point sampling based random gradient estimator

xv

xvi Notations

∇̂p f the p-point sampling based deterministic gradient estimator
∇2 f the Hessian matrix of function f
Dψ(·, ·) Bregman divergence associated with strongly convex function ψ

Linear algebra
Rn×m the space of n-by-m real matrices
‖ · ‖ Euclidean norm for vectors or the induced 2-norm for matrices
‖ · ‖1 absolute sum for vectors or the induced 1-norm for matrices
‖x‖2A the value of x>Ax, where x is a vector and A is a matrix
1p a p-by-1 vector of all ones
0p a p-by-1 vector of all zeros
In a n-by-n identity matrix
ρ(·) the spectral radius for matrices
ρ2(·) the minimum positive eigenvalue for matrices having positive

eigenvalues
M> the transpose of real matrix M
x> the transpose of real vector x
rank(M) the rank of matrix M
null(M) the null space of matrix M
det(M) the determinant of square matrix M
M > N M − N is positive definite
M ≥ N M − N is positive semidefinite
M ⊗ N the Kronecker product of two matrices M and N
Diag(x) a diagonal matrix with the vector x on its diagonal
col(z1, . . . , zk) the concatenated column vector of vectors zi ∈ R

pi , i ∈ [k]
[x]i the i-th element of vector x
[M]i,: the i-th rom of matrix M
[M]i, j the element of matrix M in the i-th row and j-th column; when

necessary, also denoted by Mi j or mi j

cl(x) l-th component of vector x
x⊥y vector x is orthogonal to vector y, i.e., x>y = 0
∅ an empty set
|S | the cardinality of set S

Graph theory
G undirected graph or directed graph
Gt time-varying undirected graph or directed graph

Notations xvii

V the vertex set
E the edge set; when necessary, also denoted by E(G)
Et the time-varying edge set; when necessary, also denoted by Et(Gt)
n the number of vertices
(i, j) an edge in a graph, i.e., a directed link from vertex i to vertex j
Ni neighbors of vertex i in an undirected graph; when necessary, also

denoted by Ni(G)
N in

i in-neighbors of vertex i in a directed graph; when necessary, also
denoted by N in

i (G)
Nout

i out-neighbors of vertex i in a directed graph; when necessary, also
denoted by Nout

i (G)
A the (weighted) adjacency matrix of G
L the (weighted) Laplacian matrix of G
Kn Kn = In −

1
n 1n1>n is the Laplacian matrix of a complete graph,

W the mixing matrix of G
Wt the time-varying mixing matrix of Gt

B(G) the incidence matrix of G
SCCm the m-th strongly connected component of a directed graph
CCm the m-th connected component of an undirected graph

Other
a := b a is defined as b
a⇔ b a and b are equivalent
a⇒ b a implies b
∀ for all
sath(·) the saturation function with saturation level h > 0
ti
k the k-th triggering time of agent i

ti
ki(t)

the latest triggering time of agent i before time instant t

Chapter 1

Introduction

In recent years, rapid developments in digital systems, communication, and sensing
technologies have led to the emergence of networked systems. These systems consist of
a large number of interconnected subsystems (agents), which are required to cooperate in
order to achieve a desirable global objective through local interactions. Such networked
systems have been extensively studied in various disciplines over the past decades, and
they have broad applications in various areas, for instance, surveillance [1], monitoring
[2], manufacturing [3], data mining [4], learning [5, 6], software engineering [7], power
grid [8, 9], transportation [10], and logistics [11]. Due to their distributed nature, these
applications often require distributed optimization and control techniques. Traditional
centralized strategies are often not suitable since they are subject to single point of failure,
high communication requirement, substantial computation burden, and limited flexibility
and scalability. All of these have made imperative the need of developing new distributed
approaches to solve optimization and control problems in networked systems.

This chapter is organized as follows. Section 1.1 provides some applications that have
motivated the work presented in this thesis. Section 1.2 briefly introduces distributed
optimization, online convex optimization, and distributed event-triggered control. Sec-
tion 1.3 presents the problems studied in this thesis. Section 1.4 gives the thesis outline
and describes the contributions of the author.

1.1 Motivating examples

In this section, nine examples are provided to motivate the problems considered in this
thesis.

Motivating example 1: Distributed regularized logistic regression

Logistic regression is used to classify an observation into one of two classes. Unlike
linear regression which outputs continuous number values, logistic regression transforms
its output using the logistic sigmoid function to return a probability value which can then be
mapped to the two classes. The key question in logistic regression is how to fit the logistic

1

2 Introduction

Figure 1.1: Illustration of logistic regression with labeled observations.

regression model using labeled observations. Figure 1.1 illustrates logistic regression with
two classes of labeled observations separated by an S-shaped curve.

To compute the regression coefficients of the model, the negative of the log likelihood
function, also called the objective function, is minimized:

f (x) =
1
m

m∑
i=1

(yi log(1 + exp(−x>zi)) + (1 − yi) log(1 + exp(x>zi))),

where x ∈ Rp is the regression coefficient vector with p being the number of features, m
is the number of independent observations, and {zi ∈ R

p}mi=1 are independent observations
with known labels {yi ∈ {0, 1}}mi=1.

Logistic regression is prone to overfitting if there are large number of features.
Regularization can be used to train models that generalize better to unseen data, by
preventing the algorithm from overfitting [12]. The objective function then normally has a
regularization term:

f (x) =
1
m

m∑
i=1

(yi log(1 + exp(−x>zi)) + (1 − yi) log(1 + exp(x>zi))) + λr(x), (1.1)

1.1. Motivating examples 3

where λ > 0 is a regularization parameter and r(x) is a regularization function. Various
convex and nonconvex regularization functions for logistic regression have been proposed
[13], for example,

r(x) =

p∑
s=1

µ[x]2
s

1 + µ[x]2
s
,

where µ > 0 is another parameter.
Traditionally, the above optimization problem is solved by a single machine using the

complete data set. However, it is sometimes necessary to solve it in a distributed manner.
For example, when the data set of labeled observations is very large and cannot fit the
memory of a single machine. Another motivating scenario is when data is collected from
multiple distributed data sources by a group of machines and is stored distributively due
to data ownership and privacy concerns. Thus, it is sometimes necessary to fit the logistic
regression model distributively. Specifically, suppose there are n computing nodes and each
node i has mi labeled observations satisfying

∑n
i=1 mi = m. All nodes collaborate to solve

the optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x),

where each function fi is held privately by node i and is given by

fi(x) =
n
m

mi∑
l=1

(yil log(1 + exp(−x>zil)) + (1 − yil) log(1 + exp(x>zil))) +

p∑
s=1

λµ[x]2
s

1 + µ[x]2
s
,

(1.2)

where zil ∈ R
p is the l-th observation with label yil ∈ {0, 1} owned by node i.

In Chapter 3, we show that the above distributed regularized logistic regression problem
can be solved by our new distributed primal–dual first-order (FO) algorithm with a faster
convergence rate than state-of-the-art distributed first-order algorithms.

Motivating example 2: Distributed phase retrieval

The classic linear inverse problem is to recover an unknown signal x ∈ Rp from m linear
measurements of the form Bx = y, where B ∈ Cm×p is a known linear measurement
operator matrix, and y ∈ Cm is a noisy but known vector. In contrast, phase retrieval is to
recover the unknown signal x from the noisy squared magnitude of the linear measurements

yi = |b>i x|2 + wi, ∀i ∈ [m],

where bi ∈ C
p is the i-th linear measurement operator and yi ∈ R is the corresponding

noisy squared magnitude, | · | is the magnitude of a complex number, and wi ∈ R is noise.
Phase retrieval has a long history and can be traced back at least to the 1970’s [14–16].

4 Introduction

Recently, it has gained increased interest from the optimization community, e.g., [17–21].
Phase retrieval can be reformulated as the nonconvex optimization problem

min
x∈Rp

f (x),

where f (x) = 1
m

∑m
i=1(yi − |b>i x|2)2.

In practice, sometimes the linear measurement operators and the corresponding noisy
squared magnitudes are recorded by different detectors [22]. It is then natural for large
data sets to split the cost function across detectors and thus reformulate the centralized
optimization problem as the distributed optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x),

where

fi(x) =
n
m

mi∑
l=1

(yil − |b>il x|2)2 =
n
m

mi∑
l=1

(yil − (x>bR
il)

2 − (x>bI
il)

2)2 (1.3)

with mi being the number of data points recorded by detector i, bil = bR
il + ibI

il ∈ C
p being

the phase of the linear operator used in the l-th measurement by detector i, and yil ∈ R
being the corresponding noisy squared magnitude.

In Chapter 3, we show that the above distributed phase retrieval problem can be solved
by our proposed distributed alternating direction method of multipliers (ADMM) algorithm
with a faster convergence rate than state-of-the-art distributed ADMM algorithms.

Motivating example 3: Distributed training of neural networks

In the deep learning literature, it has been observed that performance can be dramatically
improved when increasing the number of model parameters and/or the number of training
examples, e.g., [23–25]. However, training neural networks is very tedious. Many neural
networks have millions, even billions, model parameters and large amounts of data are
needed to learn these parameters. This is a computationally intensive process which takes
a lot of time. It can even take days to train a deep neural network [26]. Moreover,
sometimes the training data set is too large to be stored on a single machine. Therefore it
is important to come up with distributed algorithms to drastically reduce the training time.
Two novel methodologies, data and model parallelisms have been proposed, e.g., [27–30].
Specifically, data parallelism means the partition of the training data across multiple
machines and it allows each machine to read and update all model parameters. Model
parallelism means the partition of the model parameters across multiple machines and
it makes each machine responsible for updating only its assigned portion of parameters
(either using the full data set or a subset).

In this example, we focus on data parallelism as illustrated in Figure 1.2. In this
methodology we spawn n workers and assign a share of the data set to each worker. Using

1.1. Motivating examples 5

Figure 1.2: Illustration of data parallelism. A parameter server is responsible for the
aggregation of model updates and parameter requests coming from workers. All workers
get a copy of the central model with parameters wt. The data is split into several
partitions, where a specific worker is responsible for the computation of its own partition.
Each worker samples mini-batches from its own data to produce the gradient ∇ fi(x)
and then communicates it with the parameter server. The parameter server integrates
this gradient by applying a specific update procedure to produce wt+1. This process
repeats itself until all workers have sampled all mini-batches from their shard. Source:
https://joerihermans.com/ramblings/distributed-deep-learning-part-1-an-introduction/

this data, worker i iterates through mini-batches of data to produce a gradient, ∇ fi(x) for
every mini-batch x. Next, ∇ fi(x) is sent to the parameter server, which incorporates the
gradient using an update mechanism. Data parallelism is thus based on the master–worker
architecture.

Although numerous distributed training algorithms based on data parallelism have
been proposed, many of them are not truly distributed since they follow a master–worker
architecture and do not involve any peer-to-peer communication. These algorithms are not
always robust and they are useless if the server fails. In Chapter 4, we propose a distributed
primal–dual stochastic gradient descent (SGD) algorithm, suitable for arbitrarily connected
communication networks and any smooth (possibly nonconvex) cost functions. This
algorithm achieves linear speedup in the number of partitions (agents), which enables us
to scale up the computing capacity by adding more agents [31–33].

6 Introduction

Motivating example 4: Black-box adversarial attacks

As machine learning is being more widely used, security concerns are attracting more
attentions, especially for safety-critical applications [35, 36]. Many recent studies have
shown that neural networks are vulnerable to adversarial attacks, e.g., [34, 37–41]. The
outputs of neural networks can be altered arbitrarily with slightly perturbed inputs. For
example, it has been shown in [34, 37–39] that a slightly modified image can be easily
generated and misguide a well-trained image classifier into producing incorrect results.
Figure 1.3 gives four examples to illustrate how carefully crafted small perturbations of the
original inputs, often imperceptible to the human eye, misguide the network into producing
incorrect outputs. The original images are in the left column, while the corresponding
perturbed images produced by the algorithm proposed in [34] are shown in the right
column. The perturbed images are misclassified by the network proposed in [42].

Attacks on machine learning models can be divided into white-box and black-box
attacks. White-box attacks mean that the adversary has complete knowledge of the target
model, whereas for black-box attacks the adversary only queries the target model, which
may return complete or partial information [43]. Black-box attacks normally are more
relevant in many practical scenarios since in most applications internal configurations of
machine learning models, including the network structure and weights, are not released.

Designing adversarial attacks on a given network can be formulated as an optimization
problem with the objective to find the smallest perturbation that leads to misclassification,
e.g., [44, 45]. Note that under black-box attacks the adversary only accesses the input and
output of a machine learning model. In other words, the adversary has to generate adver-
sarial perturbations without access to the target model to compute gradients. Therefore it is
intuitive to cast the problems of generating black-box attack examples as gradient-free op-
timization problems, e.g., [46–48]. Although various centralized and distributed gradient-
free optimization algorithms have been proposed to generate adversarial black-box attacks,
core theoretical questions remain. For instance, can distributed gradient-free optimization
algorithms achieve comparable convergence rates as their first-order counterparts? Can
they have similar convergence properties as their centralized counterparts? Can they even
achieve linear speedup? In Chapter 5, we provide positive answers to these questions.

Motivating example 5: Multi-target tracking

Consider a multi-target tracking problem in which n agents follow n targets. Figure 1.4
shows how each agent i tracks each target i from time t to t + 1. Let zi(s) and z̃i(s) denote
the positions of agent i and target i at time s, respectively. To model agent and target paths,
we introduce a parameterization:

zi(s) =

pi∑
k=1

[xi,t]kck,t(s),

z̃i(s) =

pi∑
k=1

[ξi,t]kck,t(s), s ∈ [t, t + 1),

1.1. Motivating examples 7

(a) A stingray misclassified as a sea lion.

(b) An ostrich misclassified as a goose.

(c) A jay misclassified as a junco.

(d) A water ouzel misclassified as a redshank.

Figure 1.3: Examples to illustrate how carefully crafted small perturbations of the original
inputs can misguide the network into producing incorrect outputs. The left column
shows the original images and the right column shows the perturbed images. Source:
https://davidstutz.de/simple-black-box-adversarial-attacks-on-deep-neural-networks/ and
[34].

8 Introduction

Target 1

Target 2

Target 3
Agent 3

Agent 2

Agent 1

Targets’ position at 𝑡𝑡 Targets’ position at 𝑡𝑡 + 1

Agents’ position at 𝑡𝑡 + 1 Agents’ position at 𝑡𝑡

Figure 1.4: Illustration of multi-target tracking.

where ck,t(s) are vector functions that parameterize the space of possible trajectories over
time [t, t + 1) and satisfy ∫ t+1

t
〈ck,t(s), cl,t(s)〉ds =

1, if k = l
0, else.

The action spaces of agent i and target i are given by xi,t = col([xi,t]1, . . . , [xi,t]pi) ∈ Xi ⊆ R
pi

and ξi,t = col([ξi,t]1, . . . , [ξi,t]pi) ∈ R
pi , respectively. At time t, agent i repositions itself by

selecting an action xi,t such that it could stay as close as possible to target i during time
interval [t, t + 1). At the same time it wants the selection cost 〈πi,t, xi,t〉 to be as small as
possible, where πi,t ∈ R

pi
+ is the price vector. This goal can be captured by defining a local

cost function

fi,t(xi,t) = ζi,1〈πi,t, xi,t〉 + ζi,2

∫ t+1

t
‖zi(s) − z̃i(s)‖2ds

= ζi,1〈πi,t, xi,t〉 + ζi,2‖xi,t − ξi,t‖
2,

where ζi,1 and ζi,2 are nonnegative constants to trade-off the two goals. Here, target i’s
action ξi,t and the price vector πi,t are observed only after the selection. Agents need to
cooperatively take into account energy and communication constraints. In some cases, they
can be represented as linear local constraint functions gi,t(xi,t) = Di,t xi,t − di,t, where Di,t ∈

Rm×pi and di,t ∈ R
m are time-varying and unknown at time t. These coupling constraints

determine the limits on the available resources to be shared among the agents. Chapter 6
shows how such a multi-target tracking problem can be solved by a novel distributed online
primal–dual dynamic mirror descent algorithm proposed in that chapter.

1.1. Motivating examples 9

Motivating example 6: Coordination of distributed energy resources

In the past decades, the power system has been undergoing a transition from a system with
conventional generation through few power plants and inflexible loads to a system with a
large number of distributed generators, energy storages, and flexible loads, e.g., [49–51].
The new distributed energy resources (DERs) are small and highly flexible compared with
conventional generators and can be aggregated to provide power necessary to meet varying
demands. As the electricity grid continues to modernize, DERs can facilitate the transition
to a smarter grid.

In order to achieve an effective and efficient deployment of DERs, one needs to
properly design their coordination scheme. Specifically, consider a power grid with n power
generation units. Each unit i has pi conventional and renewable power generators. The
units can communicate through a communication infrastructure. At stage t, let xi,t ∈ Xi

and Xi ⊂ R
pi be the output and the set of feasible outputs of the generators in unit i,

respectively. To generate the output, each unit i suffers a cost fi,t(xi,t). This local cost
is described by a quadratic function [52], but is unknown in advance, since fossil fuel
price is fluctuating and renewable energy is uncertain and unpredictable. In addition to
the local generator constraints Xi, all units need to cooperatively take into account global
constraints, such as power balance and emission constraints. The global constraints can be
modelled as

∑n
i=1 gi,t(xi,t) ≤ 0m, where gi,t is unit i’s local constraint function. Again, the

precise form of the constraint functions is typically unknown in advance. The goal of the
units is to reduce the global cost while satisfying the constraints. Chapter 7 shows how this
DERs coordination problem can be solved by the distributed bandit online primal–dual
optimization algorithms proposed in that chapter.

Motivating example 7: Satellite formation flying

Multiple satellites may work together to accomplish the objective of one larger, usually
more expensive, satellite. This reduces cost and adds flexibility to space programs [53].
An important component of such a strategy is satellite formation flying. Figure 1.5 shows
the PRISMA formation flying mission. PRISMA was a Swedish-led technology mission
to demonstrate formation flying and rendezvous technologies. The mission consisted of
two spacecrafts, a bigger one with advanced and highly maneuverable capability, called
MAIN, and a smaller one without a maneuvering capability, called TARGET. TARGET
simply followed the trajectory into which it was injected by the launch system. MAIN had
full translational capability, and performed a series of maneuvers around TARGET, on both
close and long range, using sensors provided [54].

The satellite formation flying problem of PRISMA is a resource-constrained two-agent
system. There are several constraints in this system, but here we only discuss two of them.
The first one is energy. MAIN has six thrusters arranged to provide torque-free translational
capability in all directions. Thus, the control input of MAIN should be optimized such
that the energy consumed to perform the maneuvers is saved. The second constraint is
communication. Although there are two deployable solar panels to power MAIN and
there is one body-mounted solar panel to power TARGET, energy used for communication

10 Introduction

Figure 1.5: Illustration of the PRISMA formation flying mission [55].

should be limited. One way to partially satisfy these two constraints is by using the event-
triggered control strategies investigated in Chapter 8.

Motivating example 8: Heavy-duty vehicle platooning

The formation of a group of heavy-duty vehicles at close intervehicular distances, similar to
cyclists in a race, reduces fuel consumption thanks to reduced air resistance. A platooning
with three vehicles is shown in Figure 1.6. In [56], the authors present an architecture
for heavy-duty vehicle platooning to improve the efficiency of freight transportation.
Experimental results show a significant decrease in fuel and energy consumption.

Vehicle platooning is a formation control problem with input saturation. The desired
formation is a line graph. The input saturation follows from that the vehicles have
limitations such as maximum acceleration and deceleration. Moreover, continuous com-
munication among vehicles is impossible. One way to model such a system is using event-
triggered multi-agent systems with input saturation as studied in Chapter 9.

Motivating example 9: Autonomous surface vehicle tracking

Autonomous surface vehicles can be used for target tracking, environmental sampling,
hydrographic or oceanographic surveys, water surface cleaning, etc. One specific example

1.1. Motivating examples 11

Figure 1.6: A platooning of heavy-duty vehicles. Source: https://www.scania.com

Figure 1.7: Illustration of autonomous surface vehicle tracking [57].

of autonomous surface vehicle tracking is collaborative tracking of fish [57], see Figure
1.7. The autonomous surface vehicles measure the location of the underwater target (the
fish) by using sonar. The vehicles create a formation around the target to keep the fish
within sensing range.

Fish tracking is a formation control problem of a resource-constrained multi-agent
system. There are several constraints in this system. The first one is that each vehicle has
limited energy since it is battery-powered. Motion and communication consume energy, so

12 Introduction

1 2

34

Figure 1.8: An example of a network of four computing agents.

it is important to design a proper control law. The second constraint is that the transceiver in
each vehicle is simple and has limited communication range. The relative distance between
any two vehicles may change during operation, so the connectivity of the underlying
interaction graph cannot be guaranteed. One way to handle these constraints is to consider
event-triggered formation control with connectivity preservation using relative positions as
considered in Chapter 10.

1.2 Distributed optimization and control

The examples presented above motivate us to propose new distributed optimization
and control algorithms. In this section, we briefly review related studies of distributed
optimization and control in the literature, including distributed optimization, online convex
optimization, and distributed event-triggered control.

1.2.1 Distributed optimization

Consider a networked system of n agents, each of which has a local private cost function
fi(x), where x ∈ Rp is the decision variable and p is its dimension. The objective of
distributed optimization is to minimize a global cost function, which is a sum of the local
cost functions of all agents,

min
x∈Rp

1
n

n∑
i=1

fi(x), (1.4)

in a distributed manner by local computation and communication. The underlying commu-
nication network is described by a (directed or undirected) graph G = (V,E) with the set
of vertices (or nodes) V = [n] and the set of edges (links) E ⊆ V × V. Figure 1.8 shows
an example with four agents connected through an undirected ring graph.

When each local cost function is convex, the optimization problem (1.4) is called a
distributed convex optimization problem, which has a long history and can be traced back
at least to the 1980’s [58–60]. It has gained renewed interests in recent years due to its

1.2. Distributed optimization and control 13

wide applications in power systems, machine learning, and sensor networks, just to name a
few. Various distributed algorithms have been developed and their convergence rates have
also been analyzed. Here convergence rates mean how quickly the output sequence of the
algorithm approaches the global optimum. In these algorithms, each agent performs local
computation based on its own information and information received from its neighbors.
For example, the following distributed first-order (sub)gradient descent algorithm was
proposed in [61]:

xi,k+1 =

n∑
j=1

[Wk]i jx j,k − ηk∇ fi(xi,k),

where xi,k ∈ R
p is agent i’s estimate of the optimal solution at time instant k, Wk is the

mixing matrix of the underlying time-varying communication network, ηk > 0 is the
stepsize, and ∇ fi(xi,k) is the (sub)gradient of fi. It was shown in [61] that this algorithm
finds a global optimum with an O(ln(k)/

√
k) convergence rate, i.e.,

f (x̄k) − f ∗ = O(ln(k)/
√

k),

where x̄k = 1
n
∑n

i=1 xi,k and f ∗ = minx∈Rp f (x), which is a sublinear convergence rate.
Sublinear convergence rate is described in terms of a power function of the iteration
counter k [62]. Other sublinear convergence rates, such as O(1/

√
k), O(1/k), and O(1/k2),

have also been achieved by other distributed algorithms, e.g., [63–67]. Linear convergence
rate, which is given in terms of an exponential function of the iteration counter, can be
established under more stringent strong convexity conditions. For instance, in [68–87]
and [88–91], the authors assumed that each local cost function and the global cost function
are strongly convex, respectively, and showed that their proposed distributed algorithms
achieve a linear convergence rate, i.e.,

f (x̄k) − f ∗ = O(ck),

where c is a constant in the interval (0, 1). For recent overviews we refer to the surveys
[92–99] and the books [100–103].

In many applications, such as optimal power flow [104], resource allocation [105],
and empirical risk minimization [106], the cost functions are usually nonconvex. Thus,
it is important to develop distributed algorithms to solve also nonconvex optimization
problems. These challenging yet important problems have drawn attention recently
from control, signal processing, and machine learning. For example, unconstrained and
constrained distributed nonconvex optimization problems were considered in [107–120]
and [121–128], respectively. In these studies, convergence results typically ensure that the
distributed algorithms find (first-order) stationary points

{x ∈ Rp : ∇ f (x) = 0p},

which could be local maxima or minima. Global optima are hard to find. In [111–116,124],
it was shown that when each local cost function is smooth, first-order stationary points can

14 Introduction

be found with an O(1/k) convergence rate, i.e.,

‖∇ f (x̄k)‖2 = O(1/k).

Second-order stationary points

{x ∈ Rp : ∇ f (x) = 0p and ∇2 f (x) ≥ 0}

can be found if additional assumptions are made, such as imposing the Kurdyka–
Łojasiewicz condition, assuming a Lipschitz-continuous Hessian, or making a suitably
initialization, e.g., [109, 116–118, 120].

There is a correspondence between the convergence rate and the iteration complexity.
The upper bound for the iterations to attain an ε-accuracy, i.e., f (x̄k) − f ∗ ≤ ε for convex
problems or ‖∇ f (x̄k)‖2 ≤ ε for nonconvex problems, where ε > 0 is a constant, is
an inverse function of convergence rate. For example, if an algorithm has an O(1/

√
k)

convergence rate for an optimization problem, then it takes O(1/ε2) iterations to attain an
ε-accuracy. Similarly, if another algorithm has an O(1/

√
nk) convergence rate for the same

optimization problem, then it takes O(1/(nε2)) iterations, which is n times smaller than
O(1/ε2), to attain an ε-accuracy. In this sense, the second algorithm is n times faster than
the first one, and thus achieves a linear speedup in the number of agents. Linear speedup
enables us to scale up the computing capacity by adding more agents.

Note that aforementioned algorithms use at least gradient information of the cost
functions, and sometimes even second- or higher-order information. However, in many
applications explicit expressions of the gradients are often unavailable or at least difficult to
obtain. For example, in empirical risk minimization, the actual gradient has to be calculated
from the entire data set, which results in a heavy computational burden. A stochastic
gradient can be calculated from a randomly selected subset of the data and is often an
efficient way to replace the actual gradient. Various distributed SGD algorithms have been
proposed, e.g., [31–33, 129–141]. Convergence properties of these algorithms have been
analyzed in detail. In particular, in [31–33, 132, 133, 135–137], an O(1/

√
nk) convergence

rate has been established for SGD algorithms and smooth nonconvex cost functions. This
rate is n times faster than the well-known O(1/

√
k) convergence rate established by SGD

over a single agent [142], and thus a linear speedup in the number of agents is achieved.
Moreover, in [140, 141], an O(1/(nk)) convergence rate has been established for smooth
strongly convex cost functions. This rate is also n times faster than the optimal convergence
rate O(1/k) established for centralized SGD algorithms [143], and thus linear speedup
is also achieved. However, existing distributed SGD algorithms obtaining linear speedup
require restrictive assumptions on the cost functions or the communication network.

In many applications, even stochastic gradients are unavailable [144–146]. For exam-
ple, many cost functions of big data problems that deal with complex data-generating
processes cannot be explicitly defined [46]. Motivated by this, some recent works have
started to modify distributed gradient-based optimization algorithms to zeroth-order, e.g.,
[147–155]. However, it is unclear whether linear speedup can be achieved by these
algorithms.

Although many distributed optimization algorithms have been proposed, the study is
far from being complete. For example, it is interesting trying to achieve linear convergence

1.2. Distributed optimization and control 15

without the strong convexity assumption, since many practical applications do not have
strongly convex cost functions [156]. Another interesting direction is to develop distributed
SGD algorithms that not only achieve linear speedup convergence rates O(1/

√
nk) and

O(1/(nk)), but also do not require restrictive assumptions on the cost functions or the
communication networks. It is also revelant to develop distributed zeroth-order algorithms
to achieve linear speedup compared with centralized such algorithms.

1.2.2 Online convex optimization

Online convex optimization is a promising methodology for modeling sequential tasks
and has important applications in machine learning [157], smart grids [158], sensor
networks [159], and so on. It has been studied since the 1990’s [160–168]. Online convex
optimization can be understood as a repeated game between a learner and an adversary
[157]. At round t of the game, the learner chooses a point xt from a known feasible region
X ⊆ Rp, which is a closed convex set. Then, the adversary observes xt and chooses a
convex loss function ft : X → R. After that, the loss function ft is revealed to the learner
who suffers a loss ft(xt). Note that at each round the loss function can be arbitrarily chosen
by the adversary, especially with no probabilistic model imposed on the choices. This
is the key difference between online and stochastic convex optimization. An adversary
with the power to arbitrarily choose the loss functions is said to be a completely adaptive
adversary [164]. The goal of the learner is to choose a sequence x[T] = (x1, . . . , xT) such
that her regret

Reg(x[T], y[T]) =

T∑
t=1

(ft(xt) − ft(yt)) (1.5)

is minimized, where T is the total number of rounds and y[T] = (y1, . . . , yT) is a comparator
sequence. In the literature, there are two commonly used comparator sequences. One is
the optimal dynamic decision sequence y[T] = x∗[T] = (x∗1, . . . , x

∗
T) solving the following

constrained convex optimization problem when the sequence of cost functions is known a
priori:

min
x[T]∈XT

T∑
t=1

ft(xt).

In this case Reg(x[T], x∗[T]) is called the dynamic regret for x[T]. Another comparator
sequence is y[T] = x̌∗[T] = (x̌∗T , . . . , x̌

∗
T), where x̌∗T is the optimal static decision solving

min
x∈X

T∑
t=1

ft(x).

In this case Reg(x[T], x̌∗[T]) is called the static regret. It is straightforward to see that
Reg(x[T], y[T]) ≤ Reg(x[T], x∗[T]), ∀y[T] ∈ X

T , and that Reg(x[T], x̌∗[T]) ≤ Reg(x[T], x∗[T]).
In online convex optimization, we are usually interested in an upper bound on the worst

16 Introduction

case regret of an algorithm. Intuitively, an algorithm performs well if its static regret is
sublinear as a function of T , since this implies that on the average the algorithm performs
as well as the best fixed strategy in hindsight as T goes to infinity [157, 165].

It is known that the simple and popular projection-based online gradient descent
algorithm

xt+1 = PX(xt − α∇ ft(xt)), (1.6)

where PX(·) is the projection onto the closed convex set X and α > 0 is the stepsize,
achieves an O(

√
T) static regret bound for loss functions with bounded subgradients [163],

i.e.,

Reg(x[T], x̌∗[T]) = O(
√

T).

As a result, when the convex cost function is fixed, i.e., ft = f , the above result implies that
f (
∑T

t=1 xt/T) − f ∗ = O(1/
√

T), where f ∗ = minx∈X f (x). It was later shown that O(
√

T)
is a tight bound up to constant factors [166]. The static regret bound can be reduced under
more stringent strong convexity conditions on the objective functions [157,165–167] or by
allowing to sample the gradient of the objective function multiple times per round [168].

Despite the simplicity of the algorithm (1.6), its computational cost is crucial for its
applicability. The projection PX(·) is easy to compute and even has a closed form solution
when X is a simple set, e.g., a box or a ball. However, in practice, the constraint set X
is often complex. For example, if X is characterized by inequalities as X = {x : g(x) ≤
0m, x ∈ Rp}, where g(x) = col(g1(x), . . . , gm(x)) with each gi : Rp → R being a convex
function, then the projection PX(·) yields a heavy computational burden. To tackle this
challenge, online convex optimization with long-term constraints was considered in [169].
In this case, instead of requiring g(xt) ≤ 0m at each round, the constraint should only be
satisfied in the long run. More specifically, the constraint violation

∥∥∥∥[T∑
t=1

g(xt)
]
+

∥∥∥∥ (1.7)

should grow sublinearly. In this case,
∑T

t=1 xt/T ∈ X as T → ∞. In other words, the learner
is allowed sometimes to make decisions that do not belong toX, but the overall sequence of
chosen decisions must obey the constraint at the end by a vanishing convergence rate. This
problem is normally solved by online primal–dual algorithms [169–172]. The problem can
be extended to the case when the constraint function is time-varying and revealed to the
learner after her decision is chosen [173–176].

Not only centralized, but also distributed online convex optimization problems have
been studied. For example, distributed unconstrained online optimization problems have
been considered in [177] by proposing an online subgradient descent algorithm with
proportional-integral disagreement and in [178] by designing a distributed online subgra-
dient push-sum algorithm. Some other variations of distributed online convex optimization
algorithms have also been proposed, e.g., the Nesterov based primal–dual algorithm [179],
variant of the Arrow–Hurwicz saddle point algorithm [180], the mirror descent algorithm

1.2. Distributed optimization and control 17

Agent 𝑖𝑖

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)
 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

Figure 1.9: Illustration of how agents communicate when the control input is continuous.

[181], and the dual subgradient averaging algorithm [182]. For more studies on distributed
online convex optimization, we refer to [183–191]. There are open problems on distributed
online convex optimization. For instance, how to handle time-varying constraints. It is also
interesting to develop gradient-free online algorithms, such as bandit online algorithms.

1.2.3 Distributed event-triggered control

Consider the continuous-time multi-agent systems described by integral dynamics

ẋi(t) = ui(t), i ∈ [n], t ≥ t0, (1.8)

ui(t) = −

n∑
j=1

Li jx j(t), (1.9)

where xi ∈ R
p is the state of agent i, which might represent physical variables such as

attitude, position, temperature, or voltage, ui is the control input, t0 is a common initial
time, and Li j is the element of the Laplacian matrix of the underlying communication
network G. Such a system with two agents is illustrated by Figure 1.9. Each agent has
a sensor component to measure and broadcast its state information, and to listen to and
receive its neighbors’ state information. Each agent also has a component to generate the
control input based on the information it receives from the sensor.

To implement the control (1.9), continuous-time state information from neighbors is
needed. In other words, each agent i has to continuously broadcast its own state xi(t), and
continuously listen to and receive its neighbors’ states x j(t), j ∈ Ni. Moreover, each agent
i has to continuously update its control input ui(t) =

∑n
j=1 Li jx j(t). It is in most applications

impractical to require continuous communications and updating of control inputs.
Reducing the frequency of information exchange among agents is essential. In order

to realize this, we introduce a model where each agent i ∈ [n] prefers to only broadcast
its state at discrete time instants {ti

1, t
i
2, . . . }. In this case, the state information received by

agent i is {x j(t
j
k), j ∈ Ni}

∞
k=1. In other words, at any t, agent i knows x j(t

j
k j(t)

), j ∈ Ni, where

t j
k j(t)

= max{t j
k : t j

k ≤ t} is the latest broadcasting time of agent j. Then, the control input is

18 Introduction

Agent 𝑖𝑖

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

 𝑥𝑥�𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)
 𝑥𝑥�𝑖𝑖(𝑡𝑡)

 𝑥𝑥�𝑗𝑗(𝑡𝑡)

Figure 1.10: Illustration of how agents communicate when the control input is event-
triggered.

computed as

ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

). (1.10)

For simplicity, let x̂i(t) = xi(ti
ki(t)

). Figure 1.10 shows that agent i broadcasts its state

xi(ti
k) at time instants {ti

k}
∞
k=1 and receives its neighbors’ states {x j(t

j
k), j ∈ Ni} at time

instants {t j
k, j ∈ Ni}

∞
k=1. An essential question is how to determine the communication

instances {ti
k, i ∈ [n]}∞k=1 such that desired closed-loop system properties are maintained. In

the literature, researchers often consider time-triggered, event-triggered, and self-triggered
communications. We discuss each one of them next.

Time-triggered communication

The traditional way for agents to share information is to communicate equidistantly
(periodically), i.e.,

ti
1 = t0, ti

k+1 = ti
k + T0, i ∈ [n],

where T0 > 0 is the sampling period. This is called time-triggered or periodic sampling.
Note that the triggering sequence is the same for each agent. A nice feature of this approach
is that the analysis and design becomes rather straightforward and the vast literature on
sample-data control can be used [192]. Drawbacks are that agents need to take actions in a
synchronous manner (which is often hard to implement for large distributed systems) and
it is not energy-efficient to communicate even if the state has not changed.

Event-triggered communication

To make the sampling period T0 adaptive, we can let communication occur only when
a predefined condition is satisfied. This is called event-triggered communication and
the control input (1.10) with event-triggered communication is called distributed event-
triggered control. Triggering times {ti

1, t
i
2, . . . } are in this case different for different

1.2. Distributed optimization and control 19

agents. We call {ti
k+1 − ti

k}
∞
k=1 the inter-event times of agent i. Advantages of event-

triggered approaches are that they can be implemented in a distributed manner and can
sometimes give better performance than periodic sampling. However, the analysis and
design methodologies are less developed.

One common choice of event-triggered communication is to use a triggering law
defined by

ti
1 = t0, ti

k+1 = min{t : Fi(xi(t), x̂i(t), {x j(t), x̂ j(t)} j∈Ni) ≥ 0, t ≥ ti
k}, i ∈ [n], (1.11)

where Fi(·) is a function to be designed. We call (1.11) a static triggering law since it does
not involve any extra dynamic variables. There are two well-known ways to define the
function Fi(·). The first one was introduced in [193]:

Fi(·) = (x̂i(t) − xi(t))2 −
σia(1 − a|Ni|)

|Ni|

(n∑
j=1

(x j(t) − xi(t))
)2
, (1.12)

and the second one in [194]:

Fi(·) = (x̂i(t) − xi(t))2 −
σia(1 − a|Ni|)

|Ni|

(n∑
j=1

(x̂ j(t) − x̂i(t))
)2
, (1.13)

where 0 < σi < 1 and 0 < a < 1
|Ni |

are design parameters. The function Fi(·) in (1.12) and
(1.13) do not involve any extra dynamic variables but the agent state variables xi(t), x̂i(t)
and x j(t), x̂ j(t), j ∈ Ni.

Another common form of event-triggered communication is

ti
1 = t0, ti

k+1 = min{t : Fi(xi(t), x̂i(t), {x j(t), x̂ j(t)} j∈Ni) ≥ ηi(t), t ≥ ti
k}, i ∈ [n], (1.14)

where ηi(t) is an internal dynamic variable to be defined. We call (1.14) a dynamic
triggering law since it involves an extra dynamic variable. One well-known dynamic
triggering law introduced in [195] is

ti
1 = t0, ti

k+1 = min{t : |x̂i(t) − xi(t)| ≥ c0 + c1e−αt, t ≥ ti
k}, i ∈ [n] (1.15)

with constants c0 ≥ 0, c1 ≥ 0, c0 + c1 > 0, and 0 < α < ρ2(L), where ρ2(L) is the minimum
positive eigenvalue of the Laplacian matrix L of the underlying undirected graph G.

Self-triggered communication

For event-triggered communication, each agent needs to continuously monitor the trigger-
ing laws. However, agent i could instead at its current triggering time ti

k predict its next
triggering time ti

k+1 and broadcast it to its neighbors. In this case, agent i only needs to
listen and receive information at {t j

k}
∞
k=1, j ∈ Ni since it knows when these time instances

will happen in advance. Each agent broadcasts at its own triggering times, and listen to

20 Introduction

incoming information from its neighbors at their triggering times. This is called self-
triggered communication. Note that it is at the current triggering time instant that next
triggering time is determined.

One common form of self-triggered communication is to use a triggering law defined
by

ti
1 = t0, ti

k+1 = min
{
t : Gi

(
t, xi(ti

k), ti
k,

{
t j
k j(ti

k)
, t j

k j(ti
k)+1

, x j(t
j
k j(ti

k)
)
}

j∈Ni

)
= 0, t ≥ ti

k

}
, i ∈ [n],

(1.16)

where Gi(·) is a function to be designed, which is often chosen related to the function Fi(·)
in the event-triggered communication.

Although there are numerous results on distributed event-triggered control in existing
literature, there still remain some key challenges. For example, one key challenge is to
exclude Zeno behavior when designing the triggering laws. Zeno is the behavior that there
are infinite number of triggers in a finite time interval [196], i.e., that for some i

lim
k→+∞

ti
k < ∞. (1.17)

In other words, the non-existence of Zeno behavior is equivalent to that in every finite time
interval there are only finite number of triggers. Thus, if Zeno behavior does not happen,
it is guaranteed that during every finite time interval, the inter-event times are greater
than a positive constant. Another challenge is to take into account resource constraints,
such as energy, communication, sensing, and control constraints, which normally appear
in applications. Resource constraints are essential for the control design of multi-agent
systems as a constrained system can have completely different behavior compared to the
unconstrained one. Therefore it is important to mathematically model resource-constrained
multi-agent systems and to properly design their control laws such that a common objective
is achieved while resource constraints are satisfied.

1.3 Problem formulation

In this section, we introduce the problems considered in this thesis, which can be
categorized into three topics.

Distributed nonconvex optimization

The first considered problem is distributed nonconvex optimization. Specifically, consider
a network of n agents, each of which has a local smooth (possibly nonconvex) cost function
fi : Rp → R. All agents collaboratively solve the optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x).

Each agent i only has information about its local cost function fi. It can communicate
with its neighbors through the underlying communication network which is modeled by an
undirected graph. Different settings on the information feedback are investigated.

1.3. Problem formulation 21

We first consider the case where full-information feedback is available. The problem to
solve is to design (i) a distributed first-order algorithm such that linear convergence can be
achieved without the strong convexity assumption; and (ii) a distributed ADMM algorithm
that not only is suitable for arbitrarily connected communication networks, but also has
linear convergence without the strong convexity assumption on the cost function.

We then consider the case where stochastic gradient feedback is available. The problem
to solve is to design a distributed SGD algorithm that not only is suitable for arbitrarily
connected communication networks, but also achieves linear speedup.

We finally consider the case where zeroth-order (ZO) oracle feedback is available. The
problem to solve is to design (i) distributed algorithms based on deterministic zeroth-order
(DZO) oracle feedback such that it has the same convergence properties as its first-order
counterpart; and (ii) distributed algorithms based on stochastic zeroth-order (SZO) oracle
feedback such that they not only are suitable for arbitrarily connected communication
networks, but also achieve linear speedup.

Distributed online convex optimization

The second considered problem is distributed online convex optimization with time-
varying coupled inequality constraints under different settings on the information feedback.

We first consider the full-information feedback setting. Specifically, consider a network
of n agents indexed by i ∈ [n]. For each i, let the local decision set Xi ⊆ R

pi be a closed
convex set with pi being a positive integer. Let { fi,t : Xi → R}, {ri,t : Xi → R}, and
{gi,t : Xi → R

m} be arbitrary sequences of local convex cost, regularization, and constraint
functions over time t = 1, 2, . . . , respectively, where m is a positive integer. At time t,
each agent i selects a decision xi,t ∈ Xi. After the selection, the agent receives its cost
function fi,t and regularization ri,t together with its constraint function gi,t, and obtains
the loss li,t(xi,t) = fi,t(xi,t) + ri,t(xi,t). At the same moment, the agents exchange data with
their neighbors over a time-varying directed graph Gt. The problem to solve is to develop
distributed online optimization algorithms with guaranteed performance measured by the
regret and constraint violation.

We also consider the bandit feedback setting, i.e., only the values of cost and constraint
functions are revealed at the sampling instance. In this case, the problem can be defined
as a repeated game between a group of n learners indexed by i ∈ [n] and an adversary.
At round t of the game, the adversary first arbitrarily chooses n local loss functions { fi,t :
Xi → R, i ∈ [n]} and n local constraint functions {gi,t : Xi → R

m, i ∈ [n]}, where each
Xi ⊆ R

pi is a known closed convex set with pi and m being positive integers. Then, without
knowing { fi,t, i ∈ [n]} and {gi,t, i ∈ [n]}, all learners simultaneously choose their decisions
{xi,t ∈ Xi, i ∈ [n]}. Each learner i samples the values of fi,t and gi,t at the point xi,t as well
as at other potential points, i.e., the learners receive bandit feedback from the adversary.
These values are held privately by each learner. At the same moment, the learners exchange
data with their neighbors over a time-varying directed graph Gt. The problem to solve is
to develop distributed bandit online optimization algorithms with guaranteed performance
measured by expected regret and constraint violation.

22 Introduction

Distributed event-triggered control

The third and final problem is how to achieve consensus and formation control for multi-
agent systems under limited communication resource constraint.

We first consider the average consensus problem for first-order continuous-time multi-
agent systems with event-triggered control input over undirected graphs, i.e.,

ẋi(t) = ui(t), i ∈ [n], t ≥ t0,

ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

).

The problem to solve is to distributively determine the triggering times such that average
consensus is reached, while continuous exchange of information, continuous update of
actuators, and Zeno behavior are avoided.

We then consider the global consensus problem for multi-agent systems with input
saturation over directed graphs, i.e.,

ẋi(t) = sath(ui(t)), i ∈ [n], t ≥ t0,

ui(t) = −

n∑
j=1

Li jx j(t) or ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

),

where sath(·) is the saturation function with saturation level h > 0. For any s =

col(s1, . . . , sp) ∈ Rp, the saturation function sath(s) is defined (with slight abuse of
notation) as

sath(s) = col(sath(s1), . . . , sath(sp)),

where

sath(si) =

h, if si ≥ h,
si, if |si| < h,
−h, if si ≤ −h.

The problem to solve is to find sufficient and necessary connectivity conditions to guarantee
that global consensus is reached, again, under the assumption that there are no continuous
communication or system updates.

We finally consider formation control with connectivity preservation for both first-order
multi-agent systems

ẋi(t) = ui(t), i ∈ [n], t ≥ t0,

and second-order multi-agent systemsẋi(t) = ri(t),
ṙi(t) = ui(t), i ∈ [n], t ≥ t0.

1.4. Thesis outline and contributions 23

We assume that the communication network is undirected and all agents have limited
communication radius. The problem to solve is to design distributed event-triggered
controllers together with triggering laws such that a desired formation is achieved while
connectivity is preserved.

1.4 Thesis outline and contributions

In this section, we provide the outline of the thesis and indicate the contributions of each
chapter.

1.4.1 Outline and contributions

The main results of this thesis are presented in Chapters 3–10 and are categorized into three
parts according to their topics.

Part I focuses on distributed nonconvex optimization problems, which are known to
be hard in general. Normally only stationary points can be found, which could be local
maxima or minima. In this part, we propose algorithms to solve these problems under
different information feedback settings. Part I consists of Chapters 3–5 and an overview
of this part is provided in Table 1.1. The rows list the problem settings and convergence
results. Firstly, when full-information feedback is available, we show in Chapter 3 that
a stationary point can be found by the proposed primal–dual first-order and ADMM
algorithms with an O(1/T) convergence rate if each local cost function is smooth, and
that a global optimum can be found with a linear convergence rate under an additional
condition that the global cost function satisfies the Polyak-Łojasiewicz (P–Ł) condition.
This condition is weaker than strong convexity, which is a standard condition for proving
linear convergence of distributed optimization algorithms, and the global minimizer is
not necessarily unique. Secondly, when stochastic gradient feedback is available, we
show in Chapter 4 that the proposed primal–dual SGD algorithm achieves the linear
speedup convergence rates O(1/

√
nT) and O(1/(nT)) without and with the P–Ł condition,

respectively. Thirdly, when DZO oracle feedback is available, we show in Chapter 5 that
the proposed primal-dual DZO algorithm achieves the same convergence results as its first-
order counterpart in Chapter 3. Finally, when SZO oracle feedback is available, we show
in Chapter 5 that the proposed primal-dual and dual SZO algorithms achieve the linear
speedup convergence rates O(

√
p/nT) and O(p/(nT)) without and with the P–Ł condition,

respectively.
Part II focuses on online convex optimization problems, which view optimization as

a process or a repeated game. In this part, we propose algorithms to solve distributed
online convex optimization problems with time-varying coupled inequality constraints
under different settings on the information feedback. The main difference between Parts I
and II is that in Part I the cost functions are fixed, while in Part II the cost and constraint
functions are time-varying and revealed at the end of each time slot. In addition, Part II
deals with constrained problems and they have to be convex. Part II consists of Chapters 6–
7 and an overview of this part is provided in Table 1.2. The rows list the problem settings
and convergence results. Firstly, when full-information feedback is available, we show

24 Introduction

Table 1.1: Overview of Part I of this thesis.

Chapter 3
(Algorithms 3.1–3.3)

Chapter 4
(Algorithm 4.1)

Chapter 5
(Algorithm 5.1)

Chapter 5
(Algorithms 5.2–5.3)

Considered problem Distributed nonconvex optimization

Communication network Undirected connected

Information feedback Full-information Stochastic gradient DZO oracle SZO oracle

Convergence rate with the
smooth assumption O(1/T) O(1/

√
nT) O(1/T) O(

√
p/(nT))

Convergence rate with the
smooth and P–Ł condition

assumptions
Linear O(1/(nT)) Linear O(p/(nT))

Table 1.2: Overview of Part II of this thesis.

Chapter 6 (Algorithm 6.1) Chapter 7 (Algorithm 7.1) Chapter 7 (Algorithm 7.2)

Considered
problem Distributed online convex optimization with time-varying coupled inequality constraints

Communication
network Time-varying, directed, uniformly jointly strongly connected

Information
feedback Full-information One-point bandit Two-point bandit

Dynamic regret
bound

O(max{T κ ∑T−1
t=1 ‖x

∗
t+1 − x∗t ‖,

T max{1−κ,κ}}), where κ ∈ (0, 1)
O(max{T θ1

∑T−1
t=1 ‖x

∗
t+1−x∗t ‖, T θ1 }),

where θ1 ∈ (3/4, 5/6]
O(max{T κ ∑T−1

t=1 ‖x
∗
t+1 − x∗t ‖,

T max{κ,1−κ}})

Constraint
violation bound

O(T 1−κ/2);
O(T max{1−κ,κ}) if Slater’s

condition holds
O(T 7/4−θ1) O(T 1−κ/2)

in Chapter 6 that sublinear dynamic regret and constraint violation can be achieved by
the proposed algorithm if the accumulated dynamic variation of the optimal sequence∑T−1

t=1 ‖x
∗
t+1 − x∗t ‖ grows sublinearly, where {x∗t } is the optimal dynamic decision sequence.

Moreover, the constraint violation bound can be reduced when Slater’s condition holds.
Secondly, when one-point bandit feedback is available, we show in Chapter 7 that the
proposed algorithm achieves larger dynamic regret and constraint violation bounds than
the bounds achieved in Chapter 6, but they are still sublinear if the accumulated variation of
the comparator sequence also grows sublinearly. Finally, when two-point bandit feedback
is available, we show in Chapter 7 that the proposed algorithm achieves the same dynamic
regret and constraint violation bounds as its full-information counterpart in Chapter 6.

Part III focuses on distributed event-triggered control problems. In this part, we propose
distributed dynamic event-triggered control algorithms to solve consensus and formation
problems for multi-agent systems under limited communication resources. Part III consists
of Chapters 8–10 and an overview of this part is provided in Table 1.3. The rows list the
problem settings and convergence results. In Chapter 8, we consider the average consensus
problem for first-order multi-agent systems over undirected connected communication
networks. In Chapter 9, we consider the global consensus problem for first-order multi-
agent systems with input saturation over directed communication networks containing
directed spanning trees. In Chapter 10, we consider the formation control problem for

1.4. Thesis outline and contributions 25

Table 1.3: Overview of Part III of this thesis.

Chapter 8 Chapter 9 Chapter 10

Considered problem
Average consensus for
first-order multi-agent

systems

Global consensus for
multi-agent systems with

input saturation

Formation control for
multi-agent systems with
connectivity preservation

Communication network Undirected connected Directed spanning tree Undirected connected

Information type Absolute Relative

Algorithm Distributed dynamic event-triggered control algorithms without Zeno behavior

Convergence rate Exponential

first- and second-order multi-agent systems with connectivity preservation over undirected
connected communication networks, and relative state information is used to design
the control input. Distributed dynamic event-triggered control algorithms without Zeno
behavior are proposed to solve these problems and exponential convergence rates are
established.

The overall outline of the remainder of this thesis and its technical contributions are
summarized in the following.

Chapter 2: Preliminaries

In Chapter 2, we list some essential elements of the background theory, including alge-
braic graph theory, convex functions, projections, smooth functions, Polyak–Łojasiewicz
condition, Bregman divergence, gradient approximation, and some useful lemmas related
to series, used in the thesis.

Chapter 3: Distributed primal–dual first-order and ADMM algorithms

In Chapter 3, we consider the distributed nonconvex optimization problem with full-
information feedback. We propose three algorithms: a distributed primal–dual first-order
algorithm, a distributed ADMM algorithm, and a distributed linearized ADMM algorithm.
We show that each algorithm converges to a stationary point with an O(1/T) convergence
rate if each local cost function is smooth, where T is the total number of iterations, and to a
global optimum with a linear convergence rate under an additional condition that the global
cost function satisfies the P–Ł condition. This condition is weaker than strong convexity,
which is a standard condition in the literature for proving linear convergence of distributed
optimization algorithms, and the global minimizer is not necessarily unique or finite.

The covered material is based on the following contributions.

[C1] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence for
distributed optimization without strong convexity,” in IEEE Conference on Decision
and Control, 2020.

[J1] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of first-
and zeroth-order primal–dual algorithms for distributed nonconvex optimization,”

26 Introduction

submitted to IEEE Transactions on Automatic Control.

[M1] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of the
alternating direction method of multipliers for distributed nonconvex optimization,”
in preparation.

Chapter 4: Distributed primal–dual SGD optimization algorithm

In Chapter 4, we consider the distributed nonconvex optimization problem with stochastic
gradient feedback. We propose a distributed primal–dual SGD algorithm, suitable for
arbitrarily connected communication networks and any smooth cost functions. We show
that the proposed algorithm converges to a stationary point with the linear speedup
convergence rateO(1/

√
nT) for smooth nonconvex cost functions, and to a global optimum

with the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies
the P–Ł condition in addition, where n and T are the number of agents and the total number
of iterations, respectively. We also show that the output of the proposed algorithm with
constant parameters linearly converges to a neighborhood of a global optimum.

The covered material is based on the following contribution.

[J2] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primal–dual SGD
algorithm for distributed nonconvex optimization,” submitted to SIAM Journal on
Control and Optimization.

Chapter 5: Distributed zeroth-order optimization algorithms

In Chapter 5, we consider the distributed nonconvex optimization problem with ZO oracle
feedback. We first consider the situation that DZO oracle feedback is available. We propose
a distributed primal–dual DZO algorithm and show that it converges to a stationary
point with an O(1/T) convergence rate for smooth nonconvex cost functions, and to a
global optimum with a linear convergence rate when the global cost function satisfies
the P–Ł condition in addition, where T is the total number of iterations. In other words,
our proposed distributed DZO algorithm has the same convergence properties as its FO
counterpart under the same conditions. We then consider the situation that SZO oracle
feedback is available. We propose two distributed SZO algorithms: distributed primal–
dual and dual SZO algorithms. We show that both SZO algorithms converge to a stationary
point with the linear speedup convergence rate O(

√
p/(nT)) for smooth nonconvex cost

functions, and to a global optimum with the linear speedup convergence rate O(p/(nT))
when the global cost function satisfies the P–Ł condition in addition, where p is the
dimension of the decision variable. We also show that both SZO algorithms converge
linearly when considering deterministic centralized optimization problems under the P–
Ł condition.

The covered material is based on the following contribution.

[J1] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of first-
and zeroth-order primal–dual algorithms for distributed nonconvex optimization,”
submitted to IEEE Transactions on Automatic Control.

1.4. Thesis outline and contributions 27

[M2] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Zeroth-order algorithms
for stochastic distributed nonconvex optimization,” in preparation.

Chapter 6: Distributed online primal–dual optimization algorithm

In Chapter 6, we consider distributed online convex optimization with time-varying
coupled inequality constraints. The global objective function is composed of local convex
cost and regularization functions and the coupled constraint function is the sum of local
convex functions. A distributed online primal–dual dynamic mirror descent algorithm
is proposed to solve this problem, where the local cost, regularization, and constraint
functions are held privately and revealed only after each time slot. Without assuming
Slater’s condition, we first derive regret and constraint violation bounds for the proposed
algorithm and show how they depend on the stepsize sequences, the accumulated dynamic
variation of the comparator sequence, the number of agents, and the network connectivity.
As a result, under some natural decreasing stepsize sequences, we prove that the proposed
algorithm achieves sublinear dynamic regret and constraint violation if the accumulated
dynamic variation of the optimal sequence also grows sublinearly. In particular, we show
that it achieves O(T max{1−κ,κ}) static regret and O(T 1−κ/2) constraint violation bounds, where
κ ∈ (0, 1) is a user-defined trade-off parameter. Assuming Slater’s condition, we show that
the dynamic regret bound is similar to the bound without assuming Slater’s condition, but
the constraint violation bound can be reduced to O(T max{1−κ,κ}). Moreover, we show that
both static regret and constraint violation bounds grow as O(

√
T). In addition, smaller

bounds on the static regret are achieved when the objective function is strongly convex.
The covered material is based on the following contributions.

[C2] X. Yi, X. Li, L. Xie, and K. H. Johansson, “A distributed algorithm for online convex
optimization with time-varying coupled inequality constraints,” in IEEE Conference
on Decision and Control, 2019, pp. 555–560.

[J3] X. Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex optimization
with time-varying coupled inequality constraints,” in IEEE Transactions on Signal
Processing, vol. 68, no. 2, pp. 731–746, 2020.

Chapter 7: Distributed bandit online primal–dual optimization algorithms

In Chapter 7, we consider distributed bandit online convex optimization with time-varying
coupled inequality constraints, motivated by a repeated game between a group of learners
and an adversary. The learners attempt to minimize a sequence of global loss functions and
at the same time satisfy a sequence of coupled constraint functions, where the constraints
are coupled across the distributed learners at each round. The global loss and the coupled
constraint functions are the sum of local convex loss and constraint functions, respectively,
which are adaptively generated by the adversary. The local loss and constraint functions
are revealed in a bandit manner, i.e., only the values of loss and constraint functions are
revealed to the learners at the sampling instance, and the revealed function values are held
privately by each learner. Both one- and two-point bandit feedback are studied with the

28 Introduction

two corresponding distributed bandit online algorithms used by the learners. We show
that sublinear expected dynamic regret and constraint violation are achieved by these two
algorithms, if the accumulated variation of the comparator sequence also grows sublinearly.
In particular, we show that O(T θ1) expected static regret and O(T 7/4−θ1) constraint violation
bounds are achieved in the one-point bandit feedback setting, and O(T max{κ,1−κ}) expected
static regret and O(T 1−κ/2) constraint violation bounds in the two-point bandit feedback
setting, where T is the total number of rounds and θ1 ∈ (3/4, 5/6] and κ ∈ (0, 1) are
user-defined trade-off parameters.

The covered material is based on the following contributions.

[C3] X. Yi, X. Li, T. Yang, L. Xie, T. Chai, and K. H. Johansson, “A distributed primal–
dual algorithm for bandit online convex optimization with time-varying coupled
inequality constraints,” in American Control Conference, 2020, pp. 327–332.

[J4] X. Yi, X. Li, T. Yang, L. Xie, T. Chai, and K. H. Johansson, “Distributed
bandit online convex optimization with time-varying coupled inequality constraints,”
submitted to IEEE Transactions on Automatic Control.

Chapter 8: Distributed dynamic event-triggered control algorithms

In Chapter 8, we propose dynamic event-triggered approaches to solve the average con-
sensus problem for first-order continuous-time multi-agent systems over undirected graphs.
More specifically, two distributed dynamic triggering laws and one self-triggered algorithm
are proposed to determine the triggering times. Compared with existing triggering laws,
the proposed triggering laws involve internal dynamic variables which play an essential
role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior.
Moreover, our dynamic triggering laws include some existing triggering laws as special
cases. More importantly, continuous listening is avoided in our proposed self-triggered
algorithm. The main idea is that each agent predicts its next triggering time and broadcasts
it to its neighbors at the current triggering time. Thus each agent only needs to sense and
broadcast at its triggering times, and to listen to and receive incoming information from its
neighbors at their triggering times. It is proven that the proposed laws ensure that the state
of each agent converge exponentially to the average of the agents’ initial states if and only
if the underlying graph is connected.

The covered material is based on the following contributions.

[C4] X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Distributed dynamic event-
triggered control for multi-agent systems,” in IEEE Conference on Decision and
Control, 2017, pp. 6683–6688.

[J5] X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Dynamic event-triggered
and self-triggered control for multi-agent systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 8, pp. 3300–3307, 2019.

1.4. Thesis outline and contributions 29

Chapter 9: Distributed event-triggered saturation control algorithms

In Chapter 9, we consider the global consensus problem for multi-agent systems with
input saturation over directed graphs. It is shown that the underlying directed graph
having a directed spanning tree is a necessary and sufficient condition for consensus; thus,
this condition for consensus without input saturation extends to the case with saturation
constraints. Moreover, in order to reduce the overall need of communication and system
updates, we then propose an event-triggered consensus protocol and a triggering law, which
do not require any a priori knowledge of global network parameters. Furthermore, in order
to avoid continuous listening, we also propose a self-triggered algorithm. It is shown that
Zeno behavior is excluded for these systems and that consensus is achieved, again, if and
only if the underlying directed graph has a directed spanning tree. We use a new Lyapunov
function to show the sufficient condition and it inspires the triggering law.

The covered material is based on the following contribution.

[J6] X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Distributed event-triggered control for
global consensus of multi-agent systems with input saturation,” Automatica, vol 100,
no. 2, pp. 1–9, 2019.

Chapter 10: Distributed event-triggered formation control algorithms

In Chapter 10, event- and self-triggered control algorithms are proposed to establish
prespecified formations with connectivity preservation. Each agent only needs to update
its control input by sensing the relative state to its neighbors and to broadcast its triggering
information at its own triggering times. The agents listen to and receive neighbors’
triggering information at their triggering times. Two types of system dynamics, single
integrators and double integrators, are considered. It is shown that all agents converge
to the prespecified formation exponentially with connectivity preservation and exclusion
of Zeno behavior.

The covered material is based on the following contributions.

[C5] X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Formation control for
multi-agent systems with connectivity preservation and event-triggered controllers,”
in IFAC World Congress, 2017, pp. 9367–9373.

Chapter 11: Conclusions and future research

In Chapter 11, we present a summary of the results and discuss directions for future
research.

The results presented in Part III in this thesis have previously appeared in the following
thesis:

• X. Yi, Resource-constrained multi-agent control systems: Dynamic event-triggering,
input saturation, and connectivity preservation, Licentiate thesis, KTH Royal
Institute of Technology, 2017.

30 Introduction

1.4.2 Contributions not covered in this thesis

The following works by the author are not covered in this thesis, but contain related
material:

[J7] J. Wu, B. Mu, X. Yi, J. Wei, and K. H. Johansson, “Localizability with range-
difference measurements,” submitted to IEEE/ACM Transactions on Networking.

[J8] X. Li, X. Yi, and L. Xie, “Distributed online convex optimization with an aggregative
variable,” submitted to IEEE Transactions on Control of Network Systems.

[J9] X. Li, X. Yi, and L. Xie, “Distributed online optimization for multi-agent networks
with coupled inequality constraints,” IEEE Transactions on Automatic Control, to
appear.

[J10] T. Yang, J. George, J. Qin, X. Yi, and J. Wu, “Distributed least squares solver for
network linear equations,” Automatica, vol. 113, 2020.

[J11] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and
K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control,
vol. 47, pp. 278–305, 2019.

[J12] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized communication and actuation,” IEEE Transactions
on Control of Network Systems, vol. 6, no. 2, pp. 598–608, 2018.

[C6] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Exponential convergence
for distributed optimization under the restricted secant inequality condition,” in IFAC
World Congress, 2020.

[C7] X. Yi, S. Zhang, T. Yang, J. Wu, and K. H. Johansson, “Event-triggered control for
consensus of multi-agent systems with nonlinear output and directed topologies,” in
Chinese Control Conference, 2019, pp. 5721–5726.

[C8] S. Zhang, X. Yi, J. George, and T. Yang, “Computational convergence analysis of
distributed optimization algorithms for directed graphs,” in International Conference
on Control and Automation, 2019, pp. 1096–1101.

[C9] X. Yi, L. Yao, T. Yang, J. George, and K. H. Johansson “Distributed optimization for
second-order multi-agent systems with dynamic event-triggered communication,” in
IEEE Conference on Decision and Control, 2018, pp. 3397–3402.

[C10] W. Du, X. Yi, J. George, K. H. Johansson, and T. Yang, “Distributed optimization
with dynamic event-triggered mechanisms,” in IEEE Conference on Decision and
Control, 2018, pp. 969–974.

[C11] J. George, X. Yi, and T. Yang, “Distributed robust dynamic average consensus with
dynamic event-triggered communication,” in IEEE Conference on Decision and
Control, 2018, pp. 434–439.

1.4. Thesis outline and contributions 31

[C12] M. Jafarian, X. Yi, M. Pirani, H. Sandberg, and K. H. Johansson, “Synchronization
of Kuramoto oscillators in a bidirectional frequency-dependent tree network,” in
IEEE Conference on Decision and Control, 2018, pp. 4505–4510.

[C13] X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Event-triggered control for multi-agent
systems with output saturation,” in Chinese Control Conference, 2017, pp. 8431–
8436.

[C14] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized systems,” in IFAC World Congress, 2017, pp. 15440–
15445.

[C15] X. Yi, J. Wei, and K. H. Johansson, “Self-triggered control for multi-agent systems
with quantized communication or sensing,” in IEEE Conference on Decision and
Control, 2016, pp. 2227–2232.

Contribution by the Author

The order of authors reflects their contribution to each paper. The first author has the most
important contribution, while the last author has taken a supervisory role. In all the listed
publications, all the authors were actively involved in formulating the problems, developing
the solutions, evaluating the results, and writing the paper.

Chapter 2

Preliminaries

This chapter gives some essential elements of the mathematical background to the results
developed in the thesis, including algebraic graph theory, convex functions, projections,
smooth functions, Polyak–Łojasiewicz condition, Bregman divergence, gradient approxi-
mation, and some useful lemmas related to series, used in the thesis. The related studies
to each considered problem in this thesis are reviewed separately in the corresponding
chapter.

2.1 Directed graphs

Let G = (V,E, A) denote a weighted directed graph (digraph), where V = [n] is the set
of vertices (nodes), E ⊆ V × V is the set of edges (links), and A = (ai j) ∈ Rn×n with
nonnegative elements ai j is the weighted adjacency matrix. An edge of G is denoted by
(i, j) ∈ E if there is a directed link from vertex i to vertex j with weight a ji > 0, i.e., vertex
i can send information to vertex j. The adjacency elements associated with the edges of the
graph are positive, i.e., (i, j) ∈ E if and only if a ji > 0. It is assumed that aii = 0, ∀i ∈ [n].

The in-degree of vertex i is defined as degin
i =

n∑
j=1

ai j. The in-degree matrix of G is defined

as Degin = Diag([degin
1 , . . . , degin

n]). The (weighted) Laplacian matrix associated with G is
defined as L = Degin−A. LetN in

i = { j ∈ [n] | ai j > 0} andNout
i = { j ∈ [n] | a ji > 0} denote

the in- and out-neighbors of vertex i, respectively. The mixing matrix W ∈ Rn×n associated
with a digraph G fulfills [W]i j > 0 if (j, i) ∈ E or i = j, and [W]i j = 0 otherwise. When
necessary, we use E(G), L(G), N in

i (G), and Nout
i (G) to highlight their connections with G.

If a digraph is time-varying, then we use Gt to denote this time-varying digraph at time
t. Similarly, let Et, At, Lt, Wt, N in

i (Gt), and Nout
i (Gt) denote the edge set, the weighted

adjacency matrix, the Laplacian matrix, the mixing matrix, the in-neighbors of vertex i,
and out-neighbors of vertex i at time t, respectively.

A directed path from vertex i to vertex j is a directed subgraph of G with distinct
vertices i, i1, . . . , ik, j and edges (i, i1), (i1, i2), . . . , (ik−1, ik), (ik, j).

Definition 2.1 (Strongly connected digraph). A digraph G is strongly connected if there is

33

34 Preliminaries

at least one directed path from any vertex to any other vertex in the graph.

G is strongly connected is equivalent to L is irreducible. Strong connectivity requires
that any vertex is accessible to all other vertices, while the following weaker connectivity
condition only requires that one vertex can access all other vertices.

Definition 2.2 (Directed spanning tree). A digraph G has a directed spanning tree if there
exists one vertex such that there exists a directed path from this vertex to any other vertices.

By Perron–Frobenius Theorem in [197], we have the following result (see [198] or
[199] for a proof) for digraphs.

Lemma 2.1. If L is the Laplacian matrix associated with a digraph G that has a directed
spanning tree, then rank(L) = n − 1, and zero is an algebraically simple eigenvalue of L,
and there is a nonnegative vector ξ = col(ξ1, . . . , ξn) such that ξ>L = 0 and

∑n
i=1 ξi = 1.

Moreover, if G is strongly connected, then ξi > 0, ∀i ∈ [n].

The following result from [200] is also useful for our analysis.

Lemma 2.2. Suppose that L is the Laplacian matrix associated with a digraph G that is
strongly connected and ξ is the vector defined in Lemma 2.1. Let Ξ = Diag(ξ), U = Ξ−ξξ>,
and R = 1

2 (ΞL + L>Ξ). Then,

R =
1
2

(UL + L>U), U ≥
ρ2(U)
ρ(L>L)

L>L ≥ 0, R ≥
ρ2(R)
ρ(U)

U ≥ 0. (2.1)

By proper row and column permutations, any Laplacian matrix L can be written in
Perron–Frobenius form (see Definition 2.3 in [201]):

L =

L1,1 L1,2 · · · L1,M

0 L2,2 · · · L2,M

...
...

. . .
...

0 0 · · · LM,M

, (2.2)

where Lm,m is a nm-by-nm matrix associated with the m-th strongly connected component
(SCC) of G, denoted by SCCm, m = 1, . . . ,M. Hence, a digraph G is strongly connected if
and only if M = 1. In the following, without loss of generality, we assume that L has the
form (2.2).

SCCm is called closed if and only if there are no edges from vertices outside SCCm to
vertices inside SCCm, i.e., Lm,q = 0, ∀q > m. The following result, which follows from
Lemma 1 in [202], gives an equivalent description of a digraph that has a directed spanning
tree.

Lemma 2.3. The digraph G contains a directed spanning tree if and only if for each
m = 1, . . . ,M − 1, SCCm is not closed.

Let us illustrate this construction with an example.

2.1. Directed graphs 35

1 2

34

5

6

7

3.2

1.5

4.1

4.9

2.6
2.7

4.4

5.8

6.3

5.3

1.6 5.4

2.6

8.7

7

SCC1

SCC2

Figure 2.1: An example of a digraph which contains directed spanning trees.

Example 2.1. Figure 2.1 shows a digraph of 7 vertices having multiple directed span-
ning trees. For example, edges (7, 5), (5, 6), (6, 3), (3, 4), (4, 2), (2, 1) describe a directed
spanning tree. This digraph can be divided into two strongly connected components.
Specifically, the subgraph inside the dashed blue lines is the first strongly connected
component, and the subgraph inside the dotted red lines is the second strongly connected
component. The corresponding Laplacian matrix

L =

12.2 −3.2 0 −4.1 −4.9 0 0
−1.5 9.5 0 −2.6 0 0 −5.4

0 −2.7 10.1 −5.8 0 −1.6 0
0 0 −4.4 10.7 −6.3 0 0
0 0 0 0 2.6 0 −2.6
0 0 0 0 −5.3 5.3 0
0 0 0 0 −8.7 −7 15.7

,

has the form (2.2).

36 Preliminaries

For SCCm with m < M, define an auxiliary matrix L̃m,m = [L̃m,m
i j]nm

i, j=1 as

L̃m,m
i j =

Lm,m
i j i , j,
−

∑nm
r=1,r,i Lm,m

ir i = j.

Example 2.2. In Example 2.1,

L̃1,1 =

7.3 −3.2 0 −4.1
−1.5 4.1 0 −2.6

0 −2.7 8.5 −5.8
0 0 −4.4 4.4

 .
Similar to Lemma 2.2, we have the following lemma.

Lemma 2.4. Let ξm = [ξm
1 , . . . , ξ

m
nm

]> be the positive left eigenvector of the irreducible
L̃m,m corresponding to the eigenvalue zero and the sum of its components is 1. Denote
Ξm = Diag(ξm), Qm = 1

2 [ΞmLm,m + (ΞmLm,m)>], ∀m ∈ [M], and UM = ΞM − ξM(ξM)>.
Then

Qm > 0, ∀m ∈ [M − 1], QM ≥ 0, UM ≥ 0, QM ≥
ρ2(QM)
ρ(UM)

UM . (2.3)

Proof. For the proof of Qm > 0 for all m < M, see Lemma 3.1 in [203].
QM ≥ 0 is straightforward since we can regard QM as the Laplacian matrix of a

connected undirected graph.
UM ≥ 0 is also straightforward since we can regard UM as the Laplacian matrix of a

complete graph.
The idea of the proof of QM ≥

ρ2(QM)
ρ(UM) UM follows a similar trend as the proof of (2.1),

and it can be found in [200]. We thus omit the proof here. �

Let ne denotes the number of edges in G, i.e., ne = |E(G)| and label the edges in G as
e1, . . . , ene . Define Ω(G) = Diag([ω(e1), · · · , ω(ene)]), where ω(ek) = ai j with ek being the
label of edge (i, j).

Definition 2.3 (Incidence matrix). The n-by-ne incidence matrix B(G) = (Bi j) is defined as

Bi j =

−1 if vertex i is the tail of edge e j,

1 if vertex i is the head of edge e j,

0 otherwise.

2.2 Undirected graphs

A digraph G = (V,E, A) is undirected if A = A>. In an undirected graph, a path of length
k between vertex i and vertex j is a subgraph with distinct vertices i0 = i, . . . , ik = j ∈ V
and edges (i j, i j+1) ∈ E, j = 0, . . . , k − 1.

2.2. Undirected graphs 37

Definition 2.4 (Connected undirected graph). An undirected graph is connected if there
exists at least one path between any two vertices. An undirected graph is complete if any
two distinct vertices are connected by an edge.

Similar to the definition of SCC in digraphs, by proper row and column permutations,
we can rewrite any Laplacian matrix L associated with undirected graphs in the following
form

L =

L1,1 0 · · · 0
0 L2,2 · · · 0
...

...
. . .

...

0 0 · · · LM,M

, (2.4)

where Lm,m is a nm-by-nm matrix associated with the m-th connected component (CC) of
G, denoted by CCm, m = 1, . . . ,M. Hence, a disconnected graph has more than one CC
and Lm,m is the Laplacian matrix of CCm.

Obviously, there is a one-to-one correspondence between a graph and its adjacency
matrix or its Laplacian matrix. Denote Kn = In −

1
n 1n1>n , then we can treat Kn as the

Laplacian matrix of a complete graph with n vertices and edge weight 1
n .

For a connected graph we have the following results.

Lemma 2.5. (Lemmas 1 and 2 in [204]) Let L be the Laplacian matrix of a connected
undirected graph G and Kn = In −

1
n 1n1>n . Then L and Kn are positive semi-definite,

null(L) = null(Kn) = 1n, L ≤ ρ(L)In, ρ(Kn) = 1,

KnL = LKn = L, (2.5)
0 ≤ ρ2(L)Kn ≤ L ≤ ρ(L)Kn. (2.6)

Moreover, there exists an orthogonal matrix [r R] ∈ Rn×n with r = 1
√

n 1n and R ∈ Rn×(n−1)

such that

RΛ−1
1 R>L = LRΛ−1

1 R> = Kn, (2.7)
1

ρ(L)
Kn ≤ RΛ−1

1 R> ≤
1

ρ2(L)
Kn, (2.8)

where Λ1 = Diag([λ2, . . . , λn]) with 0 < λ2 ≤ · · · ≤ λn being the eigenvalues of the
Laplacian matrix L.

For undirected graphs, the incidence matrix can be defined after arbitrarily assigning a
direction to each edge. The following results from [205] are also useful for our analysis.

Lemma 2.6. For any undirected graph G, B(G)B(G)> is independent of the labels and
orientations given to G, and B(G)Ω(G)B(G)> = L.

38 Preliminaries

1 2

34

3.4

2.11.1

1

4.3

(a) An example of an undirected graph G.

1 2

34

e1

e2e3

e4

e5

(b) An example of assigning a direction to each
edge of G.

Figure 2.2: Illustration of assigning directions to an undirected graph.

Example 2.3. Figure 2.2 (a) shows an undirected graph G and Figure 2.2 (b) shows an
example of assigning a direction to each edge of G. Then

L =

3.4 −3.4 0 0
−3.4 9.8 −2.1 −4.3

0 −2.1 3.2 −1.1
0 −4.3 −1.1 5.4

 , B(G) =

−1 0 0 0 1

1 −1 −1 0 0
0 1 0 −1 0
0 0 1 1 −1

 ,

Ω(G) =

3.4 0 0 0 0
0 2.1 0 0 0
0 0 1.1 0 0
0 0 0 1 0
0 0 0 0 4.3

.

Moreover, one can easily verify that B(G)Ω(G)B(G)> = L.

2.3 Convex functions

Definition 2.5 (Convex set). A setK ⊆ Rp is called convex if for any x, y ∈ K and α ∈ [0, 1]
we have

αx + (1 − α)y ∈ K.

Definition 2.6 (Convex function). A function f : Rp → R is called convex on a convex set
K ⊆ Rp if for any x, y ∈ K and α ∈ [0, 1] we have

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y).

2.3. Convex functions 39

From Theorems 2.1.2 and 2.1.3 in [62], we have the following results for convex
functions.

Lemma 2.7. Suppose function f : Rp → R is differentiable on K with K ⊆ Rp being a
convex set, then the following statements are equivalent.

(i) The function f is convex on K.

(ii) For any x, y ∈ K, it holds that

f (y) ≥ f (x) + 〈∇ f (x), y − x〉.

(iii) For any x, y ∈ K, it holds that

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 0.

Definition 2.7 (Strong convexity). A function f : Rp → R is called strongly convex with
convexity parameter µ > 0 on a convex set K ⊆ Rp if the function f (x) − 1

2µ‖x‖
2 is convex

on K.

From Theorems 2.1.9 and 2.1.10 in [62], we have the following results for strongly
convex functions.

Lemma 2.8. Suppose function f : Rp → R is differentiable on K with K ⊆ Rp being a
convex set, then the following statements are equivalent.

(i) The function f is strongly convex with convexity parameter µ > 0 on K.

(ii) For any x, y ∈ K, it holds that

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 +
1
2
µ‖y − x‖2.

(iii) For any x, y ∈ K, it holds that

〈∇ f (x) − ∇ f (y), x − y〉 ≥ µ‖x − y‖2.

(iv) For any x, y ∈ K and α ∈ [0, 1], it holds that

α f (x) + (1 − α) f (y) ≥ f (αx + (1 − α)y) +
1
2
α(1 − α)µ‖x − y‖2.

Lemma 2.9. Suppose f : Rp → R is a differentiable and strongly convex function with
convexity parameter µ > 0, then for any x, y ∈ Rp we have

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 +
1

2µ
‖∇ f (x) − ∇ f (y)‖2,

〈∇ f (x) − ∇ f (y), x − y〉 ≤
1
µ
‖∇ f (x) − ∇ f (y)‖2,

µ‖x − y‖2 ≤ ‖∇ f (x) − ∇ f (y)‖2.

40 Preliminaries

Definition 2.8 (Subgradient). Let f : D → R be a function with D ⊂ Rp. A vector g ∈ Rp

is called a subgradient of f at x ∈ D if

f (y) ≥ f (x) + 〈g, y − x〉, ∀y ∈ D. (2.9)

The set of all subgradients of f at x, denoted ∂ f (x), is called the subdifferential of f at x.

If the function f is convex and differentiable, then from Lemma 2.7 we know that
its gradient at x is a subgradient, and from [206] we know that ∂ f (x) is a singleton. If f
is a closed convex function, then ∂ f (x) is nonempty for any x ∈ D [207]. With a slight
abuse of the notation, we use ∇ f (x) to denote the subgradient of f at x also when f is
not differentiable. Similarly, for a vector function f = col(f1, . . . , fm) : D → Rm, its
subgradient at x ∈ D is denoted as

∇ f (x) =

(∇ f1(x))>

(∇ f2(x))>
...

(∇ fm(x))>

∈ Rm×p.

2.4 Projections

For a set K ⊆ Rp, let PK(·) denotes the projection operator, i.e.,

PK(y) ∈ argmin
x∈K

‖x − y‖2, ∀y ∈ Rp.

For simplicity, we use [·]+ to denote PK(·) when K = R
p
+.

The projection operator has the following properties.

Lemma 2.10. Let K be a nonempty closed convex subset of Rp and let a, b, c be three
vectors in Rp. The following statements hold.

(i) For each x ∈ Rp, PK(x) exists and is unique.

(ii) PK(x) is nonexpansive, i.e.,

‖PK(x) − PK(y)‖ ≤ ‖x − y‖, ∀x, y ∈ Rp. (2.10)

(iii) If a ≤ b, then

‖[a]+‖ ≤ ‖b‖, (2.11a)
[a]+ ≤ [b]+. (2.11b)

(iv) If x1 = PK(c − a), then

2〈x1 − y, a〉 ≤ ‖y − c‖2 − ‖y − x1‖
2 − ‖x1 − c‖2, ∀y ∈ K. (2.12)

2.5. Smooth functions 41

Proof. The first two parts are from Theorem 1.5.5 in [208].
Substituting x = a and y = a− b into (2.10) with K = R

p
+ gives (2.11a). If a ≤ b, then it

is straightforward to see [a]+ ≤ [b]+ since all inequalities are understood componentwise.
Denote h(y) = ‖c − y‖2 + 2〈a, y〉. Then, x1 = argminy∈K h(y). This optimality condition

implies that

〈x1 − y,∇h(x1)〉 ≤ 0, ∀y ∈ K.

Substituting ∇h(x1) = 2x1 − 2c + 2a into above inequality yields (2.12). �

2.5 Smooth functions

Definition 2.9 (Smooth function). A function f : Rp 7→ R is called smooth with constant
L f > 0 if it is differentiable and

‖∇ f (x) − ∇ f (y)‖ ≤ L f ‖x − y‖, ∀x, y ∈ Rp. (2.13)

From Lemma 1.2.3 in [62], we know that (2.13) implies

| f (y) − f (x) − (y − x)>∇ f (x)| ≤
L f

2
‖y − x‖2, ∀x, y ∈ Rp, (2.14)

which further implies

‖∇ f (x)‖2 ≤ 2L f (f (x) − f ∗), ∀x, y ∈ Rp, (2.15)

where f ∗ = minx∈Rp f (x). Moreover, we have the following lemma.

Lemma 2.11. If f : Rp 7→ R is smooth with constant L f > 0, then, for any a > L f , the
function g(x) = f (x) + a

2‖x‖
2 is strongly convex with convex parameter a − L f .

Proof. From (2.13), we have

〈∇ f (x) − ∇ f (y), x − y〉 ≥ −‖∇ f (x) − ∇ f (y)‖‖x − y‖ ≥ −L f ‖x − y‖2.

Then,

〈∇g(x) − ∇g(y), x − y〉 = 〈∇ f (x) + ax − ∇ f (y) − ay, x − y〉

= 〈∇ f (x) − ∇ f (y), x − y〉 + a‖x − y‖2

≥ (a − L f)‖x − y‖2.

Then, from Lemma 2.8, we know that this lemma holds. �

42 Preliminaries

2.6 Polyak–Łojasiewicz condition

Let f (x) : Rp 7→ R be a differentiable function. Let X∗ = argminx∈Rp f (x) and f ∗ =

minx∈Rp f (x). Moreover, we assume that f ∗ > −∞.

Definition 2.10 (Polyak–Łojasiewicz condition). The function f satisfies the Polyak–
Łojasiewicz (P–Ł) condition with constant ν > 0 if

1
2
‖∇ f (x)‖2 ≥ ν(f (x) − f ∗), ∀x ∈ Rp. (2.16)

From Lemma 2.9, it is straightforward to see that every strongly convex function
satisfies the P–Ł condition. The P–Ł condition implies that every stationary point is a
global minimizer, i.e., X∗ = {x ∈ Rp : ∇ f (x) = 0p}. But unlike strong convexity, the P–Ł
condition (2.16) alone does not even imply the convexity of f . Moreover, it does not imply
that X∗ is a singleton or finite either.

Many practical applications, such as least squares, do not always have strongly convex
cost functions. The cost function in least squares problems has the form

f (x) =
1
2
‖Ax − b‖2,

where A ∈ Rm×p and b ∈ Rm. Note that if A has full column rank, then f (x) is strongly
convex. However, if A is rank deficient, then f (x) is not strongly convex, but it is convex
and satisfies the P–Ł condition. The function f (x) = x2 + 3 sin2(x) is an example of a
nonconvex function satisfying the P–Ł condition with ν = 1/32 [209]. More examples of
nonconvex functions which satisfy the P–Ł condition can be found in [209, 210].

Although it is difficult to precisely characterize the general class of functions for which
the P–Ł condition is satisfied, in [209], one important special case was given as follows:

Lemma 2.12. Let f (x) = g(Ax), where g : Rp → R is a strongly convex function and
A ∈ Rp×p is a matrix, then f satisfies the P–Ł condition.

In the literature, there are some conditions that are weaker than strong convexity but
stronger than the P–Ł condition.

Definition 2.11 (Essential strong convexity). The function f is said to be essentially
strongly convex with constant µ > 0 if for all x, y ∈ Rp such that PX∗ (x) = PX∗ (y), it
holds that

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 +
µ

2
‖x − y‖2.

Definition 2.12 (Weak strong convexity). The function f is said to be weakly strongly
convex with constant µ > 0 if for all x ∈ Rp, it holds that

f ∗ ≥ f (x) + 〈∇ f (x),PX∗ (x) − x〉 +
µ

2
‖x − PX∗ (x)‖2.

2.7. Bregman divergence 43

Definition 2.13 (Restricted secant inequality condition). The function f satisfies the
restricted secant inequality (RSI) condition with constant ν > 0 if for all x ∈ Rp, it holds
that

(∇ f (x) − ∇ f (PX∗ (x))>(x − PX∗ (x)) ≥ ν‖x − PX∗ (x)‖2.

If the function f is also convex it is called restricted strong convexity.

The following lemma summarizes the relations between the function classes discussed
above.

Lemma 2.13. (Theorem 2 in [209]) Let f (x) : Rp 7→ R be a differentiable function.
Then, (Strong convexity) ⇒ (Essential strong convexity) ⇒ (Weak strong convexity) ⇒
(RSI condition). Moreover, (RSI condition)⇒ (P–Ł condition) if f is smooth.

2.7 Bregman divergence

Let K ⊆ Rp be a convex set. The Bregman divergence

Dψ(x, y) = ψ(x) − ψ(y) − 〈∇ψ(y), x − y〉, (2.17)

is to measure the distance between x, y ∈ K, where ψ : Rp → R is a function which
is differentiable and strongly convex with convexity parameter σ > 0 on K. Then, from
Lemma 2.8, we have ψ(x) ≥ ψ(y) + 〈∇ψ(y), x − y〉 + σ

2 ‖x − y‖2. Thus,

Dψ(x, y) ≥
σ

2
‖x − y‖2. (2.18)

Hence, Dψ(·, y) is strongly convex with convexity parameter σ on K for all fixed y ∈ K.
Additionally, (2.17) implies that for all x, y, z ∈ K,

〈y − x,∇ψ(z) − ∇ψ(y)〉 = Dψ(x, z) −Dψ(x, y) −Dψ(y, z). (2.19)

Two well-known examples of Bregman divergence are Euclidean distance Dψ(x, y) =

‖x − y‖2 (with K being an arbitrary convex and compact set in Rp) generated from ψ(x) =

‖x‖2, and the Kullback–Leibler divergence Dψ(x, y) = −
∑p

j=1 x j log y j

x j
between two p-

dimensional standard unit vectors (with K being the p-dimensional probability simplex in
Rp) generated from ψ(x) =

∑p
j=1(x j log x j − x j).

We have the following results on the regularized Bregman projection.

Lemma 2.14. Suppose function ψ : Rp → Rp is differentiable and strongly convex with
convexity parameter σ > 0 on K, and function h : Rp → R is convex on K, where K ⊆ Rp

is a convex and closed set. Moreover, assume that ∇h(x), ∀x ∈ K, exists and there exists
Gh > 0 such that ‖∇h(x)‖ ≤ Gh, ∀x ∈ K. Given z ∈ K, the regularized Bregman projection

y = argmin
x∈K

{h(x) +Dψ(x, z)}, (2.20)

44 Preliminaries

satisfies the following inequalities

〈y − x,∇h(y)〉 ≤ Dψ(x, z) −Dψ(x, y) −Dψ(y, z), ∀x ∈ K, (2.21)

‖y − z‖ ≤
Gh

σ
. (2.22)

Proof. (i) Denote h̃(x) = h(x) + Dψ(x, z). Then h̃ is convex on K. Thus the optimality
condition (2.20), i.e., y = argminx∈K h̃(x), implies 〈y − x,∇h̃(y)〉 ≤ 0, ∀x ∈ K. Substituting
∇h̃(y) = ∇h(y) + ∇ψ(y) − ∇ψ(z) into the above inequality yields

〈y − x,∇h(y)〉 ≤ 〈y − x,∇ψ(z) − ∇ψ(y)〉
= Dψ(x, z) −Dψ(x, y) −Dψ(y, z), ∀x ∈ K,

where the equality holds due to (2.19). Hence, (2.21) holds.
(ii) h̃(x) is strongly convex with convexity parameter σ on K since Dψ is strongly convex
on K. It is known that if h̃ : K → R is a strongly convex function and is minimized at the
point xmin ∈ K, then

h̃(xmin) ≤ h̃(x) −
σ

2
‖x − xmin‖2, ∀x ∈ K.

Thus the optimality condition of (2.20) implies

h(y) +Dψ(y, z) ≤ h(z) +Dψ(z, z) −
σ

2
‖z − y‖2.

Noting that Dψ(y, z) ≥ σ
2 ‖z − y‖2 and Dψ(z, z) = 0, and rearranging the above inequality

gives

σ‖z − y‖2 ≤
σ

2
‖z − y‖2 +Dψ(y, z) ≤ h(z) − h(y). (2.23)

From (2.9) and ‖∇h(x)‖ ≤ Gh, ∀x ∈ K, we have

h(z) − h(y) ≤ 〈∇h(z), z − y〉 ≤ Gh‖z − y‖. (2.24)

Thus, combining (2.23) and (2.24) yields (2.22). �

Note that (2.21) extends Lemma 6 in [181] and (2.22) presents an upper bound on the
deviation of the optimal point from a fixed point for the regularized Bregman projection.

To end this section, we introduce a generalized definition of strong convexity, which is
Definition 2 in [211].

Definition 2.14 (Generalized strong convexity). Let µ > 0 be a constant and K ⊆ Rp be a
convex set. Let f : Rp → R and ψ : Rp → R be two functions. Suppose that f is convex on
K, and ψ is differentiable and strongly convex on K. The function f is said to be µ-strongly
convex on K with respect to ψ if for all x, y ∈ K,

f (x) ≥ f (y) + 〈x − y,∇ f (y)〉 + µDψ(x, y).

This definition generalizes the usual definition of strong convexity by replacing the
Euclidean distance with the Bregman divergence.

2.8. Random gradient estimators 45

2.8 Random gradient estimators

In this section, we introduce one- and two-point sampling gradient estimators.
Let f : K → R be a function with K ⊆ Rp. We assume that K is convex and closed,

and has a nonempty interior. Specifically, we assume that K contains the ball of radius
r(K) centered at the origin, i.e., r(K)Bp ⊆ K. The authors of [212] proposed the following
gradient estimator:

∇̂1 f (x) = ∇̂1 f (x, δ, u) =
p
δ

f (x + δu)u, ∀x ∈ (1 − ξ)K, (2.25)

where u ∈ Sp is a uniformly distributed random vector, δ ∈ (0, r(K)ξ] is an smooth-
ing/exploration parameter, and ξ ∈ (0, 1) is a shrinkage coefficient. The estimator ∇̂1 f only
requires to sample the function value at one point, so it is a one-point sampling gradient
estimator. The intuition for this estimator can be found in [212]. Different from [213],
uniform distribution rather than Gaussian distribution is used to generate u in (2.25) since
the later may generate unbounded u. The estimator ∇̂1 f is defined over the set (1 − ξ)K
instead of K, since otherwise the perturbations may move points outside K. The feasibility
of the perturbations is guaranteed by the following lemma.

Lemma 2.15. (Observation 2 in [212]) For any x ∈ (1 − ξ)K and u ∈ Sp, it holds that
x + δu ∈ K for any δ ∈ (0, r(K)ξ].

The two-point sampling gradient estimator is defined as

∇̂2 f (x) = ∇̂2 f (x, δ, u) =
p
δ

(f (x + δu) − f (x))u, ∀x ∈ (1 − ξ)K. (2.26)

The intuition follows from directional derivatives [214].
Both estimators ∇̂1 f and ∇̂2 f are unbiased gradient estimators of f s, where f s is the

uniformly smoothed version of f defined as

f s(x) = f s(x, δ) = Ev∈Bp [f (x + δv)], ∀x ∈ (1 − ξ)K,

where the expectation is taken with respect to uniform distribution. Some properties of f s,
∇̂1 f , and ∇̂2 f are presented in the following lemma.

Lemma 2.16. (i) The uniform smoothing f s is differentiable on (1 − ξ)K even when f is
not, and for all x ∈ (1 − ξ)K,

∇ f s(x) = Eu∈Sp [∇̂1 f (x)] = Eu∈Sp [∇̂2 f (x)]. (2.27)

(ii) If f is convex on K, then f s is convex on (1 − ξ)K and

f (x) ≤ f s(x), ∀x ∈ (1 − ξ)K. (2.28)

(iii) If f is Lipschitz-continuous on K with constant L0(f) > 0, then f s and ∇ f s are
Lipschitz-continuous on (1 − ξ)K with constants L0(f) and pL0(f)/δ, respectively.
Moreover,

| f s(x) − f (x)| ≤ δL0(f), ∀x ∈ (1 − ξ)K. (2.29)

46 Preliminaries

(iv) If f is bounded on K, i.e., there exists F0(f) > 0 such that | f (x)| ≤ F0(f), ∀x ∈ K,
then

| f s(x)| ≤ F0(f), ‖∇̂1 f (x)‖ ≤
pF0(f)
δ

, ∀x ∈ (1 − ξ)K. (2.30)

(v) If f is Lipschitz-continuous on K with constant L0(f) > 0, then

‖∇̂2 f (x)‖ ≤ pL0(f), ∀x ∈ (1 − ξ)K. (2.31)

(vi) If f is smooth with constant L f > 0, then

‖∇ f s(x, δ) − ∇ f (x)‖ ≤ δL f , (2.32a)

Eu∈Sp [‖∇̂2 f (x)‖2] ≤ 2p‖∇ f (x)‖2 +
1
2

p2δ2L2
f . (2.32b)

Proof. (i) From Lemma 1 in [212], we have ∇ f s(x) = Eu∈Sp [∇̂1 f (x)]. Moreover, we have
∇ f s(x) = Eu∈Sp [∇̂2 f (x)] due to Eu∈Sp [f (x)u] = f (x)Eu∈Sp [u] = 0p.
(ii) It is straightforward to see that (1 − ξ)K is convex since K is convex.

For any x, y ∈ (1 − ξ)K and α ∈ [0, 1], then αx + (1 − α)y ∈ (1 − ξ)K since (1 − ξ)K is
convex and αx + (1 − α)y + δv ∈ K due to Lemma 2.15. Moreover,

f s(αx + (1 − α)y) = Ev∈Bp [f (αx + (1 − α)y + δv)]
≤ Ev∈Bp [α f (x + δv) + (1 − α) f (y + δv)]
= α f s(x) + (1 − α) f s(y).

Hence, f s is convex on (1 − ξ)K.
From Lemma 2.15, we know that (1− ξ)K is a subset of the interior of K. Then, for any

x ∈ (1 − ξ)K, from Theorem 3.1.15 in [62], we know that ∇ f (x) exists. Moreover,

f s(x) = Ev∈Bp [f (x + δv)] ≥ Ev∈Bp [f (x) + δ〈∇ f (x), v〉] = f (x).

(iii) For any x, y ∈ (1 − ξ)K,

| f s(x) − f s(y)| = |Ev∈Bp [f (x + δv) − f (y + δv)]|
≤ Ev∈Bp [| f (x + δv) − f (y + δv)|]
≤ Ev∈Bp [L0(f)‖x − y‖] = L0(f)‖x − y‖.

Hence, f s is Lipschitz-continuous on (1 − ξ)K with constant L0(f).
Similarly,

‖∇ f s(x) − ∇ f s(y)‖ =
p
δ
‖Eu∈Sp [f (x + δu)u − f (y + δu)u]‖

≤
p
δ

Eu∈Sp [| f (x + δu) − f (y + δu)|‖u‖]

≤
p
δ

Eu∈Sp [L0(f)‖x − y‖] =
pL0(f)
δ
‖x − y‖.

2.9. Deterministic gradient estimators 47

Hence, ∇ f s is Lipschitz-continuous on (1 − ξ)K with constant pL0(f)/δ.
For any x ∈ (1 − ξ)K,

| f s(x) − f (x)| = |Ev∈Bp [f (x + δv)] − Ev∈Bp [f (x)]|
≤ Ev∈Bp [| f (x + δv) − f (x)|] ≤ Ev∈Bp [δL0(f)‖v‖]
≤ Ev∈Bp [δL0(f)] = δL0(f).

(iv) For any x ∈ (1 − ξ)K and u ∈ Sp,

| f s(x)| = |Ev∈Bp [f (x + δv)]| ≤ Ev∈Bp [| f (x + δv)|] ≤ F0(f),

and

‖∇̂1 f (x)‖ = ‖
p
δ

f (x + δu)u‖ ≤
p
δ
| f (x + δu)|‖u‖ ≤

pF0(f)
δ

.

(v) For any x ∈ (1 − ξ)K and u ∈ Sp,

‖∇̂2 f (x)‖ = ‖
p
δ

(f (x + δu) − f (x))u‖

≤
pL0(f)
δ
‖x + δu − x‖‖u‖ = pL0(f).

(vi) From Lemma 5 in [151], we have (2.32a). From Proposition 7.6 in [215], we have
(2.32b). �

Intuitively, the key idea of gradient-free optimization methods is using the smoothed
function f s to replace the original function f since they are close when δ is small as
shown in (c) of Lemma 2.16. Moreover, the gradient of f s can be estimated by the gradient
estimators ∇̂1 f or ∇̂2 f as shown in (2.27). The main difference between these two gradient
estimators is that the norm of ∇̂1 f is large when δ is small, while ∇̂2 f has a bounded norm,
as shown in (2.30) and (2.31), respectively. This difference leads to improved results for
the two-point sampling based algorithms.

2.9 Deterministic gradient estimators

Let f (x) : Rp 7→ R be a differentiable function. The authors of [164] proposed the
following deterministic gradient estimator:

∇̂p f (x, δ) =
1
δ

p∑
l=1

(f (x + δel) − f (x))el, (2.33)

where δ > 0 is an exploration parameter. This gradient estimator can be calculated by
querying the function values of f at p + 1 points. Another commonly used deterministic
gradient estimator is

∇̂2p f (x, δ) =
1
2δ

p∑
l=1

(f (x + δel) − f (x − δel))el. (2.34)

48 Preliminaries

This gradient estimator can be viewed as a noise-free version of the classical Kiefer–
Wolfowitz type method [216], and can be calculated by querying the function values of
f at 2p points. Thus, when p is large, ∇̂p f is more favorable than ∇̂2p f .

From equation (16) in [164] we know that ∇̂p f (x, δ) and ∇̂2p f (x, δ) are close to ∇ f (x)
when δ is small, which is summarized in the following lemma.

Lemma 2.17. Suppose that f is smooth with constant L f > 0, then

‖∇̂p f (x, δ) − ∇ f (x)‖ ≤
√

pL f δ

2
, ∀x ∈ Rp, ∀δ > 0, (2.35a)

‖∇̂2p f (x, δ) − ∇ f (x)‖ ≤
√

pL f δ

2
, ∀x ∈ Rp, ∀δ > 0. (2.35b)

2.10 Useful lemmas on series

Lemma 2.18. Let a, b ∈ (0, 1) be two constants, then

k∑
τ=0

aτbk−τ ≤

ak+1

a−b , if a > b,
bk+1

b−a , if a < b,
ck+1

c−b , if a = b,
(2.36)

where c is any constant in (a, 1).

Proof. If a > b, then

k∑
τ=0

aτbk−τ = ak
k∑
τ=0

(b
a

)k−τ
≤

ak+1

a − b
.

Similarly, when a < b, we have

k∑
τ=0

aτbk−τ = bk
k∑
τ=0

(a
b

)τ
≤

bk+1

b − a
.

If a = b, then for any c ∈ (a, 1), we have

k∑
τ=0

aτbk−τ ≤

k∑
τ=0

cτbk−τ = ck
k∑
τ=0

(b
c

)k−τ
≤

ck+1

c − b
.

Hence, this lemma holds. �

Lemma 2.19. Let k and τ be two integers and δ be a constant. Suppose k ≥ τ ≥ 1, then

k∑
l=τ

lδ ≤

(k+1)δ+1

δ+1 , if δ > −1,
ln(k), if δ = −1,
−(τ−1)δ+1

δ+1 , if δ < −1 and τ ≥ 2.

(2.37)

2.10. Useful lemmas on series 49

Proof. If δ ≥ 0, then h(t) = tδ is an increasing function in the interval [1,+∞). Hence,

k∑
l=τ

lδ ≤
∫ k+1

τ

tδdt =
(k + 1)δ+1 − τδ+1

δ + 1
≤

(k + 1)δ+1

δ + 1
. (2.38)

If δ < 0, then h(t) = tδ is a decreasing function in the interval [1,+∞). Hence,

k∑
l=τ

lδ ≤
∫ k

τ−1
tδdt =

ln(k

τ−1), if δ = −1,
kδ+1−(τ−1)δ+1

δ+1 , if − 1 < δ < 0,
kδ+1−(τ−1)δ+1

δ+1 , if δ < −1 and τ ≥ 2,

≤

ln(k), if δ = −1,
(k+1)δ+1

δ+1 , if − 1 < δ < 0,
−(τ−1)δ+1

δ+1 , if δ < −1 and τ ≥ 2.

(2.39)

Finally, (2.38) and (2.39) yield (2.37). �

Lemma 2.20. Let {zk}, {r1,k}, and {r2,k} be sequences. Suppose there exists t1 ∈ N+ such
that

zk ≥ 0, (2.40a)
zk+1 ≤ (1 − r1,k)zk + r2,k, (2.40b)

1 > r1,k ≥
a1

(k + t1)δ1
, (2.40c)

r2,k ≤
a2

(k + t1)δ2
, ∀k ∈ N0, (2.40d)

where a1 > 0, a2 > 0, δ1 ∈ [0, 1], and δ2 > δ1 are constants.

(i) If δ1 ∈ (0, 1), then

zk ≤ φ1(k, t1, a1, a2, δ1, δ2, z0), ∀k ∈ N+, (2.41)

where

φ1(k, t1, a1, a2, δ1, δ2, z0) =
1

s1(k + t1)

(
s1(t1)z0 +

[t2 − 1 − t1]+s1(t1 + 1)a2

tδ2
1

)
+

a2

(k + t1 − 1)δ2
+

1(k+t1−1≥t2)(t1+1
t1

)δ2 a2δ2

a1δ1(k + t1)δ2−δ1
, (2.42)

s1(k) = e
a1

1−δ1
k1−δ1

and t2 = d(δ2
a1

)
1

1−δ1 e.

(ii) If δ1 = 1, then

zk ≤ φ2(k, t1, a1, a2, δ2, z0), ∀k ∈ N+, (2.43)

50 Preliminaries

where

φ2(k, t1, a1, a2, δ2, z0) =
ta1
1 z0

(k + t1)a1
+

a2

(k + t1 − 1)δ2
+

(t1 + 1
t1

)δ2
a2s2(k + t1), (2.44)

and

s2(k) =

1

(a1−δ2+1)kδ2−1 , if a1 − δ2 > −1,
ln(k−1)

ka1 , if a1 − δ2 = −1,
−ta1−δ2+1

1
(a1−δ2+1)ka1 , if a1 − δ2 < −1.

(iii) If δ1 = 0, then

zk ≤ φ3(k, t1, a1, a2, δ2, z0), ∀k ∈ N+, (2.45)

where

φ3(k, t1, a1, a2, δ2, z0)

= a2(1 − a1)k+t1−1
(
[t3 − t1]+s3(t1) + ([t4 − t1]+ − [t3 − t1]+)s3(t4)

)
+ (1 − a1)kz0 +

1(k+t1−1≥t4)2a2

− ln(1 − a1)(k + t1)δ2 (1 − a1)
, (2.46)

s3(k) = 1
kδ2 (1−a1)k , t3 = d −δ2

ln(1−a1) e, and t4 = d −2δ2
ln(1−a1) e.

Proof. This proof is inspired by the proof of Lemma 25 in [217].
From (2.40a)–(2.40c), for any k ∈ N+, it holds that

zk ≤

k−1∏
τ=0

(1 − r1,τ)z0 + r2,k−1 +

k−2∑
l=0

k−1∏
τ=l+1

(1 − r1,τ)r2,l. (2.47)

For any t ∈ [0, 1], it holds that 1 − t ≤ e−t since s4(t) = 1 − t − e−t is a nonincreasing
function in the interval [0, 1] and s4(0) = 0. Thus, for any k > l ≥ 0, it holds that

k−1∏
τ=l

(1 − r1,τ) ≤ e−
∑k−1
τ=l r1,τ . (2.48)

We also have

k−1∑
τ=l

r1,τ ≥

k−1∑
τ=l

a1

(τ + t1)δ1
=

k−1+t1∑
τ=l+t1

a1

τδ1
≥

∫ k+t1

t=l+t1

a1

tδ1
dt

=

 a1
1−δ1

((k + t1)1−δ1 − (l + t1)1−δ1), if δ1 ∈ (0, 1),
a1 ln(k+t1

l+t1
), if δ1 = 1,

(2.49)

2.10. Useful lemmas on series 51

where the first inequality holds due to (2.40c) and the second inequality holds since s5(t) =

a1/tδ1 is a decreasing function in the interval [1,+∞).
Hence, (2.48) and (2.49) yield

k−1∏
τ=l

(1 − r1,τ) ≤ e−
∑k−1
τ=l r1,τ ≤

 s1(l+t1)
s1(k+t1) , if δ1 ∈ (0, 1),
(l+t1)a1

(k+t1)a1 , if δ1 = 1.
(2.50)

(i) When δ1 ∈ (0, 1), from (2.50) and (2.40d), we have

k−2∑
l=0

k−1∏
τ=l+1

(1 − r1,τ)r2,l ≤

k−2∑
l=0

s1(l + t1 + 1)
s1(k + t1)

a2

(l + t1)δ2

=
a2

s1(k + t1)

k−2∑
l=0

s1(l + t1 + 1)
(l + t1)δ2

≤
a2

s1(k + t1)

k−2∑
l=0

s1(l + t1 + 1)
(t1

t1+1 l + t1)δ2

=
(t1+1

t1
)δ2 a2

s1(k + t1)

k−2∑
l=0

s1(l + t1 + 1)
(l + t1 + 1)δ2

=
(t1+1

t1
)δ2 a2

s1(k + t1)

k+t1−1∑
l=t1+1

s1(l)
lδ2

=
(t1+1

t1
)δ2 a2

s1(k + t1)

(t2−1∑
l=t1+1

s1(l)
lδ2

+

k+t1−1∑
l=t2

s1(l)
lδ2

)
. (2.51)

We know that s6(t) = s1(t)/tδ2 is a decreasing function in the interval [1, t2 − 1] due to

ds6(t)
dt

=
(
a1 −

δ2

t1−δ1

) s6(t)
tδ1
≤ 0, ∀t ∈

(
0,

(δ2

a1

) 1
1−δ1

]
.

Thus, for any k ∈ [1, t2 − 1], we have

t2−1∑
l=k

s1(l)
lδ2
≤ (t2 − k)

s1(k)
kδ2

. (2.52)

Noting that s6(t) = s1(t)/tδ2 is an increasing function in the interval [t2,+∞), for any
k ≥ t2, we have

k∑
l=t2

s1(l)
lδ2
≤

∫ k+1

t2

s1(t)
tδ2

dt. (2.53)

We have∫ k+1

t2

s1(t)
tδ2

dt =

∫ k+1

t2

1
a1tδ2−δ1

ds1(t)

52 Preliminaries

=
s1(k + 1)

a1(k + 1)δ2−δ1
−

s1(t2)

a1tδ2−δ1
2

+

∫ k+1

t2

(δ2 − δ1)s1(t)
a1tδ2−δ1+1 dt

≤
s1(k + 1)

a1(k + 1)δ2−δ1
+

∫ k+1

t2

(δ2 − δ1)
a1t1−δ1

s1(t)
tδ2

dt

≤
s1(k + 1)

a1(k + 1)δ2−δ1
+
δ2 − δ1

a1t1−δ1
2

∫ k+1

t2

s1(t)
tδ2

dt

≤
s1(k + 1)

a1(k + 1)δ2−δ1
+
δ2 − δ1

δ2

∫ k+1

t2

s1(t)
tδ2

dt, (2.54)

where the second inequality holds since s7(t) = 1/t1−δ1 is a decreasing function in the
interval [1,+∞); and the last inequality holds due to t1−δ1

2 ≥
δ2
a1

.
From (2.53) and (2.54), for any k ≥ t2, we have

k∑
l=t2

s1(l)
lδ2
≤

∫ k+1

t2

s1(t)
tδ2

dt ≤
δ2s1(k + 1)

a1δ1(k + 1)δ2−δ1
. (2.55)

From (2.51), (2.52), and (2.55), we have

k−2∑
l=0

k−1∏
τ=l+1

(1 − r1,τ)r2,l ≤
(t1+1

t1
)δ2 a2

s1(k + t1)

([t2 − 1 − t1]+s1(t1 + 1)
(t1 + 1)δ2

+
1(k+t1−1≥t2)δ2s1(k + t1)

a1δ1(k + t1)δ2−δ1

)
.

(2.56)

Then, (2.47), (2.50), and (2.56) yield (2.41).
(ii) When δ1 = 1, from (2.50) and (2.40d), we have

k−2∑
l=0

k−1∏
τ=l+1

(1 − r1,τ)r2,l ≤

k−2∑
l=0

(l + t1 + 1)a1

(k + t1)a1

a2

(l + t1)δ2

≤

k−2∑
l=0

(l + t1 + 1)a1

(k + t1)a1

a2

(t1
t1+1 l + t1)δ2

=
(t1+1

t1
)δ2 a2

(k + t1)a1

k−2∑
l=0

(l + t1 + 1)a1

(l + t1 + 1)δ2

=
(t1+1

t1
)δ2 a2

(k + t1)a1

k+t1−1∑
l=t1+1

la1−δ2 , (2.57)

where the first inequality holds due to (2.50) and (2.40d).
From (2.47), (2.50), (2.57), and (2.37), we have (2.43).

(iii) Denote a = 1−a1. From (2.40c) and δ1 = 0, we know that a1 ∈ (0, 1). Thus, a ∈ (0, 1).
From (2.40a)–(2.40d) and δ1 = 0, for any k ∈ N+, it holds that

zk ≤ (1 − a1)kz0 +

k−1∑
τ=0

(1 − a1)k−1−τr2,τ ≤ akz0 + a2ak+t1−1
k−1∑
τ=0

1
(τ + t1)δ2 aτ+t1

. (2.58)

2.10. Useful lemmas on series 53

We have
k−1∑
τ=0

1
(τ + t1)δ2 aτ+t1

=

k+t1−1∑
τ=t1

1
τδ2 aτ

=

t3−1∑
τ=t1

s3(τ) +

t4−1∑
τ=t3

s3(τ) +

k+t1−1∑
τ=t4

s3(τ). (2.59)

We know that s3(t) = 1/(tδ2 at) is decreasing and increasing in the intervals [1, t3 − 1]
and [t3,+∞), respectively, since

ds3(t)
dt

= −s3(t)
(δ2

t
+ ln(a)

)
≤ 0, ∀t ∈

(
0,
−δ2

ln(a)

]
,

ds3(t)
dt

= −s3(t)
(δ2

t
+ ln(a)

)
≥ 0, ∀t ∈

[−δ2

ln(a)
,+∞

)
.

Thus, we have
t3−1∑
τ=k1

s3(τ) ≤ (t3 − k1)s3(k1), ∀k1 ∈ [1, t3 − 1], (2.60a)

t4−1∑
τ=k2

s3(τ) ≤ (t4 − k2)s3(t4), ∀k2 ∈ [t3, t4 − 1], (2.60b)

k3∑
τ=t4

s3(τ) ≤
∫ k3+1

t4
s3(t)dt, ∀k3 ≥ t4. (2.60c)

Denote b = 1/a. We have∫ k3+1

t4
s3(t)dt =

∫ k3+1

t4

bt

tδ2
dt =

∫ k3+1

t4

1
ln(b)tδ2

dbt

=
bk3+1

ln(b)(k3 + 1)δ2
−

bt4

ln(b)tδ2
4

+

∫ k3+1

t4

δ2bt

ln(b)tδ2+1 dt

≤
bk3+1

ln(b)(k3 + 1)δ2
+

∫ k3+1

t4

δ2

ln(b)t
s3(t)dt

≤
bk3+1

ln(b)(k3 + 1)δ2
+

δ2

ln(b)t4

∫ k3+1

t4
s3(t)dt

≤
bk3+1

ln(b)(k3 + 1)δ2
+

1
2

∫ k3+1

t4
s3(t)dt, (2.61)

where the last inequality holds due to t4 = d−2δ2/ ln(1 − a1)e ≥ −2δ2/ ln(1 − a1) =

2δ2/ ln(b).
From (2.60c) and (2.61), we have

k3∑
τ=t4

s3(τ) ≤
2

− ln(a)(k3 + 1)δ2 ak3+1 , ∀k3 ≥ t4. (2.62)

From (2.58), (2.59), (2.60a), (2.60b), and (2.62), we get (2.45). �

54 Preliminaries

Lemma 2.21. Let a ∈ (0, 1) be a constant, then

(1 − a)T ≤
k!

(aT)k , ∀k,T ∈ N0. (2.63)

Proof. For any constant a ∈ (0, 1), we have ln(1 − a) ≤ −a. Thus,

(1 − a)T ≤ e−aT , ∀T ∈ N0. (2.64)

For any constant x > 0, we have ex > xk

k! , ∀k ∈ N0. This result together with (2.64)
yields (2.63). �

Lemma 2.22. For any constants θ ∈ [0, 1] and κ ∈ [0, 1), it holds that

(t + 1)κ
(

1
tθ
−

1
(t + 1)θ

)
≤

1
t
, ∀t ∈ N+. (2.65)

Proof. Denote ht(θ) = 1
tθ −

1
(t+1)θ . Then, for any fixed t ∈ N+, maxθ∈[0,1]{ht(θ)} = ht(1) due

to dht(θ)
dθ ≥ 0, ∀θ ∈ [0, 1]. Hence, (t + 1)κht(θ) ≤ (t + 1)κht(1) =

(t+1)κ

t(t+1) ≤
1
t , i.e., (2.65)

holds. �

Part I

Distributed Nonconvex Optimization

55

Chapter 3

Distributed primal–dual first-order and
ADMM algorithms

This and the following two chapters consider the distributed nonconvex optimization
problem under different information feedback settings. In this chapter, we consider the full-
information feedback setting, i.e., each agent knows the true gradient and even the explicit
expression of its local cost function. We propose three algorithms: a distributed primal–
dual first-order (FO) algorithm, a distributed alternating direction method of multipliers
(ADMM) algorithm, and a distributed linearized ADMM (L-ADMM) algorithm. We show
that each algorithm converges to a stationary point with an O(1/T) convergence rate if
each local cost function is smooth, where T is the total number of iterations, and to a
global optimum with a linear convergence rate under an additional condition that the global
cost function satisfies the P–Ł condition. This condition is weaker than strong convexity,
which is a standard condition in the literature for proving linear convergence of distributed
optimization algorithms, and the global minimizer is not necessarily unique or finite. The
theoretical results are illustrated by numerical simulations.

This chapter is organized as follows. Section 3.1 gives the background. Section 3.2
presents problem formulation and assumptions. Sections 3.3–3.5 provide the distributed
primal–dual FO algorithm, the distributed ADMM algorithm, and the distributed linearized
ADMM algorithm, respectively, and analyze their convergence properties. Simulations
are given in Section 3.6. Concluding remarks are offered in Section 3.7. To improve the
readability, all the proofs can be found in Section 3.8

3.1 Introduction

In the study of distributed optimization, a standard assumption for proving linear conver-
gence of existing algorithms, such as [68–91], is strong convexity of the cost functions.
Unfortunately, some practical applications, such as least squares, do not have strongly
convex cost functions [156]. This situation has motivated researchers to consider alterna-
tives to strong convexity. There are some results in centralized optimization. For instance,
in [218], the authors derived linear convergence of several centralized first-order algorithms

57

58 Distributed primal–dual first-order and ADMM algorithms

for smooth and constrained optimization problems when cost functions are convex and
satisfy the quadratic functional growth condition; and in [209], the authors showed linear
convergence of centralized gradient algorithms for smooth optimization problems when
cost functions satisfy the P–Ł condition which is weaker than the conditions assumed
in [218].

There also are some results in distributed optimization [204, 219–223]. Specifically,
in [219], the authors proposed the distributed exact first-order algorithm (EXTRA) to solve
the smooth convex optimization and proved linear convergence under the conditions that
the global cost function is restricted strongly convex and the optimal set is a singleton,
which are stronger than the P–Ł condition. The authors of [220, 221] later extended the
results in [219] to directed graphes. In [204], the authors proposed a continuous-time
distributed heavy-ball algorithm with event-triggered communication to solve the smooth
convex optimization and proved exponential convergence under the same conditions as that
assumed in [219]. In [222], the authors established linear convergence of the distributed
primal–dual gradient descent algorithm for solving the smooth convex optimization under
the condition that the primal–dual gradient map is metrically subregular, which is different
from the P–Ł condition but weaker than strong convexity. In [223], the authors proposed
a distributed primal–dual gradient descent algorithm to solve the smooth optimization
problem and established linear convergence under the assumptions that the global cost
function satisfies the restricted secant inequality (RSI) condition and the gradients of each
local cost function at optimal points are the same, which are also stronger than the P–Ł
condition.

Among existing optimization algorithms, ADMM is very effective at numerically
solving many practical convex and nonconvex optimization problems [93,224,225] and has
wide applications in areas such as signal processing [226], power systems [227], optimal
control [228], and computer version [229]. This has motivated researchers to consider
distributed ADMM algorithms. If cost functions are convex, many distributed ADMM
algorithms have been proposed, e.g., [71–73,76,90,230–237]. The convergence property of
these algorithms has also been analyzed, for instance, the O(1/T) and linear convergence
rates were established in [230, 231, 234] and [71–73, 76, 90, 232], respectively, where T is
the total number of iterations.

However, when cost functions are nonconvex, existing distributed ADMM algorithms
with provable convergence analysis normally require that the communication network is
a star graph, i.e., hub–leaf topology. For instance, the authors of [238–240] proposed
star graph based distributed ADMM algorithms and proved that first-order stationary
points can be found with an O(1/T) convergence rate when each local cost function is
smooth. One advantage of these algorithms is that they are asynchronous. However, in
addition to the star graph restriction, the algorithms proposed in [238, 239] require that
each leaf agent communicates both primal and dual variables to the hub agent. Moreover,
the algorithm proposed in [240] is based on the standard master–worker architecture.
Specifically, the master (hub agent) executes all of the updatings, while each worker (leaf
agent) only computes the gradient of its own local cost function and sends it to the master.
In other words, all decisions are made by a single agent, the master, which suffers from a
single point of failure, high communication and computation cost, etc. To the best of our

3.1. Introduction 59

knowledge, the distributed proximal primal–dual algorithm (Prox-PDA) proposed in [112],
which is a generalization of the distributed ADMM algorithms proposed in [71, 90],
is the only distributed ADMM algorithm with provable convergence analysis to solve
nonconvex optimization problem when communication network is arbitrarily connected.
Through a lower bounded potential function, it was shown that the Prox-PDA algorithm
finds a first-order stationary point with an O(1/T) convergence rate when each local cost
function is smooth. To the best of our knowledge, there are no results to guarantee a global
optimum can be linearly found by distributed ADMM algorithms when cost functions are
nonconvex.

Noting above, two core theoretical questions with important practical relevance arise.

(Q3.1) As shown in [209], when strong convexity is replaced by the P–Ł condition,
centralized FO algorithms still can linearly find a global optimum. Does this hold
for distributed FO algorithms?

(Q3.2) Are there any distributed ADMM algorithms that not only are suitable for arbitrarily
connected communication networks, but also linearly find a global optimum when
the P–Ł condition holds in addition?

This chapter provides positive answers to the above two questions. We first propose
a distributed primal–dual FO algorithm (Algorithm 3.1) and have the following contribu-
tions.

(C3.1) When each local cost function is smooth, we appropriately chose the algorithm
parameters and construct a Lyapunov function for the proposed algorithm. With
this Lyapunov function, we show in Theorem 3.1 that the proposed distributed FO
algorithm finds a first-order stationary point with an O(1/T) convergence rate and
that the cost difference between the global optimum and the resulting stationary point
is bounded.

(C3.2) With the same Lyapunov function, we show in Theorem 3.2 that not only the
proposed algorithm can find a global optimum but also the convergence rate is
linear under an additional assumption that the global cost function satisfies the P–Ł
condition, thus (Q3.1) is answered. The P–Ł condition is weaker than the (restrict)
strong convexity condition assumed in [68–74, 76–91, 204, 219–221, 223] since it
does not require convexity and the global minimizer is not necessarily unique. This
condition is also different from the metric subregularity criterion assumed in [222].
In other words, we show that for a larger class of cost functions than strongly convex
functions, the global optimum can be founded linearly by the proposed distributed
algorithm.

Motivated from the classic ADMM algorithm, we then propose a distributed ADMM
algorithm (Algorithm 3.2). We have the following contributions.

(C3.3) The proposed distributed ADMM algorithm is suitable for arbitrarily connected
communication networks, not necessarily a star graph.

60 Distributed primal–dual first-order and ADMM algorithms

(C3.4) With another Lyapunov function, we show that it has the same theoretical con-
vergence properties as our distributed FO algorithm under the same conditions.
Specifically, we show in Theorems 3.3 and 3.4 that the proposed distributed ADMM
algorithm converges to a first-order stationary point with anO(1/T) convergence rate
if each local cost function is smooth and to a global optimum with linear convergence
rate when the global cost function satisfies the P–Ł condition in addition, thus (Q3.2)
is answered.

(C3.5) In order to reduce computation burden on each agent from solving an local
optimization problem at each iteration, we also propose a distributed L-ADMM
algorithm (Algorithm 3.3), derived from the proposed distributed ADMM algorithm
by linearizing the local cost function at each iteration. We show in Theorems 3.5
and 3.6 that the proposed distributed L-ADMM algorithm has the same theoretical
convergence properties as the proposed distributed ADMM algorithm under the
same conditions.

Table 3.1 compares this chapter with other algorithms that obtain linear convergence for
distributed optimization. Table 3.2 summarizes the comparison on distributed nonconvex
optimization.

3.2 Distributed nonconvex optimization with full-information
feedback

Consider a network of n agents, each of which has a local cost function fi : Rp → R. All
agents collaborate to solve the optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x). (3.1)

In this chapter, we consider the full-information feedback setting. In other words, each
agent i knows the true gradient ∇ fi(x) and even the explicit expression of fi(x).

Based on the definitions introduced in Chapter 2, the following assumptions are made.

Assumption 3.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 3.2. The set X∗ is nonempty and f ∗ > −∞, where X∗ and f ∗ denote the
optimal set and the minimum function value of the optimization problem (3.1), respectively.

Assumption 3.3. Each local cost function fi(x) is smooth with constant L f > 0.

Assumption 3.4. The global cost function f (x) satisfies the P–Ł condition with constant
ν > 0.

Remark 3.1. Assumptions 3.1–3.3 are common in the literature, e.g., [71, 219]. Assump-
tion 3.4 is weaker than the assumption that the global or each local cost function is

3.2. Distributed nonconvex optimization with full-information feedback 61

Table 3.1: Comparison of Chapter 3 to some related distributed optimization algorithms
obtaining linear convergence.

Reference Cost function Communication strategy Communication type

[68] Strongly convex fi, locally Lipschitz ∇2 f Connected undirected, one variable Continuous-time

[69] Strongly convex and smooth fi Connected undirected, one variable Event-triggered

[70–75] Strongly convex and smooth fi Connected undirected, one variable Discrete-time

[76] Strongly convex and smooth fi,
Lipschitz ∇2 f Connected undirected, one variable Discrete-time

[77] Strongly convex and smooth fi
Uniformly jointly strongly connected,

two variables Discrete-time

[78, 79] Strongly convex and smooth fi Connected undirected, three variables Discrete-time

[80–82] Strongly convex and smooth fi Connected undirected, two variables Discrete-time

[83–86] Strongly convex and smooth fi Strongly connected, three variables Discrete-time

[87] Strongly convex and smooth fi
Undirected stochastic graphs with

random failures, two variables Discrete-time

[88] Convex and smooth fi, strongly convex f Connected undirected, four variables Discrete-time

[89] Convex and smooth fi, strongly convex f Uniformly jointly strongly connected,
two variables Discrete-time

[90] Convex and smooth fi, strongly convex f Connected undirected, one variable Discrete-time

[91] Smooth fi, strongly convex f Uniformly jointly strongly connected
with delays, five variables Discrete-time

[219] Convex and smooth fi, restricted strongly
convex f , unique x∗ Connected undirected, one variable Discrete-time

[220, 221]
Convex and smooth fi, restricted strongly

convex f , unique x∗ Strongly connected, two variables Discrete-time

[204] Convex and smooth fi, restricted strongly
convex f , unique x∗ Connected undirected, one variable Event-triggered

[222] Convex and smooth fi, the primal–dual
gradient map is metric subregularity Connected undirected, two variables Discrete-time

[223] Smooth fi, f satisfies the RSI condition,
{∇ fi(x∗)} is a singleton Connected undirected, one variable Discrete-time

[232] Convex fi, unique x∗, ∇2 f (x∗) > 0 Connected undirected, one variable Discrete-time

This
chapter Smooth fi, f satisfies the P–Ł condition Connected undirected, one variable Discrete-time

strongly convex. It should be highlighted that the convexity of the cost functions and the
boundedness of their gradients are not assumed. Moreover, we do not assume that X∗ is a
singleton or finite set either.

Our goal in this chapter is to answer (Q3.1) and (Q3.2), i.e., solve the following
problem.

Problem 3.1. Propose distributed FO and ADMM algorithms for the nonconvex optimiza-
tion problem (3.1) such that the global optimum can be linearly found.

62 Distributed primal–dual first-order and ADMM algorithms

Table 3.2: Comparison of Chapter 3 to some related distributed nonconvex optimization
algorithms.

Reference Cost function Communication strategy Convergence rate

[111]
Lipschitz and smooth fi, the set of stationary
points is a union of finitely many connected

components, no saddle points

Uniformly jointly strongly
connected, two variables

O(1/T) to a local
optimum

[110] Lipschitz fi Connected undirected, one variable Asymptotic

[112–
115] Smooth fi Connected undirected, one variable O(1/T)

[117] Smooth fi, Lipschitz ∇2 f , f satisfies the K–Ł
condition, p = 1 Connected undirected, one variable Almost surely to an

SOS solution

[116]
Smooth fi Strongly connected, two variables O(1/T)

Smooth fi, special initialization
Connected undirected or strongly

connected with p = 1, special
weight matrices, two variables

Almost surely to an
SOS solution

This
chapter

Smooth fi
Connected undirected, one variable

O(1/T)

Smooth fi, f satisfies the P–Ł condition Linearly to a global
optimum

3.3 Distributed primal–dual FO algorithm

In this section, we consider the situation that agent i knows the true gradient ∇ fi(x). We
propose a distributed primal–dual FO algorithm to solve the optimization problem (3.1)
and analyze its convergence rates under different conditions.

3.3.1 Algorithm description

In this section, we present the derivation of our proposed algorithm.
For simplicity, denote x = col(x1, . . . , xn), f̃ (x) =

∑n
i=1 fi(xi), and L = L ⊗ Ip, where L

is the Laplacian matrix of the communication graph G. The optimization problem (3.1) is
equivalent to the constrained optimization problem

min
x ∈ Rnp

f̃ (x) =

n∑
i=1

fi(xi)

s.t. xi = x j, ∀i, j ∈ [n].

(3.2)

Noting that the Laplacian matrix L is positive semi-definite and null(L) = {1n} when G is
connected, we know that the optimization problem (3.2) is equivalent to the constrained
optimization problem

min
x ∈ Rnp

f̃ (x)

s.t. L1/2x = 0np.
(3.3)

Here, we use L1/2x = 0np rather than Lx = 0np as the constraint since they are both
equivalent to x = 1n ⊗ x but the first has a particular property which will be discussed in
Remark 3.6.

3.3. Distributed primal–dual FO algorithm 63

Let u ∈ Rnp denote the dual variable, then the augmented Lagrangian function
associated with (3.3) is

A(x,u) = f̃ (x) +
α

2
x>Lx + βu>L1/2x, (3.4)

where α > 0 and β > 0 are the regularization parameters.
Based on the primal–dual gradient method, a distributed FO algorithm to solve (3.3) is

xk+1 = xk − η(αLxk + βL1/2uk + ∇ f̃ (xk)), (3.5a)

uk+1 = uk + ηβL1/2xk, ∀x0, u0 ∈ R
np, (3.5b)

where η > 0 is a fixed stepsize. Denote vk = col(v1,k, . . . , vn,k) = L1/2uk, then the algorithm
(3.5) can be rewritten as

xk+1 = xk − η(αLxk + βvk + ∇ f̃ (xk)), (3.6a)

vk+1 = vk + ηβLxk, ∀x0 ∈ R
np,

n∑
j=1

v j,0 = 0p. (3.6b)

The initialization condition
∑n

j=1 v j,0 = 0p is derived from v0 = L1/2u0, and it is easy to be
satisfied, for example vi,0 = 0p, ∀i ∈ [n] or vi,0 =

∑n
j=1 Li jxi,0, ∀i ∈ [n]. It is straightforward

to verify that the algorithm (3.6) is equivalent to the EXTRA algorithm proposed in [219]
with mixing matrices W = Inp−ηαL and W̃ = Inp−ηαL+η2β2L. Note that the distributed
algorithm (3.6) can also be written agent-wise as

xi,k+1 = xi,k − η
(
α

n∑
j=1

Li jx j,k + βvi,k + ∇ fi(xi,k)
)
, (3.7a)

vi,k+1 = vi,k + ηβ

n∑
j=1

Li jx j,k, ∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, ∀i ∈ [n]. (3.7b)

We present the distributed primal–dual FO algorithm (3.7) in pseudo-code as Algo-
rithm 3.1.

Remark 3.2. In the literature, various distributed first-order algorithms have been
proposed to solve the nonconvex optimization problem (3.1). For example, the distributed
gradient descent algorithm was proposed in [110, 116]; the distributed gradient track-
ing algorithm was proposed in [116]; and a distributed algorithm based on a novel
approximate filtering-then-predict and tracking (xFILTER) strategy was proposed in [114].
Compared with the proposed distributed algorithm (3.7), these algorithms have some
potential drawbacks. For the distributed gradient algorithm, existing studies, such as
[110,116], only showed that the output of the algorithm converges to a neighborhood of a
stationary point unless additional assumptions, such as the boundedness of the gradients
of cost functions, are assumed. In the distributed gradient tracking algorithm [116], at

64 Distributed primal–dual first-order and ADMM algorithms

Algorithm 3.1 Distributed Primal–Dual FO Algorithm

1: Input: parameters α > 0, β > 0, and η > 0.
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive x j,k from j ∈ Ni;
6: Update xi,k+1 by (3.7a);
7: Update vi,k+1 by (3.7b).
8: end for
9: end for

10: Output: {xk}.

each iteration each agent i needs to communicate one additional p-dimensional variables
besides the communication of xi,k with its neighbors. The xFILTER algorithm proposed in
[114] is a double-loop algorithm and thus at each iteration it requires more communication
and computation than the proposed distributed algorithm (3.7).

3.3.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.1.

Find stationary points

Let us consider the case when Algorithm 5.1 is able to find stationary points. We have the
following convergence results.

Theorem 3.1. Suppose that Assumptions 3.1–3.3 hold. Let {xk} be the sequence generated
by Algorithm 3.1 with α ∈ (β + κ1, κ2β], β > cβ, and η ∈ (0, cη), where κ1, κ2, cβ, and cη are
constants given in Section 3.8.1. Then, for any T ∈ N+,

1
T

T−1∑
k=0

1
n

n∑
i=1

‖xi,k − x̄k‖
2 = O(

1
T

), (3.8)

1
T

T−1∑
k=0

‖∇ f (x̄k)‖2 = O(
1
T

), (3.9)

f (x̄T) − f ∗ = O(1), (3.10)

where x̄k = 1
n
∑n

i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (3.8)–(3.10) and the proof are
given in Section 3.8.1. �

Remark 3.3. This same convergence rate as stated in (3.9) has also been achieved by the
distributed gradient tracking algorithm proposed in [116] and the xFILTER algorithm

3.3. Distributed primal–dual FO algorithm 65

proposed in [114] under the same assumptions on the cost functions. However, as
discussed in Remark 3.2, at each iteration, the distributed gradient tracking algorithm
requires double amount of communication and the xFILTER algorithm requires more
communication as well as more computation.

Find global optima

Let us next consider the case when Algorithm 3.1 finds global optima. We have the
following convergence results.

Theorem 3.2. Suppose that Assumptions 3.1–3.4 hold. Let {xk} be the sequence generated
by Algorithm 3.1 with the same α, β, and η used in Theorem 3.1, then

1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗ ≤ ε0ε

k, ∀k ∈ N0, (3.11)

where ε0 > 0 and ε ∈ (0, 1) given in Section 3.8.2.

Proof. The proof is given in Section 3.8.2. �

Remark 3.4. The proofs of Theorems 3.1 and 3.2 are based on the same appropriately
designed Lyapunov function given in Lemma 3.1 in Section 3.8.1. In the literature that
considered distributed nonconvex optimization, e.g., [112–115, 117], the lower bounded
potential functions (which may be negative) are commonly used to analyze the convergence
properties of the proposed algorithms. So the analysis in those studies cannot be extended
to show linear convergence when the P–Ł condition holds since the lower bounded
potential functions may not be Lyapunov functions. In the literature that obtained linear
convergence for distributed optimization, e.g., [68–91, 204, 219–223, 232], the convexity
and/or the uniqueness of the global minimizer are the key in the analysis. So the analysis
in those studies cannot be extended to show linear convergence when strong convexity is
relaxed by the P–Ł condition since the later does not imply convexity of cost functions and
uniqueness of global minimizers.

Remark 3.5. The distributed first-order algorithms proposed in [68–91, 204, 219–223]
also established linear convergence. However, in [68–87], it was assumed that each local
cost function is strongly convex. In [88–90], it was assumed that each local cost function
is convex and the global cost function is strongly convex. In [91], it was assumed that
the global cost function is strongly convex. In [204, 219], it was assumed that each local
cost function is convex, the global cost function is restricted strongly convex, and X∗ is a
singleton. In [220, 221], it was assumed that each local cost function is restricted strongly
convex and the optimal set X∗ is a singleton. In [222], it was assumed that each local cost
function is convex and the primal–dual gradient map is metrically subregular. In [223],
it was assumed that the global cost function satisfies the restricted secant inequality
condition and the gradients of each local cost function at optimal points are the same.
In contrast, the linear convergence result established in Theorem 3.2 only requires that

66 Distributed primal–dual first-order and ADMM algorithms

the global cost function satisfies the P–Ł condition, but the convexity assumption on cost
functions and the singleton assumption on the optimal set and the set of the gradients
of each local cost function at optimal points are not required. Moreover, it should be
highlighted that when executing Algorithm 3.1 the P–Ł constant ν is not needed. Compared
with some of the aforementioned studies, one potential drawback is that we assume the
communication graph is static and undirected. We leave the extension to time-varying
directed graph for future work.

Remark 3.6. If we use Lx = 0np as the constraint in (3.3), then we could construct an
alternative distributed primal–dual FO algorithm

xi,k+1 = xi,k − η
(n∑

j=1

Li j(αx j,k + βv j,k) + ∇ fi(xi,k)
)
, (3.12a)

vi,k+1 = vi,k + ηβ

n∑
j=1

Li jx j,k, ∀xi,0, vi,0 ∈ R
p. (3.12b)

Similar results as shown in Theorems 3.1 and 3.2 can be obtained. We omit the details due
to the similarity. Different from the requirement that vi,0 = 0p in the algorithm (3.7), vi,0
can be arbitrarily chosen in the algorithm (3.12). In other words, the algorithm (3.12) is
robust to the initial condition vi,0. However, it requires additional communication of v j,k in
(3.12a), compared to (3.7).

3.4 Distributed ADMM algorithm

In this section, we consider the situation that each agent i knows the explicit expression of
fi(x). We propose a distributed ADMM algorithm and analyze its convergence properties
under different conditions.

3.4.1 Algorithm description

Note that the optimization problem (3.1) is equivalent to the constrained problem

min
xi, x0 ∈ R

p

n∑
i=1

fi(xi)

s.t. βxi = βx0, ∀i ∈ [n],

(3.13)

where β > 0 is a constant.
If there exists a virtual agent, denoted as agent 0, which can communicate with all of

the n agents1, then the optimization problem (3.13) can be efficiently solved by the classic
ADMM algorithm [93, 224]. Specifically, the classic ADMM algorithm to solve (3.13) is

x0,k+1 =
1
n

n∑
i=1

(x j,k +
β

γ
v j,k), (3.14a)

1This corresponds to that the communication graph G of the n agents is a star graph.

3.4. Distributed ADMM algorithm 67

xi,k+1 = argmin
x∈Rp

fi(x) + β〈vi,k, x〉 +
γ

2
‖x − x0,k+1‖

2, (3.14b)

vi,k+1 = vi,k +
γ

β
(xi,k+1 − x0,k+1), ∀i ∈ [n], (3.14c)

where γ > 0 is the penalty parameter. It has been shown in [238–240] that the classic
ADMM algorithm (3.14) can find first-order stationary points of the optimization problem
(3.13) with an O(1/k) convergence rate if γ is large enough, β = 1, and Assumptions 3.2
and 3.3 hold. If the communication graph G is a general connected graph, then each agent i
cannot execute (3.14b) and (3.14c) since x0,k+1 is not available in this case. Thus, the classic
ADMM algorithm (3.14) is restricted to a star graph. In order to remove this restriction,
we modify the classic ADMM algorithm (3.14) as follows

xi,k+1 = argmin
x∈Rp

fi(x) + β〈vi,k, x〉 +
γ

2

∥∥∥∥x − xi,k +
α

γ

n∑
j=1

Li jx j,k

∥∥∥∥2
, (3.15a)

vi,k+1 = vi,k +
β

γ

n∑
j=1

Li jx j,k+1, ∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, ∀i ∈ [n], (3.15b)

where α > 0 is a constant.

Remark 3.7. The intuition of the modification from (3.14) to (3.15) is as follows. When γ
is large enough, then from (3.14a), we know x0,k+1 ≈

1
n
∑n

i=1 x j,k. In multi-agent systems, for
each agent i, 1

n
∑n

i=1 x j,k can be estimated by xi,k −b
∑n

j=1 Li jx j,k with some positive gains b.
Thus, replacing x0,k+1 in (3.14b) by its estimation xi,k −

α
γ

∑n
j=1 Li jx j,k gives (3.15a). Then,

each xi,k+1 is available to each agent i and through communication it is also available to
agent j if j ∈ Ni. Thus, replacing x0,k+1 in (3.14c) by its estimation xi,k+1−

β2

γ2

∑n
j=1 Li jx j,k+1

gives (3.15b). Here, we used different gains α
γ

and β2

γ2 since such a setting facilitates
the convergence analysis. Moreover, the extra initialization condition

∑n
j=1 v j,0 = 0p is

also used to facilitate the convergence analysis. This initialization condition is easy to be
satisfied, for example, vi,0 = 0p, ∀i ∈ [n], or vi,0 =

∑n
j=1 Li jx j,0, ∀i ∈ [n].

Remark 3.8. The objective function in subproblem (3.15a) may be not convex since
each fi is possibly nonconvex. However, if Assumption 3.3 holds and γ > L f , then
from Lemma 2.11, we know that the objective function is strongly convex with convexity
parameter γ − L f > 0. Hence, the subproblem (3.15a) is solvable.

We write the distributed ADMM algorithm (3.15) in pseudo-code as Algorithm 3.2.

3.4.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.2.

Find stationary points

Let us consider the case when Algorithm 3.2 is able to find stationary points. We have the
following convergence results.

68 Distributed primal–dual first-order and ADMM algorithms

Algorithm 3.2 Distributed ADMM Algorithm

1: Input: constants α > 0, β > 0, and γ > 0.
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: Broadcast xi,0 to Ni and receive x j,0 from j ∈ Ni;
4: for k = 0, 1, . . . do
5: for i = 1, . . . , n in parallel do
6: Update xi,k+1 by (3.15a);
7: Broadcast xi,k+1 to Ni and receive x j,k+1 from j ∈ Ni;
8: Update vi,k+1 by (3.15b).
9: end for

10: end for
11: Output: {xk}.

Theorem 3.3. Suppose Assumptions 3.1–3.3 hold. Let {xk} be the sequence generated by
Algorithm 3.2 with α ∈ (1

ρ2(L) (ρ(L)β + χ1), χ2β], β > ĉβ, and γ > ĉγ, where χ1, χ2, ĉβ, and
ĉγ are constants given in Section 3.8.3. Then, for any T ∈ N+,

1
T

T−1∑
k=0

1
n

n∑
i=1

‖xi,k − x̄k‖
2 = O(

1
T

), (3.16)

1
T

T−1∑
k=0

‖∇ f (x̄k)‖2 = O(
1
T

), (3.17)

f (x̄T) − f ∗ = O(1), (3.18)

where x̄k = 1
n
∑n

i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (3.16)–(3.18) and the proof are
given in Section 3.8.3. �

Remark 3.9. This same convergence rate as stated in (3.17) has also been achieved by the
Prox-PDA proposed in [112] under the same conditions. Same convergence rate has also
achieved by ADMM algorithms proposed in [117, 238–240]. However, these algorithms
are restricted to a star graph. Moreover, the algorithms proposed in [117,238,239] require
that each leaf agent has to communicate both primal and dual variables to the hub agent,
and the algorithm proposed in [240] is based on the standard master–worker architecture.
Compared with these algorithms, the advantages of Algorithm 3.2 are that it is suitable for
general connected graphs and each agent only needs to communicate the primal variable
with its neighbors, while one potential drawback is that our algorithm is synchronous. It is
unclear how to analyze the convergence rate for the proposed distributed ADMM algorithm
under the asynchronous communication, so we leave this for future studies.

Remark 3.10. The settings on α, β, and γ in Theorem 3.3 are instrumental in the
convergence analysis of Algorithm 3.2. They are just sufficient conditions. In other words,

3.4. Distributed ADMM algorithm 69

the lower bounds for α, β, and γ are not tight. We numerically observed that smaller α,
β, and γ still guarantee the same convergence rate and even lead to faster convergence in
some simulation examples. It remains an open question to analyze the convergence rate
under smaller α, β, and γ.

Find global optima

Let us next consider the case when Algorithm 3.2 finds global optima. We have the
following convergence results.

Theorem 3.4. Suppose Assumptions 3.1–3.4 hold. Let {xk} be the sequence generated by
Algorithm 3.2 with the same α, β, and γ used in Theorem 3.3, then

1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗ ≤ ε0ε

k, ∀k ∈ N0, (3.19)

where ε0 > 0 and ε ∈ (0, 1) given in Section 3.8.4.

Proof. The proof is given in Section 3.8.4. �

Remark 3.11. Among existing literature, to the best of our knowledge, the Prox-PDA
algorithm proposed in [112] is the only distributed ADMM algorithm with provable
convergence analysis when cost functions are nonconvex and the communication network
is arbitrarily connected. The proposed distributed ADMM algorithm (3.15) is closely
related to the Prox-PDA algorithm. The key differences between them is on the stepsize
for the dual variable updating, which facilitate us to show explicit convergence rates for
our distributed ADMM algorithm by a appropriately designed Lyapunov function given
in Lemma 3.2, which is modified from the one used in the proofs of Theorems 3.1 and
3.2 given in Lemma 3.1. With this Lyapunov function, we prove Theorems 3.3 and 3.4. In
contrast, a lower bounded potential functions (which may be negative) was used in [112]
to analyze the convergence properties of the Prox-PDA algorithm. So the analysis in [112]
cannot be extended to show linear convergence when the P–Ł condition holds since the
lower bounded potential functions may not be Lyapunov functions.

Remark 3.12. Linear convergence was also established by the distributed ADMM
algorithms proposed in [71, 73, 90, 232]. However, they all assumed that each local cost
function is convex. Moreover, in [71, 73], it was assumed that each local cost function is
strongly convex. In [232], it was assumed that the optimal set X∗ is a singleton and the
global cost function is locally strongly convex. In [90], it was assumed that the global
cost function is strongly convex. In contrast, the linear convergence result established in
Theorem 3.4 only requires that assumption that the global cost function satisfies the P–Ł
condition, but the convexity assumption on cost functions and the singleton assumption on
the optimal set are not required. Compared with the results established in [71,73,90,232],
one potential drawback of our results is that we need to use some global information, such
as the eigenvalues of the Laplacian matrix associated with the communication graph. It is

70 Distributed primal–dual first-order and ADMM algorithms

unclear how to overcome this drawback. This drawback may be overcome with the studies
on estimating the second smallest eigenvalue (the connectivity) of the Laplacian matrix
associated with the communication graph [241, 242].

3.5 Distributed linearized ADMM algorithm

Same as existing distributed ADMM algorithms, such as [71, 73, 90, 230–233, 235–240],
one potential limitation of Algorithm 3.2 is the requirement that at each iteration each
subproblem (3.15a) needs to be solved exactly, which normally has no explicit solution,
and thus results in high computation burden to each agent. To over come this, in this
section, we propose a distributed linearized ADMM (L-ADMM) algorithm and analyze
its convergence rate under different conditions.

3.5.1 Algorithm description

In this section, we present the modification of (3.15a). The main idea is that instead
of minimizing exactly with respect to x we take an inexact minimization in which the
function fi(x) is replaced by a linearized approximation centered at the current iteration.
Specifically, replacing the function fi(x) with fi(xi,k) + 〈∇ fi(xi,k), x − xi,k〉 in (3.15a) gives
the inexact update for xi,k+1 as follows

xi,k+1 = argmin
x∈Rp

fi(xi,k) + 〈∇ fi(xi,k), x − xi,k〉 + β〈vi,k, x〉 +
γ

2

∥∥∥∥x − xi,k +
α

γ

n∑
j=1

Li jx j,k

∥∥∥∥2
.

(3.20)

Noting that the objective function in the subproblem (3.20) is strongly convex, from
the first-order optimality conditions for convex optimization problems, we can compute
the explicit expression of xi,k+1. Hence, we get the distributed L-ADMM algorithm

xi,k+1 = xi,k −
1
γ

(
α

n∑
j=1

Li jx j,k + βvi,k + ∇ fi(xi,k)
)
, (3.21a)

vi,k+1 = vi,k +
β

γ

n∑
j=1

Li jx j,k+1, ∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, ∀i ∈ [n], (3.21b)

We write the distributed L-ADMM algorithm (3.21) in pseudo-code as Algorithm 3.3.

Remark 3.13. It is straightforward to see that the distributed L-ADMM algorithm (3.21)
is similar to the distributed primal–dual FO algorithm (3.7). The main difference between
them is the updating of the local dual variable vi,k+1. In (3.21b), {x j,k+1} are used, while in
(3.7b), {x j,k} are used. This difference results in different designs of algorithm parameters
and Lyapunov functions to analyze convergence rates, although they have the same
convergence properties.

3.5. Distributed linearized ADMM algorithm 71

Algorithm 3.3 Distributed L-ADMM Algorithm

1: Input: constants α > 0, β > 0, and γ > 0.
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: Broadcast xi,0 to Ni and receive x j,0 from j ∈ Ni;
4: for k = 0, 1, . . . do
5: for i = 1, . . . , n in parallel do
6: Update xi,k+1 by (3.21a);
7: Broadcast xi,k+1 to Ni and receive x j,k+1 from j ∈ Ni;
8: Update vi,k+1 by (3.21b).
9: end for

10: end for
11: Output: {xk}.

3.5.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.3.

Find stationary points

Similar to Theorems 3.1 and 3.3, we have the following convergence result.

Theorem 3.5. Suppose Assumptions 3.1–3.3 hold. Let {xk} be the sequence generated by
Algorithm 3.3 with α ∈ (1

ρ2(L) (ρ(L)β + χ̆1), χ2β], β > c̆β, and γ > c̆γ, where χ̆1, c̆β, and c̆γ
and χ2 are constants given in Sections 3.8.5 and 3.8.3, respectively. Then, for any T ∈ N+,

1
T

T−1∑
k=0

1
n

n∑
i=1

‖xi,k − x̄k‖
2 = O(

1
T

), (3.22)

1
T

T−1∑
k=0

‖∇ f (x̄k)‖2 = O(
1
T

), (3.23)

f (x̄T) − f ∗ = O(1). (3.24)

Proof. The explicit expressions of the right-hand sides of (3.22)–(3.24) and the proof are
given in Section 3.8.5. �

Remark 3.14. The same convergence rate as stated in (3.23) has also been achieved by the
linearized version of the Prox-PDA algorithm, the distributed proximal gradient primal–
dual algorithm (Prox-GPDA), proposed in [112] under the same conditions.

Find global optima

When Assumption 3.4 also holds, similar to Theorems 3.2 and 3.4 we have the following
results.

72 Distributed primal–dual first-order and ADMM algorithms

Theorem 3.6. Suppose Assumptions 3.1–3.4 hold. Let {xk} be the sequence generated by
Algorithm 3.3 with the same α, β, and γ used in Theorem 3.5, then

1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗ ≤ ε̆0ε̆

k, ∀k ∈ N0, (3.25)

where ε̆0 > 0 and ε̆ ∈ (0, 1) given in Section 3.8.4.

Proof. The proof is given in Section 3.8.6. �

Remark 3.15. Linear convergence was also established by the distributed L-ADMM
algorithm proposed in [72]. However, in [72], it was assumed that each local cost
function is strongly convex, while we assume that the global cost function satisfies the
P–Ł condition, which is much weaker. Same as the analysis in Remark 3.12, compared
with the results established in [72], one potential drawback of our results is that we need
to use some global information, such as the eigenvalues of the Laplacian matrix associated
with the communication graph.

Remark 3.16. By comparing Theorems 3.3 and 3.4 with Theorems 3.5 and 3.6, respec-
tively, we see that, in theory, under the same conditions the distributed L-ADMM algorithm
(3.21) has the same convergence properties as the distributed ADMM algorithm (3.15).
However, in numerical simulations, the distributed ADMM algorithm (3.15) normally
requires less iterations than the distributed L-ADMM algorithm (3.21) to reach the same
error bound at a cost of more computation resource being needed by each agent to solve
the local optimization problem.

3.6 Simulations

3.6.1 Distributed regularized logistic regression

This section evaluates the performance of Algorithm 3.1 in solving the nonconvex
distributed regularized logistic regression problem with each component function fi
described in (1.2), i.e.,

fi(x) =
n
m

mi∑
l=1

(yil log(1 + exp(−x>zil)) + (1 − yil) log(1 + exp(x>zil))) +

p∑
s=1

λµ[x]2
s

1 + µ[x]2
s
.

In this simulation, all settings for cost functions and the communication graph are the same
as those described in [114]. Specifically, n = 20, p = 50, mi = 200, λ = 0.001, and µ = 1.
The graph used in the simulation is the random geometric graph and the graph parameter
is set to be 0.5. We independently and randomly generate nm data points with dimension p
and each agent contains m data points.

We compare Algorithm 3.1 with state-of-the-art algorithms: distributed gradient de-
scent (DGD) with diminishing stepsizes [110,116], distributed gradient tracking algorithm
(DGTA) [80, 116], xFILTER [114], Prox-GPDA [112], and D-GPDA [113]. Figure 3.1

3.6. Simulations 73

0 100 200 300 400 500 600 700 800 900 1000
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

Figure 3.1: Performance of distributed FO optimization algorithms in the nonconvex
distributed regularized logistic regression problem: Evolutions of mink∈[T]{‖∇ f (x̄k)‖2 +
1
n
∑n

i=1 ‖xi,k − x̄k‖
2} with respect to the number of communication rounds.

illustrates the evolutions of mink∈[T]{‖∇ f (x̄k)‖2 + 1
n
∑n

i=1 ‖xi,k − x̄k‖
2} with respect to the

number of communication rounds for these algorithms with the same initial condition. It
can be seen that our primal–dual FO algorithm (Algorithm 3.1) gives the best performance
in general.

3.6.2 Distributed phase retrieval

This section evaluates the performance of Algorithms 3.2 and 3.3 in solving the distributed
phase retrieval problem with each component function fi described in (1.3), i.e.,

fi(x) =
n
m

mi∑
l=1

(y2
il − |b

>
il x|2)2 =

n
m

mi∑
l=1

(y2
il − (x>bR

il)
2 − (x>bI

il)
2)2.

In this simulation, all settings for cost functions and the communication graph are the same
as those described in [243]. Specifically, n = 50, p = 64, and mi = 30. We independently
and randomly generate the vectors bR

il and bI
il such that (bR

il , b
I
il) ∼ N(02p,

1
2 I2p). The scalars

yil are generated by yil = |b>il y0| + εi,l, where y0 = (1, 0, . . . , 0)> and εi,l ∼ N(0, 0.012) are
independent Gaussian noise. The graph used in the simulation is generated by uniformly
randomly sampling n points on S2, and then connecting pairs of points with spherical
distances less than π/4.

74 Distributed primal–dual first-order and ADMM algorithms

0 50 100 150 200 250 300 350 400
10-20

10-15

10-10

10-5

100

Figure 3.2: Performance of distributed ADMM optimization algorithms in the distributed
phase retrieval problem: Evolutions of mink∈[T]{‖∇ f (x̄k)‖2 + 1

n
∑n

i=1 ‖xi,k− x̄k‖
2}with respect

to the number of iterations.

We compare Algorithms 3.2 and 3.3 with state-of-the-art algorithms: distributed
gradient tracking algorithm (DGTA) [80, 243], Prox-PDA (which is a distributed ADMM
algorithm) and its linearized version (Prox-GPDA) [112]. Figure 3.2 illustrates the
evolutions of mink∈[T]{‖∇ f (x̄k)‖2 + 1

n
∑n

i=1 ‖xi,k − x̄k‖
2} with respect to the number of

iterations for these algorithms with the same initial condition. It can be seen that, in this
numerical example, both distributed ADMM algorithms (Algorithms 3.2 and Prox-PDA)
give almost the same performance and are better than the rest algorithms. By comparing
the two distributed L-ADMM algorithms (Algorithm 3.3 and Prox-GPDA), we see that
Algorithm 3.3 converges faster. Moreover, Algorithm 3.3 also converges faster than DGTA.

3.7 Summary

In this chapter, we studied distributed nonconvex optimization with full-information feed-
back. We proposed three distributed algorithms: a distributed primal–dual FO algorithm, a
distributed ADMM algorithm, and a distributed L-ADMM algorithm. We derived their
convergence properties under different conditions. Particularly, linear convergence was
established when the global cost function satisfies the P–Ł condition. This relaxes the
standard strong convexity condition in the literature. Interesting directions for future work
include proving linear convergence rate for larger stepsizes, considering time-varying
graphs, and studying constraints.

3.8. Proofs 75

3.8 Proofs

3.8.1 Proof of Theorem 3.1

Denote Kn = In −
1
n 1n1>n , K = Kn ⊗ Ip, H = 1

n (1n1>n ⊗ Ip), x̄k = 1
n (1>n ⊗ Ip)xk, x̄k = 1n ⊗ x̄k,

gk = ∇ f̃ (xk), ḡk = Hgk, g0
k = ∇ f̃ (x̄k), and ḡ0

k = Hg0
k = 1

n (1n ⊗ ∇ f (x̄k)).
We also denote the following notations.

cβ = max
{ κ1

κ2 − 1
, κ3, κ4

}
, cη = min

{ ε1

ε2
,
ε3

ε4
,
ε5

ε6

}
, κ1 =

1
2ρ2(L)

(2 + 3L2
f), κ2 > 1,

κ3 =
1
4

(
1 +

(
1 + 8κ2 +

8
ρ2(L)

) 1
2
)
, κ4 =

(
κ2 +

1
ρ2(L)

)
L2

f +
((
κ2 +

1
ρ2(L)

)2
L2

f + 2
) 1

2 L f ,

ε1 = (α − β)ρ2(L) −
1
2

(2 + 3L2
f), ε2 = β2ρ(L) + (2α2 + β2)ρ2(L) +

5
2

L2
f ,

ε3 = β −
1
2
−

α

2β2 −
1

2βρ2(L)
, ε4 = 2β2 +

1
2
, ε5 =

1
4
−

1
2β

(1
β

+
1

ρ2(L)
+
α

β

)
L2

f ,

ε6 =
1
β2

(
1 +

1
ρ2(L)

+
α

β

)
L2

f +
L f (1 + L f)

2
, ε7 = ηmin

{
ε1 − ηε2, ε3 − ηε4, ε5 − ηε6,

1
4

}
,

ε8 =
α + β

2β
+

1
2ρ2(L)

ε9 = min
{ 1
2ρ(L)

,
α − β

2α

}
.

To prove Theorem 3.1, the following lemma is used, which presents the general
relations of two consecutive outputs of Algorithm 3.1.

Lemma 3.1. Suppose Assumptions 3.1–3.3 hold. Let {xk} be the sequence generated by
Algorithm 3.1 with α > β. Then,

Vk+1 ≤ Vk − ‖xk‖
2
ηk(ε1−ηkε2)K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ηk(ε3−ηkε4)K
− ηk(ε5 − ηkε6)‖ ḡk‖

2 −
ηk

4
‖ ḡ0

k‖
2,

(3.26)

where

Vk =

4∑
i=1

Vi,k, V1,k =
1
2
‖xk‖

2
K, V2,k =

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K
,

V3,k = x>k K
(
vk +

1
β

g0
k

)
, V4,k = n(f (x̄k) − f ∗) = f̃ (x̄k) − f̃ ∗,

and Q = RΛ−1
1 R> ⊗ Ip with matrices R and Λ−1

1 given in Lemma 2.5.

Proof. We first note that V4,k is well defined due to f ∗ > −∞ as assumed in Assump-
tion 3.2. Thus, Vk is well defined.

Denote v̄k = 1
n (1>n ⊗ Ip)vk. Then, from (3.7b), we know that

v̄k+1 = v̄k. (3.27)

76 Distributed primal–dual first-order and ADMM algorithms

Then, from (3.27) and
∑n

i=1 vi,0 = 0p, we know that

v̄k = 0p, (3.28)

Then, from (3.28) and (3.7a), we know that

x̄k+1 = x̄k − η ḡk. (3.29)

Noting that ∇ f̃ is Lipschitz-continuous with constant L f > 0 as assumed in Assump-
tion 3.3, we have

‖g0
k − gk‖

2 = ‖∇ f̃ (x̄k) − ∇ f̃ (xk)‖2 ≤ L2
f ‖x̄k − xk‖

2 = L2
f ‖xk‖

2
K. (3.30)

Then, from (3.30) and ρ(H) = 1, we have

‖ ḡ0
k − ḡk‖

2 = ‖H(g0
k − gk)‖2 ≤ ‖g0

k − gk‖
2 ≤ L2

f ‖xk‖
2
K. (3.31)

From ∇ f̃ is Lipschitz-continuous and (3.29), we have

‖g0
k+1 − g0

k‖
2 ≤ L2

f ‖x̄k+1 − x̄k‖
2 = η2L2

f ‖ ḡk‖
2. (3.32)

We have

V1,k+1 =
1
2
‖xk+1‖

2
K =

1
2
‖xk − η(αLxk + βvk + gk)‖2K

=
1
2
‖xk‖

2
K − ηα‖xk‖

2
L +

η2α2

2
‖xk‖

2
L2 − ηβx>k (Inp − ηαL)K

(
vk +

1
β

gk

)
+
η2β2

2

∥∥∥∥vk +
1
β

gk

∥∥∥∥2

K

= V1,k − ‖xk‖
2
ηαL− η2α2

2 L2
− ηβx>k (Inp − ηαL)K

(
vk +

1
β

g0
k +

1
β

gk −
1
β

g0
k

)
+
η2β2

2

∥∥∥∥vk +
1
β

g0
k +

1
β

gk −
1
β

g0
k

∥∥∥∥2

K

≤ V1,k − ‖xk‖
2
ηαL− η2α2

2 L2
− ηβx>k K

(
vk +

1
β

g0
k

)
+
η

2
‖xk‖

2
K +

η

2
‖gk − g0

k‖
2

+
η2α2

2
‖xk‖

2
L2 +

η2β2

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+
η2α2

2
‖xk‖

2
L2 +

η2

2
‖gk − g0

k‖
2

+ η2β2
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

K
+ η2‖gk − g0

k‖
2

= V1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2

+
η

2
(1 + 3η)‖gk − g0

k‖
2

− ηβx>k K
(
vk +

1
β

g0
k

)
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

(3.33)

≤ V1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2−

η
2 (1+3η)L2

f K
− ηβx>k K

(
vk +

1
β

g0
k

)
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

,

(3.34)

3.8. Proofs 77

where the second equality holds due to (3.6a); the third equality holds due toe (2.5); the
first inequality holds due to the Cauchy-Schwarz inequality and ρ(K) = 1; and the last
inequality holds due to (3.30).

We have

V2,k+1 =
1
2

∥∥∥∥vk+1 +
1
β

g0
k+1

∥∥∥∥2

Q+ α
β K

=
1
2

∥∥∥∥vk +
1
β

g0
k + ηβLxk +

1
β

(g0
k+1 − g0

k)
∥∥∥∥2

Q+ α
β K

=
1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K

+ ηx>k (βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η2β

2 (βL+αL2)

+
1

2β2 ‖g
0
k+1 − g0

k‖
2
Q+ α

β K +
1
β

(
vk +

1
β

g0
k + ηβLxk

)>(
Q +

α

β
K
)
(g0

k+1 − g0
k)

≤ V2,k + ηx>k (βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η2β

2 (βL+αL2)

+
1

2β2 ‖g
0
k+1 − g0

k‖
2
Q+ α

β K +
η

2β

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K

+
1

2ηβ
‖g0

k+1 − g0
k‖

2
Q+ α

β K

+
η2β2

2
‖Lxk‖

2
Q+ α

β K +
1

2β2 ‖g
0
k+1 − g0

k‖
2
Q+ α

β K

= V2,k + ηx>k (βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+

(1
β2 +

1
2ηβ

)
‖g0

k+1 − g0
k‖

2
Q+ α

β K

≤ V2,k + ηx>k (βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+

(1
β2 +

1
2ηβ

)(1
ρ2(L)

+
α

β

)
‖g0

k+1 − g0
k‖

2 (3.35)

≤ V2,k + ηx>k (βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+ η

(η
β2 +

1
2β

)(1
ρ2(L)

+
α

β

)
L2

f ‖ ḡk‖
2, (3.36)

where the second equality holds due to (3.6b); the third equality holds due to (2.5) and
(2.7); the first inequality holds due to the Cauchy-Schwarz inequality; the last equality
holds due to (2.5) and (2.7); the second inequality holds due to ρ(Q+ α

β
K) ≤ ρ(Q)+ α

β
ρ(K),

(2.8), ρ(K) = 1; and the last inequality holds due to (3.32).
We have

V3,k+1 = x>k+1K
(
vk+1 +

1
β

g0
k+1

)
= (xk − η(αLxk + βvk + g0

k + gk − g0
k))>K

(
vk +

1
β

g0
k + ηβLxk +

1
β

(g0
k+1 − g0

k)
)

= x>k (K − η(α + ηβ2)L)
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
ηβ(L−ηαL2)

78 Distributed primal–dual first-order and ADMM algorithms

+
1
β

x>k (K − ηαL)(g0
k+1 − g0

k) − ηβ
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

K
− η

(
vk +

1
β

g0
k

)>
K(g0

k+1 − g0
k)

− η(gk − g0
k)>K

(
vk +

1
β

g0
k + ηβLxk +

1
β

(g0
k+1 − g0

k)
)

≤ x>k (K − ηαL)
(
vk +

1
β

g0
k

)
+
η2β2

2
‖Lxk‖

2 +
η2β2

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ ‖xk‖

2
ηβ(L−ηαL2)

+
η

2
‖xk‖

2
K +

(1
2ηβ2 +

1
2β2

)
‖g0

k+1 − g0
k‖

2 +
η2α2

2
‖Lxk‖

2 − ηβ
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

K

+
η2

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+

1
2
‖g0

k+1 − g0
k‖

2 +
η

2
‖gk − g0

k‖
2 +

η

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

+
η2

2
‖gk − g0

k‖
2 +

η2β2

2
‖Lxk‖

2 +
η2

2
‖gk − g0

k‖
2 +

1
2β2 ‖g

0
k+1 − g0

k‖
2

= x>k (K − ηαL)
(
vk +

1
β

g0
k

)
+
η

2
(1 + 2η)‖gk − g0

k‖
2 + ‖xk‖

2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2

+
(1
2ηβ2 +

1
β2 +

1
2

)
‖g0

k+1 − g0
k‖

2 −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2−

η
2−

ηβ2
2)K

(3.37)

≤ V3,k − ηαx>k L
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2+

η
2 (1+2η)L2

f K

+ η
(1
2β2 +

η

β2 +
η

2

)
L2

f ‖ ḡk‖
2 −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2−

η
2−

ηβ2
2)K

, (3.38)

where the second equality holds due to (3.6); the third equality holds due to (2.5); the first
inequality holds due to the Cauchy-Schwarz inequality, (2.5), and ρ(K) = 1; and the last
inequality holds due to (3.32) and (3.30).

We have

V4,k+1 = n(f (x̄k) − f ∗) = f̃ (x̄k) − f̃ ∗ + f̃ (x̄k+1) − f̃ (x̄k)

≤ f̃ (x̄k) − f̃ ∗ − η ḡ>k g0
k +

η2L f

2
‖ ḡk‖

2 = V4,k − η ḡ>k ḡ0
k +

η2L f

2
‖ ḡk‖

2

= V4,k −
η

2
ḡ>k (ḡk + ḡ0

k − ḡk) −
η

2
(ḡk − ḡ0

k + ḡ0
k)> ḡ0

k +
η2L f

2
‖ ḡk‖

2

≤ V4,k −
η

4
‖ ḡk‖

2 +
η

4
‖ ḡ0

k − ḡk‖
2 −

η

4
‖ ḡ0

k‖
2 +

η

4
‖ ḡ0

k − ḡk‖
2 +

η2L f

2
‖ ḡk‖

2

= V4,k −
η

4
(1 − 2ηL f)‖ ḡk‖

2 +
η

2
‖ ḡ0

k − ḡk‖
2 −

η

4
‖ ḡ0

k‖
2 (3.39)

≤ V4,k −
η

4
(1 − 2ηL f)‖ ḡk‖

2 + ‖xk‖
2
η
2 L2

f K −
η

4
‖ ḡ0

k‖
2, (3.40)

where the first inequality holds since that f̃ is smooth, (2.14) and (3.29); the third equality
holds due to ḡ>k g0

k = g>k Hg0
k = g>k HHg0

k = ḡ>k ḡ0
k ; the second inequality holds due to the

Cauchy-Schwarz inequality; and the last inequality holds due to (3.31).

3.8. Proofs 79

From (3.34), (3.36), (3.38), and (3.40), we have

Vk+1 ≤ Vk − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2−

η
2 (1+3η)L2

f K
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

+ ‖xk‖
2
η2β(βL+αL2) +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+ η

(η
β2 +

1
2β

)(1
ρ2(L)

+
α

β

)
L2

f ‖ ḡk‖
2

+ ‖xk‖
2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2+

η
2 (1+2η)L2

f K
+ η

(1
2β2 +

η

β2 +
η

2

)
L2

f ‖ ḡk‖
2

− ‖vk +
1
β

g0
k‖

2
η(β− 1

2−
η
2−

ηβ2
2)K
−
η

4
(1 − 2ηL f)‖ ḡk‖

2 + ‖xk‖
2
η
2 L2

f K −
η

4
‖ ḡ0

k‖
2

= Vk − ‖xk‖
2
ηM1−η2 M2

−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ηM3−η2 M4
− η(ε5 − ηε6)‖ ḡk‖

2 −
η

4
‖ ḡ0

k‖
2, (3.41)

where

M1 = (α − β)L −
1
2

(2 + 3L2
f)K, M2 = β2L + (2α2 + β2)L2 +

5
2

L2
f K,

M3 =
(
β −

1
2
−

α

2β2

)
K −

1
2β

Q, M4 =
(
2β2 +

1
2

)
K.

From α > β, (2.6), and (2.8), we have

M1 = (α − β)L −
1
2

(2 + 3L2
f)K ≥ (α − β)ρ2(L)K −

1
2

(2 + 3L2
f)K = ε1K, (3.42)

M2 = β2L + (2α2 + β2)L2 +
5
2

L2
f K ≤ ε2K, (3.43)

M3 =
(
β −

1
2
−

α

2β2

)
K −

1
2β

Q ≥
(
β −

1
2
−

α

2β2

)
K −

1
2βρ2(L)

K = ε3K. (3.44)

From (3.41) and (3.42)–(3.44), we know that (3.26) holds.
�

We are now ready to prove Theorem 3.1.
Denote

V̂k = ‖xk‖
2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ n(f (x̄k) − f ∗). (3.45)

We know

Vk =
1
2
‖xk‖

2
K +

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K

+ x>k K
(
vk +

1
β

g0
k

)
+ V4,k

≥
1
2
‖xk‖

2
K +

1
2

(1
ρ(L)

+
α

β

)∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
−

β

2α
‖xk‖

2
K −

α

2β

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ V4,k

≥ ε9

(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

)
+ V4,k (3.46)

80 Distributed primal–dual first-order and ADMM algorithms

≥ ε9V̂k ≥ 0, (3.47)

where the first inequality holds due to (2.8) and the Cauchy-Schwarz inequality; and the
last inequality holds due to 0 < ε9 < 1. Similarly, we have

Vk ≤ ε8V̂k. (3.48)

From β + κ1 < α and κ1 = 1
2ρ2(L) (2 + 3L2

f), we have

ε1 = (α − β)ρ2(L) −
1
2

(2 + 3L2
f) > 0. (3.49)

From α ≤ κ2β and β > κ3, we have

ε3 ≥
(
β −

1
2
−
κ2

2β

)
−

1
2βρ2(L)

> 0. (3.50)

From α ≤ κ2β and β > κ4, we have

ε5 =
1
4
−

1
2β

(1
β

+
1

ρ2(L)
+
α

β

)
L2

f ≥
1
4
−

1
2β

(1
β

+
1

ρ2(L)
+ κ2

)
L2

f > 0. (3.51)

From (3.49)–(3.51), and 0 < η < min{ ε1
ε2
, ε3
ε4
, ε5
ε6
}, we have

η(ε1 − ηε2) > 0, (3.52)
η(ε3 − ηε4) > 0, (3.53)
η(ε5 − ηε6) > 0. (3.54)

Then, rom (3.52)–(3.54), we have

ε7 > 0 (3.55)

From (3.26), we have

T∑
k=0

Vk+1 ≤

T∑
k=0

Vk −

T∑
k=0

‖xk‖
2
η(ε1−ηε2)K −

T∑
k=0

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(ε3−ηε4)K

−

T∑
k=0

η(ε5 − ηε6)‖ ḡk‖
2 −

T∑
k=0

η

4
‖ ḡ0

k‖
2. (3.56)

Hence, from (3.56), we have

VT+1 + ε7

T∑
k=0

(
‖xk − x̄k‖

2 +
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

K
+ ‖ ḡk‖

2 + ‖ ḡ0
k‖

2
)
≤ V0. (3.57)

From (3.57), (3.55), and (3.47), we know that∑T
k=0(‖xk − x̄k‖

2 + ‖vk + 1
β

g0
k‖

2
K + ‖ ḡk‖

2 + ‖ ḡ0
k‖

2)

T + 1
≤

V0

ε7(T + 1)
, ∀T ∈ N0, (3.58)

3.8. Proofs 81

which yields (3.8) and (3.9).
From (3.57), (3.55), and (3.46), we know that

f (x̄T+1) − f ∗ ≤
V0

n
, ∀T ∈ N0, (3.59)

which gives (3.10).

3.8.2 Proof of Theorem 3.2

In addition to the notations defined in Section 3.8.1, we also denote the following notations.

ε0 =
V0

ε9
, ε = 1 −

ε10

ε8
, ε10 = ηmin

{
ε1 − ηε2, ε3 − ηε4,

ν

2

}
.

From (3.47), we have

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) = ‖xk‖

2
K + n(f (x̄k) − f ∗) ≤ V̂k ≤

Vk

ε9
. (3.60)

From Assumptions 3.2 and 3.4 as well as (2.16), we have that

‖ ḡ0
k‖

2 = n‖∇ f (x̄k)‖2 ≥ 2νn(f (x̄k) − f ∗). (3.61)

From (3.52) and (3.53), we have

ε10 > 0,
ε10

ε8
> 0. (3.62)

Noting that ε3 < β, ε4 > 2β2, and ε8 >
α+β
2β > 1, we have

0 <
ε10

ε8
≤
η(ε3 − ηε4)

ε8
≤

ε2
3

4ε4ε8
<

1
8
. (3.63)

Then, from (3.26), (3.54), and (3.61), we have

Vk+1 ≤ Vk − V̂kηk min
{
ε1 − ηkε2, ε3 − ηkε4,

ν

2

}
. (3.64)

From (3.64), (3.62), and (3.48), we have

Vk+1 ≤ Vk − ε10V̂k ≤ Vk −
ε10

ε8
Vk. (3.65)

From (3.65) and (3.63), we have

Vk+1 ≤
(
1 −

ε10

ε8

)
Vk ≤

(
1 −

ε10

ε8

)k+1
V0. (3.66)

Hence, (3.66) and (3.60) give

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) ≤

V0

ε9

(
1 −

ε10

ε8

)k
, ∀k ∈ N0, (3.67)

which yields (3.11).

82 Distributed primal–dual first-order and ADMM algorithms

3.8.3 Proof of Theorem 3.3

In addition to the notations introduced in Section 3.8.1, we also denote the following
notations.

ĉβ = max
{ χ1

χ2ρ2(L) − ρ(L)
, χ3, χ4

}
, ĉγ = max

{ε4

ε3
,
ε6

ε5
,
ε8 + ε9 + ε10

ε7
,

1
ε15

}
,

χ1 = 2L2
f + 2, χ2 >

ρ(L)
ρ2(L)

, χ3 =
1
4

(
1 +

(
1 + 8χ2 +

8
ρ2(L)

) 1
2
)
,

χ4 =
(
χ2 +

1
ρ2(L)

)
L2

f +
((
χ2 +

1
ρ2(L)

)2
L4

f + 2L2
f

) 1
2
, ε1 =

3
2

+ 2L2
f + βρ(L),

ε2 = (2 + ρ(L2))3L2
f + β2ρ(L) + αβρ(L2), ε3 = αρ2(L) −

1
2
− ε1,

ε4 =
3
2

(3 + ρ(L2))α2ρ(L2) + ε2, ε5 = β −
1
2
−

α

2β2 −
1

2βρ2(L)
,

ε6 =
1
2

(α2 + (7 + 3ρ(L2))β2), ε7 =
1
4
−

1
2β

(1
ρ2(L)

+
α + 1
β

)
L2

f ,

ε8 =
(1
2

+
1
β2

(1
ρ2(L)

+
α

β

)
L f

)
L f , ε9 = 3L2

f , ε10 = 3(2 + ρ(L2))L2
f , ε11 =

1
2
−

1
γ
ε1 −

1
γ2 ε2,

ε12 =
1
2

(1
ρ(L)

+
α

β

)
, ε13 =

1
2

(
ε11 − ε12 + ((ε11 − ε12)2 + 1)

1
2

)
, ε14 =

α + β

2β
+

1
2ρ2(L)

,

ε15 =
1

2ε2

(
− ε1 +

(
ε2

1 + 2 −
1
ε12

) 1
2
)
, ε16 =

1
γ

min
{
ε3 −

1
γ
ε4, ε5 −

1
γ
ε6,

1
4

}
.

To prove Theorem 3.3, the following lemma is used, which presents the general
relations of two consecutive outputs of Algorithm 3.2.

Lemma 3.2. Let {xk} be the sequence generated by Algorithm 3.2. If Assumptions 3.1–3.3
hold and γ > L f , then

Ṽk+1 ≤ Ṽk − ‖xk‖
2
1
γ (ε3−

1
γ ε4)K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

1
γ (ε5−

1
γ ε6)K

−
1

4γ
‖ ḡ0

k‖
2

−
1
γ

(
ε7 −

1
γ
ε8 −

1
γ2 ε9 −

1
γ3 ε10

)
‖ ḡk+1‖

2, ∀k ∈ N0, (3.68)

where

Ṽk = Vk − ‖xk‖
2
1
γ (ε1+ 1

γ ε2)K, Vk =

4∑
i=1

Vi,k, V1,k =
1
2
‖xk‖

2
K, V2,k =

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K
,

V3,k = x>k K
(
vk +

1
β

g0
k

)
, V4,k = n(f (x̄k) − f ∗) = f̃ (x̄k) − f̃ ∗,

and Q = RΛ−1
1 R> ⊗ Ip with matrices R and Λ−1

1 given in Lemma 2.5.

3.8. Proofs 83

Proof. Noting γ > L f , from Remark 3.8, we know that the subproblem (3.15a) is solvable
and xi,k+1 is unique. Then noting first order optimality conditions for convex optimization
problems, we know that the algorithm (3.15) can be rewritten as

xi,k+1 = xi,k − η
(
α

n∑
j=1

Li jx j,k + βvi,k + ∇ fi(xi,k+1)
)
, (3.69a)

vi,k+1 = vi,k + ηβ

n∑
j=1

Li jx j,k+1, ∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, (3.69b)

where η = 1
γ
. We write (3.69) in a compact form

xk+1 = xk − η(αLxk + βvk + gk+1), (3.70a)

vk+1 = vk + ηβLxk+1, ∀x0 ∈ R
np,

n∑
j=1

v j,0 = 0p. (3.70b)

From (3.70), similar to the way to get (3.29), we know that

x̄k+1 = x̄k − η ḡk+1. (3.71)

We have

‖g0
k+1 − g0

k‖
2 = ‖∇ f̃ (x̄k+1) − ∇ f̃ (x̄k)‖2 ≤ L2

f ‖x̄k+1 − x̄k‖
2 = η2L2

f ‖ ḡk+1‖
2, (3.72)

where the first inequality holds since ∇ f̃ is Lipschitz-continuous; and the last equality
holds due to (3.71). Then, we have

‖g0
k − gk+1‖

2 = ‖g0
k − g0

k+1 + g0
k+1 − gk+1‖

2 ≤ 2‖g0
k − g0

k+1‖
2 + 2‖g0

k+1 − gk+1‖
2

≤ 2η2L2
f ‖ ḡk+1‖

2 + 2L2
f ‖xk+1‖

2
K, (3.73)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (3.30) and (3.72). Then, we have

‖ ḡ0
k − ḡk+1‖

2 = ‖H(g0
k − gk+1)‖2 ≤ ‖g0

k − gk+1‖
2 ≤ 2η2L2

f ‖ ḡk+1‖
2 + 2L2

f ‖xk+1‖
2
K, (3.74)

where the first inequality holds due to ρ(H) = 1; and the last inequality holds due to (3.73).
Then, we have

‖xk+1 − xk‖
2
K = η2‖αLxk + βvk + gk+1‖

2
K = η2‖αLxk + βvk + g0

k + gk+1 − g0
k‖

2
K

≤ 3η2(‖αLxk‖
2 + ‖βvk + g0

k‖
2
K + ‖gk+1 − g0

k‖
2)

≤ 3η2(α2ρ(L2)‖xk‖
2
K + ‖βvk + g0

k‖
2
K + 2η2L2

f ‖ ḡk+1‖
2 + 2L2

f ‖xk+1‖
2
K)

= ‖xk‖
2
3η2α2ρ(L2)K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2 K
+ 6η4L2

f ‖ ḡk+1‖
2 + ‖xk+1‖

2
6η2L2

f K, (3.75)

84 Distributed primal–dual first-order and ADMM algorithms

where the first equality holds due to (3.70a); the first inequality holds due to the Cauchy-
Schwarz inequality, (2.5), and ρ(K) = 1; and the last inequality holds due to (2.6) and
(3.73).

From (3.70a), similar to the way to get (3.33), we have

V1,k+1 ≤ V1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2

+
η

2
(1 + 3η)‖gk+1 − g0

k‖
2

− ηβx>k K
(
vk +

1
β

g0
k

)
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

. (3.76)

Then, from (3.76), the Cauchy-Schwarz inequality, (2.6), and (3.73), we have

V1,k+1 ≤ V1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2

+
η

2
(1 + 3η)‖gk+1 − g0

k‖
2

− ηβ(xk − xk+1 + xk+1)>K
(
vk +

1
β

g0
k

)
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

≤ V1,k − ‖xk‖
2
ηαρ2(L)K− η

2 K− 3η2α2
2 ρ(L2)K

+ ‖xk+1‖
2
η(1+3η)L2

f K + η3(1 + 3η)L2
f ‖ ḡk+1‖

2

− ηβx>k+1K
(
vk +

1
β

g0
k

)
+

1
2
‖xk+1 − xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

2η2β2 K
. (3.77)

From (3.70b), similar to the way to get (3.35), we have

V2,k+1 ≤ V2,k + ηx>k+1(βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk+1‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+

(1
β2 +

1
2ηβ

)(1
ρ2(L)

+
α

β

)
‖g0

k+1 − g0
k‖

2. (3.78)

Then, from (3.78), (2.6), (2.8), and (3.72), we have

V2,k+1 ≤ V2,k + ηx>k+1(βK + αL)
(
vk +

1
β

g0
k

)
+ ‖xk+1‖

2
η2β(βρ(L)+αρ(L2))K

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (1

ρ2(L) + α
β)K

+ η
(η
β2 +

1
2β

)(1
ρ2(L)

+
α

β

)
L2

f ‖ ḡk+1‖
2. (3.79)

We have

V3,k+1 = x>k+1K
(
vk+1 +

1
β

g0
k+1

)
= x>k+1K(vk +

1
β

g0
k + ηβLxk+1 +

1
β

(g0
k+1 − g0

k))

= (xk − η(αLxk + βvk + g0
k + gk+1 − g0

k))>K(vk +
1
β

g0
k)

+ x>k+1K
(
ηβLxk+1 +

1
β

(g0
k+1 − g0

k)
)

= x>k (K − ηαL)(vk +
1
β

g0
k) − ηβ

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
− η(gk+1 − g0

k)>K
(
vk +

1
β

g0
k

)
+ ηβx>k+1Lxk+1 +

1
β

x>k+1K(g0
k+1 − g0

k)

3.8. Proofs 85

≤ x>k (K − ηαL)
(
vk +

1
β

g0
k

)
− ηβ

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+
η

2
‖gk+1 − g0

k‖
2 +

η

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

+ ηβx>k+1Lxk+1 +
η

2
‖xk+1‖

2
K +

1
2ηβ2 ‖g

0
k+1 − g0

k‖
2

≤ x>k K(vk +
1
β

g0
k) − ηα(xk − xk+1 + xk+1)>L

(
vk +

1
β

g0
k

)
−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2)K

+ η3L2
f ‖ ḡk+1‖

2 + ηL2
f ‖xk+1‖

2
K + ‖xk+1‖

2
η
2 K+ηβL +

ηL2
f

2β2 ‖ ḡk+1‖
2

≤ V3,k −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2)K

+
η2α2

2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+
ρ(L2)

2
‖xk − xk+1‖

2
K

− ηαx>k+1L
(
vk +

1
β

g0
k

)
+

(
η3 +

η

2β2

)
L2

f ‖ ḡk+1‖
2 + ‖xk+1‖

2
η(1

2 +L2
f)K+ηβL

= V3,k − ηαx>k+1L
(
vk +

1
β

g0
k

)
−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2)K− η2α2

2 K

+
ρ(L2)

2
‖xk+1 − xk‖

2
K +

(
η3 +

η

2β2

)
L2

f ‖ ḡk+1‖
2 + ‖xk+1‖

2
η(1

2 +L2
f)K+ηβρ(L)K, (3.80)

where the second equality holds due to (3.70b); the third equality holds due to (3.70a);
the forth equality holds due to (2.5); the first inequality holds due to the Cauchy-Schwarz
inequality, (2.5), and ρ(K) = 1; the second inequality holds due to (3.72) and (3.73); the
third inequality holds due to the Cauchy-Schwarz inequality; and the last inequality holds
due to (2.6).

From f̃ is smooth and (3.71), similar to the way to get (3.39), we have

V4,k+1 ≤ V4,k −
η

4
(1 − 2ηL f)‖ ḡk+1‖

2 +
η

2
‖ ḡ0

k − ḡk+1‖
2 −

η

4
‖ ḡ0

k‖
2. (3.81)

Then, from (3.81) and (3.74), we have

V4,k+1 ≤ V4,k −
η

4
(1 − 2ηL f − 4η2L2

f)‖ ḡk+1‖
2 + ‖xk+1‖

2
ηL2

f K −
η

4
‖ ḡ0

k‖
2. (3.82)

Then, we have

Vk+1 ≤ Vk − ‖xk‖
2
ηαρ2(L)K− η

2 K− 3η2α2
2 ρ(L2)K

+ ‖xk+1‖
2
η(1+3η)L2

f K + η3(1 + 3η)L2
f ‖ ḡk+1‖

2

+
1
2
‖xk+1 − xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

2η2β2 K
+ ‖xk+1‖

2
η2β(βρ(L)+αρ(L2))K

+
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

η
2β (1

ρ2(L) K+ α
β K)

+ η
(η
β2 +

1
2β

)(1
ρ2(L)

+
α

β

)
L2

f ‖ ḡk+1‖
2

−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2)K− η2α2

2 K
+
ρ(L2)

2
‖xk+1 − xk‖

2
K + (η3 +

η

2β2)L2
f ‖ ḡk+1‖

2

+ ‖xk+1‖
2
η(1

2 +L2
f)K+ηβρ(L)K −

η

4
(1 − 2ηL f − 4η2L2

f)‖ ḡk+1‖
2 + ‖xk+1‖

2
ηL2

f K −
η

4
‖ ḡ0

k‖
2

86 Distributed primal–dual first-order and ADMM algorithms

= Vk − ‖xk‖
2
η(αρ2(L)− 1

2)K−η2 3α2
2 ρ(L2)K

+ ‖xk+1‖
2
ηε1 K+η2(3L2

f +β
2ρ(L)+αβρ(L2))K

−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ηε5 K−η2(α2
2 +2β2)K

+
1 + ρ(L2)

2
‖xk+1 − xk‖

2
K −

η

4
‖ ḡ0

k‖
2

− η(ε7 − ηε8 − 3η2L2
f (1 + η))‖ ḡk+1‖

2

≤ Vk − ‖xk‖
2
η(αρ2(L)− 1

2)K−η2 3α2
2 ρ(L2)K

+ ‖xk+1‖
2
ηε1 K+η2(3L2

f +β
2ρ(L)+αβρ(L2))K −

η

4
‖ ḡ0

k‖
2

+
1 + ρ(L2)

2

(
‖xk‖

2
3η2α2ρ(L2)K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2 K
+ 6η4L2

f ‖ ḡk+1‖
2 + ‖xk+1‖

2
6η2L2

f K

)
−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ηε5 K−η2(α2
2 +2β2)K

− η(ε7 − ηε8 − 3η2L2
f (1 + η))‖ ḡk+1‖

2, (3.83)

where the first inequality holds due to (3.77), (3.79), (3.79), and (3.82); and the second
inequality holds due to (3.75).

Combining and rearranging terms in (3.83) gives (3.68). �

We are now ready to prove Theorem 3.3.
From 1

ρ2(L) (ρ(L)β + χ1) < α, we have α
β
> ρ(L)

ρ2(L) ≥ 1. Then, we know ε12 >
1
2 . Thus,

2 − 1
ε12

> 0. Hence,

ε15 > 0. (3.84)

Then, from 0 < η = 1
γ
< ε15, we have 4ε11ε12 > 1. Hence,

1
2
> ε11 − ε13 > 0. (3.85)

From 1
ρ2(L) (ρ(L)β + χ1) < α, we have

ε3 = αρ2(L) − βρ(L) − 2L2
f − 2 > χ1 − 2L2

f − 2 = 0. (3.86)

Hence, from 0 < η < ε3
ε4

and (3.86), we have

η(ε3 − ηε4) > 0. (3.87)

From α ≤ χ2β and β > χ3, we have

ε5 ≥
(
β −

1
2
−
χ2

2β

)
−

1
2βρ2(L)

> 0. (3.88)

Hence, from 0 < η < ε5
ε6

and (3.88), we have

η(ε5 − ηε6) > 0. (3.89)

From (3.87) and (3.89), we have

ε16 > 0. (3.90)

3.8. Proofs 87

From α ≤ χ2β and β > χ4, we have

ε7 ≥
1
4
−

1
2β

(1
β

+
1

ρ2(L)
+ χ2

)
L2

f > 0. (3.91)

From χ2 > 1, we have χ3 > 1. Thus, β > 1. Thus, η < ε5
ε6
< 2

7β < 2
7 . Hence, from

0 < η < ε7
ε8+ε9+ε10

and (3.91), we have

η(ε7 − ε8η − ε9η
2 − ε10η

3) > η(ε7 − ε8η − ε9η − ε10η) > 0. (3.92)

Noting that β > χ4 >
√

2L f and 0 < ε5 < β, we know γ > ε6
ε5
> ε6

β
> 7β

2 >
7
√

2L f

2 > L f .
Thus, the conditions needed in Lemma 3.2 are all satisfied. Thus, (3.68) holds.

We know

Ṽk =
(1
2
− ε1η − ε2η

2
)
‖xk‖

2
K +

1
2

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

Q+ α
β K

+ x>k K
(
vk +

1
β

g0
k

)
+ V4,k

≥ ε11‖xk‖
2
K + ε12

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
− ε13‖xk‖

2
K −

1
4ε13

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ V4,k

= (ε11 − ε13)
(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

)
+ V4,k (3.93)

≥ (ε11 − ε13)V̂k ≥ 0, (3.94)

where V̂k is defined in (3.45); the first inequality holds due to (2.8) and the Cauchy-Schwarz
inequality; the second equality holds due to ε11 − ε13 = ε12 −

1
4ε13

; and the last inequality
holds due to (3.85). Similarly, we have

Ṽk ≤ Vk ≤ ε14V̂k. (3.95)

From (3.68), (3.92) and K ≥ 0, we know that

Ṽk+1 ≤ Ṽk − ‖xk‖
2
η(ε1−ε3−η(ε2+ε4))K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(ε5−ηε6)K
−
η

4
‖ ḡ0

k‖
2

≤ Ṽk − ε16

(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ ‖ ḡ0

k‖
2
)
. (3.96)

Then, (3.96) yields

T∑
k=0

Ṽk+1 ≤

T∑
k=0

Ṽk − ε16

T∑
k=0

(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ ‖ ḡ0

k‖
2
)
. (3.97)

Then, (3.97) yields

ṼT+1 + ε16

T∑
k=0

(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
+ ‖ ḡ0

k‖
2
)
≤ Ṽ0. (3.98)

88 Distributed primal–dual first-order and ADMM algorithms

From (3.98), (3.90), and (3.94) we know that∑T
k=0(‖xk‖

2
K + ‖vk + 1

β
g0

k‖
2
K + ‖ ḡ0

k‖
2)

T + 1
≤

Ṽ0

ε16(T + 1)
, ∀T ∈ N0, (3.99)

which yields (3.16) and (3.17).
From (3.98), (3.85), (3.90), and (3.93) we know that

f (x̄T+1) − f ∗ ≤
Ṽ0

n
, ∀T ∈ N0, (3.100)

which gives (3.18).

3.8.4 Proof of Theorem 3.4

In addition to the notations defined in Sections 3.8.1 and 3.8.3, we also denote the following
notations.

ε0 =
Ṽ0

ε11 − ε13
, ε = 1 −

ε17

ε14
, ε17 =

1
γ

min
{
ε3 −

1
γ
ε4, ε5 −

1
γ
ε6,

ν

2

}
.

From (3.87) and (3.89), we have

ε17 > 0. (3.101)

Then, from (3.92), (3.45), (3.61), (3.101), and (3.95) we have

Ṽk+1 ≤ Ṽk − ε17V̂k ≤ Ṽk −
ε17

ε14
Ṽk. (3.102)

Noting that ε5 < β, ε6 >
7
2β

2, and ε14 >
α+β
2β > 1, we have

0 < ε17 ≤ η(ε5 − ηε6) ≤
ε2

5

4ε6
<

1
14
. (3.103)

From (3.102), (3.94), and (3.103), we have

Ṽk+1 ≤
(
1 −

ε17

ε14

)
Ṽk ≤

(
1 −

ε17

ε14

)k+1
Ṽ0. (3.104)

Hence, from (3.94) and (3.85), we have

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) = ‖xk‖

2
K + n(f (x̄k) − f ∗) ≤ V̂k ≤

Ṽk

ε11 − ε13
. (3.105)

Hence, (3.104) and (3.105) give

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) ≤

Ṽ0

ε11 − ε13

(
1 −

ε17

ε14

)k
, ∀k ∈ N0, (3.106)

which yields (3.19).

3.8. Proofs 89

3.8.5 Proof of Theorem 3.5

In addition to the notations defined in Sections 3.8.1 and 3.8.3, we also denote the following
notations.

c̆β = max
{ χ̆1

χ2ρ2(L) − ρ(L)
, χ3, χ4

}
, c̆γ = max

{ ε̆4

ε̆3
,
ε6

ε5
,
ε8

ε7
,

1
ε̆15

}
,

χ̆1 =
3
2

L2
f + 1, ε̆11 =

1
2
−

1
γ
ε̆1 −

1
γ2 ε̆2, ε̆13 =

1
2

(
ε̆11 − ε12 + ((ε̆11 − ε12)2 + 1)

1
2

)
,

ε̆15 =
1

2ε̆2

(
− ε̆1 +

(
ε̆2

1 + 2 −
1
ε12

) 1
2
)
, ε̆16 =

1
γ

min
{
ε̆3 −

1
γ
ε̆4, ε5 −

1
γ
ε6,

1
4

}
.

Similar to Lemma 3.2, we have the following lemma, which presents the general
relations of two consecutive outputs of Algorithm 3.3.

Lemma 3.3. Let {xk} be the sequence generated by Algorithm 3.3. If Assumptions 3.1–3.3
hold, then

V̆k+1 ≤ V̆k − ‖xk‖
2
1
γ (ε̆3−

1
γ ε̆4)K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

1
γ (ε5−

1
γ ε6)K

−
1

4γ
‖ ḡ0

k‖
2 −

1
γ

(
ε7 −

1
γ
ε8

)
‖ ḡk‖

2,

(3.107)

where

V̆k = Vk − ‖xk‖
2
1
γ (ε̆1+ 1

γ ε̆2)K, ε̆1 =
1
2

+ βρ(L), ε̆2 = β2ρ(L) + αβρ(L2),

ε̆3 =
1
2

(2αρ2(L) − 1 − 3L2
f) − ε̆1, ε̆4 =

3
2

(2 + ρ(L2))(α2ρ(L2) + L2
f) + ε̆2.

Proof. This proof is similar to the proof of Lemma 3.2 with some modifications.
We rewrite the distributed linearized ADMM algorithm (3.21) into the compact form

xk+1 = xk − η(αLxk + βvk + gk), (3.108a)

vk+1 = vk + ηβLxk+1, ∀x0 ∈ R
np,

n∑
j=1

v j,0 = 0p. (3.108b)

From (3.108), we know that (3.29)–(3.31) still hold. Thus, (3.40) also holds.
From (3.30) and ρ(H) = 1, similar to the way to get (3.75), we have

‖xk+1 − xk‖
2
K ≤ ‖xk‖

2
3η2(α2ρ(L2)+L2

f)K +
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

3η2β2 K
. (3.109)

From (3.108a) and (3.30), similar to the way to get (3.77), we have

V1,k+1 ≤ V1,k − ‖xk‖
2
η
2 (2αρ2(L)−1−L2

f)K− 3η2
2 (α2ρ(L2)+L2

f)K

− ηβx>k+1K
(
vk +

1
β

g0
k

)
+

1
2
‖xk+1 − xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

2η2β2 K
. (3.110)

90 Distributed primal–dual first-order and ADMM algorithms

From (3.108b) and (3.32), similar to the way to get (3.79), we have

V2,k+1 ≤ V2,k + ηx>k+1(βK + αL)(vk +
1
β

g0
k) + ‖xk+1‖

2
η2β(βρ(L)+αρ(L2))K

+ ‖vk +
1
β

g0
k‖

2
η

2β (1
ρ2(L) + α

β)K + η(
η

β2 +
1

2β
)(

1
ρ2(L)

+
α

β
)L2

f ‖ ḡk‖
2. (3.111)

From (3.108), (3.29), (3.30), and (3.32), similar to the way to get (3.80), we have

V3,k+1 ≤ V3,k − ηαx>k+1L(vk +
1
β

g0
k) − ‖vk +

1
β

g0
k‖

2
η(β− 1

2)K− η2α2
2 K

+
ρ(L2)

2
‖xk+1 − xk‖

2
K + ‖xk‖

2
η
2 L2

f K + ‖xk+1‖
2
η
2 (1+2βρ(L))K +

ηL2
f

2β2 ‖ ḡk‖
2. (3.112)

From (3.109)–(3.112) and (3.40), similar to the way to get (3.68), we know that (3.107)
holds. �

Finally, similar to the way to get (3.99) and (3.100), we have∑T
k=0(‖xk‖

2
K + ‖vk + 1

β
g0

k‖
2
K + ‖ ḡ0

k‖
2)

T + 1
≤

V̆0

ε̆16(T + 1)
, ∀T ∈ N0, (3.113)

f (x̄T+1) − f ∗ ≤
V̆0

n
, ∀T ∈ N0. (3.114)

From (3.113), we have (3.22) and (3.23).
From (3.114), we have (3.24).

3.8.6 Proof of Theorem 3.6

In addition to the notations defined in Sections 3.8.1, 3.8.3, and 3.8.5, we also denote the
following notations.

ε̆0 =
V̆0

ε̆11 − ε̆13
, ε̆ = 1 −

ε̆17

ε14
, ε̆17 =

1
γ

min
{
ε̆3 −

1
γ
ε̆4, ε5 −

1
γ
ε6,

ν

2

}
.

Similar to they way to get (3.106), we have

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) ≤

V̆0

ε̆11 − ε̆13

(
1 −

ε̆17

ε14

)k
, ∀k ∈ N0, (3.115)

which yields (3.25)

Chapter 4

Distributed primal–dual SGD optimization
algorithm

In this chapter, we consider the distributed nonconvex optimization problem with stochastic
gradient feedback, i.e., each agent is only able to collect stochastic gradients of its local
cost function. We propose a distributed primal–dual stochastic gradient descent (SGD)
algorithm, suitable for arbitrarily connected communication networks and any smooth cost
functions. We show that the proposed algorithm converges to a stationary point with the
linear speedup convergence rate O(1/

√
nT) for smooth nonconvex cost functions, and to

a global optimum with the linear speedup convergence rate O(1/(nT)) when the global
cost function satisfies the P–Ł condition in addition, where n and T are the number of
agents and the total number of iterations, respectively. We also show that the output of
the proposed algorithm with constant parameters linearly converges to a neighborhood of
a global optimum. We finally demonstrate through numerical simulations the efficiency
of our algorithm in comparison with the baseline centralized SGD and recently proposed
distributed SGD algorithms.

This chapter is organized as follows. Section 4.1 gives the background. Section 4.2
introduces the problem formulation and assumptions. Section 4.3 presents the distributed
primal–dual SGD algorithm and analyzes its convergence properties. Simulations are given
in Section 4.4. Concluding remarks are offered in Section 4.5. To improve the readability,
all the proofs can be found in Section 4.6

4.1 Introduction

In general, SGD algorithms are suitable for scenarios where explicit expressions of the
gradients are unavailable or at least difficult to obtain. For example, in empirical risk
minimization, the actual gradient hass to be calculated from the entire data set, which
results in a heavy computational burden. A stochastic gradient can be calculated from a
randomly selected subset of the data and is often an efficient way to replace the actual
gradient. Other examples when SGD algorithms are suitable include scenarios where data
are arriving sequentially such as in online learning [244].

91

92 Distributed primal–dual SGD optimization algorithm

When the communication network is a star graph, various parallel SGD algorithms
have been proposed. A potential performance bottleneck of such algorithms lies on the
communication burden of the master. To overcome this issue, a promising strand of
research is combining parallel SGD algorithms with communication reduction approaches,
e.g., asynchronous parallel SGD algorithms [245–249], gradient compression based
parallel SGD algorithms [246,250–253], periodic averaging based parallel SGD algorithms
[33, 251, 252, 254–257], and parallel SGD algorithm with dynamic batch sizes [258].
Convergence properties of these algorithms have been analyzed in detail. In particular,
in [33,251,255,258], the linear speedup convergence rate O(1/

√
nT) has been established

for smooth nonconvex cost functions, where n and T are the number of agents and the total
number of iterations, respectively. In [257,258], the convergence rate has been improved to
O(1/(nT)) when the global cost function satisfies the P–Ł condition, which also achieves a
linear speedup. In addition to the star architecture restriction, aforementioned parallel SGD
algorithms require certain restrictions on the cost functions, such as bounded gradients of
the local cost functions or bounded difference between the gradients of the local and global
cost functions.

Distributed algorithms executed over arbitrarily connected communication networks
have been suggested to overcome communication bottlenecks for parallel SGD algorithms.
Various distributed SGD algorithms have been proposed, e.g., synchronous distributed
SGD algorithms [31, 33, 129, 130], asynchronous distributed SGD algorithms [131, 132],
compression based distributed SGD algorithms [133–136], and periodic averaging based
distributed SGD algorithm [137]. Convergence properties of these algorithms have been
analyzed and the linear speedup convergence rate O(1/

√
nT) has been established for

smooth nonconvex cost functions in [31, 33, 132, 133, 135–137]. However, similar to
aforementioned parallel SGD algorithms, these distributed algorithms require restrictive
assumptions on the cost functions. In order to remove these restrictions, the authors of [32]
proposed a variant of the distributed SGD algorithm proposed in [31], named D2, in which
each agent stores the stochastic gradient and its local model in last iteration and linearly
combines them with the current stochastic gradient and local model. For this algorithm
the authors established the linear speedup convergence rate O(1/

√
nT), but they required

that the eigenvalues of the mixing matrix associated with the communication network
are strictly greater than −1/3. The authors of [138, 139] proposed distributed stochastic
gradient tracking algorithms suitable for arbitrarily connected communication networks.
However, these algorithms only achieve an O(1/

√
T) convergence rate, which is not a

speedup. Moreover, gradient tracking algorithms have the common potential drawback that
in order to track the global gradient, at each iteration each agent needs to communicate one
additional p-dimensional variable with its neighbors. This results in heavy communication
burden when p is large. Note that all aforementioned distributed SGD algorithms converge
to stationary points, which may be local or global optima, or saddle points. None of existing
studies on distributed SGD algorithms consider finding global optima when the global cost
function satisfies some additional properties, such as the P–Ł condition studied for the
parallel algorithms in [257, 258].

Noting above, two core theoretical questions with important practical relevance arise.

4.2. Distributed nonconvex optimization with stochastic gradient feedback 93

(Q4.1) Are there any distributed SGD algorithms that not only are suitable for arbitrarily
connected communication networks and any smooth cost functions, but also find
stationary points with the linear speedup convergence rate O(1/

√
nT)?

(Q4.2) If the P–Ł condition holds in addition, can the above SGD algorithms find global
optima with the linear speedup convergence rate O(1/(nT))?

This chapter provides positive answers to the above two questions. More specifically,
the contributions of this chapter are summarized as follows.

(C4.1) We propose a distributed primal–dual SGD algorithm (Algorithm 4.1), which is
suitable for arbitrarily connected communication networks and any smooth (possibly
nonconvex) cost functions.

(C4.2) We show in Corollary 4.1 that our algorithm finds a stationary point with the linear
speedup convergence rate O(1/

√
nT) for smooth nonconvex cost functions, thus

(Q5.1) is answered. Compared with [31–33, 132, 133, 135–137, 251, 255, 258], we
achieve the same convergence rate but under weaker assumptions related to network
architectures and/or cost functions, and compared with [138, 139], we not only
achieve linear speedup but also just use half communication in each iteration.

(C4.3) We show in Theorem 4.3 that our algorithm finds a global optimum with the linear
speedup convergence rate O(1/(nT)) when the global cost function satisfies the P–
Ł condition, thus (Q5.2) is answered. Compared with [136, 140, 141, 257–259] ,
we achieve the same convergence rate but under weaker assumptions related to
network architectures and/or cost functions, and compared with [129,252,260–264],
we not only establish linear speedup but also relax the strong convexity by the P–Ł
condition.

(C4.4) We show in Theorems 4.4 and 4.5 that the output of our algorithm with constant
parameters linearly converges to a neighborhood of a global optimum when the
global cost function satisfies the P–Ł condition. Compared with [129, 264–267],
which used the strong convexity assumption, we achieve the similar convergence
result under weaker assumptions on the cost function.

Table 4.1 compares this chapter with other SGD optimization algorithms.

4.2 Distributed nonconvex optimization with stochastic gradient
feedback

Consider a network of n agents, each of which has a local cost function fi : Rp → R. All
agents collaborate to solve the optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x). (4.1)

94 Distributed primal–dual SGD optimization algorithm

Table 4.1: Comparison of Chapter 4 to some related SGD optimization algorithms.

Reference Problem type Extra assumption Communication strategy Communication
rounds Convergence rate

[251] Nonconvex Bounded ‖∇ fi − ∇ f ‖ Star graph, one quantized variable O(n5/4T 3/4) O(1/
√

nT)

[252]
Nonconvex

Identical ∇ fi Star graph, one quantized variable O(T)
O(1/

√
T)

Strongly convex O(1/T)

[255] Nonconvex Bounded ‖∇ fi‖ Star graph, one variable O(n3/4T 3/4) O(1/
√

nT)

Star graph, two variables O(n3/4T 3/4)
[33] Nonconvex Bounded ‖∇ fi − ∇ f ‖

Connected graph, two variables O(T)
O(1/

√
nT)

[257] P–Ł condition Identical ∇ fi Star graph, one variable O((nT)1/3) O(1/(nT))

Nonconvex O(
√

nT log(T/n)) O(1/
√

nT)
[258]

P–Ł condition

Identical ∇ fi,
exponentially

increasing batch size
Star graph, one variable

O(log(T)) O(1/(nT))

[129]
Nonconvex

Bounded ‖∇ fi‖ Connected graph, one variable O(T)
O(1/T θ), ∀θ ∈ (0, 0.5)

Strongly convex O(1/T);
linearly to a neighbor

[31] Nonconvex Bounded ‖∇ fi − ∇ f ‖ Connected graph, one variable O(T) O(1/
√

nT)

[132] Nonconvex Bounded ‖∇ fi − ∇ f ‖ Uniformly jointly strongly
connected digraph, one variable O(T) O(1/

√
nT)

[133] Nonconvex Bounded ‖∇ fi − ∇ f ‖ Connected graph,
one compressed variable O(T) O(1/

√
nT)

[135] Nonconvex Bounded ‖∇ fi‖
Strongly connected digraph,

one quantized variable O(T) O(1/
√

nT)

Nonconvex O(1/
√

nT)
[136]

Strongly convex
Bounded ‖∇ fi‖

Connected graph,
one compressed variable Event-triggered

O(1/(nT))

[137] Nonconvex Identical ∇ fi Connected graph, one variable O(n3/2
√

T) O(1/
√

nT)

[32] Nonconvex

The eigenvalues of
the mixing matrix
are strictly greater

than −1/3

Connected graph, one variable O(T) O(1/
√

nT)

[138, 139] Nonconvex No Connected graph, two variables O(T) O(1/
√

T)

[259] Strongly convex Bounded ‖∇ fi‖ Star graph, one variable O(
√

T/n) O(1/(nT))

[140] Strongly convex Bounded ‖∇ fi‖
Connected graph,

one compressed variable O(T) O(1/(nT))

[141] Strongly convex No Connected graph, two variables O(T) O(1/(nT))

[260] Strongly convex Identical ∇ fi Connected graph, one variable O(T) O(1/T)

[261] Strongly convex No Connected graph, one variable O(
√

T) O(1/T)

[262] Strongly convex Bounded ‖∇ fi‖
Uniformly jointly strongly

connected digraph, one variable O(T) O(1/T)

[263] Strongly convex No Connected graph in expectation,
one variable O(T) O(1/T)

[264] Strongly convex No Connected graph, one variable O(T) O(1/T);
linearly to a neighbor

[265] Strongly convex No Connected graph, one variable O(T) Linearly to a neighbor

[266] Strongly convex No Connected graph, two variables O(T) Linearly to a neighbor

[267] Strongly convex No Strongly connected digraph,
two variables O(T) Linearly to a neighbor

Nonconvex O(1/
√

nT)

O(1/(T θ)), ∀θ ∈ (0, 1);
linearly to a neighbor

This
chapter P–Ł condition

No Connected graph, one variable O(T)

O(1/(nT))

4.2. Distributed nonconvex optimization with stochastic gradient feedback 95

This is the same as the distributed nonconvex optimization problem (3.1). However, in
this chapter, we consider the case where each agent is only able to collect the stochastic
gradients rather than the actual gradient of its local cost function. Specifically, at each
iteration k and given any x ∈ Rp, each agent i knows gi(x, ξi,k) which is a stochastic
estimation of ∇ fi(x), where ξi,k is a random variable.

Based on the definitions introduced in Chapter 2, the following assumptions are made.

Assumption 4.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 4.2. The set X∗ is nonempty and f ∗ > −∞, where X∗ and f ∗ denote the
optimal set and the minimum function value of the optimization problem (4.1), respectively.

Assumption 4.3. Each local cost function fi(x) is smooth with constant L f > 0.

Assumption 4.4. The global cost function f (x) satisfies the P–Ł condition with constant
ν > 0.

Assumption 4.5. The random variables {ξi,k, i ∈ [n], k ∈ N0} are independent of each
other.

Assumption 4.6. The stochastic gradient gi(x, ξi,k) is unbiased, i.e., for all i ∈ [n], k ∈ N0,
and x ∈ Rp,

Eξi,k [gi(x, ξi,k)] = ∇ fi(x). (4.2)

Assumption 4.7. The stochastic gradient gi(x, ξi,k) has bounded variance, i.e., there exists
a constant σ such that for all i ∈ [n], k ∈ N0, and x ∈ Rp,

Eξi,k [‖gi(x, ξi,k) − ∇ fi(x)‖2] ≤ σ2. (4.3)

Remark 4.1. Assumptions 4.5 and 4.6 are standard in the study of using SGD methods
to solve optimization problems. The bounded variance assumption (Assumption 4.7) is
weaker than the bounded second moment (or bounded gradient) assumption made in [129,
130, 135, 136, 140, 143, 245–247, 249, 253, 255, 259, 262]. Moreover, note that we make
no assumption on the boundedness of the deviation between the gradients of local cost
functions. In other words, we do not assume that 1

n
∑n

i=1 ‖∇ fi(x) − ∇ f (x)‖2 is uniformly
bounded, which is commonly done in studies of deep learning, e.g., [31, 33, 131–133, 251,
255]. Also, we do not assume that the mean of each local stochastic gradient is the gradient
of the global cost function, i.e., Eξ[gi(x, ξ)] = ∇ f (x), ∀x ∈ Rp, ∀i ∈ [n], which is commonly
assumed in studies of empirical risk minimization and stochastic optimization, e.g., [134,
137, 248, 250, 252, 254, 256–258, 260].

Our goal in this chapter is to answer (Q4.1) and (Q4.2), i.e., solve the following
problem.

Problem 4.1. Propose a distributed SGD algorithm for the nonconvex optimization
problem (4.1) such that stationary points or global optima can be found at linear speedup
convergence rates.

96 Distributed primal–dual SGD optimization algorithm

Algorithm 4.1 Distributed Primal–Dual SGD Algorithm

1: Input: parameters {αk}, {βk}, {ηk} ⊆ (0,+∞).
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive x j,k from j ∈ Ni;
6: Sample stochastic gradient gi(xi,k, ξi,k);
7: Update xi,k+1 by (4.4a);
8: Update vi,k+1 by (4.4b).
9: end for

10: end for
11: Output: {xk}.

4.3 Distributed primal–dual SGD algorithm

In this section, we propose a distributed SGD algorithm and analyze its convergence
properties.

4.3.1 Algorithm description

Based on the distributed primal–dual FO algorithm (3.7), we propose the distributed
primal–dual SGD algorithm

xi,k+1 = xi,k − ηk

(
αk

n∑
j=1

Li jx j,k + βkvi,k + gu
i,k

)
, (4.4a)

vi,k+1 = vi,k + ηkβk

n∑
j=1

Li jx j,k, ∀xi,0 ∈ R
p, vi,0 = 0p, ∀i ∈ [n], (4.4b)

where ηk > 0 is the stepsize at iteration k, αk > 0 and βk > 0 are the values of the parameters
α and β at iteration k, respectively, gu

i,k = gi(xi,k, ξi,k) is the stochastic gradient of fi at xi,k,
and ξi,k is a random variable.

We present the distributed stochastic gradient primal–dual algorithm (4.4) in pseudo-
code as Algorithm 4.1.

It should be pointed out that {αk}, {βk}, {ηk}, xi,0, vi,0, and vi,1 in Algorithm 4.1 are
deterministic, while {xi,k}k≥1 and {vi,k}k≥2 are random variables generated by Algorithm 4.1.
Let Fk denote the σ-algebra generated by the random variables ξ1,k, . . . , ξn,k and let Fk =⋃k

s=1 Fs. It is straightforward to see that xi,k and vi,k+1, i ∈ [p] depend on Fk−1 and are
independent of Fs for all s ≥ k.

4.3.2 Convergence analysis

In this section, we analyze the convergence rate of Algorithm 4.1.

4.3. Distributed primal–dual SGD algorithm 97

Find stationary points

Let us consider the case when Algorithm 4.1 is able to find stationary points. We have the
following convergence results.

Theorem 4.1. Suppose Assumptions 4.1–4.3 and 4.5–4.7 hold. Let {xk} be the sequence
generated by Algorithm 4.1 with

αk = κ1βk, βk = β, ηk =
κ2

βk
, ∀k ∈ N0, (4.5)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), and β ≥ c0(κ1, κ2) with c0(κ1, κ2), c1, c2(κ1) > 0 defined in
Appendix 4.6.2. Then, for any T ∈ N+,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]

= O(
1
T

) + O(
1
β2), (4.6a)

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = O(
β

κ2T
) + O(

κ2

nβ
) + O(

1
T

) + O(
1
β2), (4.6b)

E[f (x̄T)] − f ∗ = O(1) + O(
T

nβ2) + O(
T
β3), (4.6c)

where x̄k = 1
n
∑n

i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (4.6a)–(4.6c) and the proof are
given in Appendix 4.6.2. It should be highlighted that the omitted constants in the first
two terms in the right-hand side of (4.6b) do not depend on any parameters related to the
communication network. �

Noting the right-hand side of (4.6b), the linear speedup in the number of agents can be
established if we set β = κ2

√
T/
√

n, as shown in the following.

Corollary 4.1 (Linear speedup). Under the same assumptions as in Theorem 4.1, let β =

κ2
√

T/
√

n. Then, for any T > max{n(c0(κ1, κ2)/κ2)2, n3},

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]

= O(
n
T

), (4.7a)

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = O(
1
√

nT
) + O(

n
T

), (4.7b)

E[f (x̄T)] − f ∗ = O(1). (4.7c)

Remark 4.2. It should be highlighted that the omitted constants in the first term in the
right-hand side of (4.7b) do not depend on any parameters related to the communication
network. The same linear speedup result as in (4.7b) was also established by the
SGD algorithms proposed in [31–33, 132, 133, 135–137, 251, 255, 258]. However, in

98 Distributed primal–dual SGD optimization algorithm

[31, 33, 132, 133, 251], the additional assumption that the deviation between the gradients
of local cost functions is bounded was made; in [135, 136, 255], it was required that each
local stochastic gradient has bounded second moment; in [137, 258], it was assumed that
the mean of each local stochastic gradient is the gradient of the global cost function;
and in [32], it was required that the eigenvalues of the mixing matrix are strictly greater
than −1/3. Moreover, the algorithms proposed in [251, 258] are restricted to a star
graph; the distributed momentum SGD algorithm proposed in [33] requires each agent i
to communicate one additional p-dimensional variable besides the communication of
xi,k with its neighbors at each iteration; and the algorithm proposed in [258] requires
an exponentially increasing batch size, which is not favorable in practice. Under the
same conditions, the well-known O(1/

√
T) convergence rate, which is not a speedup,

was achieved by the distributed stochastic gradient tracking algorithm proposed in
[138, 139]. Moreover, similar to the distributed momentum SGD algorithm proposed in
[33], one potential drawback of the distributed stochastic gradient tracking algorithms
is that at each iteration each agent needs to communicate one additional variable. The
potential drawbacks of the results stated in Corollary 4.1 are that (i) we do not consider
communication efficiency, which was considered in [133, 135–137, 251, 255, 258]; and
(ii) we use time-invariant undirected graphs rather than directed graphs as considered in
[132,135]. We leave the extension to the time-varying directed graphs with communication
efficiency as future research directions.

Find global optima

Let us next consider cases when Algorithm 4.1 finds global optima. We have the following
global convergence results.

Theorem 4.2. Suppose Assumptions 4.1–4.7 hold. For any given T ≥ (c0(κ1, κ2)/κ2)1/θ, let
{xk, k ∈ [T]} be the output generated by Algorithm 4.1 with

αk = κ1βk, βk = κ2(T + 1)θ, ηk =
κ2

βk
, ∀k ≤ T, (4.8)

where θ ∈ (0, 1), κ1 > c1, κ2 ∈ (0, c2(κ1)). Then,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
1

T 2θ), (4.9a)

E[f (x̄T) − f ∗] = O(
1

nT θ
) + O(

1
T 2θ). (4.9b)

Proof. The explicit expressions of the right-hand sides of (4.9a) and (4.9b), and the proof
are given in Appendix 4.6.3. It should be highlighted that the omitted constants in the
first term in the right-hand side of (4.9b) do not depend on any parameters related to the
communication network. �

From Theorem 4.2, we see that the convergence rate is strictly greater than O(1/(nT)).
In the following we show that the linear speedup convergence rate O(1/(nT)) can be

4.3. Distributed primal–dual SGD algorithm 99

achieved if the P–Ł constant ν is known in advance and each f ∗i > −∞, where f ∗i =

minx∈Rp fi(x). The total number of iterations T is not needed.

Theorem 4.3 (Linear speedup). Suppose Assumptions 4.1–4.7 hold, and the P–Ł constant
ν is known in advance, and each f ∗i > −∞. Let {xk} be the sequence generated by
Algorithm 4.1 with

αk = κ1βk, βk = κ0(k + t1), ηk =
κ2

βk
, ∀k ∈ N0, (4.10)

where κ0 ∈ [ĉ0νκ2/4, νκ2/4), κ1 > c1, κ2 ∈ (0, ĉ2(κ1)), and t1 > ĉ3(κ0, κ1, κ2) with ĉ0 ∈ (0, 1)
being a constant, ĉ2(κ1) and ĉ3(κ0, κ1, κ2) defined in Appendix 4.6.4. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
1

T 2), (4.11a)

E[f (x̄T) − f ∗] = O(
1

nT
) + O(

1
T 2). (4.11b)

Proof. The explicit expressions of the right-hand sides of (4.11a) and (4.11b), and the
proof are given in Appendix 4.6.4. It should be highlighted that the omitted constants in
the first term in the right-hand side of (4.11b) do not depend on any parameters related to
the communication network. �

Remark 4.3. It has been shown in [143] that O(1/T) convergence rate is optimal
for centralized strongly convex optimization. This rate has been established by various
distributed SGD algorithms when each local cost function is strongly convex, e.g., [129,
252, 260–264]. In contrast, the linear speedup convergence rate O(1/(nT)) established in
Theorem 4.3 only requires that the global cost function satisfies the P–Ł condition, but
no convexity assumption is required neither on the global cost function nor on the local
cost functions. The SGD algorithms in [136, 140, 141, 257–259] also achieved this linear
speedup convergence rate. However, the algorithms in [257–259] are restricted to a star
graph, while our algorithm is applicable to an arbitrarily connected graph. Moreover,
[257, 258] assumed that the mean of each local stochastic gradient is the gradient of the
global cost function, and T has to be known to choose the algorithm parameters. The
algorithm in [258] furthermore required an exponentially increasing batch size, which is
not favorable in practice. In [259], it was assumed that the global cost function is strongly
convex. In [136, 259], it was assumed that each local stochastic gradient has bounded
second moment. In [136,140,141], it was assumed that each local cost function is strongly
convex. It is one of our future research directions to achieve linear speedup with reduced
communication rounds and communication efficiency for an arbitrarily connected graph.

Theorem 4.3 show that the convergence rate to a global optimum is sublinear when
we allow the algorithm parameters to be time-varying. The following theorem establishes
that the output of Algorithm 4.1 with constant algorithm parameters linearly converges to
a neighborhood of a global optimum.

100 Distributed primal–dual SGD optimization algorithm

Theorem 4.4. Suppose Assumptions 4.1–4.7 hold. Let {xk} be the sequence generated by
Algorithm 4.1 with

αk = α = κ1β, βk = β, ηk = η =
κ2

β
, ∀k ∈ N0, (4.12)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), and β ≥ c0(κ1, κ2) with c0(κ1, κ2), c1, c2(κ1) > 0 defined in
Appendix 4.6.2. Then,

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗

]
≤ (1 − ηε)kc4 + c5ησ

2, ∀k ∈ N+, (4.13)

where ε ∈ (0, 1/η), c4, c5 > 0 are constants defined in Appendix 4.6.5.

Proof. The proof is given in Appendix 4.6.5. �

Remark 4.4. It should be highlighted that we do not need to know the P–Ł constant ν
in advance. Similar convergence result as stated in (4.13) was achieved by the distributed
SGD algorithms proposed in [129, 264–267] when each local cost function is strongly
convex, which obviously is stronger than the P–Ł condition assumed in Theorem 4.4. In
addition to the strong convexity condition, in [129], it was also assumed that each local
cost function is Lipschitz-continuous. Some information related to the Lyapunov function
and global parameters, which may be difficult to get, were furthermore needed to design
the stepsize. Moreover, in [264–267], the strong convexity constant was needed to design
the stepsize and in [266, 267], a p-dimensional auxiliary variable, which is used to track
the global gradient, was communicated between agents. The potential drawbacks of the
results stated in Theorem 4.4 are that (i) we use undirected graphs rather than directed
graphs as considered in [267]; and (ii) we do not analyze the robustness level to gradient
noise as [264] did. We leave the extension to the (time-varying) directed graphs and the
robustness level analysis as future research directions.

The unbiased assumption, i.e., Assumption 4.6, can be removed, as shown in the
following.

Theorem 4.5 (Biased SGD). Suppose Assumptions 4.1–4.5 and 4.7 hold. Let {xk} be the
sequence generated by Algorithm 4.1 with

αk = α = κ1β, βk = β, ηk = η =
κ2

β
, ∀k ∈ N0, (4.14)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), and β ≥ c̆0(κ1, κ2) with c̆0(κ1, κ2) > 0 and c1, c2(κ1) > 0
defined in Appendices 4.6.6 and 4.6.2, respectively. Then,

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗

]
≤ (1 − ηε)kc4 + c̆5σ

2, ∀k ∈ N+, (4.15)

where ε ∈ (0, 1/η), c4 > 0 and c̆5 > 0 are constants defined in Appendices 4.6.5 and 4.6.6,
respectively.

4.4. Simulations 101

1

2 3

4

5

6

7

8

910

Figure 4.1: Communication network in NN experiment.

Proof. The proof is given in Appendix 4.6.6. �

Remark 4.5. By comparing (4.13) with (4.15), we can see that no matter the unbiased
assumption holds or not, the output of Algorithm 4.1 with constant algorithm parameters
linearly converges to a neighborhood of a global optimum, but the size of neighborhood is
different. Specifically, in (4.13) the size of neighborhood is in an order of O(η), while it is
O(1) in (4.15).

4.4 Simulations

In this section, we evaluate the performance of the proposed distributed primal–dual SGD
algorithm through numerical simulations.

4.4.1 Training of neural networks

We consider the training of neural networks (NN) for image classification tasks of the
database MNIST [268]. The same NN is adopted as in [130] for each agent and the
communication graph is generated randomly. The communication network is shown in
Figure 4.1 and the corresponding Laplacian matrix L is given in (4.16). The corresponding
mixing matrix W is constructed by metropolis weight, which is given in (4.17).

We compare our proposed distributed primal–dual SGD algorithm with time-varying
and fixed parameters (DPD-SGD-T and DPD-SGD-F) with state-of-the-art algorithms:
distributed momentum SGD algorithm (DM-SGD) [33], distributed SGD algorithm (D-
SGD-1) [31, 129], distributed SGD algorithm (D-SGD-2) [130], D2 [32], distributed
stochastic gradient tracking algorithm (D-SGT-1) [138,267], distributed stochastic gradient
tracking algorithm (D-SGT-2) [139, 266], and the baseline centralized SGD algorithm (C-
SGD). We list all the parameters1 we choose in the NN experiment for each algorithm in
Table 4.2.

1Note: the parameter names are different in each reference.

102 Distributed primal–dual SGD optimization algorithm

L =

1 −1 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0
0 −1 3 −1 0 0 −1 0 0 0
0 −1 −1 4 −1 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 −1 −1 2 0 0 0 0
0 0 −1 0 0 0 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 1

. (4.16)

W =

3/4 1/4 0 0 0 0 0 0 0 0
1/4 3/10 1/4 1/5 0 0 0 0 0 0
0 1/4 3/10 1/5 0 0 1/4 0 0 0
0 1/5 1/5 1/5 1/5 1/5 0 0 0 0
0 0 0 1/5 7/15 1/3 0 0 0 0
0 0 0 1/5 1/3 7/15 0 0 0 0
0 0 1/4 0 0 0 5/12 1/3 0 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 0 0 1/3 2/3

. (4.17)

Table 4.2: Parameters in each algorithm in the NN experiment.

Algorithm ηk αk βk

DPD-SGD-T 0.08/k10−5
4k10−5

3k10−5

DPD-SGD-F 0.03 5 20

DM-SGD [33] 0.1 7 0.8

D-SGD-1 [31, 129] 0.1 7 7

D-SGD-2 [130] 7 0.1/(10−5k + 1) 0.2/(10−5k + 1)0.3

D2 [32] 0.01 7 7

D-SGT-1 [138, 267] 0.01 7 7

D-SGT-2 [139, 266] 0.01 7 7

C-SGD 0.1 7 7

4.4. Simulations 103

100 101 102 103 104 105 106
10-6

10-4

10-2

100

102

Figure 4.2: Performance of SGD optimization algorithms in the NN experiment:
Evolutions of empirical risk.

We demonstrate the result in terms of the empirical risk loss [269], which is given as

R(z) = −
1
n

n∑
i=1

1
mn

mn∑
j=1

9∑
k=0

(tk ln yk(x, z) + (1 − tk) ln(1 − yk(x, z)))

where mn indicates the size of data set for each agent, tk denotes the target (ground truth)
of digit k corresponding to a single image, x is a single image input, z = (z(1), z(2)) with
z(1) and z(2) being the weights in the 2 layers separately, and yk ∈ [0, 1] is the output which
expresses the probability of digit k = 0, . . . , 9. The mapping from input to output is given
as:

yk(x, z) = σ

 50∑
j=0

z(2)
k, jσ

28×28∑
i=0

z(1)
j,i xi

 ,

where σ(s) = 1
1+exp(−s) is the sigmoid function.

Figure 4.2 shows that the proposed distributed primal–dual SGD algorithm with time-
varying parameters converges almost as fast as the distributed SGD algorithm in [31, 129]
and faster than the distributed SGD algorithms in [32, 130, 138, 139, 266, 267] and the
centralized SGD algorithm. Note that our algorithm converges slower than the distributed
momentum SGD algorithm [33]. This is reasonable since that algorithm is an accelerated
algorithm with extra requirement on the cost functions, i.e., the deviations between the

104 Distributed primal–dual SGD optimization algorithm

gradients of local cost functions is bounded, and it requires each agent to communicate
two p-dimensional variables with its neighbors at each iteration. The slope of the curves
are however almost the same. The accuracy of each algorithm is given in Table 4.3. We can
see that the proposed distributed primal–dual SGD algorithm with time-varying parameters
has almost the same accuracy as the distributed momentum SGD algorithm [33], which is
better than other algorithms.

Table 4.3: Accuracy of each algorithm in the NN experiment.

Algorithm Accuracy

DPD-SGD-T 93.04%

DPD-SGD-F 92.76%

DM-SGD [33] 93.44%

D-SGD-1 [31, 129] 92.96%

D-SGD-2 [130] 92.88%

D2 [32] 90.44%

D-SGT-1 [138, 267] 92.88%

D-SGT-2 [139, 266] 92.96%

C-SGD 93%

4.4.2 Training of convolutional neural networks

Let us consider the training of convolutional neural networks (CNNs). We build a CNN
model for each agent with five 3×3 convolutional layers using ReLU as activation function,
one average pooling layer with filters of size 2×2, one sigmoid layer with dimension 360,
another sigmoid layer with dimension 60, one softmax layer with dimension 10. In this
experiment, we use the whole MNIST data set. We use the same communication graph as
in above NN experiment. Each agent is assigned 6000 data points randomly. We set the
batch size as 20, which means at each iteration, 20 data points are chosen by the agent to
update the gradient, which is also following a uniform distribution. For each algorithm, we
do 10 epochs to train the CNN model.

We compare our algorithms DPD-SGD-T and DPD-SGD-F with the fastest one above:
DM-SGD, D-SGD-1, and C-SGD. We list all the parameters we choose in the CNN
experiment for each algorithm in Table 4.4.

We demonstrate the training loss and the test accuracy of each algorithm in Fig-
ures 4.3 (a) and (b), respective. Here we use Categorical Cross-Entropy loss, which is
a softmax activation plus a Cross-Entropy loss. We can see that our algorithms perform
almost the same as the DM-SGD algorithm and better than the D-SGD-1 and the
centralized C-SGD algorithms. The accuracy of each algorithm is given in Table 4.5.
We can see that the proposed distributed primal–dual SGD algorithm with time-varying
parameters has the best accuracy than other algorithms.

4.4. Simulations 105

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

(a) Evolutions of training loss.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Evolutions of accuracy.

Figure 4.3: Performance of SGD optimization algorithms in the CNN experiment.

106 Distributed primal–dual SGD optimization algorithm

Table 4.4: Parameters in each algorithm in the CNN experiment.

Algorithm ηk αk βk

DPD-SGD-T 0.5/k10−5
0.5k10−5

0.1k10−5

DPD-SGD-F 0.5 0.5 0.1

DM-SGD [33] 0.1 7 0.8

D-SGD [31, 129] 0.1 7 7

C-SGD 0.1 7 7

Table 4.5: Accuracy of each algorithm in the CNN experiment.

Algorithm Accuracy

DPD-SGD-T 94.75%

DPD-SGD-F 93.17%

DM-SGD [33] 94.29%

D-SGD [31, 129] 92.96%

C-SGD 89.91%

4.5 Summary

In this chapter, we studied the distributed nonconvex optimization problem with stochastic
gradient information feedback. We proposed a distributed primal–dual SGD algorithm
and derived its convergence rate. More specifically, the linear speedup convergence
rate O(1/

√
nT) was established for smooth nonconvex cost functions under arbitrarily

connected communication networks. The convergence rate was improved to the linear
speedup convergence rate O(1/(nT)) when the global cost function additionally satisfies
the P–Ł condition. It was also shown that the output of the proposed algorithm with
constant parameters linearly converges to a neighborhood of a global optimum. Interesting
directions for future work include achieving linear speedup under the P–Ł condition while
considering communication reduction.

4.6 Proofs

4.6.1 Notations and useful lemmas

Denote Kn = In −
1
n 1n1>n , K = Kn ⊗ Ip, H = 1

n (1n1>n ⊗ Ip), x̄k = 1
n (1>n ⊗ Ip)xk, x̄k = 1n ⊗ x̄k,

gk = ∇ f̃ (xk), ḡk = Hgk, g0
k = ∇ f̃ (x̄k), ḡ0

k = Hg0
k = 1

n (1n⊗∇ f (x̄k)), gu
k = col(gu

1,k, . . . , g
u
n,k),

and ḡu
k = Hgu

k .
The distributed SGD algorithm can be rewritten as

xk+1 = xk − ηk(αk Lxk + βkvk + gu
k), (4.18a)

4.6. Proofs 107

vk+1 = vk + ηkβk Lxk, ∀x0 ∈ R
np,

n∑
j=1

v j,0 = 0p. (4.18b)

Lemma 4.1. Suppose Assumptions 4.1, 4.3, and 4.5–4.7 hold. Then the following holds
for Algorithm 4.1

EFk [W1,k+1] ≤ W1,k − ‖xk‖
2
ηkαk L− 1

2 ηk K− 3
2 η

2
kα

2
k L2− 1

2 ηk(1+5ηk)L2
f K

− ηkβk x>k K
(
vk +

1
βk

g0
k

)
+

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

3
2 η

2
kβ

2
k K

+ 2nσ2η2
k , (4.19)

where W1,k = 1
2‖xk‖

2
K.

Proof. Noting that ∇ f̃ is Lipschitz-continuous with constant L f > 0 since Assumption 4.3
is satisfied, we have that

‖g0
k − gk‖

2 ≤ L2
f ‖x̄k − xk‖

2 = L2
f ‖xk‖

2
K. (4.20)

From Assumptions 4.5–4.7, we know that

EFk [gu
k] = gk, (4.21a)

EFk [‖g
u
k − gk‖

2] ≤ nσ2. (4.21b)

From (4.20), (4.21b), and the Cauchy-Schwarz inequality, we have

EFk [‖g
0
k − gu

k‖
2] = EFk [‖g

0
k − gk + gk − gu

k‖
2]

≤ 2‖g0
k − gk‖

2 + 2EUk [‖gk − gu
k‖

2] ≤ 2L2
f ‖xk‖

2
K + 2nσ2. (4.22)

We have

EFk [W1,k+1] = EFk

[1
2
‖xk+1‖

2
K

]
= EFk

[1
2
‖xk − ηk(αk Lxk + βkvk + gu

k)‖2K
]

= EFk

[1
2
‖xk‖

2
K − ηkαk‖xk‖

2
L +

1
2
η2

kα
2
k‖xk‖

2
L2 +

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

gu
k

∥∥∥∥2

K

− ηkβk x>k (Inp − ηkαk L)K
(
vk +

1
βk

gu
k

)]
=

1
2
‖xk‖

2
K − ‖xk‖

2
ηkαk L− 1

2 η
2
kα

2
k L2 +

1
2
η2

kβ
2
kEFk

[∥∥∥∥vk +
1
βk

g0
k +

1
βk

gu
k −

1
βk

g0
k

∥∥∥∥2

K

]
− ηkβk x>k (Inp − ηkαk L)K

(
vk +

1
βk

g0
k +

1
βk

gk −
1
βk

g0
k

)
≤ W1,k − ‖xk‖

2
ηkαk L− 1

2 η
2
kα

2
k L2 + η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ η2

kEFk [‖g
u
k − g0

k‖
2]

− ηkβk x>k K
(
vk +

1
βk

g0
k

)
+
ηk

2
‖xk‖

2
K +

ηk

2
‖gk − g0

k‖
2

108 Distributed primal–dual SGD optimization algorithm

+
1
2
η2

kα
2
k‖xk‖

2
L2 +

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

1
2
η2

kα
2
k‖xk‖

2
L2 +

1
2
η2

k‖gk − g0
k‖

2

= W1,k − ‖xk‖
2
ηkαk L− 1

2 ηk K− 3
2 η

2
kα

2
k L2 +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

3
2 η

2
kβ

2
k K

+ η2
kEFk [‖g

u
k − g0

k‖
2]

+
ηk

2
(1 + ηk)‖gk − g0

k‖
2 − ηkβk x>k K

(
vk +

1
βk

g0
k

)
, (4.23)

where the second equality holds due to (4.18a); the third equality holds due to (2.5) in
Lemma 2.5; the fourth equality holds since xk and vk are independent of Fk and (4.21a);
and the inequality holds due to the Cauchy-Schwarz inequality and ρ(K) = 1.

Then, from (4.20), (4.22), and (4.23), we have (4.19). �

Lemma 4.2. Suppose Assumptions 4.1 and 4.3 hold, and {βk} is nondecreasing. Then the
following holds for Algorithm 4.1

W2,k+1 ≤ W2,k + (1 + ωk)ηkβk x>k (K + κ1L)
(
vk +

1
βk

g0
k

)
+

1
2

(1
ρ2(L)

+ κ1

)
(ωk + ω2

k)‖g0
k+1‖

2

+
1
2

(ηk + ωk + ηkωk)
(1
ρ2(L)

+ κ1

)∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ ‖xk‖

2
(1+ωk)η2

kβ
2
k (L+κ1 L2)

+
ηk

β2
k

(
ηk +

1
2

)
(1 + ωk)

(1
ρ2(L)

+ κ1

)
L2

f ‖ ḡ
u
k‖

2, (4.24)

where W2,k = 1
2‖vk + 1

βk
g0

k‖
2
Q+κ1 K, Q = RΛ−1

1 R> ⊗ Ip with matrices R and Λ−1
1 given in

Lemma 2.5, ωk = 1
βk
− 1

βk+1
, and κ1 > 0 is a constant.

Proof. Denote v̄k = 1
n (1>n ⊗ Ip)vk. Then, from (4.18b), we know that

v̄k+1 = v̄k. (4.25)

Then, from (4.25) and
∑n

i=1 vi,0 = 0p, we know that

v̄k = 0p. (4.26)

Then, from (4.26) and (4.18a), we know that

x̄k+1 = x̄k − ηk ḡu
k . (4.27)

Since ∇ f̃ is Lipschitz-continuous and (4.27), we have

‖g0
k+1 − g0

k‖
2 ≤ L2

f ‖x̄k+1 − x̄k‖
2 = η2

k L2
f ‖ ḡ

u
k‖

2. (4.28)

We know that ωk ≥ 0 since {βk} is nondecreasing. We have

W2,k+1 =
1
2

∥∥∥∥vk+1 +
1
βk+1

g0
k+1

∥∥∥∥2

Q+κ1 K
=

1
2

∥∥∥∥vk+1 +
1
βk

g0
k+1 +

(1
βk+1

−
1
βk

)
g0

k+1

∥∥∥∥2

Q+κ1 K

4.6. Proofs 109

≤
1
2

(1 + ωk)
∥∥∥∥vk+1 +

1
βk

g0
k+1

∥∥∥∥2

Q+κ1 K
+

1
2

(ωk + ω2
k)‖g0

k+1‖
2
Q+κ1 K, (4.29)

where the inequality holds due to the Cauchy-Schwarz inequality.
For the first term in the right-hand side of (4.29), we have

1
2

∥∥∥∥vk+1 +
1
βk

g0
k+1

∥∥∥∥2

Q+κ1 K
=

1
2

∥∥∥∥vk +
1
βk

g0
k + ηkβk Lxk +

1
βk

(g0
k+1 − g0

k)
∥∥∥∥2

Q+κ1 K

=
1
2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

Q+κ1 K
+ ηkβk x>k (K + κ1L)

(
vk +

1
βk

g0
k

)
+ ‖xk‖

2
1
2 η

2
kβ

2
k (L+κ1 L2)

+
1

2β2
k

‖g0
k+1 − g0

k‖
2
Q+κ1 K +

1
βk

(
vk +

1
βk

g0
k + ηkβk Lxk

)>
(Q + κ1K)(g0

k+1 − g0
k)

≤ W2,k + ηkβk x>k (K + κ1L)
(
vk +

1
βk

g0
k

)
+ ‖xk‖

2
1
2 η

2
kβ

2
k (L+κ1 L2) +

1
2β2

k

‖g0
k+1 − g0

k‖
2
Q+κ1 K

+
ηk

2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

Q+κ1 K
+

1
2
η2

kβ
2
k‖Lxk‖

2
Q+κ1 K +

(1
2ηkβ

2
k

+
1

2β2
k

)
‖g0

k+1 − g0
k‖

2
Q+κ1 K

≤ W2,k + ηkβk x>k (K + κ1L)
(
vk +

1
βk

g0
k

)
+

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

1
2 ηk(Q+κ1 K)

+ ‖xk‖
2
η2

kβ
2
k (L+κ1 L2) +

1
β2

k

(
1 +

1
2ηk

)(1
ρ2(L)

+ κ1

)
‖g0

k+1 − g0
k‖

2

≤ W2,k + ηkβk x>k (K + κ1L)
(
vk +

1
βk

g0
k

)
+

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

1
2 ηk(Q+κ1 K)

+ ‖xk‖
2
η2

kβ
2
k (L+κ1 L2) +

ηk

β2
k

(
ηk +

1
2

)(1
ρ2(L)

+ κ1

)
L2

f ‖ ḡ
u
k‖

2, (4.30)

where the first equality holds due to (4.18b); the second equality holds due to (2.5) and
(2.7) in Lemma 2.5; the first inequality holds due to the Cauchy-Schwarz inequality; the
last equality holds due to (2.5) and (2.7) in Lemma 2.5; the second inequality holds due to
ρ(Q + κ1K) ≤ ρ(Q) + κ1ρ(K), (2.8), ρ(K) = 1; and the last inequality holds due to (4.28).

For the second term in the right-hand side of (4.29), we have

‖g0
k+1‖

2
Q+κ1 K ≤

(1
ρ2(L)

+ κ1

)
‖g0

k+1‖
2. (4.31)

Also note that ∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

Q+κ1 K
≤

(1
ρ2(L)

+ κ1

)∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
. (4.32)

Then, from (4.29)–(4.32), we have (4.24). �

Lemma 4.3. Suppose Assumptions 4.1, 4.3, and 4.5–4.7 hold, and {βk} in nondecreasing.
Then the following holds for Algorithm 4.1

EFk [W3,k+1] ≤ W3,k − (1 + ωk)ηkαk x>k L
(
vk +

1
βk

g0
k

)
+

ηk

2β2
k

(1 + 3ηk)L2
f EFk [‖ ḡ

u
k‖

2]

110 Distributed primal–dual SGD optimization algorithm

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2+ 1
2ωkηkαk L2+ 1

2 ηk(1+3ηk)L2
f K + nσ2η2

k

−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k−

1
2ωkαk)K

+
1
2
ωkEFk [2W1,k+1 + ‖g0

k+1‖
2], (4.33)

where W3,k = x>k K(vk + 1
βk

g0
k).

Proof. We have

W3,k+1 = x>k+1K
(
vk+1 +

1
βk+1

g0
k+1

)
= x>k+1K

(
vk+1 +

1
βk

g0
k+1

)
− ωk x>k+1K g0

k+1

≤ x>k+1K
(
vk+1 +

1
βk

g0
k+1

)
+

1
2
ωk(‖xk+1‖

2
K + ‖g0

k+1‖
2). (4.34)

For the first term in the right-hand side of (4.34), we have

EFk

[
x>k+1K

(
vk+1 +

1
βk

g0
k+1

)]
= EFk

[
(xk − ηk(αk Lxk + βkvk + g0

k + gu
k − g0

k))>K
(
vk +

1
βk

g0
k + ηkβk Lxk +

g0
k+1 − g0

k

βk

)]
= x>k (K − ηk(αk + ηkβ

2
k)L)

(
vk +

1
βk

g0
k

)
+ ‖xk‖

2
ηkβk(L−ηkαk L2) − ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K

+
1
βk

x>k (K − ηkαk L)EFk [g0
k+1 − g0

k] − ηk

(
vk +

1
βk

g0
k

)>
KEFk [g0

k+1 − g0
k]

− ηk(gk − g0
k)>K

(
vk +

1
βk

g0
k + ηkβk Lxk

)
−

1
βk

EFk [ηk(gu
k − g0

k)>K(g0
k+1 − g0

k)]

≤ x>k (K − ηkαk L)
(
vk +

1
βk

g0
k

)
+

1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

1
2
η2

kβ
2
k‖Lxk‖

2 + ‖xk‖
2
ηkβk(L−ηkαk L2)

− ηkβk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

1
2
ηk‖xk‖

2
K +

(1
2ηkβ

2
k

+
1

2β2
k

)
EFk [‖g

0
k+1 − g0

k‖
2 +

1
2
η2

kα
2
k‖Lxk‖

2

+
1
2
η2

kβ
2
k

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

1
2β2

k

EFk [‖g
0
k+1 − g0

k‖
2] +

(1
2
ηk +

1
2
η2

k

)
‖gk − g0

k‖
2

+
1
2
ηk

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

1
2
η2

kβ
2
k‖Lxk‖

2 +
1
2
η2

kEFk [‖g
u
k − g0

k‖
2] +

1
2β2

k

EFk [‖g
0
k+1 − g0

k‖
2]

= x>k (K − ηkαk L)
(
vk +

1
βk

g0
k

)
−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k)K

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2

+
1
2

(ηk + η2
k)‖gk − g0

k‖
2 +

1
2
η2

kEFk [‖g
u
k − g0

k‖
2] +

(1
2ηkβ

2
k

+
3

2β2
k

)
EFk [‖g

0
k+1 − g0

k‖
2]

(4.35)

≤ x>k K
(
vk +

1
βk

g0
k

)
− (1 + ωk)ηkαk x>k L

(
vk +

1
βk

g0
k

)
+ ωkηkαk x>k L

(
vk +

1
βk

g0
k

)
−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k)K

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2+ 1
2 ηk(1+3ηk)L2

f K

4.6. Proofs 111

+
ηk

2β2
k

(1 + 3ηk)L2
f EFk [‖ ḡ

u
k‖

2] + nσ2η2
k , (4.36)

where the first equality holds due to (4.18); the second equality holds since (2.5) in
Lemma 2.5, xk and vk are independent of Fk, and (4.21a); the first inequality holds due
to the Cauchy-Schwarz inequality, (2.5), ρ(K) = 1, and the Jensen’s inequality; and the
last inequality holds due to (4.20), (4.22), and (4.28). For the third term in the right-hand
side of (4.36), we have

ωkηkαk x>k L
(
vk +

1
βk

g0
k

)
= ωkηkαk x>k LK

(
vk +

1
βk

g0
k

)
≤ ‖xk‖

2
1
2ωkηkαk L2 +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

1
2ωkηkαk K

. (4.37)

Then, from (4.34)–(4.37), we have (4.33). �

Lemma 4.4. Suppose Assumptions 4.2, 4.3, 4.5, and 4.6 hold. Then the following holds
for Algorithm 4.1

EFk [W4,k+1] ≤ W4,k −
ηk

4
‖ ḡk‖

2 + ‖xk‖
2
ηk
2 L2

f K −
ηk

4
‖ ḡ0

k‖
2 +

1
2
η2

k L f EFk [‖ ḡ
u
k‖

2], (4.38)

where W4,k = n(f (x̄k) − f ∗) = f̃ (x̄k) − f̃ ∗.

Proof. We first note that W4,k is well defined due to f ∗ > −∞ as assumed in Assump-
tion 4.2.

From (4.20) and ρ(H) = 1, we have that

‖ ḡ0
k − ḡk‖

2 = ‖H(g0
k − gk)‖2 ≤ ‖g0

k − gk‖
2 ≤ L2

f ‖xk‖
2
K. (4.39)

From (4.21a), we have

EFk [ḡu
k] = EFk [Hgu

k] = HEFk [gu
k] = ḡk. (4.40)

We have

EFk [W4,k+1] = EFk [f̃ (x̄k+1) − f̃ ∗] = EFk [f̃ (x̄k) − f̃ ∗ + f̃ (x̄k+1) − f̃ (x̄k)]

≤ EFk [f̃ (x̄k) − f̃ ∗ − ηk(ḡu
k)> g0

k +
1
2
η2

k L f ‖ ḡu
k‖

2]

= f̃ (x̄k) − f̃ ∗ − ηk ḡ>k g0
k +

1
2
η2

k L f EFk [‖ ḡ
u
k‖

2]

= f̃ (x̄k) − f̃ ∗ − ηk ḡ>k ḡ0
k +

1
2
η2

k L f EFk [‖ ḡ
u
k‖

2]

= W4,k −
ηk

2
ḡ>k (ḡk + ḡ0

k − ḡk) −
ηk

2
(ḡk − ḡ0

k + ḡ0
k)> ḡ0

k +
1
2
η2

k L f EFk [‖ ḡ
u
k‖

2]

≤ W4,k −
ηk

4
‖ ḡk‖

2 +
ηk

2
‖ ḡ0

k − ḡk‖
2 −

ηk

4
‖ ḡ0

k‖
2 +

1
2
η2

k L f EFk [‖ ḡ
u
k‖

2], (4.41)

112 Distributed primal–dual SGD optimization algorithm

where the first inequality holds since that f̃ is smooth, (2.14) and (4.27); the third equality
holds since xk and vk are independent of Fk and (4.40); the fourth equality holds due to
ḡ>k g0

k = g>k Hg0
k = g>k HHg0

k = ḡ>k ḡ0
k ; and the last inequality holds due to the Cauchy-

Schwarz inequality.
Then, from (4.39) and (4.41), we have (4.38). �

4.6.2 Proof of Theorem 4.1

We denote the following notations

c0(κ1, κ2) = max{4κ2ε5, ε6}, c1 =
1

ρ2(L)
+ 1, c2(κ1) = min

{ε1

ε2
,

1
5

}
, κ3 =

1
ρ2(L)

+ κ1 + 1,

κ4 =
1

ρ2(L)
+ κ1 +

3
2
, κ5 =

κ1 + 1
2

+
1

2ρ2(L)
, κ6 = min

{ 1
2ρ(L)

,
κ1 − 1

2κ1

}
,

ε1 = (κ1 − 1)ρ2(L) − 1, ε2 = ρ(L) + (2κ2
1 + 1)ρ(L2) + 1, ε3 = ε1κ2 − ε2κ

2
2,

ε4 =
1
2

(κ2 − 5κ2
2), ε5 = L f +

1
κ2ε6

κ3L2
f +

2
ε2

6

κ4L2
f , ε6 = max

{1
2

(2 + 3L2
f), κ3

}
.

To prove Theorem 4.1, we need the following lemma.

Lemma 4.5. Suppose Assumptions 4.1–4.3 and 4.5–4.7 hold. Suppose αk = α = κ1β,
βk = β ≥ c0(κ1, κ2), and ηk = η = κ2/β, where κ1 > c1 and κ2 ∈ (0, c2(κ1)). Then, for any
k ∈ N0 the following holds for Algorithm 4.1

EFk [Wk+1] ≤ Wk − ‖xk‖
2
ε3 K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ε4 K
−

1
4
η‖ ḡ0

k‖
2 + (ε5 + 3n)σ2η2, (4.42a)

EFk [W̆k+1] ≤ W̆k − ‖xk‖
2
ε3 K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ε4 K
+ 2ε5η

2‖ ḡ0
k‖

2

+ 2L2
f ε5η

2‖xk‖
2
K + (ε5 + 3n)σ2η2, (4.42b)

EFk [W4,k+1] ≤ W4,k −
1
4
η‖ ḡ0

k‖
2 + ‖xk‖

2
1
2 ηL2

f K + L fσ
2η2, (4.42c)

where Wk =
∑4

i=1 Wi,k and W̆k =
∑3

i=1 Wi,k.

Proof. (i) Noting that αk = α = κ1β, βk = β, ηk = η, and ωk = 1
βk
− 1

βk+1
= 0, from (4.19),

(4.24), (4.33), and (4.38), we have

EFk [Wk+1] ≤ Wk +
∥∥∥∥vk +

1
β

g0
k

∥∥∥∥2

3
2 η

2β2 K
+ 2nσ2η2 − ‖xk‖

2
ηαL− 1

2 ηK− 3
2 η

2α2 L2− 1
2 η(1+5η)L2

f K

+ ‖xk‖
2
η2β2(L+κ1 L2) +

1
2
η
(1
ρ2(L)

+ κ1

)∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

+
η

β2

(
η +

1
2

)(1
ρ2(L)

+ κ1

)
L2

f EFk [‖ ḡ
u
k‖

2]

+ ‖xk‖
2
η(βL+ 1

2 K)+η2(1
2α

2−αβ+β2)L2+ 1
2 η(1+3η)L2

f K

4.6. Proofs 113

+
η

2β2 (1 + 3η)L2
f EFk [‖ ḡ

u
k‖

2] + nσ2η2 −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2−ηβ

2)K

−
1
4
η‖ ḡk‖

2 + ‖xk‖
2
1
2 ηL2

f K −
1
4
η‖ ḡ0

k‖
2 +

1
2
η2L f EFk [‖ ḡ

u
k‖

2]. (4.43)

Note that

EFk [‖ ḡ
u
k‖

2] = EFk [‖ ḡ
u
k − ḡk + ḡk‖

2] ≤ 2EFk [‖ ḡ
u
k − ḡk‖

2] + 2‖ ḡk‖
2

= 2nEFk [‖
1
n

n∑
i=1

(gu
i,k − gi,k)‖2] + 2‖ ḡk‖

2 =
2
n

EFk [‖
n∑

i=1

(gu
i,k − gi,k)‖2] + 2‖ ḡk‖

2

=
2
n

n∑
i=1

EFk [‖g
u
i,k − gi,k‖

2] + 2‖ ḡk‖
2 ≤ 2σ2 + 2‖ ḡk‖

2, (4.44)

where the first inequality holds due to the Cauchy-Schwarz inequality; the last equality
holds since {gu

i,k, i ∈ [n]} are independent of each other as assumed in Assumption 4.5, xk

and vk are independent of Fk, and EFk [g
u
i,k] = gi,k as assumed in Assumption 4.6; and the

last inequality holds due to (4.21b).
From (4.43), (4.44), and α = κ1β, we have

EFk [Wk+1] ≤ Wk − ‖xk‖
2
ηM1−η2 M2

−

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

b1,k K

− b2,kη‖ ḡk‖
2 −

1
4
η‖ ḡ0

k‖
2 + b3,kσ

2η2 + 3nσ2η2, (4.45)

where

M1 = (α − β)L −
1
2

(2 + 3L2
f)K, M2 = β2L + (2α2 + β2)L2 + 4L2

f K,

b1,k =
1
2

(2β − κ3)η −
5
2
β2η2, b2,k =

1
4
− b3,kη, b3,k = L f +

1
β2η

κ3L2
f +

2
β2 κ4L2

f .

From (2.6), α = κ1β, κ1 > c1 > 1, η = κ2/β, and β ≥ c0(κ1, κ2) ≥ ε6 ≥ (2 + 3L2
f)/2, we

have

ηM1 ≥ ε1κ2K. (4.46)

From (2.6), α = κ1β, and β ≥ 1
2 (2 + 3L2

f) > 2L f , we have

η2 M2 ≤ ε2κ
2
2 K. (4.47)

From β ≥ κ3, we have

b1,k ≥ε4. (4.48)

From κ1 > c1 = 1/ρ2(L) + 1, we have

ε1 > 0. (4.49)

114 Distributed primal–dual SGD optimization algorithm

From (4.49) and κ2 ∈ (0,min{ ε1
ε2
, 1

5 }), we have

ε3 > 0, (4.50a)
ε4 > 0. (4.50b)

From (4.50a), (4.50b), and β ≥ 4κ2ε5, we have

b3,k = L f +
1

β2ηk
κ3L2

f +
2
β2 κ4L2

f ≤ ε5, (4.51a)

b2,k =
1
4
− b3,kη ≥

1
4
−
κ2

β
ε5 ≥ 0. (4.51b)

From (4.45)–(4.48), (4.51a), and (4.51b), we have (4.42a).
(ii) Similar to the way to get (4.42a), we have

EFk [W̆k+1] ≤ W̆k − ‖xk‖
2
ε3 K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ε4 K
+ ε5η

2‖ ḡk‖
2 + (ε5 + 3n)σ2η2, (4.52)

We have

‖ ḡk‖
2 = ‖ ḡk − ḡ0

k + ḡ0
k‖

2 ≤ 2‖ ḡk − ḡ0
k‖

2 + 2‖ ḡ0
k‖

2 ≤ 2L2
f ‖xk‖

2
K + 2‖ ḡ0

k‖
2, (4.53)

where the last inequality holds due to (4.39).
From (4.52) and (4.53), we have (4.42b).

(iii) From (4.38) and (4.44), we have

EFk [W4,k+1] ≤ W4,k −
1
4
η‖ ḡk‖

2 + ‖xk‖
2
1
2 ηL2

f K −
1
4
η‖ ḡ0

k‖
2 + η2L f (σ2 + ‖ ḡk‖

2), (4.54)

From η = κ2/β and β ≥ 4κ2ε5 > 4κ2L f , we have

ηL f <
1
4
. (4.55)

From (4.54) and (4.55), we have (4.42c). �

Now we are ready to prove Theorem 4.1.
Denote

V̂k = ‖xk‖
2
K +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ n(f (x̄k) − f ∗).

Similar to the way to get (3.46)–(3.48),we have

Wk ≥ κ6

(
‖xk‖

2
K +

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K

)
+ n(f (x̄k) − f ∗) (4.56)

≥ κ6V̂k ≥ 0, (4.57)

4.6. Proofs 115

and

Wk ≤ κ5V̂k. (4.58)

From (4.42a) and (4.50b), we have

EFk [Wk+1] ≤ Wk − ε3‖xk‖
2
K −

κ2

4β
‖ ḡ0

k‖
2 +

(ε5 + 3n)κ2
2σ

2

β2 . (4.59)

Then, taking expectation in FT and summing (4.59) over k ∈ [0,T] yield

E[WT+1] +

T∑
k=0

E
[
ε3‖xk‖

2
K +

κ2

4β
‖ ḡ0

k‖
2
]
≤ W0 +

(T + 1)(ε5 + 3n)κ2
2σ

2

β2 . (4.60)

From (4.60), (4.57), and (4.50a), we have

1
T + 1

T∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]

=
1

n(T + 1)

T∑
k=0

E[‖xk‖
2
K] ≤

W0

nε3(T + 1)
+

(ε5 + 3n)κ2
2σ

2

nε3β2 .

(4.61)

Noting that W0 = O(n), from (4.61), we have (4.6a).
Taking expectation in FT and summing (4.42c) over k ∈ [0,T] yield

1
4

n
T∑

k=0

E[‖∇ f (x̄k)‖2] =
1
4

T∑
k=0

E[‖ ḡ0
k‖

2] ≤
W4,0

η
+

1
2

L2
f

T∑
k=0

E[‖xk‖
2
K] + (T + 1)L fσ

2η.

(4.62)

From (4.62), η = κ2/β =
√

n/
√

T , and (4.61), we have

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] ≤
4β
κ2T

(f (x̄0) − f ∗) +
4L fσ

2κ2

nβ
+ O(

1
T

) + O(
1
β2),

which gives (4.6b).
Taking expectation in FT and summing (4.42c) over k ∈ [0,T] yield

n(E[f (x̄T+1)] − f ∗) = E[W4,T+1] ≤ W4,0 +
1
2
ηL2

f

T∑
k=0

E[‖xk‖
2
K] + L fσ

2η2(T + 1). (4.63)

Noting that W4,0 = O(n) and η = κ2/β, from (4.60) and (4.63), we have (4.6c).

4.6.3 Proof of Theorem 4.2

In addition to the notations defined in Appendix 4.6.2, we also denote

ε7 =
1
κ5

min
{
ε3, ε4,

ν

2(T + 1)θ
}
.

116 Distributed primal–dual SGD optimization algorithm

From the conditions in Theorem 4.2, we know that all conditions needed in Lemma 4.5
are satisfied, so (4.42a)–(4.42c) still hold.

From (4.57), we have

‖xk‖
2
K + W4,k ≤ V̂k ≤

Wk

κ6
. (4.64)

From (2.16) and Assumption 4.4, we have that

‖ ḡ0
k‖

2 = n‖∇ f (x̄k)‖2 ≥ 2νn(f (x̄k) − f ∗) = 2νW4,k. (4.65)

From (4.42a), (4.65), (4.57), (4.58), and (4.8), we have

EFk [Wk+1] ≤ Wk − ε3‖xk‖
2
K − ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
−

1
2
ηνW4,k + (ε5 + 3n)σ2η2

≤ Wk −
1
κ5

min
{
ε3, ε4,

νη

2

}
Wk + (ε5 + 3n)σ2η2. (4.66)

From (4.66) and (4.8), we have

EFk [Wk+1] ≤ Wk − ε7Wk +
(ε5 + 3n)σ2

(T + 1)2θ , ∀k ≤ T. (4.67)

From κ1 > 1, we have κ5 > 1. From 0 < κ2 < 1/5, we have ε4 = (κ2 − 5κ2
2)/2 ≤ 1/40.

Thus,

0 < ε7 ≤
ε4

κ5
≤

1
40
. (4.68)

Then, from (4.67), (4.57), and (4.68), we have

E[Wk+1] ≤ (1 − ε7)k+1W0 +
(ε5 + 3n)σ2

(T + 1)2θ

k∑
l=0

(1 − ε7)l

≤ (1 − ε7)k+1W0 +
(ε5 + 3n)σ2

ε7(T + 1)2θ , ∀k ≤ T. (4.69)

Then, noting that ε7 = O(1/(T + 1)θ) and θ ∈ (0, 1), from (4.69), (2.63), and (4.64), we
have

E[‖xk‖
2
K + W4,k] = O(

n
T θ

), ∀k ≤ T. (4.70)

Thus, there exists a constant c f > 0 such that

E[‖xk‖
2
K + W4,k] ≤ nc f , ∀k ≤ T. (4.71)

From (4.56) and (4.58), we have

0 ≤ 2κ6(W1,k + W2,k) ≤ W̆k ≤ 2κ5(W1,k + W2,k). (4.72)

4.6. Proofs 117

From (2.15), we have

‖ ḡ0
k‖

2 = n‖∇ f (x̄k)‖2 ≤ 2L f n(f (x̄k) − f ∗) = 2L f W4,k. (4.73)

Denote z̆k = E[W̆k]. From (4.42b) and (4.71)–(4.73), we have

z̆k+1 ≤ (1 − a1)z̆k + a2η
2, ∀k ≤ T, (4.74)

where

a1 =
1
κ5

min{ε3, ε4}, a2 = n(4ε5L f c f + 2ε5L2
f c f + (ε5 + 3)σ2). (4.75)

From (4.68), we have

a1 ≤
ε4

κ5
≤

1
40
. (4.76)

From (4.74) and (4.76), we have

z̆k+1 ≤ (1 − a1)k+1z̆0 +
a2η

2

a1
, ∀k ≤ T,

which yields (4.9a).
From (4.42c) and (4.65), we have

EFk [W4,k+1] ≤
(
1 −

νη

2

)
W4,k +

1
2
ηL2

f ‖xk‖
2
K + L fσ

2η2

≤
(
1 −

νη

2

)k+1
W4,0 +

1
ν

(L2
f ‖xk‖

2
K + 2L fσ

2η). (4.77)

Noting η = 1/(T + 1)θ, from (4.77), (2.63), and (4.9a), we have (4.9b).

4.6.4 Proof of Theorem 4.3

In addition to the notations defined in Appendix 4.6.2, we also denote

c̃0(κ1, κ2) = max
{
4ε11, ε6,

ε10

ε4

}
, ĉ2(κ1) = min

{ε1

ε2
,
ε8

ε9
,

1
5

}
,

ĉ3(κ0, κ1, κ2) = max
{ c̃0(κ1, κ2)

κ0
,

8L f κ3

νκ2
,

16L f (κ3 − 1)
νκ0κ2

}
,

σ̃2 = 2L f f ∗ − 2L f
1
n

n∑
i=1

f ∗i , ε8 = κ1ρ2(L) − 1, ε9 =
1
2

(3κ1 + 2)κ1ρ(L2) + ρ(L) + 1,

ε10 = κ2(κ3 − 1) + κ1κ2 + κ3 − 1 + 3κ2
2, ε11 = κ2L f + (2κ3 − 1 + κ2(10κ3 − 4))L2

f ,

ε12 = 3 + L f +
κ3L2

f

κ0κ2t1
+

2κ4L2
f

κ2
0t2

1

+
2 + 2κ3L2

f

κ0t2
1

+
(κ3 − 1)L2

f

κ2
0κ2t3

1

+
(κ3 − 1)L2

f

κ2
0t4

1

(2
κ0

+ 2
)
,

118 Distributed primal–dual SGD optimization algorithm

ε13 =
κ0κ3

κ2
2

+
κ3 − 1
κ2

2t2
1

, ε14 = ε12σ
2 + ε13σ̃

2, ε15 =
1
κ5

min
{ε3κ0t1

κ2
,
ε4κ0t1

2κ2
,
ν

8

}
,

ε16 =
4L fσ

2κ2
2

κ2
0(νκ2

2κ0
− 1)

.

To prove Theorem 4.3, we need the following lemma.

Lemma 4.6. Suppose Assumptions 4.1–4.3 and 4.5–4.7 hold. Suppose αk = κ1βk, βk =

κ0(k + t1), and ηk = κ2/βk, where κ0 ≥ c̃0(κ1, κ2)/t1, κ1 > c1, κ2 ∈ (0, ĉ2(κ1)), and t1 ≥ 1.
Then, for any k ∈ N0 the following holds for Algorithm 4.1

EFk [Wk+1] ≤ Wk − ε3‖xk‖
2
K −

1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K

−
1
4
ηk‖ ḡ0

k‖
2 + 2L f b8,kη

2
kW4,k + nε14η

2
k , (4.78a)

EFk [W̆k+1] ≤ W̆k − ε3‖xk‖
2
K −

1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ nε14η

2
k

+ 2ε12L2
f η

2
k‖xk‖

2
K + 2(2ε12 + ε13)L f η

2
kW4,k, (4.78b)

EFk [W4,k+1] ≤ W4,k −
ηk

4
‖ ḡ0

k‖
2 + ‖xk‖

2
1
2 L2

f ηk K + η2
k L fσ

2, (4.78c)

where b8,k = κ3
ωk

η2
k

+ (κ3 − 1)ω
2
k

η2
k
.

Proof. (i) We have

‖g0
k‖

2 =

n∑
i=1

‖∇ fi(x̄k)‖2 ≤
n∑

i=1

2L f (fi(x̄k) − f ∗i) = 2L f n(f (x̄k) − f ∗) + nσ̃2, (4.79)

where the inequality holds due to (2.15).
From the Cauchy-Schwarz inequality, (4.28), and (4.79), we have

‖g0
k+1‖

2 = ‖g0
k+1 − g0

k + g0
k‖

2 ≤ 2(‖g0
k+1 − g0

k‖
2 + ‖g0

k‖
2)

≤ 2(η2
k L2

f ‖ ḡ
u
k‖

2 + 2L f W4,k + nσ̃2). (4.80)

From (4.19), (4.24), (4.33), (4.38), (4.44), (4.80), αk = κ1βk, and ηk = κ2/βk, we have

EFk [Wk+1] ≤ Wk − ‖xk‖
2
ηk M3,k−η

2
k M4,k−

1
2 κ1κ2ωk+ηkωk M5,k−η

2
kωk M6,k

−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

b0
4,k K
−

1
4
ηk‖ ḡ0

k‖
2

− ηkb5,k‖ ḡk‖
2 + η2

k(b6,kn + b7,k)σ2 + η2
kb8,k(2L f W4,k + nσ̃2), (4.81)

where

M3,k = (αk − βk)L −
1
2

(2 + 3L2
f)K, M4,k = β2

k L + (2α2
k + β2

k)L2 + 4L2
f K,

4.6. Proofs 119

M5,k = αk L −
1
2

(1 + L2
f)K, M6,k =

3
2
α2

k L2 + β2
k(L + κ1L2) +

5
2

L2
f K,

b0
4,k =

1
2
ηk(2βk − κ3) −

5
2
η2

kβ
2
k −

1
2
ωkηk(κ3 − 1) −

1
2
ωk(ηkαk + κ3 − 1 + 3η2

kβ
2
k),

b5,k =
1
4
− ηkb6,k, b6,k = 3 + 2ωk,

b7,k = L f +
1

β2
kηk

κ3L2
f +

2
β2

k

κ4L2
f + 2κ3L2

fωk + ωk

(1
β2

kηk
+

2
β2

k

+ 2ωk

)
(κ3 − 1)L2

f .

From (2.6), αk = κ1βk, κ1 > 1, βk ≥ κ0t1 ≥ c̃0(κ1, κ2) ≥ ε6 ≥ (2+3L2
f)/2, and ηk = κ2/βk,

we have

ηk M3,k ≥ ε1κ2K. (4.82)

From (2.6), αk = κ1βk, βk ≥ (2 + 3L2
f)/2 > 2L f , and ηk = κ2/βk, we have

η2
k M4,k ≤ ε2κ

2
2 K. (4.83)

From (2.6), αk = κ1βk, βk ≥ (2 + 3L2
f)/2 > (1 + L2

f)/2, and ηk = κ2/βk, we have

ηk M5,k ≥ ε8κ2K. (4.84)

From (2.6), αk = κ1βk, βk > 2L f >
√

10L f /2, and ηk = κ2/βk, we have

η2
k M6,k ≤ ε9κ

2
2 K. (4.85)

From αk = κ1βk, βk ≥ κ3, and ηk = κ2/βk, we have

b0
4,k ≥ b4,k, (4.86)

where b4,k = ε4 −
1
2ωkηk(κ3 − 1) − 1

2ωk(κ1κ2 + κ3 − 1 + 3κ2
2).

From κ1 > c1 = 1/ρ2(L) + 1, we have

ε1 > 0, ε8 > 0. (4.87)

From (4.87) and κ2 ∈ (0,min{ ε1
ε2
, ε8
ε9
, 1

5 }), we have

ε3 > 0, (4.88a)

ε8κ2 − ε9κ
2
2 > 0, (4.88b)

ε4 > 0. (4.88c)

From βk = κ0(k + t1), we have

ωk =
1
βk
−

1
βk+1

=
1
κ0

(1
k + t1

−
1

k + t1 + 1

)
=

1
κ0(k + t1)(k + t1 + 1)

≤
κ0

β2
k

. (4.89)

120 Distributed primal–dual SGD optimization algorithm

From (4.88a)–(4.89), and κ0 ≥ max{ 4ε11
t1
, ε10
ε4t1
}, we have

b4,k ≥ ε4 −
ε10

2κ0t2
1

≥ ε4 −
ε10

2κ0t1
≥

1
2
ε4 > 0, (4.90a)

b5,k ≥
1
4
−
ε11

κ0t1
≥ 0. (4.90b)

From (4.89) and βk = κ0(k + t1) ≥ κ0t1, we have

b6,k + b7,k ≤ ε12, (4.91a)
b8,k ≤ ε13. (4.91b)

From (4.81)–(4.86), (4.88a)–(4.88c), and (4.90a)–(4.91b), we have (4.78a).
(ii) Similarly to the way to get (4.78a), we have

EFk [W̆k+1] ≤ W̆k − ε3‖xk‖
2
K −

1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ ε12η

2
k‖ ḡk‖

2

+ 2L f ε13η
2
kW4,k + nε14η

2
k , ∀k ∈ N0, (4.92)

From (4.92), (4.53), and (4.73), we have (4.78b).
(iii) From (4.38) and (4.44), we have

EFk [W4,k+1] ≤ W4,k −
ηk

4
‖ ḡk‖

2 + ‖xk‖
2
1
2 L2

f ηk K −
ηk

4
‖ ḡ0

k‖
2 + η2

k L f (σ2 + ‖ ḡk‖
2). (4.93)

From 0 < ηk ≤ κ2/(κ0t1) and κ0t1 ≥ c̃0(κ1, κ2) ≥ 4ε11 > 4κ2L f , we have

η2
k L f <

1
4
ηk. (4.94)

From (4.93) and (4.94), we have (4.78c). �

Now we are ready to prove Theorem 4.3.
From t1 > ĉ3(κ0, κ1, κ2) ≥ c̃0(κ1, κ2)/κ0, we have

κ0 >
c̃0(κ1, κ2)

t1
.

Thus, all conditions needed in Lemma 4.6 are satisfied, so (4.78a)–(4.78c) hold.
From (4.78a) and (4.65), we have

EFk [Wk+1] ≤ Wk − ε3‖xk‖
2
K −

1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
−
ηkν

2
W4,k + 2L f b8,kη

2
kW4,k + nε14η

2
k

= Wk − ε3‖xk‖
2
K −

1
2
ε4

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ nε14η

2
k

− 2
(1
4
−

1
ν

L f b8,kηk

)
νηkW4,k, ∀k ∈ N0. (4.95)

4.6. Proofs 121

From t1 > ĉ3(κ0, κ1, κ2) ≥ 8L f κ3/(νκ2), we have

1
4
−

L f κ3

νκ2t1
≥

1
8
. (4.96)

From (4.89), (4.96), and κ0 > c̃0(κ1, κ2)/t1 ≥ 16L f (κ3 − 1)/(νκ2t1), we have

1
4
−

1
ν

L f b8,kηk ≥
1
4
−

L f κ0κ3

νκ2βk
−

L f κ
2
0(κ3 − 1)

νκ2β
3
k

≥
1
4
−

L f κ3

νκ2t1
−

L f (κ3 − 1)

νκ2κ0t3
1

≥
1
8
−

L f (κ3 − 1)
νκ2κ0t1

≥
1
16
. (4.97)

From (4.95), (4.57), and (4.58), we have

EFk [Wk+1] ≤ Wk −
ηk

κ5
min

{ε3

ηk
,
ε4

2ηk
,
ν

8

}
Wk + nε14η

2
k

≤ Wk − ε15ηkWk + nε14η
2
k , ∀k ∈ N0. (4.98)

Denote zk = E[Wk], r1,k = ε15ηk, and r2,k = nε14η
2
k , then from (4.98), we have

zk+1 ≤ (1 − r1,k)zk + r2,k, ∀k ∈ N0. (4.99)

From (4.10), we have

r1,k = ηkε15 =
a3

k + t1
, (4.100a)

r2,k = η2
kε14nσ2 =

a4

(k + t1)2 , (4.100b)

where

a3 =
κ2ε15

κ0
, a4 =

nκ2
2ε14

κ2
0

.

From (4.68), we have

r1,k ≤
ε4

2κ5
≤

1
80
. (4.101)

Then, from (4.99)–(4.101) and (2.43), we have

zk ≤ φ2(k, t1, a3, a4, 2, z0), ∀k ∈ N+, (4.102)

where the function φ1 is defined in (2.44).
From κ0 ≥ ĉ0νκ2/4, we have

φ1(k, t1, a3, a4, 2, z0) =

O(n

k), if a3 > 1,
O(n ln(k−1)

k), if a3 = 1,
O(n

ka3), if a3 < 1,
(4.103)

122 Distributed primal–dual SGD optimization algorithm

From (4.102), (4.103), and (4.64), we know that there exists a constant c f > 0 such that

E[‖xk‖
2
K + W4,k] ≤ nc f . (4.104)

From (4.78b), (4.104), (4.72), and (4.10), we have

z̆k+1 ≤ (1 − a5)z̆k +
a6

(t + t1)2 , (4.105)

where

a5 =
1
κ5

min
{
ε3,

ε4

2

}
, a6 =

κ2
2

κ2
0

n(2ε12L2
f c f + 2(2ε12 + ε13)L f c f + ε14).

From (4.68), we have

a5 ≤
ε4

2κ5
≤

1
80
. (4.106)

From (4.88a) and (4.88c), we know that

a5 > 0 and a6 > 0. (4.107)

From (4.105)–(4.107) and (2.45), we have

z̆k ≤ φ3(k, t1, a5, a6, 2, z̆0) = O(
n
k2), ∀k ∈ N+, (4.108)

where the function φ3 is defined in (2.46).
From (2.46), (4.72), and (4.108), we have

E[‖xk‖
2
K] ≤

1
κ6

z̆k ≤
1
κ6
φ3(k, t1, a5, a6, 2, z̆0) = O(

n
k2). (4.109)

From (4.109), we have (4.11a).
From (4.78c) and (4.65), we have

E[W4,k+1] ≤
(
1 −

ν

2
ηk

)
E[W4,k] + ‖xk‖

2
1
2 L2

f ηk K + L fσ
2η2

k . (4.110)

From κ0 < νκ2/4, we have
νκ2

2κ0
> 2. (4.111)

Similar to the way to prove (2.43), from (4.109)–(4.111), we have

E[f (x̄T) − f ∗] ≤
ε16

nT
+ O(

1
T 2), (4.112)

where ε16 is determined by the last terms in (2.44) and (4.110).
From κ0 ≥ ĉ0νκ2/4, we have

ε16 =
4L fσ

2κ2
2

κ2
0(νκ2

2κ0
− 1)

≤
4L fσ

2κ2
2

κ2
0(νκ2

2κ0
−

νκ2
4κ0

)
=

16L fσ
2κ2

νκ0
≤

64L fσ
2

ĉ0ν2 . (4.113)

From (4.112) and (4.113), we have (4.11b).

4.6. Proofs 123

4.6.5 Proof of Theorem 4.4

In addition to the notations defined in Appendices 4.6.2 and 4.6.3, we also denote

ε =
1
κ5

min
{ε3

η
,
ε4

η
,
ν

2

}
, c4 =

W0

nκ6
, c5 =

ε5 + 3n
nεκ6

.

From the conditions in Theorem 4.4, we know that (4.66) holds. Thus,

EFk [Wk+1] ≤ Wk − ηεWk + (ε5 + 3n)σ2η2. (4.114)

Similar to the way to get (4.68), we have

0 < ηε < 1. (4.115)

From (4.114) and (4.115), we have

E[Wk+1] ≤ (1 − ηε)E[Wk] + (ε5 + 3n)σ2η2

≤ (1 − ηε)k+1W0 + (ε5 + 3n)σ2η2
k∑
τ=0

(1 − ηε)τ

≤ (1 − ηε)k+1W0 +
η(ε5 + 3n)σ2

ε
. (4.116)

Hence, (4.116) and (4.64) give (4.13).

4.6.6 Proof of Theorem 4.5

In addition to the notations defined in Appendices 4.6.3, 4.6.2, and (4.6.5), we also denote

c̆0(κ1, κ2) = max{4κ2ε5, ε̆6}, ε̆6 = max{1 + 3L2
f , κ3}, c̆5 =

3 + 5η
εκ6

Without unbiased assumption, we know that (4.30) still holds. Similar to the way to get
(4.19), (4.36), and (4.38), we have

EFk [W1,k+1] ≤ W1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2−η(1+3η)L2

f K
− ηβx>k K

(
vk +

1
β

g0
k

)
+

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

3η2β2
2 K

+ η(1 + 3η)nσ2, (4.117a)

EFk [W3,k+1] ≤ W3,k − ηαx>k L
(
vk +

1
β

g0
k

)
+ ‖xk‖

2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2+η(1+2η)L2

f K

+
η

2β2 (1 + 3η)L2
f EFk [‖ ḡ

u
k‖

2] + η(1 + 2η)nσ2 −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

η(β− 1
2−ηβ

2)K
,

(4.117b)

EFk [W4,k+1] ≤ W4,k −
η

4
(1 − 2ηL f)EFk [‖ ḡ

u
k‖

2] + ‖xk‖
2
ηL2

f K −
η

4
‖ ḡ0

k‖
2 + nσ2η. (4.117c)

124 Distributed primal–dual SGD optimization algorithm

Then, similar to the way to get (4.42a), from (4.30) and (4.117a)–(4.117c), we have

EFk [Wk+1] ≤ Wk − ‖xk‖
2
ε3 K −

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

ε4 K
−

1
4
η‖ ḡ0

k‖
2 + η(3 + 5η)nσ2. (4.118)

Then, similar to the way to get (4.13), from (4.118) and (4.65), we have (4.15).

Chapter 5

Distributed zeroth-order optimization
algorithms

In this chapter, we consider the distributed nonconvex optimization problem with zeroth-
order (ZO) oracle feedback, i.e., each agent is only able to sample ZO oracles (the values
of its local cost function). We first consider the situation that deterministic zeroth-order
(DZO) oracle feedback is available. We propose a distributed primal–dual DZO algorithm.
In this algorithm, at each iteration each agent samples its local DZO oracles at p + 1
different points with an adaptive smoothing parameter, where p is the dimension of the
decision variable. We show that the proposed algorithm converges to a stationary point
with an O(1/T) convergence rate for smooth nonconvex cost functions, where T is the
total number of iterations, and to a global optimum with a linear convergence rate when the
global cost function satisfies the P–Ł condition in addition. In other words, our proposed
distributed DZO algorithm has the same convergence properties as its FO counterpart in
Chapter 3 under the same conditions. We then consider the situation that stochastic zeroth-
order (SZO) oracle feedback is available. We propose two distributed SZO algorithms:
distributed primal–dual and dual SZO algorithms. In both algorithms, at each iteration
each agent samples its local SZO oracles at two different points with an adaptive smoothing
parameter. We show that the proposed algorithms converge to a stationary point with the
linear speedup convergence rate O(

√
p/(nT)) for smooth nonconvex cost functions, and to

a global optimum with the linear speedup convergence rateO(p/(nT)) when the global cost
function satisfies the P–Ł condition in addition, where n is the number of agents. To the
best of our knowledge, this is the first linear speedup result for distributed SZO algorithms.
We also show that the proposed algorithms converge linearly when considering centralized
optimization problems with DZO oracle feedback under the P–Ł condition. We finally
demonstrate through numerical simulations the efficiency of our algorithms in comparison
with the baseline and recently proposed centralized and distributed ZO algorithms.

This chapter is organized as follows. Section 5.1 gives the background. Section 5.2
introduces problem formulation and assumptions. Section 5.3–5.5 provide the distributed
primal–dual DZO algorithm, the distributed primal–dual SZO algorithm, and the dis-
tributed primal SZO algorithm, and analyze their convergence properties. Simulations

125

126 Distributed zeroth-order optimization algorithms

are given in Section 5.6. Concluding remarks are offered in Section 5.7. To improve the
readability, all the proofs can be found in Section 5.8.

5.1 Introduction

Many existing optimization algorithms and the algorithms proposed in the previous
two chapters use at least (stochastic) gradient information of the cost functions, and
sometimes even the second or higher order information. However, in many applications,
the (stochastic) gradients are unavailable [144–146]. For example, many cost functions of
big data problems that deal with complex data-generating processes cannot be explicitly
defined [46]. Thus, gradient-free (derivative-free) optimization algorithms are needed. The
study of gradient-free optimization problems has a long history, which can be traced back
at least to the 1960’s [270–272], and has recently gained renewed attention in machine
learning community. Generally speaking, traditional gradient-free optimization methods
can be classified into direct-search and model-based methods. For example, stochastic
direct-search and model-based trust-region algorithms have been proposed in [273–276]
and [277–279], respectively. In recent years, the more popular gradient-free optimization
methods are ZO optimization methods, which are gradient-free counterparts of first-order
optimization methods and thus are easy to implement. In ZO optimization methods, the full
or stochastic gradients are approximated by directional derivatives which can be calculated
through the sampled function values. The commonly used method to calculate directional
derivatives is using the function difference at two different points [213, 214, 280].

Via modification of gradient-based optimization algorithms, various ZO optimization
methods have been proposed, e.g., ZO (stochastic) gradient descent algorithms [142, 213,
281–290], ZO stochastic coordinate descent algorithms [248], ZO (stochastic) variance
reduction algorithms [215, 286, 287, 289–302], ZO (stochastic) proximal algorithms
[291, 298, 303, 304], ZO Frank–Wolfe algorithms [289, 300, 302, 305], ZO mirror descent
algorithms [214, 296, 306], ZO adaptive momentum methods [304, 307], ZO methods
of multipliers [215, 292, 308, 309], ZO stochastic path-integrated differential estimator
[294, 299, 309]. Convergence properties of these algorithms have been analyzed in detail.
For instance, the typical convergence results for two-point sampling based centralized DZO
algorithms is that first-order stationary points can be found at an O(p/T) convergence
rate [213, 285], while for two-point sampling based centralized SZO algorithms the
convergence rate is reduced to O(

√
p/T) [142, 248], where p and T are the dimension

of the decision variable and the total number of iterations, respectively.
Aforementioned ZO optimization algorithms are all centralized and thus are not

suitable to solve distributed optimization problems. Some recent works have started
to modify distributed gradient-based optimization algorithms to ZO, e.g., distributed
ZO gradient descent algorithms [147–151], distributed ZO push-sum algorithm [152],
distributed ZO mirror descent algorithm [153], distributed ZO gradient tracking algorithm
[151], distributed ZO primal–dual algorithms [155], distributed ZO sliding algorithm
[154]. Convergence properties of these algorithms have been analyzed in detail. For
example, in [151] it was established that the output of the 2p-point sampling based

5.1. Introduction 127

distributed DZO algorithm achieves an O(1/T) convergence rate for smooth cost functions
and a linear convergence rate when the global cost function satisfies the P–Ł condition in
addition; and in [155] it was established that the output of the two-point sampling based
distributed SZO algorithm achieves an O(p2n/T) convergence rate for smooth nonconvex
cost functions, where n is the number of agents. However, the algorithm in [151] requires
each agent to communicate three p-dimensional variables with its neighbors, which results
in a heavy communication burden when p is large, and uses the P–Ł constant, which is
normally difficult to determine, to design algorithm parameters. The algorithm in [155]
requires each agent to sample O(T) times per iteration, which is not favorable in practice.

Noting above, four core theoretical questions with important practical relevance arise
when considering distributed ZO optimization problems.

(Q5.1) Are there any distributed DZO algorithms that have the same convergence properties
as the 2p-point sampling based distributed DZO algorithm in [151] under the same
conditions, but require less communication and do not use the P–Ł constant?

(Q5.2) Can distributed SZO algorithms have similar convergence properties as centralized
such algorithms? For instance, can two-point sampling based distributed SZO
algorithms also have an O(

√
p/T) convergence rate as their centralized counterparts

did in [142, 248]?

(Q5.3) As shown in Chapter 4, distributed SGD algorithms can achieve linear speedup in
the number of agents n, compared with centralized SGD algorithms. Can distributed
SZO algorithms also achieve linear speedup? In particular, can two-point sampling
based distributed SZO algorithms achieve the linear speedup convergence rate
O(

√
p/nT)?

(Q5.4) Centralized and distributed DZO algorithms can achieve faster convergence rates
under more stringent conditions such as the strong convexity and P–Ł conditions, as
shown in [213, 283,285, 299,301, 303] and [151], respectively. Can SZO algorithms
also achieve faster convergence rates under such conditions?

This chapter provides positive answers to the above four questions. We first consider
the situation that DZO oracle feedback is available and have the following contributions.

(C5.1) We propose a distributed DZO primal–dual algorithm (Algorithm 5.1), by integrat-
ing the distributed FO primal–dual algorithm (3.7) with the deterministic gradient
estimator (2.33). In this algorithm, at each iteration each agent samples its local
DZO oracles at p + 1 different points.

(C5.2) We show in Theorems 5.1 and 5.2 that the proposed algorithm achieves an O(1/T)
convergence rate for smooth nonconvex cost functions and a linear convergence rate
when the global cost function satisfies the P–Ł condition in addition. In other words,
our proposed distributed DZO algorithm has the same convergence properties as
its FO counterpart and the 2p-point sampling based distributed DZO algorithm in
[151] under the same conditions. Two potential advantages of our distributed DZO

128 Distributed zeroth-order optimization algorithms

algorithm are that it only requires each agent to communicate one p-dimensional
variable with its neighbors at each iteration and does not use the P–Ł constant, thus
(Q5.1) is answered.

We then consider the situation that SZO oracle feedback is available and have the following
contributions.

(C5.3) We propose two distributed SZO algorithms (Algorithms 5.2 and 5.3). In both
algorithms, at each iteration each agent samples its local SZO oracles at two different
points with an adaptive smoothing parameter. This is different from many existing
ZO algorithms and is favorable in practice.

(C5.4) We show in Theorems 5.4 and 5.10 that our SZO algorithms find a stationary point
with the linear speedup convergence rate O(

√
p/(nT)) for smooth nonconvex cost

functions, and thus are faster than the centralized ZO algorithms in [142, 248, 286–
289, 307] and the distributed DZO primal algorithm in [151]. To the best of our
knowledge, this is the first linear speedup result for distributed SZO algorithms, thus
(Q5.2) and (Q5.3) are answered.

(C5.5) We show in Theorems 5.6, 5.7, 5.12, and 5.13 that our SZO algorithms find a global
optimum with an O(p/(nT)) convergence rate when the global cost function satisfies
the P–Ł condition, which is faster than the centralized ZO algorithms in [281, 282]
and the distributed ZO primal algorithms in [148, 151], even though [148, 281, 282]
assumed strongly convex cost functions and only considered additive sampling
noise, and [151] considered the DZO oracle feedback setting. To the best of our
knowledge, this is the first analysis for the performance of SZO algorithms under
the P–Ł condition or the strong convexity assumption, thus (Q5.4) is answered.

(C5.6) When considering centralized optimization problems with DZO oracle feedback, we
show in Theorems 5.8 and 5.14 that above two SZO algorithms linearly find a global
optimum under the P–Ł condition. Compared with [213, 283, 285, 299, 301, 303]
which also achieved linear convergence, we use weaker assumptions on the cost
function and/or less samplings per iteration.

The detailed comparison between this chapter and other ZO optimization algorithms is
summarized in Table 5.1. In this table, NoSPPI denotes the number of sampled points per
iteration, and the sampling complexity is the total number of function samplings needed to
attain an ε-accuracy, i.e., E[‖∇ f (xT)‖2] ≤ ε for nonconvex problems or E[f (xT) − f ∗] ≤ ε
for (strongly) convex problems or problems satisfying the P–Ł condition, where ε > 0 is a
constant.

5.1. Introduction 129

Table 5.1: Comparison of Chapter 5 to some related ZO optimization algorithms.

Reference Problem settings NoSPPI Convergence
rate Sampling complexity

[213]
DZO, centralized, nonconvex, smooth

Two
O(p/T) O(p/ε)

Strongly convex in addition Linear O(p log(1/ε))

[283] DZO, centralized, strongly convex, smooth, Lipschitz Hessian p Linear O(p log(1/ε))

[285]
DZO, centralized, nonconvex, smooth

Two
O(p/T) O(p/ε)

P–Ł condition in addition Linear O(p log(1/ε))

[303] DZO, centralized, restricted strongly convex, smooth, s-sparse
gradient 4s log(p/s) Linear O(s log(p/s) log(1/ε))

[281] DZO, centralized, quadratic, additive sampling noise One O(p2/T) O(p2/ε)

[282] DZO, centralized, strongly convex, smooth, additive sampling
noise Two O(p/

√
T) O(p2/ε2)

DZO, centralized, nonconvex, Lipschitz, smooth O(p2/T 2/3) O(p3/ε3/2)
[288]

SZO, centralized, nonconvex, Lipschitz, smooth
One

O(p4/3/T 1/3) O(p4/ε3)

[142, 248] SZO, centralized, nonconvex, smooth Two O(
√

p/T) O(p/ε2)

[289] SZO, centralized, nonconvex, smooth, s-sparse gradient Two O(s log(p)/
√

T) O((s log(p))2/ε2)

[291] SZO, centralized, constrained, nonconvex, Lipschitz, smooth O(pT) O(1/T) O(p/ε2)

[307] SZO, centralized, constrained, nonconvex, Lipschitz, smooth Two O(p/
√

T) O(p2/ε2)

[286] DZO, finite-sum, nonconvex, constrained, Lipschitz, smooth O(
√

T) O(p/
√

T) O(p3/ε3)

[287] DZO, finite-sum, nonconvex, Lipschitz, smooth O(pT) O(
√

p/T) O(p3/ε4)

[293] DZO, finite-sum, nonconvex, smooth, the original and mixture
gradients are proportional 2b O(pnθ/(bT)) O(pnθ/ε), ∀θ ∈ (0, 1)

[294] DZO, finite-sum, nonconvex, smooth O(pn1/2) O(1/T) O(pn1/2/ε)

[295] DZO, finite-sum, nonconvex, smooth, similar fi 2n O(p/T) O(pn/ε)

[298] DZO, finite-sum, nonconvex, Lipschitz, smooth O(pn2/3) O(p/T) O(p2n2/3/ε)

[299]
DZO, finite-sum, nonconvex, smooth, similar fi

O(pn1/2)
O(1/T) O(pn1/2/ε)

P–Ł condition in addition Linear O(pn1/2 log(1/ε))

[301] DZO, finite-sum, strongly convex, smooth Four Linear O(pn log(p/ε))

[292] SZO, finite-sum, nonconvex, constrained, Lipschitz, smooth O(nT) O(p/T) O(p2n/ε2)

[297] SZO, finite-sum, nonconvex, smooth Four O(p1/3n2/3/T) O(p1/3n2/3/ε)

[147] DZO, distributed, convex, constrained, Lipschitz 2n Asymptotic —-

[152] DZO, distributed, convex, Lipschitz 2n O(p3n2/
√

T) O(p6n5/ε2)

[153]
DZO, distributed, convex, compact constrained, Lipschitz

2n
O(p
√

n/T) O(p2n2/ε2)

DZO, distributed, strongly convex, constrained, Lipschitz O(p2n2/T) O(p2n3/ε)

[148] DZO, distributed, strongly convex, smooth, additive sampling
noise 2n O(pn2/

√
T) O(p2n5/ε2)

[149] DZO, distributed, convex, compact constrained, Lipschitz,
additive sampling noise 2n O(1/

√
T) O(n/ε2)

[154] SZO, distributed, convex, compact constrained, Lipschitz O(pnT) O(1/T) O(pn/ε2)

[151]

DZO, distributed, nonconvex, Lipschitz, smooth
2n

O(
√

p/T) O(pn/ε2)

DZO, distributed, nonconvex, smooth, P–Ł condition O(p/T) O(pn/ε)

DZO, distributed, nonconvex, smooth
2pn

O(1/T) O(pn/ε)

P–Ł condition in addition Linear O(pn log(1/ε))

[155] SZO, distributed, nonconvex, Lipschitz, smooth O(nT) O(p2n/T) O(p4n3/ε2)

DZO, distributed, nonconvex, smooth
(p + 1)n

O(1/T) O(pn/ε)

P–Ł condition in addition (without using the P–Ł constant) Linear O(pn log(1/ε))

SZO, distributed, nonconvex, smooth, similar fi O(
√

p/(nT)) O(p/ε2)

SZO, distributed, nonconvex, smooth, P–Ł condition
2n

O(p/(nT)) O(p/ε)

DZO, centralized, nonconvex, smooth, O(p/T) O(p/ε)

This
chapter

P–Ł condition in addition (without using the P–Ł constant)
Two

Linear O(p log(1/ε))

130 Distributed zeroth-order optimization algorithms

5.2 Distributed nonconvex optimization with ZO oracle feedback

Consider a network of n agents, each of which has a local cost function fi : Rp → R. All
agents collaborate to solve the optimization problem

min
x∈Rp

f (x) =
1
n

n∑
i=1

fi(x). (5.1)

This is the same as the distributed nonconvex optimization problem (3.1). However, in this
chapter, we consider the case where each agent is only able to collect ZO oracles, i.e., the
values of its local cost function, rather than FO oracles, i.e., the true or stochastic gradients
of its local cost function.

Both DZO and SZO oracle feedback settings are considered. Under the DZO oracle
feedback setting, each agent can sample the true values of its local cost function. In this
setting, based on the definitions introduced in Chapter 2, the following assumptions are
made.

Assumption 5.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 5.2. The optimal set X∗ is nonempty and f ∗ > −∞, where X∗ and f ∗ are the
optimal set and the minimum function value of the optimization problem (5.1), respectively.

Assumption 5.3. Each local cost function fi(x) is smooth with constant L f > 0.

Assumption 5.4. The global cost function f (x) satisfies the P–Ł condition with constant
ν > 0.

Under the SZO oracle feedback setting, each agent can sample stochastic approxima-
tions of the true local cost function values. Let Fi(x, ξi) be a stochastic approximation of
the true local cost function value fi(x) that can be sampled by agent i, where ξi is a random
variable. In addition to Assumptions 5.1–5.4, we also make the following assumptions.

Assumption 5.5. The SZO oracle Fi(x, ξi) is unbiased, i.e., Eξi [Fi(x, ξi)] = fi(x), ∀i ∈
[n], ∀x ∈ Rp.

Assumption 5.6. For almost all ξi, the SZO oracle Fi(·, ξi) is smooth with constant L f > 0.

Assumption 5.7. The stochastic gradient ∇xFi(x, ξi) has bounded variance, i.e., there
exists σ1 ∈ R such that Eξi [‖∇xFi(x, ξi) − ∇ fi(x)‖2] ≤ σ2

1, ∀i ∈ [n], ∀x ∈ Rp.

Assumption 5.8. Local cost functions are similar, i.e., there exists σ2 ∈ R such that
‖∇ fi(x) − ∇ f (x)‖2 ≤ σ2

2, ∀i ∈ [n], ∀x ∈ Rp.

Remark 5.1. It should be highlighted that no convexity assumptions are made. As-
sumptions 5.5–5.7 are standard when considering the SZO oracle feedback setting, e.g.,
[142, 155, 215, 248, 289, 291, 292, 296, 297, 304, 305]. Assumption 5.8 is slightly weaker
than the assumption that each ∇ fi is bounded, which is normally used in the literature

5.3. Distributed primal–dual DZO algorithm 131

studying finite-sum ZO optimization, e.g., [147, 151, 152, 154, 155, 214, 215, 286, 287,
292, 293, 298, 305, 308, 309]. Bounded gradient is not the case for many unconstrained
optimization problems, e.g., quadratic optimization problems. Assumption 5.8 is not needed
when Assumption 5.4 holds.

Our goal in this chapter is to answer (Q5.1)–(Q5.4), i.e., solve the following problem.

Problem 5.1. Propose distributed DZO and SZO algorithms for the nonconvex optimiza-
tion problem (5.1) such that stationary points or global optima can be found.

5.3 Distributed primal–dual DZO algorithm

In this section, we consider the situation that DZO oracle feedback is available. We propose
a distributed primal–dual DZO algorithm based on the deterministic gradient estimator
introduced in Section 2.9 and analyze its convergence rate.

5.3.1 Algorithm description

Inspired by the deterministic gradient estimator (2.33), based on the distributed primal–
dual FO algorithm (3.7), we propose the distributed primal–dual DZO algorithm

xi,k+1 = xi,k − η
(
α

n∑
j=1

Li jx j,k + βvi,k + ∇̂p fi(xi,k, δi,k)
)
, (5.2a)

vi,k+1 = vi,k + ηβ

n∑
j=1

Li jx j,k,∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, (5.2b)

where ∇̂p fi(xi,k, δi,k) is the deterministic estimator of ∇ fi(xi,k) as defined in (2.33) and δi,k

is the exploration parameter. Recall that

∇̂p fi(xi,k, δi,k) =
1
δi,k

p∑
l=1

(fi(x + δi,kel) − fi(x))el.

Note that the gradient estimator ∇̂p fi(xi,k, δi,k) can be calculated by querying the true
function values of fi at p + 1 points.

We present the distributed primal–dual DZO algorithm (5.2) in pseudo-code as
Algorithm 5.1.

Remark 5.2. In [243], the authors proposed the distributed DZO gradient tracking algo-
rithm. However, in that algorithm, at each iteration each agent i needs to communicate two
additional p-dimensional variables besides the communication of xi,k with its neighbors,
which results in a heavy burden on the communication channel when p is large. Moreover,
the deterministic gradient estimator used in [243] requires that at each iteration each agent
queries its local cost function values at 2p points compared with p + 1 points used in our
algorithm.

132 Distributed zeroth-order optimization algorithms

Algorithm 5.1 Distributed Primal–Dual DZO Algorithm

1: Input: parameters α > 0, β > 0, η > 0, and {δi,k > 0}.
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive x j,k from j ∈ Ni;
6: Sample fi(xi,k) and { fi(xi,k + δi,kel)}

p
l=1;

7: Update xi,k+1 by (5.2a);
8: Update vi,k+1 by (5.2b).
9: end for

10: end for
11: Output: {xk}.

5.3.2 Convergence analysis

In this section, we analyze convergence rate of Algorithm 5.1.

Find stationary points

Let us consider the case when Algorithm 5.1 is able to find stationary points. We have the
following convergence results.

Theorem 5.1. Suppose that Assumptions 5.1–5.3 hold. Let {xk} be the sequence generated
by Algorithm 5.1 with α ∈ (β + κ1, κ2β], β > cβ, η ∈ (0, cη), and δi,k > 0 such that

+∞∑
k=0

δ2
i,k < +∞, (5.3)

where κ1, κ2, cβ, and cη are constants given in Section 5.8.1. Then, for any T ∈ N+,

1
T

T−1∑
k=0

1
n

n∑
i=1

‖xi,k − x̄k‖
2 = O(

1
T

), (5.4)

1
T

T−1∑
k=0

‖∇ f (x̄k)‖2 = O(
1
T

), (5.5)

f (x̄T) − f ∗ = O(1), (5.6)

where x̄k = 1
n
∑n

i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (5.4)–(5.6) and the proof are
given in Section 5.8.1. �

5.4. Distributed primal–dual SZO algorithm 133

Find global optima

Let us next consider the case when Algorithm 5.1 finds global optima. We have the
following convergence results.

Theorem 5.2. Suppose that Assumptions 5.1–5.4 hold. Let {xk} be the sequence generated
by Algorithm 5.1 with the same α, β, and η given in Theorem 5.1, and δi,k ∈ (0, κk/2

δ), where
κδ ∈ (0, 1) is a constant, then

1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗ ≤ ζ0ζ

k, ∀k ∈ N0, (5.7)

where ζ0 > 0 and ζ ∈ (0, 1) given in Section 5.8.2.

Proof. The proof is given in Section 5.8.2. �

Remark 5.3. By comparing Theorems 3.1 and 3.2 with Theorems 5.1 and 5.2, respectively,
we see that the proposed distributed FO and ZO algorithms have the same convergence
properties under the same assumptions. Similar convergence results as stated in Theo-
rems 5.1 and 5.2 were also achieved by the distributed DZO gradient tracking algorithm
proposed in [243] under the same assumptions. Compared with [243], in addition to the
advantages discussed in Remark 5.2, one more advantage of Theorem 5.2 is that the P–Ł
constant ν is not needed to be known in advance.

5.4 Distributed primal–dual SZO algorithm

In this and the next sections, we consider the situation that SZO oracle feedback is
available. In this section, we propose a distributed primal–dual SZO algorithm based on
the two-point sampling random gradient estimator introduced in Section 2.8 and analyze
its convergence rate.

5.4.1 Algorithm description

Inspired by the two-point sampling random gradient estimator (2.26), based on the
distributed primal–dual FO algorithm (3.7), we propose the distributed primal–dual SZO
algorithm

xi,k+1 = xi,k − ηk

(
αk

n∑
j=1

Li jx j,k + βkvi,k + ge
i,k

)
, (5.8a)

vi,k+1 = vi,k + ηkβk

n∑
j=1

Li jx j,k, ∀xi,0 ∈ R
p,

n∑
j=1

v j,0 = 0p, ∀i ∈ [n], (5.8b)

where

ge
i,k =

p
δi,k

(Fi(xi,k + δi,kui,k, ξi,k) − Fi(xi,k, ξi,k))ui,k (5.9)

134 Distributed zeroth-order optimization algorithms

Algorithm 5.2 Distributed Primal–Dual SZO Algorithm

1: Input: positive sequences {αk}, {βk}, {ηk}, and {δi,k}.
2: Initialize: xi,0 ∈ R

p and vi,0 = 0p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive x j,k from j ∈ Ni;
6: Select vector ui,k ∈ S

p independently and uniformly at random;
7: Select ξi,k independently;
8: Sample Fi(xi,k, ξi,k) and Fi(xi,k + δi,kui,k, ξi,k);
9: Update xi,k+1 by (5.8a);

10: Update vi,k+1 by (5.8b).
11: end for
12: end for
13: Output: {xk}.

with δi,k > 0 being an adaptive smoothing parameter and ui,k ∈ S
p being a uniformly

distributed random vector chosen by agent i at iteration k, ξi,k being a random variable
chosen by agent i according to the distribution of ξi, and Fi(xi,k+δi,kui,k, ξi,k) and Fi(xi,k, ξi,k)
being the values sampled by agent i.

Here, we assume that ui,k and ξi,k, ∀i ∈ [n], k ≥ 1 are mutually independent, which is
commonly used when considering the SZO oracle feedback setting, e.g., [142, 148, 149,
155, 214, 215, 248, 289, 291, 292, 296, 297, 304, 305, 307]. Let Lk denote the σ-algebra
generated by the independent random variables u1,k, . . . , un,k, ξ1,k, . . . , ξn,k and let Lk =⋃k

t=0 Lt. It is straightforward to see that xi,k and vi,k+1, i ∈ [p] depend on Lk−1 and are
independent of Lt for all t ≥ k.

We write the distributed primal–dual SZO algorithm (5.8) in pseudo-code as Algo-
rithm 5.2.

Remark 5.4. In Algorithm 5.2, at each iteration each agent samples its local SZO oracles
at two different points to estimate the gradient of its local cost function. It should be
highlighted that the agent-wise smoothing parameter is adaptive, which is normally larger
than the fixed smoothing parameter used in many of existing ZO algorithms, and thus is
favorable in practice. For example, in the following we useO(1/k1/4) smoothing parameter,
which is larger than the O(1/T 1/2) smoothing parameter used in [142].

5.4.2 Convergence analysis

Find stationary points

Let us consider the case when Algorithm 5.2 is able to find stationary points. We have the
following convergence result for Algorithm 5.2 with time-varying parameters.

5.4. Distributed primal–dual SZO algorithm 135

Theorem 5.3. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Let {xk} be the sequence
generated by Algorithm 5.2 with

αk = κ1βk, βk = κ0(k + t1)θ, ηk =
κ2

βk
, δi,k ≤ κδ

√
ηk, ∀k ∈ N0, (5.10)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), θ ∈ (0.5, 1), t1 ≥ (
√

pc3(κ1, κ2))1/θ, κ0 ≥ c0(κ1, κ2)/tθ1, and
κδ > 0 with c0(κ1, κ2), c1, c2(κ1), and c3(κ1, κ2) defined in Appendix 5.8.3. Then, for any
T ∈ N+, ∑T−1

k=0 ηkE[‖∇ f (x̄k)‖2]∑T−1
k=0 ηk

= O(
√

p
T 1−θ), (5.11a)

E[f (x̄T)] − f ∗ = O(1), (5.11b)

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
1

T 2θ), (5.11c)

lim
T→+∞

E[‖∇ f (x̄T)‖2] = 0, (5.11d)

where x̄k = 1
n
∑n

i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (5.11a)–(5.11c) and the proof
are given in Appendix 5.8.3. �

If the total number of iterations T and the number of agents n are known in advance,
then, as shown in the following, Algorithm 5.2 can solve (5.1) with an O(

√
p/
√

nT)
convergence rate, and thus achieves linear speedup in the number of agents compared to
the O(

√
p/
√

T) convergence rate achieved by the stochastic gradient-free algorithms for
solving centralized stochastic nonconvex optimization in [142, 248].

Theorem 5.4 (Linear speedup). Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. For any
given T > max{n(c̃0(κ1, κ2)/κ2)2, n3}/p, let {xk, k ∈ [T]} be the output generated by
Algorithm 5.2 with

αk = κ1βk, βk = β =
κ2
√

pT
√

n
, ηk =

κ2

βk
, δi,k ≤

κδ

p
1
4 n

1
4 (k + 1)

1
4

, ∀k ≤ T, (5.12)

where c̃0(κ1, κ2) is defined in Appendix 5.8.4, κ1 > c1, κ2 ∈ (0, c2(κ1)), and κδ > 0 with c1
and c2(κ1) defined in Appendix 5.8.3. Then,

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = O(
√

p
√

nT
) + O(

n
T

), (5.13a)

E[f (x̄T)] − f ∗ = O(1), (5.13b)

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]

= O(
n
T

), (5.13c)

lim
T→+∞

E[‖∇ f (x̄T)‖2] = 0, (5.13d)

136 Distributed zeroth-order optimization algorithms

Proof. The explicit expressions of the right-hand sides of (5.13a)–(5.13b) and the proof
are given in Appendix 5.8.4. It should be highlighted that the omitted constants in the
first term in the right-hand side of (5.13a) do not depend on any parameters related to the
communication network. �

Remark 5.5. To the best of our knowledge, Theorem 5.4 is the first to establish linear
speedup result for distributed SZO algorithms. This rate is faster than the rates achieved
by centralized ZO algorithms in [142, 248, 286–289, 307] and the distributed primal
ZO algorithm in [151]. This rate is slower than rates achieved by centralized ZO
algorithms in [291–295,297–299], which is reasonable since these algorithms not only are
centralized but also use variance reduction techniques. However, in [293–295, 298, 299],
the considered problems are deterministic; and in [155, 291, 292], the sampling size of
each agent at each iteration is O(T), which is difficult to execute in practice. It is one
of our future research directions to establish faster convergence with reduced sampling
complexity by using variance reduction techniques.

Find global optima

Let us next consider cases when Algorithm 5.2 finds global optima.

Theorem 5.5. Suppose Assumptions 5.1–5.8 hold. Let {xk} be the sequence generated by
Algorithm 5.2 with

αk = κ1βk, βk = κ0(k + t1)θ, ηk =
κ2

βk
, δi,k ≤ κδηk, ∀k ∈ N0, (5.14)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), θ ∈ (0, 1), t1 ∈ [(pc3(κ1, κ2))1/θ, (pc4c3(κ1, κ2))1/θ], κ0 ≥

c0(κ1, κ2)/tθ1, and κδ > 0 with c4 ≥ 1 being a constant, c0(κ1, κ2), c1, c2(κ1), and c3(κ1, κ2)
defined in Appendix 5.8.3. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2θ), (5.15a)

E[f (x̄T) − f ∗] = O(
p

nT θ
) + O(

p
T 2θ). (5.15b)

Proof. The explicit expressions of the right-hand sides of (5.15a) and (5.15b), and the
proof are given in Appendix 5.8.5. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.15b) do not depend on any parameters related to
the communication network. �

From Theorem 5.5, we see that the convergence rate is strictly greater than O(p/(nT)).
In the following we show that the linear speedup convergence rate O(p/(nT)) can be
achieved if the P–Ł constant ν is known in advance. The total number of iterations T is
not needed.

5.4. Distributed primal–dual SZO algorithm 137

Theorem 5.6 (Linear speedup). Suppose Assumptions 5.1–5.8 hold and the P–Ł constant
ν is known in advance. Let {xk} be the sequence generated by Algorithm 5.2 with

αk = κ1βk, βk = κ0(k + t1), ηk =
κ2

βk
, δi,k ≤ κδηk, ∀k ∈ N0, (5.16)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), κ0 ∈ [3ĉ0νκ2/16, 3νκ2/16), t1 > ĉ3(κ0, κ1, κ2), and κδ > 0
with ĉ0 ∈ (0, 1) being a constant, c1 and c2(κ1) defined in Appendix 5.8.3, and ĉ3(κ0, κ1, κ2)
defined in Appendix 5.8.6. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2), (5.17a)

E[f (x̄T) − f ∗] = O(
p

nT
) + O(

p
T 2). (5.17b)

Proof. The explicit expressions of the right-hand sides of (5.17a) and (5.17b), and the
proof are given in Appendix 5.8.6. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.17b) do not depend on any parameters related to
the communication network. �

Although Assumption 5.8 is weaker than the bounded gradient assumption, it can
be further relaxed by a mild assumption. Specifically, if each f ∗i > −∞, where f ∗i =

minx∈Rp fi(x), then without Assumption 5.8, the convergence results stated in (5.17a) and
(5.17b) still hold, as shown in the following.

Theorem 5.7 (Linear speedup). Suppose Assumptions 5.1–5.7 hold, and the P–Ł constant
ν is known in advance, and each f ∗i > −∞. Let {xk} be the sequence generated by
Algorithm 5.2 with

αk = κ1βk, βk = κ0(k + t1), ηk =
κ2

βk
, δi,k ≤ κδηk, ∀k ∈ N0, (5.18)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), κ0 ∈ [3ĉ0νκ2/16, 3νκ2/16), t1 > č3(κ0, κ1, κ2), and κδ > 0
with ĉ0 ∈ (0, 1) being a constant, c1 and c2(κ1) defined in Appendix 5.8.3, and č3(κ0, κ1, κ2)
defined in Appendix 5.8.7. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2), (5.19a)

E[f (x̄T) − f ∗] = O(
p

nT
) + O(

p
T 2). (5.19b)

Proof. The explicit expressions of the right-hand sides of (5.19a) and (5.19b), and the
proof are given in Appendix 5.8.7. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.19b) do not depend on any parameters related to
the communication network. �

138 Distributed zeroth-order optimization algorithms

Remark 5.6. To the best of our knowledge, Theorems 5.5–5.7 are the first analysis of ZO
algorithms to solve stochastic optimization problems under the P–Ł condition or the strong
convexity assumption. In [281], a centralized ZO algorithm based on one-point sampling
with additive sampling noise was proposed and anO(p2/T) convergence rate was achieved
for deterministic optimization problems strongly convex quadratic cost functions. In [282],
a centralized ZO algorithm based on two-point sampling with additive noise was proposed
and an O(p/

√
T) convergence rate was achieved for deterministic strongly convex and

smooth optimization problems. In [148], a distributed primal ZO algorithm based on 2p-
point sampling with additive noise was proposed and an O(pn2/

√
T) convergence rate was

achieved for deterministic strongly convex and smooth optimization problems. In [151],
a distributed primal DZO algorithm based on two-point sampling was proposed and an
O(p/T) convergence rate was achieved for deterministic smooth optimization problems
under the P–Ł condition. It is straightforward to see that aforementioned convergence
rates achieved in [148, 151, 281, 282] are slower than the convergence rate achieved by
our distributed primal–dual SZO algorithm as stated in Theorem 5.7, although we consider
the SZO oracle feedback setting which is more general than these studies, and use the P–Ł
condition which is weaker than the strong convexity condition.

As shown in Theorems 5.5–5.7, in expectation, the convergence rate of Algorithm 5.2
with diminishing stepsizes is sublinear. The following theorem establishes that, in expec-
tation, the output of Algorithm 5.2 with constant algorithm parameters linearly converges
to a neighborhood of a global optimum.

Theorem 5.8. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Let {xk} be the sequence
generated by Algorithm 5.2 with

αk = κ1β, βk = β, ηk =
κ2

β
, δi,k ≤ κδε̂

k
2 , ∀k ∈ N0, (5.20)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), β ≥ c̃0(κ1, κ2), ε̂ ∈ (0, 1), and κδ > 0 with c̃0(κ1, κ2) defined
in Appendix 5.8.4, and c1 and c2(κ1) defined in Appendix 5.8.3. Then, for any T ∈ N+,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]
≤

c5

T
+ η2(σ2

1 + 3σ2
2)c6, (5.21a)

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] ≤
pc7

ηT
+ η(σ2

1 + 3ησ2
2)c8, (5.21b)

where c5, c6, c7, and c8 are positive constants defined in Appendix 5.8.8. Moreover, if
Assumption 5.4 also holds, then

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗

]
≤ εkc9 + η(σ2

1 + 3σ2
2)c10, ∀k ∈ N+, (5.22)

where ε ∈ (0, 1), c9, and c10 are positive constants defined in Appendix 5.8.8.

5.5. Distributed primal SZO algorithm 139

Proof. The proof is given in Appendix 5.8.8. �

Remark 5.7. When considering centralized nonconvex smooth optimization with DZO
oracle feedback, i.e., σ1 = σ2 = 0, the result stated in (5.21b) shows that a stationary can
be found with a rate O(p/T). This rate is the same as that achieved by the ZO algorithms
in [213,285,293,295,298]. Although the ZO variance reduced algorithms in [294,299] and
the stochastic direct-search algorithms in [273–275] achieved a faster rate O(1/T), these
algorithms require three or more samplings at each iteration, while our proposed algorithm
requires only two samplings at each iteration. Moreover, the result stated in (5.22) shows
that a global optimum can be found linearly. The ZO algorithms in [213, 283, 285, 299,
301, 303] and the stochastic direct-search algorithms in [273–276] also achieved linear
convergence. However, the algorithms in [273–276, 283, 299, 301] require three or more
samplings at each iteration; the P–Ł constant needs to be known in advance in [285,299],
which is not needed in Theorem 5.8; and the cost functions in [213, 273–276, 283, 301,
303] are (restricted) strongly convex, which is stronger than the P–Ł condition used in
Theorem 5.8.

5.5 Distributed primal SZO algorithm

Same as Section 5.4, in this section, we also consider the situation that SZO oracle feedback
is available. We propose a distributed primal SZO algorithm based on the two-point
sampling random gradient estimator introduced in Section 2.8 and analyze its convergence
rate.

5.5.1 Algorithm description

Inspired by distributed first-order (sub)gradient descent algorithm proposed in [310], we
propose the distributed primal SZO algorithm

xi,k+1 = xi,k − γ

n∑
j=1

Li jx j,k − ηkge
i,k, (5.23)

where γ is a positive constant and {ηk} is a positive sequence to be specified later and ge
i,k

is the stochastic gradient estimator defined in (5.9).
We write the distributed primal SZO algorithm (5.23) in pseudo-code as Algorithm 5.3.

5.5.2 Convergence analysis

Find stationary points

Theorem 5.9. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Let {xk} be the sequence
generated by Algorithm 5.3 with

γ ∈ (0, d1), ηk =
κη

(k + t1)θ
, δi,k ≤ κδ

√
ηk, ∀k ∈ N0, (5.24)

140 Distributed zeroth-order optimization algorithms

Algorithm 5.3 Distributed Primal SZO Algorithm

1: Input: positive constant γ and positive sequences {ηk} and {δi,k}.
2: Initialize: xi,0 ∈ R

p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive x j,k from j ∈ Ni;
6: Select vector ui,k ∈ S

p independently and uniformly at random;
7: Select ξi,k independently;
8: Sample Fi(xi,k, ξi,k) and Fi(xi,k + δi,kui,k, ξi,k);
9: Update xi,k+1 by (5.23).

10: end for
11: end for
12: Output: {xk}.

where κδ > 0, κη ∈ (0, d2(γ)tθ1], θ ∈ (0.5, 1), and t1 ≥ p1/(2θ) with d1 and d2(γ) defined in
Appendix 5.8.9. Then, for any T ∈ N+,∑T−1

k=0 ηkE[‖∇ f (x̄k)‖2]∑T−1
k=0 ηk

= O(
√

p
T 1−θ), (5.25a)

E[f (x̄T)] − f ∗ = O(1), (5.25b)

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
1

T 2θ), (5.25c)

lim
T→+∞

E[‖∇ f (x̄T)‖2] = 0. (5.25d)

Proof. The explicit expressions of the right-hand sides of (5.25a)–(5.25c) and the proof
are given in Appendix 5.8.9. �

If the total number of iterations T and the number of agents n are known in
advance, then, as shown in the following, Algorithm 5.3 can solve (5.1) with O(

√
p/
√

nT)
convergence rate, and thus achieves the linear speedup with respect to the number of agents.

Theorem 5.10 (Linear speedup). Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. For any
given T ≥ max{n/d2

2(γ), n3}/p, let {xk k ∈ [T]} be the output generated by Algorithm 5.3
with

γ ∈ (0, d1), ηk =

√
n

√
pT

, δi,k ≤
κδ

p
1
4 n

1
4 (k + 1)

1
4

, ∀k ≤ T, (5.26)

where κδ > 0 and d1 and d2(γ) are defined in Appendix 5.8.9, then

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = O(
√

p
√

nT
) + O(

n
T

), (5.27a)

5.5. Distributed primal SZO algorithm 141

E[f (x̄T)] − f ∗ = O(1), (5.27b)

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]

= O(
n
T

), (5.27c)

lim
T→+∞

E[‖∇ f (x̄T)‖2] = 0, (5.27d)

Proof. The explicit expressions of the right-hand sides of (5.27a)–(5.27c) and the proof
are given in Appendix 5.8.10. It should be highlighted that the omitted constants in the
first term in the right-hand side of (5.27a) do not depend on any parameters related to the
communication network. �

Find global optima

Theorem 5.11. Suppose Assumptions 5.1–5.8 hold. Let {xk} be the sequence generated by
Algorithm 5.3 with

γ ∈ (0, d1), ηk =
κη

(k + t1)θ
, δi,k ≤ κδηk, ∀k ∈ N0, (5.28)

where κδ > 0, κη ∈ (0, d2(γ)tθ1], θ ∈ (0, 1), and t1 ≥ p1/θ with d1 and d2(γ) defined in
Appendix 5.8.9. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2θ), (5.29a)

E[f (x̄T) − f ∗] = O(
p

nT θ
) + O(

p
T 2θ). (5.29b)

Proof. The explicit expressions of the right-hand sides of (5.29a) and (5.29b), and the
proof are given in Appendix 5.8.11. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.29b) do not depend on any parameters related to
the communication network. �

From Theorem 5.11, we see that the convergence rate is strictly greater thanO(p/(nT)).
In the following we show that the linear speedup convergence rate O(p/(nT)) can be
achieved if the P–Ł constant ν is known in advance. The total number of iterations T is
not needed.

Theorem 5.12 (Linear speedup). Suppose Assumptions 5.1–5.8 hold and the P–Ł constant
ν is known in advance. Let {xk} be the sequence generated by Algorithm 5.3 with

γ ∈ (0, d1), ηk =
κη

k + t1
, δi,k ≤ κδηk, ∀k ∈ N0, (5.30)

where κδ > 0, κη > 4/ν, and t1 > d̂2(γ) with d1 and d̂2(γ) defined in Appendices 5.8.9 and
5.8.12, respectively. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2), (5.31a)

142 Distributed zeroth-order optimization algorithms

E[f (x̄T) − f ∗] = O(
p

nT
) + O(

p
T 2). (5.31b)

Proof. The explicit expressions of the right-hand sides of (5.31a) and (5.31b), and the
proof are given in Appendix 5.8.12. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.31b) do not depend on any parameters related to
the communication network. �

Although Assumption 5.8 is weaker than the bounded gradient assumption, it can
be further relaxed by a mild assumption. Specifically, if each f ∗i > −∞, where f ∗i =

minx∈Rp fi(x), then without Assumption 5.8, the convergence results stated in (5.31a) and
(5.31b) still hold, as shown in the following.

Theorem 5.13 (Linear speedup). Suppose Assumptions 5.1–5.7 hold, and the P–Ł constant
ν is known in advance, and each f ∗i > −∞. Let {xk} be the sequence generated by
Algorithm 5.3 with

γ ∈ (0, d1), ηk =
κη

k + t1
, δi,k ≤ κδηk, ∀k ∈ N0, (5.32)

where κδ > 0, κη > 4/ν, and t1 > ď2(γ) with d1 and ď2(γ) defined in Appendices 5.8.9 and
5.8.13, respectively. Then, for any T ∈ N+,

E
[1
n

n∑
i=1

‖xi,T − x̄T ‖
2
]

= O(
p

T 2), (5.33a)

E[f (x̄T) − f ∗] = O(
p

nT
) + O(

p
T 2). (5.33b)

Proof. The explicit expressions of the right-hand sides of (5.33a) and (5.33b), and the
proof are given in Appendix 5.8.13. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.33b) do not depend on any parameters related to
the communication network. �

As shown in Theorems 5.11–5.13, in expectation, the convergence rate of Algo-
rithm 5.3 with diminishing stepsizes is sublinear. The following theorem establishes that,
in expectation, the output of Algorithm 5.3 with constant algorithm parameters linearly
converges to a neighborhood of a global optimum.

Theorem 5.14. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Let {xk} be the sequence
generated by Algorithm 5.3 with

γ ∈ (0, d1), ηk = η, δi,k ≤ ε̂
k
2 , ∀k ∈ N0, (5.34)

where η ∈ (0, d2(γ) and ε̂ ∈ (0, 1) with d1 and d2(γ) defined in Appendix 5.8.9. Then, for
any T ∈ N+,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]
≤

d3

T
+ η2(σ2

1 + 3σ2
2)d4, (5.35a)

5.6. Simulations 143

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] ≤
pd5

ηT
+ η(σ2

1 + 3σ2
2)d6, (5.35b)

where d3, d4, d5, and d6 are positive constants defined in Appendix 5.8.14. Moreover, if
Assumption 5.4 also holds, then

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2 + f (x̄k) − f ∗

]
≤ εkd7 + η(σ2

1 + 3σ2
2)d8, ∀k ∈ N+, (5.36)

where ε ∈ (0, 1), d7, and d8 are positive constants defined in Appendix 5.8.14.

Proof. The proof is given in Appendix 5.8.14. �

5.6 Simulations

In this section, we verify the theoretical results through numerical examples.

5.6.1 Distributed regularized logistic regression

This section evaluates the performance of Algorithm 5.1 in solving the nonconvex
distributed regularized logistic regression problem considered in Section 3.6.1. In this
simulation, all settings for cost functions and the communication graph are the same as
those described in Section 3.6.1.

We compare Algorithm 5.1 with its FO counterpart (Algorithm 3.1) and state-of-the-
art algorithms: distributed gradient descent (DGD) with diminishing stepsizes [110, 116],
distributed gradient tracking algorithm (DGTA) [80,116], distributed ZO gradient tracking
algorithm (ZO-GTA) [243], xFILTER [114], Prox-GPDA [112], and D-GPDA [113].

Figure 5.1 illustrates the evolutions of mink∈[T]{‖∇ f (x̄k)‖2 + 1
n
∑n

i=1 ‖xi,k − x̄k‖
2} with

respect to the number of communication rounds for these algorithms with the same initial
condition. It can be seen that both zeroth-order algorithms (Algorithm 5.1 and ZO-GTA
[243]) exhibit almost identical behavior as their first-order counterparts (Algorithm 3.1 and
DGTA [80, 116]) during the early stage, but then slow down and converge at a sublinear
rate.

In order to compare the performance of the two DZO algorithms (Algorithm 5.1 and
ZO-GTA [243]), we plot the evolutions of mink∈[T]{‖∇ f (x̄k)‖2 + 1

n
∑n

i=1 ‖xi,k − x̄k‖
2} with

respect to the number of samplings in Figure 5.2. It can be seen that Algorithm 5.1 gives
better performance.

5.6.2 Generating adversarial examples from black-box deep neural
networks

This section evaluates the performance of Algorithms 5.2 and 5.3 in generating adversarial
examples from black-box deep neural networks (DNNs).

144 Distributed zeroth-order optimization algorithms

0 100 200 300 400 500 600 700 800 900 1000
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

Figure 5.1: Performance of distributed FO and DZO optimization algorithms in
the nonconvex distributed regularized logistic regression problem: Evolutions of
mink∈[T]{‖∇ f (x̄k)‖2 + 1

n
∑n

i=1 ‖xi,k − x̄k‖
2} with respect to the number of communication

rounds.

In image classification tasks, CNNs are vunlberable to adversarial examples [38]
even under small perturbations, which leads misclassifications. Considering the setting of
zeroth-order attacks [40,295], the model is hidden and no gradient information is available.
We treat this task of generating adversarial examples as an zeroth-order optimization
problem. The the black-box attack loss function [40, 295] is given as

fi(x) = max
{
Fyi

(1
2

tanh(tanh−1 2ai + x)
)
−max

j,yi

{
F j

(1
2

tanh(tanh−1 2ai + x)
)}
, 0

}
+ c

∥∥∥∥1
2

tanh(tanh−1 2ai + x) − ai

∥∥∥∥2

2
,

where c is a constant, (ai, yi) denotes the pair of the ith natural image ai and its original
class label yi. The output of function F(z) = col(F1(z), . . . , Fm(z)) is the well-trained model
prediction of the input z in all m image classes.

The well-trained DNN model1 on MNIST handwritten has 99.4% test accuracy on
natural examples [295]. We compare the proposed distributed primal-dual SZO algorithm
(Algorithm 5.2) and distributed primal SZO algorithm (Algorithm 5.3) with state-of-the-
art centralized and distributed SZO algorithms: RSGF [142], SZVR-G [297], ZO-SVRG
[295], distributed ZO gradient descent algorithm (ZO-GDA) [151], and ZONE-M [155].

1https://github.com/carlini/nn_robust_attacks

5.6. Simulations 145

0 1 2 3 4 5

104

10-20

10-15

10-10

10-5

100

105

Figure 5.2: Performance of distributed DZO optimization algorithms in the nonconvex
distributed regularized logistic regression problem: Evolutions of mink∈[T]{‖∇ f (x̄k)‖2 +
1
n
∑n

i=1 ‖xi,k − x̄k‖
2} with respect to the number of samplings.

The communication network of 10 agents is generated randomely following the Erdős -
Rényi model with probability of 0.4. All the hyper-parameters that used in the experiments
are given in Table 5.2. We set the iteration number as 2500.

Table 5.2: Parameters in each algorithm.

Algorithm Decentralized Parameters

Algorithm 5.2 4 η = 0.5/k10−5
, α = 0.5k10−5

, β = 0.1k10−5

Algorithm 5.3 4 γ = 0.01, η = 0.08/k10−5

ZO-GDA 4 η = 0.08/k10−5

ZONE-M 4 ρ = 0.1
√

k

RSGF 7 µ = 0.01

SZVR-G 7 µ = 0.01

ZO-SVRG 7 µ = 0.01

We show the black-box attack loss of each SZO algorithms in Figure 5.3 and list the
least `2 distortion of the successful adversarial perturbations in Table 5.3. We can see
that our proposed distributed SZO algorithms converge almost as fast as the ZO-GDA
[151], and they all are faster than the other algorithms. However, the adversarial examples
generated by these distributed algorithms have slightly larger `2 distortions than those

146 Distributed zeroth-order optimization algorithms

0 500 1000 1500 2000 2500
5

10

15

20

25

30

35

40

45

Figure 5.3: Performance of SZO optimization algorithms in generating adversarial
examples: Evolutions of the black-box attack loss.

Table 5.3: Distortion

Algorithm `2 distortion

Algorithm 5.2 6.44

Algorithm 5.3 5.77

ZO-GDA 7.23

RSGF 5.69

SZVR-G 5.16

ZO-SVRG 4.76

generated by the centralized algorithms. Table 5.4 provides the comparison of generated
adversarial examples from a black-box DNN on MNIST: digit class “4”.

5.7 Summary

In this chapter, we studied distributed nonconvex optimization with ZO information
feedback. We first considered the case that DZO is available and proposed a distributed
primal–dual DZO algorithm. We derived its convergence properties, which are the same as
its FO counterpart. We then considered the case that SZO is available and proposed two
distributed SZO algorithms: distributed primal–dual and primal SZO algorithms. We also

5.7. Summary 147

Table 5.4: Comparison of generated adversarial examples from a black-box DNN on
MNIST: digit class “4”.

Image ID 4 6 19 24 27 33 42 48 49 56

Original

Algorithm 5.2

Classified as 9 8 2 7 2 2 9 9 9 9

Algorithm 5.2

Classified as 9 9 7 9 9 2 9 9 9 9

ZO-GDA

Classified as 9 9 2 2 2 2 9 9 9 3

ZONE-M

Classified as 4 4 4 4 4 4 4 4 4 4

RSGF

Classified as 9 9 2 9 9 2 9 9 9 9

SZVR-G

Classified as 9 8 2 2 2 2 9 9 9 9

ZO-SVRG

Classified as 9 8 2 9 9 2 9 9 9 9

analyzed their convergence properties. More specifically, the linear speedup convergence
rate O(

√
p/(nT)) was established for smooth nonconvex cost functions under arbitrarily

connected communication networks. The convergence rate was improved to O(p/(nT))
when the global cost function satisfies the P–Ł condition in addition. It was also shown
that the output of the proposed algorithms linearly converges to a neighborhood of a
global optimum. Interesting directions for future work include considering asynchronous,
periodic, or compressed communication, investigating an adaptive choice of the number of

148 Distributed zeroth-order optimization algorithms

samplings at each iteration by different agents, and studying the trade-off between sampling
complexity and convergence rate.

5.8 Proofs

5.8.1 Proof of Theorem 5.1

Denote Kn = In −
1
n 1n1>n , K = Kn ⊗ Ip, H = 1

n (1n1>n ⊗ Ip), x̄k = 1
n (1>n ⊗ Ip)xk, x̄k = 1n ⊗ x̄k,

gk = ∇ f̃ (xk), ḡk = Hgk, g0
k = ∇ f̃ (x̄k), ḡ0

k = Hg0
k = 1

n (1n ⊗ ∇ f (x̄k)), hi,k = ∇̂p fi(xi,k, δi,k),
hk = col(h1,k, . . . , hn,k), h̄k = Hhk, δk = maxi∈[n]{δi,k}, δa

i =
∑+∞

k=0 δ
2
i,k, h0

i,k = ∇̂p fi(x̄k, δk),
h0

k = col(h0
1,k, . . . , h

0
n,k), and h̄0

k = Hh0
k .

We also denote the following notations.

cβ = max
{ κ1

κ2 − 1
, κ3, κ4

}
, cη = min

{ζ1

ζ2
,
ζ3

ζ4
,
ζ5

ζ6

}
, κ1 =

1
2ρ2(L)

(2 + 9L2
f), κ2 > 1,

κ3 =
1
4

(
1 +

(
1 + 8κ2 +

8
ρ2(L)

) 1
2
)
, κ4 = 6

(
κ2 +

1
ρ2(L)

)
L2

f + 2
(
9
(
κ2 +

1
ρ2(L)

)2
L4

f + 3L2
f

) 1
2
,

ζ1 = (α − β)ρ2(L) −
1
2

(2 + 9L2
f), ζ2 = β2ρ(L) + (2α2 + β2)ρ2(L) +

15
2

L2
f ,

ζ3 = β −
1
2
−

α

2β2 −
1

2βρ2(L)
, ζ4 = 2β2 +

1
2
, ζ5 =

1
8
−

3
2β

(1
β

+
1

ρ2(L)
+
α

β

)
L2

f ,

ζ6 =
3
β2

(
1 +

1
ρ2(L)

+
α

β

)
L2

f +
L f (1 + 3L f)

2
, ζ7 = ηmin

{
ζ1 − ηζ2,

1
8

}
,

ζ8 =
(3η

4
+ η2

)15npL2
f

4
+ ζ9, ζ9 =

((1
β2 +

1
2ηβ

)(1
ρ2(L)

+
α

β

)
+

1
2ηβ2 +

1
β2 +

1
2

)3npL2
f

4
,

ζ10 =
α + β

2β
+

1
2ρ2(L)

, ζ11 = min
{ 1
2ρ(L)

,
α − β

2α

}
.

The proof of Theorem 5.1 is similar to the proof of Theorem 3.1 with some
modifications. Lemma 3.1 is replaced by the following lemma

Lemma 5.1. Let {xk} be the sequence generated by Algorithm 5.1. If Assumptions 5.1–5.3
hold with α > β. Then,

Uk+1 ≤ Uk − ‖xk‖
2
η(ζ1−ηζ2)K −

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

η(ζ3−ηζ4)K
− η(ζ5 − ηζ6)‖h̄k‖

2

−
η

8
‖ ḡ0

k‖
2 + ζ8δ

2
k + ζ9δ

2
k+1, (5.37)

where

Uk =

4∑
i=1

Ui,k, U1,k =
1
2
‖xk‖

2
K, U2,k =

1
2

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

Q+ α
β K
,

5.8. Proofs 149

U3,k = x>k K
(
vk +

1
β

h0
k

)
, U4,k = n(f (x̄k) − f ∗) = f̃ (x̄k) − f̃ ∗,

and Q = RΛ−1
1 R> ⊗ Ip with matrices R and Λ−1

1 given in Lemma 2.5.

Proof. The distributed deterministic zeroth-order algorithm (5.2) can be rewritten as

xk+1 = xk − η(αLxk + βvk + hk), (5.38a)
vk+1 = vk + ηβLxk, ∀x0 ∈ R

np, v0 = 0np. (5.38b)

We know that (3.30) still holds. Similar to the way to get (3.32), we have

‖g0
k+1 − g0

k‖
2 = ‖∇ f̃ (x̄k+1) − ∇ f̃ (x̄k)‖2 ≤ L2

f ‖x̄k+1 − x̄k‖
2 = η2L2

f ‖h̄k‖
2. (5.39)

From (2.35a), we have

‖hk − gk‖
2 ≤

npL2
f δ

2
k

4
, ‖h0

k − g0
k‖

2 ≤
npL2

f δ
2
k

4
. (5.40)

We have

‖h0
k+1 − h0

k‖
2 = ‖h0

k+1 − g0
k+1 + g0

k+1 − g0
k + g0

k − h0
k‖

2

≤ 3‖h0
k+1 − g0

k+1‖
2 + 3‖g0

k+1 − g0
k‖

2 + 3‖g0
k − h0

k‖
2

≤
3npL2

f δ
2
k+1

4
+ 3η2L2

f ‖h̄k‖
2 +

3npL2
f δ

2
k

4

=
3npL2

f (δ
2
k+1 + δ2

k)

4
+ 3η2L2

f ‖h̄k‖
2, (5.41)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (5.40) and (5.39). Similarly, from the Cauchy-Schwarz inequality,
(5.40), and (3.30), we have

‖h0
k − hk‖

2 ≤
3npL2

f δ
2
k

2
+ 3L2

f ‖xk‖
2
K. (5.42)

Then, from (5.42) and ρ(H) = 1, we have

‖h̄0
k − h̄k‖

2 = ‖H(h0
k − hk)‖2 ≤ ‖h0

k − hk‖
2 ≤

3npL2
f δ

2
k

2
+ 3L2

f ‖xk‖
2
K. (5.43)

We have

‖h̄0
k‖

2 = ‖h̄0
k − ḡ0

k + ḡ0
k‖

2 = ‖h̄0
k − ḡ0

k‖
2 + 2(h̄0

k − ḡ0
k)> ḡ0

k + ‖ ḡ0
k‖

2

≥ ‖h̄0
k − ḡ0

k‖
2 − 2‖h̄0

k − ḡ0
k‖

2 −
1
2
‖ ḡ0

k‖
2 + ‖ ḡ0

k‖
2 = −‖h̄0

k − ḡ0
k‖

2 +
1
2
‖ ḡ0

k‖
2

≥ −‖h0
k − g0

k‖
2 +

1
2
‖ ḡ0

k‖
2 ≥ −

npL2
f δ

2
k

4
+

1
2
‖ ḡ0

k‖
2, (5.44)

150 Distributed zeroth-order optimization algorithms

where the first inequality holds due to the Cauchy-Schwarz inequality; the second
inequality holds due to ρ(H) = 1; and the last inequality holds due to (5.40).

Similar to the way to get (3.33), from (5.38a) and (2.5), we have

U1,k+1 ≤ U1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2

+
η

2
(1 + 3η)‖hk − h0

k‖
2

− ηβx>k K
(
vk +

1
β

h0
k

)
+

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

3η2β2
2 K

. (5.45)

Then, from (5.45) and (5.42), we have

U1,k+1 ≤ U1,k − ‖xk‖
2
ηαL− η

2 K− 3η2α2
2 L2−

3η
2 (1+3η)L2

f K
− ηβx>k K

(
vk +

1
β

h0
k

)
+

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

3η2β2
2 K

+
3npL2

f δ
2
kη(1 + 3η)

4
. (5.46)

Similar to the way to get (3.35), from (5.38b), (2.5), and (2.7), we have

U2,k+1 ≤ U2,k + ηx>k (βK + αL)
(
vk +

1
β

h0
k

)
+ ‖xk‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

h0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+

(1
β2 +

1
2ηβ

)(1
ρ2(L)

+
α

β

)
‖h0

k+1 − h0
k‖

2. (5.47)

Then, from (5.47) and (5.41), we have

U2,k+1 ≤ U2,k + ηx>k (βK + αL)
(
vk +

1
β

h0
k

)
+ ‖xk‖

2
η2β(βL+αL2)

+
∥∥∥∥vk +

1
β

h0
k

∥∥∥∥2

η
2β (Q+ α

β K)
+ +3η

(η
β2 +

1
2β

)(1
ρ2(L)

+
α

β

)
L2

f ‖h̄k‖
2

+
(1
β2 +

1
2ηβ

)(1
ρ2(L)

+
α

β

)3npL2
f (δ

2
k+1 + δ2

k)

4
. (5.48)

Similar to the way to get (3.37), from (5.38) and (2.5), we have

U3,k+1 ≤ x>k (K − ηαL)
(
vk +

1
β

h0
k

)
+
η

2
(1 + 2η)‖hk − h0

k‖
2 + ‖xk‖

2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2

+
(1
2ηβ2 +

1
β2 +

1
2

)
‖h0

k+1 − h0
k‖

2 −

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

η(β− 1
2−

η
2−

ηβ2
2)K

. (5.49)

Then, from (5.49), (5.41), and (5.42), we have

U3,k+1 ≤ U3,k − ηαx>k L
(
vk +

1
β

h0
k

)
+ ‖xk‖

2
η(βL+ 1

2 K)+η2(α2
2 −αβ+β2)L2+

3η
2 (1+2η)L2

f K

+
3npL2

f δ
2
kη(1 + 2η)

4
+ 3η

(1
2β2 +

η

β2 +
η

2

)
L2

f ‖h̄k‖
2

5.8. Proofs 151

+
(1
2ηβ2 +

1
β2 +

1
2

)3npL2
f (δ

2
k+1 + δ2

k)

4
−

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

η(β− 1
2−

η
2−

ηβ2
2)K

. (5.50)

Similar to the way to get (3.39), we have

U4,k+1 = f̃ (x̄k+1) − f̃ ∗ = f̃ (x̄k) − f̃ ∗ + f̃ (x̄k+1) − f̃ (x̄k)

≤ f̃ (x̄k) − f̃ ∗ − ηh̄>k g0
k +

η2L f

2
‖h̄k‖

2

= f̃ (x̄k) − f̃ ∗ − ηh̄>k h0
k +

η2L f

2
‖h̄k‖

2 − ηh̄>k (g0
k − h0

k)

≤ U4,k −
η

4
(1 − 2ηL f)‖h̄k‖

2 +
η

2
‖h̄0

k − h̄k‖
2 −

η

4
‖h̄0

k‖
2 − ηh̄>k (g0

k − h0
k). (5.51)

Then, from (5.51), the Cauchy-Schwarz inequality, (5.40), (5.43), and (5.44), we have

U4,k+1 ≤ U4,k −
η

4
(1 − 2ηL f)‖h̄k‖

2 +
η

2
‖h̄0

k − h̄k‖
2 −

η

4
‖h̄0

k‖
2 +

η

8
‖h̄k‖

2 + 2η‖g0
k − h0

k‖
2

≤ U4,k −
η

8
(1 − 4ηL f)‖h̄k‖

2 +
3npL2

f δ
2
kη

4
+ ‖xk‖

2
3η
2 L2

f K

+
npL2

f δ
2
kη

16
−
η

8
‖ ḡ0

k‖
2 +

npL2
f δ

2
kη

2

= U4,k −
η

8
(1 − 4ηL f)‖h̄k‖

2 +
21npL2

f δ
2
kη

16
+ ‖xk‖

2
3η
2 L2

f K
−
η

8
‖ ḡ0

k‖
2. (5.52)

Hence, from (5.46), (5.48), (5.50), and(5.52), we have

Uk+1 ≤ Uk − ‖xk‖
2
ηM1−η2 M2

−

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

ηM3−η2 M4

− (ηζ5 − η
2ζ6)‖h̄k‖

2 −
η

8
‖ ḡ0

k‖
2 + ζ8δ

2
k + ζ9δ

2
k+1, (5.53)

where

M1 = (α − β)L −
1
2

(2 + 9L2
f)K, M2 = β2L + (2α2 + β2)L2 +

15
2

L2
f K,

M3 =
(
β −

1
2
−

α

2β2

)
K −

1
2β

Q, M4 = (2β2 +
1
2

)K.

Similar to the way to get (3.26), we have (5.37). �

We are now ready to prove Theorem 5.1.
Denote

Ûk = ‖xk‖
2
K +

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

K
+ n(f (x̄k) − f ∗).

152 Distributed zeroth-order optimization algorithms

Similar to the way to get (3.46)–(3.48), we have

Uk ≥ ζ11(‖xk‖
2
K +

∥∥∥∥vk +
1
β

h0
k

∥∥∥∥2

K
) + n(f (x̄k) − f ∗) (5.54)

≥ ζ11Ûk ≥ 0, (5.55)

and

Uk ≤ ζ10Ûk. (5.56)

Similar to the way to get (3.49)–(3.51), we have

ζ1 > 0, ζ3 > 0, and ζ5 > 0. (5.57)

From (5.57) and 0 < η < min{ ζ1
ζ2
, ζ3
ζ4
, ζ5
ζ6
}, we have

η(ζ1 − ηζ2) > 0, (5.58a)
η(ζ3 − ηζ4) > 0, (5.58b)
η(ζ5 − ηζ6) > 0, (5.58c)
ζ7 > 0. (5.58d)

From (5.37), (5.58a)–(5.58d), and K ≥ 0, we have

Uk+1 ≤ Uk − ζ7(‖xk‖
2
K + ‖ ḡ0

k‖
2) + ζ8δ

2
k + ζ9δ

2
k+1. (5.59)

Hence, summing (5.59) over k = 0, . . . ,T yields

UT+1 + ζ7

T∑
k=0

(‖xk‖
2
K + ‖ ḡ0

k‖
2) ≤ U0 + (ζ8 + ζ9)

T+1∑
k=0

δ2
k . (5.60)

We know

δ2
k =

(
max
i∈[n]
{δi,k}

)2
≤

n∑
i=1

δ2
i,k. (5.61)

From (5.3) and (5.61), we have
T+1∑
k=0

δ2
k ≤

n∑
i=1

δa
i , ∀T ∈ N0. (5.62)

From (5.60), (5.62), (5.55), and (5.58d), we have∑T
k=0(‖xk − x̄k‖

2 + ‖ ḡ0
k‖

2)
T + 1

≤
U0 + (ζ8 + ζ9)

∑n
i=1 δ

a
i

ζ7(T + 1)
, ∀T ∈ N0, (5.63)

which yields (5.4) and (5.5).
From (5.60), (5.62), and (5.58d), we have

f (x̄T+1) − f ∗ ≤
U0 + (ζ8 + ζ9)

∑n
i=1 δ

a
i

n
, ∀T ∈ N0, (5.64)

which gives (5.6).

5.8. Proofs 153

5.8.2 Proof of Theorem 5.2

In addition to the notations defined in Section 5.8.1, we also denote the following notations.

ζ12 = ηmin
{
ζ1 − ηζ2, ζ3 − ηζ4,

ν

4

}
, ζ13 =

ζ12

ζ10
, ζ =

1
2

+
1
2

max{1 − ζ13, κδ},

ζ14 =
(ζ8

1 − ζ13
+ ζ9

) 1
ζ − κδ

, ζ0 =
ζ

nζ11
(U0 + ζ14).

From (5.58a) and (5.58b), we have

ζ12 > 0, ζ13 =
ζ12

ζ10
> 0. (5.65)

Similar to the way to get (3.63), we have

0 < ζ13 <
1
8
. (5.66)

From (2.16) and Assumption 4.4, we have that

‖ ḡ0
k‖

2 = n‖∇ f (x̄k)‖2 ≥ 2νn(f (x̄k) − f ∗) = 2νU4,k. (5.67)

From (5.37), (5.58c), and (5.67), we have

Uk+1 ≤ Uk − ζ12Ûk + ζ11δ
2
k + ζ12δ

2
k+1. (5.68)

From (5.68), (5.56), and (5.65), we have

Uk+1 ≤ Uk −
ζ12

ζ7
Uk + ζ8δ

2
k + ζ9δ

2
k+1 = (1 − ζ13)Uk + ζ8δ

2
k + ζ9δ

2
k+1. (5.69)

From (5.69), (5.66), and (5.55), we have

Uk+1 ≤ (1 − ζ13)k+1U0 + ζ8

k∑
τ=0

(1 − ζ13)τδ2
k−τ + ζ9

k∑
τ=0

(1 − ζ13)τδ2
k+1−τ. (5.70)

From δi,k ∈ (0, κk/2
δ) and (5.70), we have

Uk+1 ≤ (1 − ζ13)k+1U0 +
(ζ8

1 − ζ13
+ ζ9

) k+1∑
τ=0

(1 − ζ13)τδ2
k+1−τ

≤ (1 − ζ13)k+1U0 +
(ζ8

1 − ζ13
+ ζ9

) k+1∑
τ=0

(1 − ζ13)τκk+1−τ
δ . (5.71)

From κδ ∈ (0, 1), (5.65), (5.66), and (2.36), we have

Uk+1 ≤ (1 − ζ13)k+1U0 + ζk+1ζ14. (5.72)

154 Distributed zeroth-order optimization algorithms

From (5.54), we have

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) = ‖xk‖

2
K + n(f (x̄k) − f ∗) ≤ Ûk ≤

Uk

ζ11
. (5.73)

Hence, (5.72) and (5.73) give

‖xk − x̄k‖
2 + n(f (x̄k) − f ∗) ≤

1
ζ11

((1 − ζ13)k+1U0 + ζk+1ζ14), ∀k ∈ N0, (5.74)

which yields (5.7).

5.8.3 Proof of Theorem 5.3

Denote ge
k = col(ge

1,k, . . . , g
e
n,k), ḡe

k = 1
n (1>n ⊗ Ip)ge

k, ḡe
k = 1n ⊗ ḡe

k = Hge
k, f s

i (x, δi,k) =

Eu∈Bp [fi(x + δi,ku)], gs
i,k = ∇ f s

i (xi,k, δi,k), gs
k = col(gs

1,k, . . . , g
s
n,k), and ḡs

k = Hgs
k.

We also denote the following notations.

c0(κ1, κ2) = max
{
ε1,

2ε5

ε4
,
(2pε7

ε4

) 1
2
,
ε8

2ε6
,

24κ4

κ2
, 96pκ2ε10

}
, c1 =

1
ρ2(L)

+ 1,

c2(κ1) = min
{ε2

ε3
,

1
5

}
, c3(κ1, κ2) =

24κ3

κ2
, κ3 =

1
ρ2(L)

+ κ1 + 1, κ4 =
1

ρ2(L)
+ κ1,

κ5 =
1

ρ2(L)
+ κ1 +

3
2
, κ6 =

κ1 + 1
2

+
1

2ρ2(L)
, κ7 = min

{ 1
2ρ(L)

,
κ1 − 1

2κ1

}
,

ε1 = max
{
1 + 3L2

f , (8 + 12p(3 + 0.5L f))
1
2 L f , pκ3

}
, ε2 = (κ1 − 1)ρ2(L) − 1,

ε3 = ρ(L) + (2κ2
1 + 1)ρ(L2) + 1, ε4 = 0.5(ε2κ2 − ε3κ

2
2),

ε5 = 0.5 − κ1κ2ρ2(L) + κ2
2ρ(L) + 0.5(1 + 3κ1κ2 + 2κ2)κ1κ2ρ(L2), ε6 = 0.25(κ2 − 5κ2

2),

ε7 = 6(1 + 6κ2 + 2κ4 + 10κ2κ4)κ2L4
f +

1
2p

(1 + 2L2
f)κ2 +

(5
p

+ 24
)
L2

f κ
2
2,

ε8 = κ4 + κ1κ2 + 3κ2
2 + κ2κ4, ε9 =

3κ0

2κ2
2

(2κ4 + 1),

ε10 = 10 + L f +
1
κ2

(2κ4 + 1)L2
f + (10κ4 + 6)L2

f , ε11 = L2
f

(1
384

+
1
p

(13κ2 + 4)
)
,

ε12 = 2ε10σ
2
1 +

1
p
ε9σ

2
2 + 6ε10σ

2
2, ε13 =

1
p
ε9 + 6ε10, ε14 =

W0

n
+

2θp(ε11κ
2
δ + ε12)κ2

2

(2θ − 1)κ2
0

,

a1 =
1
κ6

min{ε4, ε6}, a2 = pn(ε11κ
2
δ + ε12 + 2L f ε13ε14)

κ2
2

κ2
0

.

To prove Theorem 5.3, the following three lemmas are used.

Lemma 5.2. Suppose Assumption 5.6 holds. Let {xk} be the sequence generated by
Algorithm 5.2, then

gs
k = ELk [ge

k], (5.75a)

5.8. Proofs 155

‖g0
k − gs

k‖
2 ≤ 2L2

f ‖xk‖
2
K + 2nL2

f δ
2
k , (5.75b)

‖ ḡ0
k − ḡs

k‖
2 ≤ 2L2

f ‖xk‖
2
K + 2nL2

f δ
2
k , (5.75c)

ELk [‖ ḡ
e
k‖

2] ≤
1
n

ELk [‖g
e
k‖

2] + ‖ ḡs
k‖

2, (5.75d)

ELk [‖g
0
k − ge

k‖
2] ≤ 4L2

f ‖xk‖
2
K + 4nL2

f δ
2
k + 2ELk [‖g

e
k‖

2], (5.75e)

‖g0
k+1 − g0

k‖
2 ≤ η2

k L2
f ‖ ḡ

e
k‖

2 ≤ η2
k L2

f ‖g
e
k‖

2, (5.75f)

‖ ḡ0
k‖

2 ≤ 2nL f (f (x̄k) − f ∗). (5.75g)

If Assumptions 5.7 and 5.8 also hold, then

ELk [‖g
e
k‖

2] ≤ 12p‖ ḡ0
k‖

2 + 12pL2
f ‖xk‖

2
K + 4npσ2

1 + 12npσ2
2 + 0.5np2L2

f δ
2
k , (5.76a)

‖g0
k+1‖

2 ≤ 3(η2
k L2

f ‖g
e
k‖

2 + nσ2
2 + ‖ ḡ0

k‖
2). (5.76b)

Proof. (i) From ui,k and ξi,k are mutually independent, xi,k is independent of ui,k and ξi,k,
and (2.27), we have

ELk [g
e
i,k] = Eui,k

[
Eξi,k

[p
δi,k

(Fi(xi,k + δi,kui,k, ξi,k − Fi(xi,k, ξi,k))ui,k

]]
= Eui,k

[p
δi,k

(fi(xi,k + δi,kui,k) − fi(xi,k))ui,k

]
= Eui,k [∇̂2 fi(xi,k, δi,k, ui,k)] = ∇ f s

i (xi,k, δi,k) = gs
i,k,

which gives (5.75a).
(ii) From Assumption 5.3, we know that (3.30) still holds.

From Assumption 5.3 and (2.32a), we have

‖gs
i,k − gi,k‖ ≤ L f δi,k.

Thus,

‖gs
k − gk‖

2 =

n∑
i=1

‖gs
i,k − gi,k‖

2 ≤ nL2
f δ

2
k . (5.77)

Noting that

‖g0
k − gs

k‖
2 ≤ 2‖g0

k − gk‖
2 + 2‖gk − gs

k‖
2,

from (3.30) and (5.77), we know (5.75b) holds.
(iii) Noting ‖ ḡ0

k − ḡs
k‖

2 = ‖H(g0
k − gs

k)‖2, from ρ(H) = 1 and (5.75b), we have (5.75c).
(iv) We have

ELk [‖ḡ
e
k‖

2] = ELk

[∥∥∥∥ n∑
i=1

1
n

ge
i,k

∥∥∥∥2]
=

1
n2 ELk

[n∑
i=1

‖ge
i,k‖

2 +

n∑
i=1

n∑
j=1, j,i

〈ge
i,k, g

e
j,k〉

]

156 Distributed zeroth-order optimization algorithms

=
1
n2 ELk [‖g

e
k‖

2] +
1
n2

n∑
i=1

n∑
j=1, j,i

〈ELk [g
e
i,k],ELk [g

e
j,k]〉

=
1
n2 ELk [‖g

e
k‖

2] +
1
n2

n∑
i=1

n∑
j=1, j,i

〈gs
i,k, g

s
j,k〉

=
1
n2 ELk [‖g

e
k‖

2] + ‖ḡs
k‖

2 −
1
n2 ‖g

s
k‖

2, (5.78)

where the third equality holds since ui,k and ξi,k, ∀i ∈ [n], k ≥ 1 are mutually independent;
and the fourth equality holds due to (5.75a).

From (5.78), ELk [‖ ḡe
k‖

2] = nELk [‖ḡ
e
k‖

2] and ‖ ḡs
k‖

2 = n‖ḡs
k‖

2, we know that (5.75d)
holds.
(v) We have

ELk [‖g
0
k − ge

k‖
2] ≤ 2‖g0

k − gs
k‖

2 + 2ELk [‖g
s
k − ge

k‖
2]

= 2‖g0
k − gs

k‖
2 + 2ELk [‖g

e
k‖

2] − 2‖gs
k‖

2, (5.79)

where the inequality holds due to the Cauchy-Schwarz inequality; and the equality holds
since (5.75a) and xk is independent of Lk.

From (5.79) and (5.75b), we know (5.75e) holds.
(vi) The distributed ZO algorithm (5.8) can be rewritten as

xk+1 = xk − ηk(αk Lxk + βkvk + ge
k), (5.80a)

vk+1 = vk + ηkβk Lxk, ∀x0 ∈ R
np,

n∑
i=1

vi,0 = 0p. (5.80b)

From (5.80b), we know that

v̄k+1 = v̄k. (5.81)

Then, from (5.81),
∑n

i=1 vi,0 = 0p, and (5.80a), we know that v̄k = 0p and

x̄k+1 = x̄k − ηk ḡe
k. (5.82)

Then, similar to the way to get (3.32), we have

‖g0
k+1 − g0

k‖
2 = ‖∇ f̃ (x̄k+1) − ∇ f̃ (x̄k)‖2 ≤ L2

f ‖x̄k+1 − x̄k‖
2 = η2

k L2
f ‖ ḡ

e
k‖

2 ≤ η2
k L2

f ‖g
e
k‖

2,

which yields (5.75f).
(vii) From (2.15), we have

‖ ḡ0
k‖

2 = n‖∇ f (x̄k)‖2 ≤ 2nL f (f (x̄k) − f ∗), (5.83)

which yields (5.75g).

5.8. Proofs 157

(viii) From Assumption 5.6, xi,k and ξi,k are independent of ui,k, and (2.32b), we know that
for almost every ξi,k it holds that

Eui,k [‖g
e
i,k‖

2] ≤ 2p‖∇xFi(xi,k, ξi,k)‖2 + 0.5p2L2
f δ

2
i,k. (5.84)

Then,

ELk [‖g
e
i,k‖

2] ≤ 2pEξi,k [‖∇xFi(xi,k, ξi,k)‖2] + 0.5p2L2
f δ

2
i,k

= 2pEξi,k [‖∇xFi(xi,k, ξi,k) − ∇ fi(xi,k) + ∇ fi(xi,k)‖2] + 0.5p2L2
f δ

2
i,k

≤ 4pEξi,k [‖∇xFi(xi,k, ξi,k) − ∇ fi(xi,k)‖2 + ‖∇ fi(xi,k)‖2] + 0.5p2L2
f δ

2
i,k

≤ 4p‖∇ fi(xi,k)‖2 + 4pσ2
1 + 0.5p2L2

f δ
2
i,k, (5.85)

where the first inequality holds due to (5.84); the second inequality holds due to the
Cauchy-Schwarz inequality; and the last inequality holds since Assumption 5.7 and xi,k

is independent of ξi,k.
From Assumption 5.3, we have

‖∇ f (x) − ∇ f (y)‖2 =
∥∥∥∥1

n

n∑
i=1

(∇ fi(x) − ∇ fi(y))
∥∥∥∥2

≤
1
n

n∑
i=1

‖∇ fi(x) − ∇ fi(y)‖2 ≤ L2
f ‖x − y‖2, ∀x, y ∈ Rp. (5.86)

Then, we have

‖∇ fi(xi,k)‖2 = ‖∇ fi(xi,k) − ∇ f (xi,k) + ∇ f (xi,k) − ∇ f (x̄k) + ∇ f (x̄k)‖2

≤ 3(‖∇ fi(xi,k) − ∇ f (xi,k)‖2 + ‖∇ f (xi,k) − ∇ f (x̄k)‖2 + ‖∇ f (x̄k)‖2)

≤ 3(σ2
2 + L2

f ‖xi,k − x̄k‖
2 + ‖∇ f (x̄k)‖2), (5.87)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to Assumption 5.8 and (5.86).

From (5.85) and (5.87), we know (5.76a) holds.
(ix) From the Cauchy-Schwarz inequality, we have

‖g0
k+1‖

2 = ‖g0
k+1 − g0

k + g0
k − ḡ0

k + ḡ0
k‖

2 ≤ 3(‖g0
k+1 − g0

k‖
2 + ‖g0

k − ḡ0
k‖

2 + ‖ ḡ0
k‖

2). (5.88)

From Assumption 5.8, we have

‖g0
k − ḡ0

k‖
2 =

n∑
i=1

‖ fi(x̄k) − f (x̄k)‖2 ≤ nσ2
2. (5.89)

From (5.88), (5.89), and (5.75f), we know (5.76b) holds. �

158 Distributed zeroth-order optimization algorithms

Lemma 5.3. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Suppose {βk} is nondecreas-
ing, αk = κ1βk, and ηk = κ2

βk
, where κ1 > 1 and κ2 > 0 are constants. Moreover, suppose

βk ≥ ε1. Let {xk} be the sequence generated by Algorithm 5.2, then

ELk [Wk+1] ≤ Wk − ‖xk‖
2
(2ε4−ε5ωk−b1,k)K −

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

b2,k K
+ nσ2

2(b3,k + 6pb4,k)η2
k

+ 2pnσ2
1b4,kη

2
k − ηk(0.25 − (b3,k + 6pb4,k)ηk)‖ ḡ0

k‖
2 + b5,kηkδ

2
k , (5.90a)

ELk [W̆k+1] ≤ W̆k − ‖xk‖
2
(2ε4−ε5ωk−b1,k)K −

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

b2,k K
+ (b3,k + 6pb4,k)η2

k‖ ḡ
0
k‖

2

+ 2pnσ2
1b4,kη

2
k + nσ2

2(b3,k + 6pb4,k)η2
k + b5,kηkδ

2
k , (5.90b)

where

Wk =

4∑
i=1

Wi,k, W̆k =

3∑
i=1

Wi,k, W1,k =
1
2
‖xk‖

2
K, W2,k =

1
2

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

Q+κ1 K
,

W3,k = x>k K
(
vk +

1
βk

g0
k

)
, W4,k = n(f (x̄k) − f ∗) = f̃ (x̄k) − f ∗,

b1,k = 6pκ3L4
f
ηk

β2
k

+ 12pκ5L4
f

η2
k

β2
k

+ (0.5 + L2
f)ηkωk + 6pκ4L4

f
ηkωk

β2
k

+ (5 + 24p + 18pκ3L2
f)L

2
f η

2
kωk + 12pκ4L4

f

η2
kωk

β2
k

+ 18pκ4L4
f η

2
kω

2
k ,

b2,k = 2ε6 − 0.5ωk(κ1 + κ4 + κ1κ2 + 3κ2
2) − 0.5ωkηkκ4, b3,k =

3
2
κ3
ωk

η2
k

+
3
2
κ4
ω2

k

η2
k

,

b4,k = 6 + L f +
κ3

κ2
L2

f
1
βk

+ (4 + 3κ3L2
f)ωk + 3κ4L2

fω
2
k + 2κ5L2

f
1
β2

k

+
κ4

κ2
L2

f
ωk

βk
+ 2κ4L2

f
ωk

β2
k

,

b5,k = nL2
f (0.25p2b4,kηk + 3 + ωk + 8ηk + 5ηkωk).

Proof. Note that W4,k is well defined due to f ∗ > −∞ as assumed in Assumption 5.2. Thus,
Wk is well defined.
(i) Similar to the way to get (4.23), from (5.80a), (5.75a), and that xi,k and vi,k are
independent of Lk, we have

ELk [W1,k+1] ≤ W1,k − ‖xk‖
2
ηkαk L− 1

2 ηk K− 3
2 η

2
kα

2
k L2 +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

3
2 η

2
kβ

2
k K

+ η2
kELk [‖g

e
k − g0

k‖
2]

+
1
2
ηk(1 + ηk)‖gs

k − g0
k‖

2 − ηkβk x>k K
(
vk +

1
βk

g0
k

)
. (5.91)

Then, from (5.91), (5.75b), and (5.75e), we have

ELk [W1,k+1] ≤ W1,k − ‖xk‖
2
ηkαk L− 1

2 ηk K− 3
2 η

2
kα

2
k L2−ηk(1+5ηk)L2

f K − ηkβk x>k K
(
vk +

1
βk

g0
k

)
+

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

3
2 η

2
kβ

2
k K

+ nL2
f ηk(1 + 5ηk)δ2

k + 2η2
kELk [‖g

e
k‖

2]. (5.92)

5.8. Proofs 159

(ii) Similar to the way to get (4.24), from (5.80b) and (5.75f), we have

W2,k+1 ≤ W2,k + (1 + ωk)ηkβk x>k (K + κ1L)
(
vk +

1
βk

g0
k

)
+

1
2

(1
ρ2(L)

+ κ1

)
(ωk + ω2

k)‖g0
k+1‖

2

+
1
2

(ηk + ωk + ηkωk)
(1
ρ2(L)

+ κ1

)∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ ‖xk‖

2
(1+ωk)η2

kβ
2
k (L+κ1 L2)

+
ηk

β2
k

(
ηk +

1
2

)
(1 + ωk)

(1
ρ2(L)

+ κ1

)
L2

f ‖ ḡ
e
k‖

2. (5.93)

(iii) Similar to the way to get (4.35), from (5.80), (5.75a), and that xi,k and vi,k are
independent of Lk, we have

ELk

[
x>k+1K

(
vk+1 +

1
βk

g0
k+1

)]
≤ x>k (K − ηkαk L)

(
vk +

1
βk

g0
k

)
−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k)K

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2

+
1
2

(ηk + η2
k)‖gs

k − g0
k‖

2 +
1
2
η2

kELk [‖g
e
k − g0

k‖
2]

+
(1
2ηkβ

2
k

+
3

2β2
k

)
ELk [‖g

0
k+1 − g0

k‖
2]. (5.94)

Then, from (5.94), (5.75b), (5.75e), and (5.75f), we have

ELk

[
x>k+1K

(
vk+1 +

1
βk

g0
k+1

)]
≤ x>k K

(
vk +

1
βk

g0
k

)
− (1 + ωk)ηkαk x>k L

(
vk +

1
βk

g0
k

)
+ ωkηkαk x>k L

(
vk +

1
βk

g0
k

)
−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k)K

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2+ηk(1+3ηk)L2
f K

+
ηk

2β2
k

(1 + 3ηk)L2
f ELk [‖ ḡ

e
k‖

2] + nL2
f ηk(1 + 3ηk)δ2

k

+ η2
kELk [‖g

e
k‖

2]. (5.95)

Then, from (5.95), (4.34), and (4.37), we have

ELk [W3,k+1] ≤ W3,k − (1 + ωk)ηkαk x>k L
(
vk +

1
βk

g0
k

)
+

ηk

2β2
k

(1 + 3ηk)L2
f ELk [‖ ḡ

e
k‖

2]

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2+ 1
2ωkηkαk L2+ηk(1+3ηk)L2

f K

+ nL2
f ηk(1 + 3ηk)δ2

k + η2
kELk [‖g

e
k‖

2]

−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k−

1
2ωkαk)K

+
1
2
ωkELk [2W1,k+1 + ‖g0

k+1‖
2]. (5.96)

(iv) Similar to the way to get (4.41), from (5.82), (5.75a), and that xi,k and vi,k are
independent of Lk, we have

ELk [W4,k+1] ≤ W4,k −
1
4
ηk‖ ḡs

k‖
2 +

1
2
ηk‖ ḡ0

k − ḡs
k‖

2 −
1
4
ηk‖ ḡ0

k‖
2 +

1
2
η2

k L f ELk [‖ ḡ
e
k‖

2]. (5.97)

160 Distributed zeroth-order optimization algorithms

Then, from (5.97) and (5.75c), we have

ELk [W4,k+1] ≤ W4,k −
1
4
ηk‖ ḡs

k‖
2 + ‖xk‖

2
ηk L2

f K + nL2
f ηkδ

2
k −

1
4
ηk‖ ḡ0

k‖
2 +

1
2
η2

k L f ELk [‖ ḡ
e
k‖

2].

(5.98)

(v) We have

ELk [Wk+1] ≤ Wk +
1
2
ωk‖xk‖

2
K − (1 + ωk)‖xk‖

2
ηkαk L− 1

2 ηk K− 3
2 η

2
kα

2
k L2−ηk(1+5ηk)L2

f K

+ (1 + ωk)
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2

3
2 η

2
kβ

2
k K

+ (1 + ωk)nL2
f ηk(1 + 5ηk)δ2

k

+ 2(1 + ωk)η2
kELk [‖g

e
k‖

2] +
1
2

(1
ρ2(L)

+ κ1

)
(ωk + ω2

k)ELk [‖g
0
k+1‖

2]

+
1
2

(ηk + ωk + ηkωk)
(1
ρ2(L)

+ κ1

)∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ ‖xk‖

2
(1+ωk)η2

kβ
2
k (L+κ1 L2)

+
ηk

β2
k

(
ηk +

1
2

)
(1 + ωk)

(1
ρ2(L)

+ κ1

)
L2

f ELk [‖ ḡ
e
k‖

2] +
ηk

2β2
k

(1 + 3ηk)L2
f ELk [‖ ḡ

e
k‖

2]

+ ‖xk‖
2
ηk(βk L+ 1

2 K)+η2
k (1

2α
2
k−αkβk+β2

k)L2+ 1
2ωkηkαk L2+ηk(1+3ηk)L2

f K + nL2
f ηk(1 + 3ηk)δ2

k

+ η2
kELk [‖g

e
k‖

2] −
∥∥∥∥vk +

1
βk

g0
k

∥∥∥∥2

ηk(βk−
1
2−ηkβ

2
k−

1
2ωkαk)K

+
1
2
ωkELk [‖g

0
k+1‖

2]

−
1
4
ηk‖ ḡs

k‖
2 + ‖xk‖

2
ηk L2

f K + nL2
f ηkδ

2
k −

1
4
ηk‖ ḡ0

k‖
2 +

1
2
η2

k L f ELk [‖ ḡ
e
k‖

2]

≤ Wk − ‖xk‖
2
ηk M1,k−η

2
k M2,k−ωk M3−b1,k K − ηk

(1
4
− (b3,k + 6pb4,k)ηk

)
‖ ḡ0

k‖
2

−

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

b0
2,k K

+ 2pnσ2
1b4,kη

2
k + nσ2

2(b3,k + 6pb4,k)η2
k + b5,kηkδ

2
k , (5.99)

where the first inequality holds due to (5.92), (5.93), (5.96), (5.98), and αk = κ1βk; the last
inequality holds due to (5.76a), (5.76b), αk = κ1βk, ηk = κ2

βk
, and

M1,k = (αk − βk)L − (1 + 3L2
f)K,

M2,k = β2
k L + (2α2

k + β2
k)L2 + 8L2

f K + 12p(3 + 0.5L f)L2
f K,

M3 = 0.5K − κ1κ2L + 0.5κ1κ2L2 + 1.5κ2
1κ

2
2 L2 + κ2

2(L + κ1L2),

b0
2,k = 0.5ηk(2βk − κ3) − 2.5κ2

2 − 0.5ωk(κ1κ2 + 3κ2
2 + κ4) − 0.5ωkηkκ4.

From (2.6), αk = κ1βk, κ1 > 1, βk ≥ ε1 ≥ 1 + 3L2
f , and ηk = κ2

βk
, we have

ηk M1,k ≥ ε2κ2K. (5.100)

From (2.6), αk = κ1βk, βk ≥ ε1 ≥ (8 + 12p(3 + 0.5L f))1/2L f , and ηk = κ2
βk

, we have

η2
k M2,k ≤ ε3κ

2
2 K. (5.101)

5.8. Proofs 161

From (2.6), αk = κ1βk, and ηk = κ2
βk

, we have

M3 ≤ ε5K. (5.102)

From βk ≥ ε1 ≥ pκ3 ≥ κ3 and ηk = κ2
βk

, we have

b0
2,k ≥ b2,k. (5.103)

From (5.99)–(5.103), we know that (5.90a) holds.
Similar to the way to get (5.90a), we have (5.90b). �

Lemma 5.4. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Suppose αk = κ1βk, βk =

κ0(k + t1)θ, and ηk = κ2
βk

, where θ ∈ [0, 1], κ0 ≥ c0(κ1, κ2)/tθ1, κ1 > c1, κ2 ∈ (0, c2(κ1)), and
t1 ≥ (c3(κ1, κ2))1/θ. Let {xk} be the sequence generated by Algorithm 5.2, then

ELk [Wk+1] ≤ Wk − ε4‖xk‖
2
K − ε6

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
−

1
16
ηk‖ ḡ0

k‖
2 + pnε12η

2
k + pnε11ηkδ

2
k ,

(5.104a)

ELk [W̆k+1] ≤ W̆k − ε4‖xk‖
2
K − ε6

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ pε13η

2
k‖ ḡ

0
k‖

2 + pnε12η
2
k + pnε11ηkδ

2
k ,

(5.104b)

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2ηk L2

f K −
3
16
ηk‖ ḡ0

k‖
2 + 2pη2

k L f (σ2
1 + 3σ2

2) + (n + p)L2
f ηkδ

2
k .

(5.104c)

Proof. (i) Noting that κ1 > c1 > 1 and βk = κ0(k+t1)θ ≥ κ0tθ1 ≥ c0(κ1, κ2, t1, θ) ≥ ε1 ≥ 1, we
know that all conditions needed in Lemma 5.3 are satisfied, so (5.90a) and (5.90b) hold.

From κ1 > c1 = 1
ρ2(L) + 1, we have

ε2 > 0. (5.105)

From (5.105) and κ2 ∈ (0,min{ ε2
ε3
, 1

5 }), we have

ε4 > 0, ε6 > 0. (5.106)

From t1 ≥ (c3(κ1, κ2))1/θ and c3(κ1, κ2) =
24κ3
κ2

, we have

3κ3

2κ2tθ1
≤

1
16
. (5.107)

From κ0 ≥
24κ4
κ2tθ1
≥

24κ4

κ2t3θ
1

, we have

3κ4

2κ2κ0t3θ
1

≤
1

16
. (5.108)

162 Distributed zeroth-order optimization algorithms

From βk = κ0(k + t1)θ, we have

ωk =
1
βk
−

1
βk+1

=
1
κ0

(
1

(k + t1)θ
−

1
(k + t1 + 1)θ

) ≤
1

κ0(k + t1)θ(k + t1 + 1)θ
≤
κ0

β2
k

≤ 1.

(5.109)

From (5.109), ηk = κ2
βk

, βk ≥ 1, ωk ≤ 1, and κ0 ≥ (2pε7

ε4t2θ
1

)
1
2 , we have

b1,k ≤
pε7

κ2
0t2θ

1

≤
ε4

2
. (5.110)

From (5.109), (5.110), κ0 ≥
2ε5

ε4tθ1
, and (5.106), we have

2ε4 − ε5ωk − b1,k ≥ 2ε4 −
ε5

κ0tθ1
−
ε4

2
≥ ε4 > 0. (5.111)

From (5.109), ηk = κ2
βk

, κ0 ≥
ε8

2ε6tθ1
≥

ε8

2ε6t2θ
1

, and (5.106), we have

b2,k ≥ 2ε6 −
ε8

2κ0t2θ
1

≥ ε6 > 0. (5.112)

From (5.107)–(5.109) and ηk = κ2
βk

, we have

b3,kηk ≤
3κ3

2κ2κ0t3θ
1

+
3κ4

2κ2κ0t3θ
1

≤
1
8
. (5.113)

From βk ≥ 1 and ωk ≤ 1, we have

b3,k ≤ ε9, (5.114a)
b4,k ≤ ε10. (5.114b)

From (5.113), (5.114b), and κ0 ≥
96pκ2ε10

tθ1
, we have

1
4
− (b3,k + 6pb4,k)ηk ≥

1
8
− 6pb4,kηk ≥

1
8
−

6pκ2ε10

κ0tθ1
≥

1
16
. (5.115)

From (5.115), ηk = κ2
βk

, βk ≥ 1, and ωk ≤ 1, we have

b5,k ≤ pnε11. (5.116)

From (5.90a), (5.111), (5.112), and (5.114a)–(5.116), we know that (5.104a) holds.
(ii) From (5.90b), (5.111), (5.112), (5.114a), (5.114b), and (5.116), we have (5.104b).
(iii) From (5.98), (5.75d), and (5.76a), we have

ELk [W4,k+1] ≤ W4,k −
1
4
ηk‖ ḡs

k‖
2 + ‖xk‖

2
ηk L2

f K + nL2
f ηkδ

2
k −

1
4
ηk‖ ḡ0

k‖
2 +

1
2
η2

k L f

(12p
n
‖ ḡ0

k‖
2

5.8. Proofs 163

+
12p

n
L2

f ‖xk‖
2
K + 4pσ2

1 + 12pσ2
2 +

1
2

p2L2
f δ

2
k + ‖ ḡs

k‖
2
)
. (5.117)

From κ0tθ1 ≥ c0(κ1, κ2) ≥ 96pκ2ε10 > 96pκ2L f , we have

6p
n
η2

k L f ≤
6
κ0tθ1

pηkL f κ2 <
1
16
ηk, (5.118)

6p
n
η2

k L3
f <

1
16
ηkL2

f ,
1
2
η2

k L f <
1

16
ηk,

1
4

p2η2
k L3

f < pL2
f ηk. (5.119)

From (5.117)–(5.118), we have (5.104c). �

Now it is ready to prove Theorem 5.3.
Denote

V̂k = ‖xk‖
2
K +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+ n(f (x̄k) − f ∗).

Similar to the way to get (3.46)–(3.48), we have

Wk ≥ κ7

(
‖xk‖

2
K +

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K

)
+ n(f (x̄k) − f ∗) (5.120)

≥ κ7V̂k ≥ 0, (5.121)

and

Wk ≤ κ6V̂k. (5.122)

From (5.104a) and (5.106), we have

ELk [Wk+1] ≤ Wk − ε4‖xk‖
2
K −

1
16
ηk‖ ḡ0

k‖
2 + pnε12η

2
k + pnε11ηkδ

2
k . (5.123)

Then, taking expectation in LT , summing (5.123) over k ∈ [0,T], and using (2.37) and
ηk = κ2

κ0(k+t1)θ and δk ≤ κδ
√
ηk as stated in (5.10), yield

E[WT+1] +

T∑
k=0

E
[
ε4‖xk‖

2
K +

1
16
ηk‖ ḡ0

k‖
2
]
≤ W0 +

pn(ε11κ
2
δ + ε12)κ2

2

κ2
0

T∑
k=0

1
(k + t1)2θ ≤ nε14.

(5.124)

Noting that tθ1 = O(
√

p), we have

κ0 = O(
p
tθ1

) = O(
√

p). (5.125)

From W0 = O(n) and (5.125), we have

ε14 =
W0

n
+

2θp(ε11κ
2
δ + ε12)κ2

2

(2θ − 1)κ2
0

= O(1). (5.126)

164 Distributed zeroth-order optimization algorithms

From (5.124), (5.121), (5.106), and
∑T

k=0 ηk =
∑T

k=0
κ2

κ0(k+t1)θ ≥
κ2(T+t1)1−θ

κ0(1−θ) , we have∑T
k=0 ηkE[‖∇ f (x̄k)‖2]∑T

k=0 ηk
=

∑T
k=0 ηkE[‖ ḡ0

k‖
2]

n
∑T

k=0 ηk
≤

16κ0(1 − θ)ε14

κ2(T + t1)1−θ . (5.127)

From (5.127), (5.126), and (5.125), we have (5.11a).
From (5.124), (5.120), and (5.106), we have

E[f (x̄T+1)] − f ∗ =
1
n

WT+1 ≤ ε14, ∀T ∈ N0, (5.128)

which gives (5.11b).
From (5.124), (5.121), and (5.106), we have

T∑
k=0

E[‖xk‖
2
K] ≤

nε14

ε4
, ∀T ∈ N0. (5.129)

From (5.75g) and (5.128), we have

‖ ḡ0
k‖

2 ≤ 2nL f (f (x̄k) − f ∗) ≤ 2nL f ε14. (5.130)

From (5.76a), (5.129), and (5.130), we know that E[‖ge
k‖

2] is bounded. Then, same as
the proof of the first part of Theorem 1 in [151], we have (5.11d).

From (5.120) and (5.122), we have

0 ≤ 2κ7(W1,k + W2,k) ≤ W̆k ≤ 2κ6(W1,k + W2,k). (5.131)

Denote z̆k = E[W̆k]. From (5.104b), (5.130), (5.131), and (5.10), we have

z̆k+1 ≤ (1 − a1)z̆k +
a2

(t + t1)2θ . (5.132)

From κ1 > 1, we have κ6 > 1. From 0 < κ2 <
1
5 , we have ε6 = 1

4 (κ2 − 5κ2
2) ≤ 1

80 . Thus,

a1 ≤
ε6

κ6
≤

1
80
. (5.133)

From (5.106), we know that

a1 > 0, a2 > 0. (5.134)

From (5.132)–(5.134) and (2.45), we have

z̆k ≤ φ3(k, t1, a1, a2, 2θ, z̆0), ∀k ∈ N+, (5.135)

where the function φ3 is defined in (2.46).
Noting that φ3(k, t1, a1, a2, 2θ, z̆0) = O(n/k2θ), from (5.135) and (5.131), we have

(5.11c).

5.8. Proofs 165

5.8.4 Proof of Theorem 5.4

In addition to the notations defined in Appendix 5.8.3, we also denote the following
notations.

c̃0(κ1, κ2) = max
{
ε1,

(pε̃7

ε4

) 1
3
, 48pκ2ε̃10

}
, ε̃7 = 6(1 + 3κ2 + κ4 + 2κ2κ4)κ2L4

f ,

ε̃10 = 6 + L f +
1
κ2

(κ4 + 1)L2
f + (3κ4 + 3)L2

f , ε̃11 = L2
f

(1
192

+
1
p

(8κ2 + 3)
)
,

ε̃12 = 2(σ2
1 + 3σ2

2)ε̃10, ε15 = 2(σ2
1 + 3σ2

2)L f , ε16 = 2L2
f κ

2
δ .

To prove Theorem 5.4, the following lemma is used.

Lemma 5.5. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Suppose αk = α = κ1β,
βk = β, and ηk = η = κ2

β
, where β ≥ c̃0(κ1, κ2), κ1 > c1, and κ2 ∈ (0, c2(κ2)) are constants.

Let {xk} be the sequence generated by Algorithm 5.2, then

ELk [Wk+1] ≤ Wk − ε4‖xk‖
2
K − 2ε6

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
−

1
8
η‖ ḡ0

k‖
2 + pnε̃12η

2 + pnε̃11ηδ
2
k ,

(5.136a)

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2ηL2

f K −
1
8
η‖ ḡ0

k‖
2 + 2pη2L f (σ2

1 + 3σ2
2) + (n + p)L2

f ηδ
2
k .

(5.136b)

Proof. (i) Substituting αk = α = κ1β, βk = β, ηk = η = κ2
β

, and ωk = 0 into (5.92), (5.93),
(5.96), and (5.98), similar to the way to get (5.99), we have

ELk [Wk+1] ≤ Wk − ‖xk‖
2
ηM̃1−η2 M̃2−b̃1 K −

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

b̃0
2 K
− η

(1
4
− 6pb̃4η

)
‖ ḡ0

k‖
2

+ 2pn(σ2
1 + 3σ2

2)b̃4η
2 + b̃5ηδ

2
k , (5.137)

where

M̃1 = (α − β)L − (1 + 3L2
f)K, M̃2 = β2L + (2α2 + β2)L2 + 8L2

f K + (3 + 0.5L f)
12p

n
L2

f K,

b̃1 =
6p
n
κ3L4

f
η

β2 +
12p

n
κ5L4

f
η2

β2 , b̃0
2 =

1
2
η(2β − κ3) −

5
2
κ2

2,

b̃4 = 6 + L f +
κ3

κ2
L2

f
1
β

+ 2κ5L2
f

1
β2 , b̃5 = nL2

f

(1
4

p2b̃4η + 3 + 8η
)
.

From (5.137), similar to the way to get (5.90a), we have

ELk [Wk+1] ≤ Wk − ‖xk‖
2
(2ε4−b̃1)K −

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

2ε6 K
− η

(1
4
− 6pb̃4η

)
‖ ḡ0

k‖
2

+ 2pn(σ2
1 + 3σ2

2)b̃4η
2 + b̃5ηδ

2
k . (5.138)

From (5.138), similar to the way to get (5.104a), we have (5.136a).
(ii) Noting ηk = η, β ≥ 48pκ2ε̃10 ≥ 48pκ2L f , and η = κ2/β, similar to the way to get
(5.104c), we have (5.136b). �

166 Distributed zeroth-order optimization algorithms

We are now ready to prove Theorem 5.4.
From βk = β = κ2

√
pT/
√

n and T > n(c̃0(κ1, κ2)/κ2)2/p, we have β ≥ c̃0(κ1, κ2). Thus,
all conditions needed in Lemma 5.5 are satisfied. So (5.136a) and (5.136b) hold.

From (5.136a) and (5.12), similar to the way to get (5.129), we have

1
T + 1

T∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]
≤

1
ε4

(W0

n(T + 1)
+

nε̃12

T
+

2nε̃11κ
2
δ

√
T (T + 1)

)
, (5.139)

which gives (5.13c).
From (5.136b) and (5.12), similar to the way to get (5.127), we have

1
T + 1

T∑
k=0

E[‖∇ f (x̄k)‖2] =
1

n(T + 1)

T∑
k=0

E[‖ ḡ0
k‖

2]

≤ 8
(W4,0

n(T + 1)η
+

2L2
f

n(T + 1)

T∑
k=0

E[‖xk‖
2
K] +

pε15η

n
+

√
pε16

√
n(T + 1)

)
. (5.140)

Noting that η = κ2/βk =
√

n/
√

pT , and n/T <
√

p/
√

nT due to T > n3/p, from (5.140)
and (5.139), we have

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = 8(f (x̄0) − f ∗ + 2(σ2
1 + 3σ2

2)L f + 2L2
f κ

2
δ)
√

p
√

nT
+ O(

n
T

),

which gives (5.13a).
Taking expectation in LT , summing (5.136b) over k ∈ [0,T], and using (5.12) yield

n(E[f (x̄T+1)] − f ∗) = E[W4,T+1]

≤ W4,0 +
2
√

n
√

pT
L2

f

T∑
k=0

‖xk‖
2
K + nε15

T + 1
T

+ nε16

√
T + 1

T
. (5.141)

Noting that W4,0 = O(n) and
√

nn/
√

pT < 1 due to T > n3/p, from (5.139) and
(5.141), we have (5.13b).

Similar to the proof of (5.11d), we have (5.13d).

5.8.5 Proof of Theorem 5.5

In addition to the notations defined in Appendix 5.8.3, we also denote the following
notations.

ε17 =
1
κ6

min
{ε4κ0tθ1

κ2
,
ε6κ0tθ1
κ2

,
ν

8

}
, ε18 =

32θ4θL f (σ2
1 + 3σ2

2)κ2

3νκ0
,

ă2 = pn(ε11κ
2
δ + ε12 + ε13cg)

κ2
2

κ2
0

, a3 =
κ2ε17

κ0
, a4 = pn(ε11κ

2
δ + ε12)

κ2
2

κ2
0

.

5.8. Proofs 167

All conditions needed in Lemma 5.4 are satisfied, so (5.104a)–(5.104c) hold.
From (5.104a), (4.65), (5.121), and (5.122), we have

ELk [Wk+1] ≤ Wk − ε4‖xk‖
2
K − ε6

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
−
ηkνn

8
W4,k + pnε12η

2
k + pnε11ηkδ

2
k

≤ Wk −
ηk

κ6
min

{ε4

ηk
,
ε6

ηk
,
ν

8

}
Wk + pnε12η

2
k + pnε11ηkδ

2
k

≤ Wk − ηkε17Wk + pnε12η
2
k + pnε11ηkδ

2
k , ∀k ∈ N0. (5.142)

Denote zk = E[Wk], r1,k = ηkε17, and r2,k = pnε12η
2
k + pnε11ηkδ

2
k . From (5.142), we

have

zk+1 ≤ (1 − r1,k)zk + r2,k, ∀k ∈ N0. (5.143)

From (5.14), we have

r1,k = ηkε17 =
a3

(k + t1)θ
, (5.144)

r2,k = pnε12η
2
k + pnε11ηkδ

2
k ≤

a4

(k + t1)2θ . (5.145)

From κ1 > 1, we have κ6 > 1. From 0 < κ2 <
1
5 , we have ε6 = 1

4 (κ2 − 5κ2
2) ≤ 1

80 . Thus,

r1,k ≤
ε6

κ6
≤

1
80
. (5.146)

From (5.106), we know that

a3 > 0, a4 > 0. (5.147)

Then, from θ ∈ (0, 1), (5.143)–(5.147), and (2.41), we have

zk ≤ φ1(k, t1, a3, a4, θ, 2θ, z0), ∀k ∈ N+, (5.148)

where the function φ1 is defined in (2.42).
From t1 ≥ (pc3(κ1, κ2))1/θ, we have

tθ1 = O(p). (5.149)

From κ0 ≥ c0(κ1, κ2)/tθ1, t1 ≤ (pc4c3(κ1, κ2))1/θ, c0(κ1, κ2) ≥ ε1 ≥ pκ3, and c3(κ1, κ2) =

24κ3/κ2, we have

κ2

κ0
≤

κ2tθ1
c0(κ1, κ2)

≤
κ2 pc4c3(κ1, κ2)

pκ3
≤ 24c4. (5.150)

Thus,

φ1(k, t1, a3, a4, θ, 2θ, z0) = O(
pn

(k + t1)θ
). (5.151)

168 Distributed zeroth-order optimization algorithms

From (5.121), we have

‖xk‖
2
K + W4,k ≤ V̂k ≤

Wk

κ7
. (5.152)

From (5.75g), (5.148), (5.151), and (5.152), we get

E[‖ ḡ0
k‖

2] = O(
pn

(k + t1)θ
), ∀k ∈ N+. (5.153)

From (5.149) and (5.153), we know that there exists a constant cg > 0, such that

E[‖ ḡ0
k‖

2] ≤ ncg, ∀k ∈ N0. (5.154)

From (5.104b), (5.154), (5.131), and (5.14), we have

z̆k+1 ≤ (1 − a1)z̆k +
ă2

(t + t1)2θ . (5.155)

Using (2.45), from (5.133) and (5.155), we have

z̆k ≤ φ3(k, t1, a1, ă2, 2θ, z̆0), ∀k ∈ N+, (5.156)

where the function φ3 is defined in (2.46). From (5.156), (5.131), (2.46), and (5.150), we
have

E[‖xk‖
2
K] ≤

1
κ7

z̆k ≤
1
κ7
φ3(k, t1, a1, ă2, 2θ, z̆0) = O(

pn
(k + t1)2θ), (5.157)

which yields (5.15a).
From (5.104c), (4.65), and δk ≤ κδηk we have

E[W4,k+1] ≤ E[W4,k] −
3ν
8
ηkE[W4,k] + ‖xk‖

2
2ηk L2

f K + 2pL f (σ2
1 + 3σ2

2)η2
k + (n + p)L2

f κ
2
δη

3
k .

(5.158)

Similar to the way to prove (2.41), from (5.157) and (5.158), we have

E[f (x̄T) − f ∗] ≤
ε18 p

n(T + t1)θ
+ O(

p
(T + t1)2θ). (5.159)

From (5.150), we have

ε18 =
32θ4θL f (σ2

1 + 3σ2
2)κ2

3νκ0
≤

256θ4θL f (σ2
1 + 3σ2

2)c4

ν
. (5.160)

Thus, from (5.159) and (5.160), we have (5.15b).

5.8. Proofs 169

5.8.6 Proof of Theorem 5.6

In addition to the notations defined in Appendices 5.8.3 and 5.8.5, we also denote the
following notations.

ĉ0(κ1, κ2) =
κ2

8κ6
, ĉ3(κ0, κ1, κ2) = max

{c0(κ1, κ2)
κ0

,
κ6

ε4
,
κ6

ε6
,

24κ3

κ2
, p

1
â3

}
,

â3 = min
{
1,

2
3κ6

}
, ă3 = pn(ε11κ

2
δ + ε12 + ε13c̆g)

κ2
2

κ2
0

.

From t1 > ĉ3(κ0, κ1, κ2) ≥ c0(κ1,κ2)
κ0

, we have κ0 >
c0(κ1,κ2)

t1
. Thus, all conditions needed in

Lemma 5.4 are satisfied, so (5.143)–(5.147) still hold when θ = 1.
From rom t1 > ĉ3(κ0, κ1, κ2) ≥ max{κ6/ε4, κ6/ε6}, we have

ε4t1
κ6

> 1,
ε6t1
κ6

> 1. (5.161)

From κ0 ∈ [3ĉ0νκ2/16, 3νκ2/16), we have

16
3ν

<
κ2

κ0
≤

16
3ĉ0ν

. (5.162)

Thus,

νκ2

8κ6κ0
>

2
3κ6

. (5.163)

Hence, from (5.161) and (5.163), we have

a3 > â3. (5.164)

Then from θ = 1, (5.143)–(5.147), (5.164), and (2.43), we have

zk ≤ φ2(k, t1, a3, a4, 2, z0), ∀k ∈ N+, (5.165)

where the function φ2 is defined in (2.44).
From (5.164) and (5.162), we have φ2(k, t1, a3, a4, 2, z0) = O(pn/(k + t1)â3). Hence,

from (5.75g), (5.165), and (5.152), we get

E[‖ ḡ0
k‖

2] = O(
pn

(k + t1)â3
), ∀k ∈ N+. (5.166)

Noting that t1 > ĉ3(κ0, κ1, κ2) ≥ p1/â3 , from (5.166), we know that there exists a constant
c̆g > 0, such that

E[‖ ḡ0
k‖

2] ≤ nc̆g, ∀k ∈ N0. (5.167)

From (5.104b), (5.167), (5.131), and (5.14), we have

z̆k+1 ≤ (1 − a1)z̆k +
ă3

(t + t1)2 . (5.168)

170 Distributed zeroth-order optimization algorithms

Using (2.45), from (5.133) and (5.168), we have

z̆k ≤ φ3(k, t1, a1, ă3, 2, z̆0), ∀k ∈ N+, (5.169)

where the function φ3 is defined in (2.46). From (5.169), (5.131), (2.46), and (5.162), we
have

E[‖xk‖
2
K] ≤

1
κ7

z̆k ≤
1
κ7
φ3(k, t1, a1, ă3, 2, z̆0) = O(

pn
(k + t1)2), (5.170)

which yields (5.17a).
From κ0 < 3νκ2/16, we have

3νκ2

8κ0
> 2. (5.171)

Same to the way to prove (2.43), from (5.170), (5.171), and (5.158), we have

E[f (x̄T) − f ∗] ≤
ε̂18 p

n(T + t1)
+ O(

p
(T + t1)2). (5.172)

From (5.162), we have

ε̂18 =
8L f (σ2

1 + 3σ2
2)κ2

2

κ2
0(3νκ2

8κ0
− 1)

≤
128L f (σ2

1 + 3σ2
2)κ2

3νκ0
≤

2048L f (σ2
1 + 3σ2

2)
9ĉ0ν2 . (5.173)

Thus, from (5.172) and (5.173), we have (5.17b).

5.8.7 Proof of Theorem 5.7

In addition to the notations defined in Appendices 5.8.3, 5.8.5, and 5.8.6, we also denote
the following notations.

č0(κ1, κ2) = max
{
ε1,

2ε5

ε4
,
(2pε7

ε4

) 1
2
,
ε8

2ε6
, 4pκ2ε10

}
,

č3(κ0, κ1, κ2) = max
{ č0(κ1, κ2)

κ0
,
κ6

ε4
,
κ6

ε6
,
(16L f κ3

νκ2

) 1
3
,
(16L f κ4

νκ0κ2

) 1
3
,

64pL f κ2ε10

νκ0

}
,

ε̌12 = 2ε10σ
2
1 +

1
p
ε9σ̃

2
2 + 6ε10σ̃

2
2, σ̃

2
2 = 2L f f ∗ − 2L f

1
n

n∑
i=1

f ∗i .

To prove Theorem 5.7, the following lemma is used.

Lemma 5.6. Suppose Assumptions 5.1–5.3 and 5.5–5.7 hold and each f ∗i > −∞. Suppose
αk = κ1βk, βk = κ0(k + t1)θ, and ηk = κ2

βk
, where θ ∈ [0, 1], κ0 ≥ č0(κ1, κ2)/tθ1, κ1 > c1,

κ2 ∈ (0, c2(κ1)), and t1 ≥ 1. Let {xk} be the sequence generated by Algorithm 5.2, then

ELk [Wk+1] ≤ Wk − ε4‖xk‖
2
K − ε6

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
−

1
4
ηk‖ ḡ0

k‖
2

5.8. Proofs 171

+
4
3

L f (b3,k + 6pb4,k)η2
kW4,k + pnε̌12η

2
k + pnε11ηkδ

2
k , (5.174a)

ELk [W̆k+1] ≤ W̆k − ε4‖xk‖
2
K − ε6

∥∥∥∥vk +
1
βk

g0
k

∥∥∥∥2

K
+

4
3

L f pε13η
2
kW4,k

+ pnε̌12η
2
k + pnε11ηkδ

2
k , (5.174b)

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2ηk L2

f K −
1
4
ηk‖ ḡ0

k‖
2 +

8p
n

L2
f η

2
kW4,k

+ 2pη2
k L f (σ2

1 + 2σ̃2
2) + (n + p)L2

f ηkδ
2
k . (5.174c)

Proof. We know that (5.75a)–(5.75g) and (5.85) still hold since Assumptions 5.6 and 5.7
hold.

We have

‖g0
k‖

2 =

n∑
i=1

‖∇ fi(x̄k)‖2 ≤
n∑

i=1

2L f (fi(x̄k) − f ∗i) = 2L f n(f (x̄k) − f ∗) + nσ̃2
2, (5.175)

where the inequality holds due to (2.15).
We have

‖gk‖
2 = ‖gk − g0

k + g0
k‖

2 ≤ 2(‖gk − g0
k‖

2 + ‖g0
k‖

2) ≤ 2(L2
f ‖xk‖

2
K + 2L f W4,k + nσ̃2

2),
(5.176)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (3.30) and (5.175).

From (5.85) and (5.176), we have

ELk [‖g
e
k‖

2] ≤ 16pL f W4,k + 8pL2
f ‖xk‖

2
K + 4npσ2

1 + 8npσ̃2
2 + 0.5np2L2

f δ
2
k . (5.177)

From the Cauchy-Schwarz inequality, (5.75e), and (5.175), we have

‖g0
k+1‖

2 = ‖g0
k+1 − g0

k + g0
k‖

2 ≤ 2(‖g0
k+1 − g0

k‖
2 + ‖g0

k‖
2) ≤ 2(η2

k L2
f ‖g

e
k‖

2 + 2L f W4,k + nσ̃2
2).

(5.178)

Then, similar to the way to get Lemma 5.4, from (5.75a)–(5.75g), (5.177), and (5.178),
we get Lemma 5.6. �

Now we are ready to prove Theorem 5.7
From t1 > č3(κ0, κ1, κ2) ≥ č0(κ1,κ2)

κ0
, we have κ0 >

č0(κ1,κ2)
t1

. Thus, all conditions needed in
Lemma 5.6 are satisfied, so (5.174a)–(5.174c) still hold when θ = 1.

Similar to the way to get (5.115), from t1 ≥ max{(16L f κ3

νκ2
)

1
3 , (16L f κ4

νκ0κ2
)

1
3 ,

64pL f κ2ε10

νκ0
}, we

have

1
2
−

4
3ν

L f (b3,k + 6pb4,k)ηk ≥
1
8
. (5.179)

From (5.174a), (4.65), (5.179), (5.121), and (5.122), we know that (5.142) still holds
when ε12 is replaced by ε̌12.

Then, similar to the way to get (5.17a) and (5.17b), we have (5.19a) and (5.19b).

172 Distributed zeroth-order optimization algorithms

5.8.8 Proof of Theorem 5.8

In addition to the notations defined in Appendix 5.8.4, we also denote the following
notations.

ε =
1
2

+
1
2

max{1 − ε̃17, ε̂}, ε̃17 =
1

4κ6
min{4ε4, 8ε6, ην}, c5 =

1
ε4

(W0

n
+

pε̃11κ
2
δη

1 − ε̂

)
,

c6 =
2pε̃10

ε4
, c7 = 8

(W0

n
+

pε̃11κ
2
δη

1 − ε̂

)
, c8 = 16pε̃10, c9 =

W0

n
+

pε̃11κ
2
δη

ε − ε̂
, c10 =

2pε̃10η

ε̃17
.

All conditions needed in Lemma 5.5 are satisfied, so (5.136a) still holds.
(i) Taking expectation in LT , summing (5.136a) over k ∈ [0,T], and using δi,k ∈ (0, κδε̂k/2]
yield

E[WT+1] + ε4

T∑
k=0

‖xk‖
2
K +

1
8
η

T∑
k=0

‖ ḡ0
k‖

2 ≤ W0 + 2pn(σ2
1 + 3σ2

2)ε̃10η
2(T + 1) +

pnε̃11κ
2
δη

1 − ε̂
,

which gives (5.21a)–(5.21b).
(ii) If Assumption 5.4 also holds, then (4.65) holds. From (5.136a), (4.65), and (5.122), for
any k ∈ N0, we have

E[Wk+1] ≤ Wk − ε4‖xk‖
2
K − 2ε6

∥∥∥∥vk +
1
β

g0
k

∥∥∥∥2

K
−
ηνn
4

(f (x̄k) − f ∗)

+ 2pn(σ2
1 + 3σ2

2)ε̃10η
2 + pnε̃11ηδ

2
k

≤ Wk − ε̃17Wk + 2pn(σ2
1 + 3σ2

2)ε̃10η
2 + pnε̃11ηδ

2
k . (5.180)

From (5.146)

0 < ε̃17 ≤
2ε6

κ6
≤

1
40
. (5.181)

From (5.180), (5.121), (5.181), and δi,k ∈ (0, κδε̂
k
2], we have

E[Wk+1] ≤ (1 − ε̃17)k+1W0 + 2pn(σ2
1 + 3σ2

2)ε̃10η
2

k∑
τ=0

(1 − ε̃17)τ

+ pnε̃11κ
2
δη

k∑
τ=0

(1 − ε̃17)τε̂k−τ, ∀k ∈ N0. (5.182)

From (5.182), (2.36), and ε > max{1 − ε̃17, ε̂}, we have

E[Wk+1] ≤ εk+1c9 + nη(σ2
1 + 3σ2

2)c10, ∀k ∈ N0, (5.183)

which gives (5.22).

5.8. Proofs 173

5.8.9 Proof of Theorem 5.9

We denote the following notations.

d1 =
ρ2(L)

2ρ(L2)
, d2(γ) = min

{ 4ε1

9L2
f

,
1

48p(2ε2 + L f)

}
, ε1 =

1
2
γρ2(L) − γ2ρ(L2),

ε2 =
1 + 2γρ2(L)

2γρ2(L)
, ε3 = 2

(
2ε2 +

1
n

L f

)
(σ2

1 + 3σ2
2), ε4 =

1
4

L2
f

(1
48

+
4
p

)
,

ε5 =
W1,0 + W4,0

n
+

2θp(ε3 + κ2
δε4)κ2

η

2θ − 1
, ε6 = pnκ2

η(24L f ε2ε5G2
f + 4ε2(σ2

1 + 3σ2
2) + ε4κ

2
δ).

To prove Theorem 5.9, the following lemma is used.

Lemma 5.7. Suppose Assumptions 5.1–5.3 and 5.5–5.8 hold. Suppose γ ∈ (0, d1) and
ηk ∈ (0, d2(γ)]. Let {xk} be the sequence generated by Algorithm 5.3, then

ELk [W1,k+1 + W4,k+1] ≤ W1,k + W4,k − ‖xk‖
2
1
2 ε1 K −

1
8
ηk‖ ḡ0

k‖
2 + pnε3η

2
k + pnε4ηkδ

2
k ,

(5.184a)

ELk [W1,k+1] ≤ W1,k − ‖xk‖
2
1
2 ε1 K + 12pε2η

2
k‖ ḡ

0
k‖

2 + 4pnε2(σ2
1 + 3σ2

2)η2
k + pnε4ηkδ

2
k ,

(5.184b)

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2L2

f ηk K −
1
8
ηk‖ ḡ0

k‖
2 + 2pL f (σ2

1 + 3σ2
2)η2

k + (p + n)L2
f ηkδ

2
k .

(5.184c)

Proof. It is straightforward to see that for {xk} generated by Algorithm 5.3, Lemma 5.2
and (5.98) still hold. Thus, (5.117) still holds.

We have

ELk [W1,k+1] = ELk

[1
2
‖xk+1‖

2
K

]
= ELk

[1
2
‖xk − (γLxk + ηk ge

k)‖2K
]

= ELk

[1
2
‖xk‖

2
K − γ‖xk‖

2
L +

1
2
γ2‖xk‖

2
L2 − ηk x>k (Inp − γL)K ge

k +
1
2
η2

k‖g
e
k‖

2
K

]
≤ ELk

[1
2
‖xk‖

2
K − ‖xk‖

2
γL− 1

2 γ
2 L2 +

1
2
γρ2(L)‖xk‖

2
K +

1
2γρ2(L)

η2
k‖g

e
k‖

2

+
1
2
γ2‖xk‖

2
L2 +

1
2
η2

k‖g
e
k‖

2 +
1
2
η2

k‖g
e
k‖

2
]

≤ ELk

[1
2
‖xk‖

2
K − ‖xk‖

2
(γρ2(L)−γ2ρ(L2)− 1

2 γρ2(L))K +
1 + 2γρ2(L)

2γρ2(L)
η2

k‖g
e
k‖

2
]

≤
1
2
‖xk‖

2
K − ‖xk‖

2
ε1 K

+ ε2η
2
k

(
12p‖ ḡ0

k‖
2 + 12pL2

f ‖xk‖
2
K + 4npσ2

1 + 12npσ2
2 +

1
2

np2L2
f δ

2
k

)
=

1
2
‖xk‖

2
K − ‖xk‖

2
ε1 K−12pL2

f ε2η
2
k K

174 Distributed zeroth-order optimization algorithms

+ ε2η
2
k

(
12p‖ ḡ0

k‖
2 + 4npσ2

1 + 12npσ2
2 +

1
2

np2L2
f δ

2
k

)
, (5.185)

where the second equality holds due to (5.23); the third equality holds due to (2.5); the first
inequality holds due to the Cauchy-Schwarz inequality and ρ(K) = 1; the second inequality
holds due to (2.6); the second last equality holds since that xi,k is independent of Lk; and
the last inequality holds due to (5.76a).

From (5.117) and (5.185), we have

ELk [W1,k+1 + W4,k+1] ≤ W1,k + W4,k − ‖xk‖
2
ε1 K−(L2

f ηk+12pL2
f ε2η

2
k+

6p
n L3

f η
2
k)K

−
1
4

(
1 − 48pε2ηk −

24p
n

L f ηk

)
ηk‖ ḡ0

k‖
2

−
1
4

(1 − 2L f ηk)ηk‖ ḡs
k‖

2 + 2pn
(
2ε2 +

1
n

L f

)
(σ2

1 + 3σ2
2)η2

k

+
1
4

pnL2
f

(
2pε2ηk +

1
n

pL f ηk +
4
p

)
ηkδ

2
k . (5.186)

From γ ∈ (0, d1) and ρ2(L) ≤ ρ(L), we have

0 < ε1 <
1
16
. (5.187)

From ηk ≤ d2(γ) ≤ 1/(48p(2ε2 + L f)), we have

48pε2ηk +
24p

n
L f ηk ≤ 24p(2ε2 + L f)d2(γ) ≤

1
2
, (5.188a)

2L f ηk ≤
2L f

48p(2ε2 + L f)
<

1
24p

< 1, (5.188b)

1
4

L2
f

(
2pε2ηk +

1
n

pL f ηk +
4
p

)
≤ ε4. (5.188c)

From ηk ≤ d2(γ) ≤ 4ε1/(9L2
f) and (5.188a), we have

L2
f ηk + 12pL2

f ε2η
2
k +

6p
n

L3
f η

2
k ≤ (1 + 6p(2ε2 + L f)d2(γ))L2

f d2(γ) ≤
9
8

L2
f d2(γ) ≤

1
2
ε1.

(5.189)

From (5.186)–(5.189), we have (5.184a).
Similarly, we get (5.184b) and (5.184c). �

Now it is ready to prove Theorem 5.9.
From κη ∈ (0, d2(γ)tθ1] and ηk = κη/(k + t1)θ, we have ηk ≤ d2(γ). Thus, all conditions

needed in Lemma 5.7 are satisfied. So (5.184a) and (5.184b) hold.
Taking expectation in LT , summing (5.184a) over k ∈ [0,T], and using (2.37) and

ηk = κη/(k + t1)θ and δk ≤ κδ
√
ηk as stated in (5.24), yield

E[W1,T+1 + W4,T+1] +

T∑
k=0

E
[1
2
ε1‖xk‖

2
K +

1
8
ηk‖ ḡ0

k‖
2
]

5.8. Proofs 175

≤ W1,0 + W4,0 + pn(ε3 + κ2
δε4)κ2

η

T∑
k=0

1
(k + t1)2θ ≤ nε5. (5.190)

Noting that tθ1 = O(
√

p), we have

κη = O(
tθ1
p

) = O(
1
√

p
). (5.191)

From W1,0 + W4,0 = O(n) and (5.191), we have

ε5 =
W1,0 + W4,0

n
+

2θp(ε3 + κ2
δε4)κ2

η

2θ − 1
= O(1). (5.192)

From (5.190), (5.187), and
∑T

k=0 ηk =
∑T

k=0
κη

(k+t1)θ ≥
κη(T+t1)1−θ

1−θ , we have∑T
k=0 ηkE[‖∇ f (x̄k)‖2]∑T

k=0 ηk
=

∑T
k=0 ηkE[‖ ḡ0

k‖
2]

n
∑T

k=0 ηk
≤

8(1 − θ)ε5

κη(T + t1)1−θ . (5.193)

From (5.191)–(5.193), we have (5.25a).
From (5.190) and (5.187), we have

E[f (x̄T+1)] − f ∗ ≤
1
n

W4,T+1 ≤ ε5. (5.194)

From (5.194) and (5.192), we have (5.25b).
From (5.190) and (5.187), we have

T∑
k=0

E[‖xk‖
2
K] ≤

2nε5

ε1
. (5.195)

From (5.75g) and (5.194), we have

‖ ḡ0
k‖

2 ≤ 2nL f ε5. (5.196)

From (5.76a), (5.195), and (5.196), we know that E[‖ge
k‖

2] is bounded. Then, same as
the proof of the first part of Theorem 1 in [151], we have (5.25d).

From (5.184b), (5.196), and (5.24), we have

E[W1,k+1] ≤ (1 − ε1)E[W1,k] +
ε6

(t + t1)2θ . (5.197)

From (5.197), (5.187), and (2.45), we have

E[W1,k] ≤ φ3(k, t1, ε1, ε6, 2θ,W1,0), ∀k ∈ N+, (5.198)

where the function φ3 is defined in (2.46).
Noting that φ3(k, t1, ε1, ε6, 2θ,W1,0) = O(n/k2θ), from (5.198), we have (5.25c).

176 Distributed zeroth-order optimization algorithms

5.8.10 Proof of Theorem 5.10

We use the notations defined in Appendix 5.8.9.
From ηk = η =

√
n/
√

pT and T ≥ n/(pd2
2(γ)), we have ηk ≤ d2(γ). Thus, all conditions

needed in Lemma 5.7 are satisfied. So (5.184a) and (5.184c) hold.
From (5.184a), ηk = η =

√
n/
√

pT , and δi,k ≤ κδ/(pn(k + 1))1/4 as stated in (5.26),
similar to the way to get (5.195) and (5.194), we have

1
T + 1

T∑
k=0

E
[1
n

n∑
i=1

‖xi,k − x̄k‖
2
]
≤

2
ε1

(W1,0 + W4,0

n(T + 1)
+

nε3

T
+

2nκ2
δε4

√
T (T + 1)

)
, (5.199)

which gives (5.27c).
From (5.184c) and ηk = η, we have

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2L2

f ηK −
1
8
η‖ ḡ0

k‖
2 + 2pL f (σ2

1 + 3σ2
2)η2 + (p + n)L2

f ηδ
2
k . (5.200)

From (5.200) and δi,k ≤ κδ/(pn(k + 1))1/4 as stated in (5.26), similar to the way to get
(5.193), we have

1
T + 1

T∑
k=0

E[‖∇ f (x̄k)‖2] =
1

n(T + 1)

T∑
k=0

E[‖ ḡ0
k‖

2]

≤ 8
(W4,0

n(T + 1)η
+

2L2
f

n(T + 1)

T∑
k=0

E[‖xk‖
2
K] +

2pL f (σ2
1 + 3σ2

2)η
n

+
2
√

pL2
f κ

2
δ

√
n(T + 1)

)
. (5.201)

Noting that η =
√

n/
√

pT and T ≥ n3/p, from (5.199) and (5.201), we have

1
T

T−1∑
k=0

E[‖∇ f (x̄k)‖2] = 8(f (x̄0) − f ∗ + 2(σ2
1 + 3σ2

2)L f + 2L2
f κ

2
δ)
√

p
√

nT
+ O(

n
T

),

which gives (5.27a).
Taking expectation inLT , summing (5.200) over k ∈ [0,T], and using δi,k ≤ κδ/(pn(k+

1))1/4 yield

n(E[f (x̄T+1)] − f ∗) = E[W4,T+1]

≤ W4,0 + 2ηL2
f

T∑
k=0

‖xk‖
2
K + (T + 1)2pη2L f (σ2

1 + 3σ2
2) + 2

√
pnL2

f η
√

T + 1. (5.202)

Noting that W4,0 = O(n), η =
√

n/
√

pT , and T ≥ n3/p, from (5.199) and (5.202), we
have (5.27b).

Similar to the proof of (5.25d), we have (5.27d).

5.8. Proofs 177

5.8.11 Proof of Theorem 5.11

In addition to the notations defined in Appendix 5.8.9, we also denote the following
notations.

ε̃6 = pnκ2
η(12L f ε2dg + 4ε2(σ2

1 + 3σ2
2) + ε4κ

2
δ),

ε7 = min
{ ε1tθ1
κη

,
ν

4

}
, b1 = ε7κη, b2 = pn(ε3 + ε4κ

2
δ)κ

2
η.

All conditions needed in Lemma 5.7 are satisfied, so (5.184a)–(5.184c) hold.
Denote W̌k = W1,k + W4,k. From (5.184a) and (4.65), we have

ELk [W̌k+1] ≤ W̌k − ‖xk‖
2
1
2 ε1 K −

ν

4
ηkW4,k + pnε3η

2
k + pnε4ηkδ

2
k

≤
(
1 − ηk min

{ ε1

ηk
,
ν

4

})
W̌k + pnε3η

2
k + pnε4ηkδ

2
k

≤ (1 − ηkε7)W̌k + pnε3η
2
k + pnε4ηkδ

2
k , ∀k ∈ N0. (5.203)

Denote žk = E[W̌k], s1,k = ηkε7, and s2,k = pnε3η
2
k + pnε4ηkδ

2
k . From (5.203), we have

žk+1 ≤ (1 − s1,k)žk + s2,k, ∀k ∈ N0. (5.204)

From (5.28), we have

s1,k = ηkε7 =
b1

(k + t1)θ
, (5.205)

s2,k = pnε3η
2
k + pnε4ηkδ

2
k ≤

b2

(k + t1)2θ . (5.206)

From (5.187), we have

0 < s1,k ≤ ε1 ≤
1
16
. (5.207)

Then, from θ ∈ (0, 1), (5.204)–(5.207), and (2.41), we have

žk ≤ φ1(k, t1, b1, b2, θ, 2θ, ž0), ∀k ∈ N+, (5.208)

where the function φ1 is defined in (2.42).
Noting that tθ1 = O(p), we have

κη = O(
tθ1
p

) = O(1). (5.209)

From (5.75g), (5.208), and (5.209), we get

E[‖ ḡ0
k‖

2] = O(
pn

(k + t1)θ
), ∀k ∈ N+. (5.210)

178 Distributed zeroth-order optimization algorithms

From (5.149) and (5.210), we know that there exists a constant dg > 0, such that

E[‖ ḡ0
k‖

2] ≤ ndg, ∀k ∈ N0. (5.211)

From (5.184b), (5.211), and (5.28), we have

E[W1,k+1] ≤ (1 − ε1)E[W1,k] +
ε̃6

(t + t1)2θ . (5.212)

Using (2.45), from (5.187) and (5.212), we have

E[W1,k] ≤ φ3(k, t1, ε1, ε̃6, 2θ,W0,k), ∀k ∈ N+, (5.213)

where the function φ3 is defined in (2.46). From (5.213), (2.46), and (5.209), we have

E[‖xk‖
2
K] ≤ 2E[W1,k] ≤ 2φ3(k, t1, ε1, ε̃6, 2θ,W0,k) = O(

pn
(k + t1)2θ), (5.214)

which yields (5.29a).
From (5.184c), (4.65), and δk ≤ κδηk we have

E[W4,k+1] ≤ E[W4,k] −
ν

4
ηkE[W4,k] + ‖xk‖

2
2L2

f ηk K + 2pL f (σ2
1 + 3σ2

2)η2
k + (p + n)L2

f κ
2
δη

3
k .

(5.215)

Similar to the way to prove (2.41), from (5.214) and (5.215), we have (5.29b).

5.8.12 Proof of Theorem 5.12

In addition to the notations defined in Appendices 5.8.9 and 5.8.11, we also denote d̂2(γ) =

max{ 1
ε1
,

κη
d2(γ) }

From t1 > d̂2(γ) ≥ κη
d2(γ) , we have ηk =

κη
k+t1
≤

κη
t1
< d2(γ). Thus, all conditions needed

in Lemma 5.7 are satisfied, so (5.204)–(5.207) still hold when θ = 1.
From t1 > d̂2(γ) ≥ 1

ε1
and κη > 4/ν, we have

b1 = ε6κη > 1. (5.216)

Then from θ = 1, (5.204)–(5.207), (5.216), and (2.43), we have

žk ≤ φ2(k, t1, b1, b2, 2, ž0), ∀k ∈ N+, (5.217)

where the function φ2 is defined in (2.44).
From κη > 4/ν, we know κη = O(1), thus φ2(k, t1, b1, b2, 2, ž0) = O(pn/k). Hence, from

(5.75g) and (5.217), we get

E[‖ ḡ0
k‖

2] = O(
pn

k + t1
), ∀k ∈ N+. (5.218)

Then, similar to the way to get (5.29a) and (5.29b), we get (5.31a) and (5.31b).

5.8. Proofs 179

5.8.13 Proof of Theorem 5.13

In addition to the notations defined in Appendices 5.8.9, 5.8.11, and 5.8.12, we also denote

d̃2(γ) = min
{ ε1

4L2
f

,
1

4p(2ε2 + L f)

}
, ď2(γ) = max

{ 1
ε1
,

κη

d̃2(γ)
,

κη

8νε8

}
,

ε̌3 = 2
(
2ε2 +

1
n

L f

)
(σ2

1 + 2σ̃2
2), ε̌4 =

1
4

L2
f

(1
8

+
4
p

)
, ε8 = 8p(2ε2 + L f)L f

To prove Theorem 5.13, the following lemma is used.

Lemma 5.8. Suppose Assumptions 5.1–5.3 and 5.5–5.7 hold and each f ∗i > −∞. Suppose
γ ∈ (0, d1) and ηk ∈ (0, d̃2(γ)]. Let {xk} be the sequence generated by Algorithm 5.3, then

ELk [W1,k+1 + W4,k+1] ≤ W1,k + W4,k − ‖xk‖
2
1
2 ε1 K −

1
4
ηk‖ ḡ0

k‖
2

+ ε8η
2
kW4,k + pnε̌3η

2
k + pnε̌4ηkδ

2
k , (5.219a)

ELk [W1,k+1] ≤ W1,k − ‖xk‖
2
1
2 ε1 K + 16pε2L f η

2
kW4,k

+ 4pnε2(σ2
1 + 2σ̃2

2)η2
k + pnε̌4ηkδ

2
k , (5.219b)

ELk [W4,k+1] ≤ W4,k + ‖xk‖
2
2L2

f ηk K −
1
4
ηk‖ ḡ0

k‖
2 +

8p
n

L2
f W4,k

+ 2pL f (σ2
1 + 2σ̃2

2)η2
k + (p + n)L2

f ηkδ
2
k . (5.219c)

Proof. We know that (5.75a)–(5.75g) and (5.177) still hold since Assumptions 5.6 and 5.7
hold, and each f ∗i > −∞. Then, similar to the way to get Lemma 5.7, we get Lemma 5.8.

�

Now we are ready to prove Theorem 5.13.
From t1 > ď2(γ) ≥ max{κη/d̃2(γ), κη/(4νε8)}, we have

ηk =
κη

k + t1
≤
κη

t1
< min

{
d̃2(γ),

1
4νε8

}
. (5.220)

Thus, all conditions needed in Lemma 5.8 are satisfied, so (5.219a)–(5.219c) hold
From (5.219a), (4.65), and (5.220), we know that (5.203) still holds when ε3 and ε4 are

replaced by ε̌3 and ε̌4, respectively.
Then, similar to the way to get (5.31a) and (5.31b), we have (5.33a) and (5.33b).

5.8.14 Proof of Theorem 5.14

In addition to the notations defined in Appendix 5.8.9, we also denote the following
notations.

ε = 0.5 + 0.5 max{1 − ε̃7, ε̂}, ε̃7 = min
{
ε1,

1
4
νη

}
, d3 =

2
ε1

(W1,0 + W4,0

n
+

pε4κ
2
δη

1 − ε̂

)
,

180 Distributed zeroth-order optimization algorithms

d4 =
4p
ε1

(
2ε2 +

1
n

L f

)
, d5 = 8

(W1,0 + W4,0

n
+

pε4κ
2
δη

1 − ε̂

)
, d6 = 16p

(
2ε2 +

1
n

L f

)
,

d7 =
W1,0 + W4,0

n
+

pε4κ
2
δη

ε − ε̂
, d8 =

2pη
ε̃7

(
2ε2 +

1
n

L f

)
.

All conditions needed in Lemma 5.7 are satisfied, so (5.184a) still holds.
(i) Taking expectation in LT , summing (5.184a) over k ∈ [0,T], and using ηk = η and
δi,k ∈ (0, κδε̂k/2] yield

E[W1,T+1 + W4,T+1] +
1
2
ε1

T∑
k=0

‖xk‖
2
K +

1
8
η

T∑
k=0

‖ ḡ0
k‖

2

≤ W1,0 + W4,0 + pnε3η
2(T + 1) +

pnε4κ
2
δη

1 − ε̂
,

which gives (5.35a)–(5.35b).
(ii) If Assumption 5.4 also holds, then (4.65) holds. Thus, (5.203) also holds when ηk = η.
From (5.203) and ηk = η, for all k ∈ N0, we have

ELk [W̌k+1] ≤ (1 − ε̃7)W̌k + pnε3η
2 + pnε4ηδ

2
k . (5.221)

From (5.187)

0 < ε̃7 ≤ ε1 <
1

16
. (5.222)

From (5.221), (5.222), and δi,k ∈ (0, κδε̂
k
2], we have

E[W̌k+1] ≤ (1 − ε̃7)k+1W̌0 + pnε3η
2

k∑
τ=0

(1 − ε̃7)τ + pnε4κ
2
δη

k∑
τ=0

(1 − ε̃7)τε̂k−τ, ∀k ∈ N0.

(5.223)

From (5.223), (2.36), and ε > max{1 − ε̃7, ε̂}, we have

E[W̌k+1] ≤ εk+1d7 + n(σ2
1 + 3σ2

2)d8, ∀k ∈ N0, (5.224)

which gives (5.36).

Part II

Distributed Online Convex Optimization

181

Chapter 6

Distributed online primal–dual
optimization algorithm

This and the next chapters consider on online convex optimization problems, which view
optimization as a process or a repeated game. This chapter considers distributed online
convex optimization with time-varying coupled inequality constraints. The global objective
function is composed of local convex cost and regularization functions and the coupled
constraint function is the sum of local convex functions. A distributed online primal–
dual dynamic mirror descent algorithm is proposed to solve this problem, where the local
cost, regularization, and constraint functions are held privately and revealed only after
each time slot. Without assuming Slater’s condition, we first derive regret and constraint
violation bounds for the proposed algorithm and show how they depend on the stepsize
sequences, the accumulated dynamic variation of the comparator sequence, the number of
agents, and the network connectivity. As a result, under some natural decreasing stepsize
sequences, we prove that the proposed algorithm achieves sublinear dynamic regret and
constraint violation if the accumulated dynamic variation of the optimal sequence also
grows sublinearly. In particular, we show that it achieves O(T max{1−κ,κ}) static regret
and O(T 1−κ/2) constraint violation bounds, where κ ∈ (0, 1) is a user-defined trade-off

parameter. Assuming Slater’s condition, we show that the dynamic regret bound is similar
to the bound without assuming Slater’s condition, but the constraint violation bound can be
reduced toO(T max{1−κ,κ}). Moreover, we show that both static regret and constraint violation
bounds grow as O(

√
T). In addition, smaller bounds on the static regret are achieved when

the objective function is strongly convex. Numerical simulations are provided to illustrate
the effectiveness of the theoretical results.

This chapter is organized as follows. Section 6.1 gives the background. Section 6.2
introduces the problem formulation. Section 6.3 provides the distributed online primal–
dual dynamic mirror descent algorithm and analyzes the bounds of the regret and constraint
violation for this algorithm. Section 6.4 presents numerical simulations. Section 6.5
concludes this chapter. To improve the readability, all the proofs can be found in
Section 6.6.

183

184 Distributed online primal–dual optimization algorithm

6.1 Introduction

Centralized online convex optimization with static set constraints was first studied by
Zinkevich [163]. Specifically, he developed a projection-based online gradient descent
algorithm and achieved O(

√
T) static regret bound for an arbitrary sequence of convex

objective functions with bounded subgradients. It was later shown that this is a tight bound
up to constant factors [166]. The regret bound can be reduced under more stringent strong
convexity conditions on the objective functions [157, 165–167] or by allowing to query
the gradient of the objective function multiple times [168]. When the static constrained
sets are characterized by inequalities, the conventional projection-based online algorithms
are difficult to implement and may be inefficient in practice due to high computational
complexity of the projection operation. To overcome these difficulties, some researchers
proposed primal–dual algorithms for centralized online convex optimization with time-
invariant inequality constraints, e.g., [169–172]. The authors of [173] showed that the
algorithms proposed in [169, 170] are general enough to handle time-varying inequality
constraints. The authors of [174] used the modified saddle-point method to handle time-
varying constraints. The authors of [175, 176] used a virtual queue, which essentially is
a modified Lagrange multiplier, to handle stochastic and time-varying constraints and
the authors of [311] extended the algorithm proposed in [175] with bandit feedback.
The authors of [312] studied online convex optimization with time-varying constraints
in the continuous-time setting and showed that the static regret in continuous-time can be
bounded by a constant independent of the time horizon, as opposed to the sublinear static
regret observed in the discrete-time setting.

Distributed online convex optimization has been extensively studied, so here we
only list some of the most relevant work. Firstly, the authors of [180–182, 186–188]
proposed distributed online algorithms to solve convex optimization problems with static
set constraints and achieved sublinear regret. For instance, the authors of [181] proposed
a decentralized variant of the dynamic mirror descent algorithm proposed in [313]. Mirror
descent generalizes classical gradient descent to Bregman divergences and is suitable for
solving high-dimensional convex optimization problems. The weighted majority algorithm
in machine learning [314] can be viewed as a special case of mirror descent. Secondly,
the authors of [189] extended the adaptive algorithm proposed in [170] to a distributed
setting to solve an online convex optimization problem with a static inequality constraint.
Finally, the authors of [190, 191] proposed distributed primal–dual algorithms to solve
an online convex optimization with static coupled inequality constraints. To the best of
our knowledge, no existing studies considered distributed online convex optimization
with time-varying constraints in the discrete-time setting. In the continuous-time setting,
the authors of [315] extended the online saddle point algorithm proposed in [312] to a
distributed version.

This chapter considers distributed online optimization with time-varying coupled
inequality constraints. The global objective function is composed of local convex cost and
regularization functions and the coupled constraint function is the sum of local convex
functions. Compared to the literature the contributions of this chapter are summarized as
follows.

6.1. Introduction 185

(C6.1) We propose a novel distributed online primal–dual dynamic mirror descent algorithm
(Algorithm 6.1). In this algorithm, each agent i maintains two local sequences: the
local decision (primal) and dual sequences. An agent averages its local dual variable
with its in-neighbors in a consensus step, and takes into account the estimated
dynamics of the optimal sequences. The proposed algorithm uses different nonin-
creasing stepsize sequences for the primal and dual updates, and a nonincreasing
sequence to design penalty terms such that the dual variables are not growing too
large. These sequences give some freedom in the regret and constraint violation
bounds, as they allow the trade-off between how fast these two bounds tend to zero.
The algorithm uses the subgradients of the local cost and constraint functions at the
previous decision, but the total number of iterations or any other parameters related
to the objective or constraint functions are not used.

(C6.2) Without assuming Slater’s condition, i.e., that the feasible region has an interior
point, in Lemma 6.3 we derive regret and constraint violation bounds for the
algorithm and show how they depend on the stepsize sequences, the accumulated
dynamic variation of the comparator sequence, the number of agents, and the
network connectivity. The same regret bound was achieved by the centralized
dynamic mirror descent proposed in [313] for static set constraints. Particularly,
we show in Theorem 6.1 that our algorithm simultaneously achieves sublinear
dynamic regret and constraint violation if the accumulated dynamic variation of
the optimal sequence grows sublinearly with a known order. Moreover, we show
in Corollary 6.1 that the algorithm achieves O(T max{1−κ,κ}) static regret and O(T 1−κ/2)
constraint violation bounds, where κ ∈ (0, 1) is a user-defined trade-off parameter.
Same results have been achieved in [170]. Compared with [169, 170, 172, 173, 191],
which assumed the same assumption on the cost and constraint functions as this
chapter, the proposed algorithm has the following advantages. The parameter κ
enables the user to trade-off static regret bound for constraint violation bound,
while recovering the O(

√
T) static regret and O(T 3/4) constraint violation bounds

from [169, 173] as special cases. The algorithms proposed in [169, 170, 173] are
centralized and the constraint functions in [169, 170] are time-invariant. Moreover,
in [169, 173] the total number of iterations and in [169, 170, 173] the upper bounds
of the objective and constraint functions and their subgradients need to be known
in advance to design the stepsizes. The proposed algorithm achieves smaller static
regret and constraint violation bounds than [191], although time-invariant coupled
inequality constraints were considered. The algorithm proposed in [172] achieved a
better constraint violation bound than ours, but their algorithm is centralized and the
constraint function is time-invariant.

(C6.3) Assuming Slater’s condition, we show in Theorem 6.2 that the dynamic regret
bound is similar to the bound without assuming Slater’s condition, but the constraint
violation bound can be reduced to O(T max{1−κ,κ}). Our results are superior to
[174] in the sense that the accumulated variation of constraints, V({gt}

T
t=1) =∑T

t=1 maxx∈X ‖[gt+1(x) − gt(x)]+‖, appears in their bounds and more assumptions are

186 Distributed online primal–dual optimization algorithm

Table 6.1: Comparison of Chapter 6 to some related online convex optimization algorithms.

Reference Problem type Constraint type Regret and constraint violation bounds

[169] Centralized g(x) ≤ 0m Reg(x[T], x̌∗[T]) = O(
√

T), ‖[
∑T

t=1 g(xt)]+‖ = O(T 3/4)

[170] Centralized g(x) ≤ 0m Reg(x[T], x̌∗[T]) = O(T max{1−κ,κ}), ‖[
∑T

t=1 g(xt)]+‖ = O(T 1−κ/2), κ ∈ (0, 1)

[172] Centralized g(x) ≤ 0m Reg(x[T], x̌∗[T]) = O(
√

T),
∑T

t=1 ‖[g(xt)]+‖
2 = O(

√
T)

[173] Centralized gt(x) ≤ 0m Reg(x[T], x̌∗[T]) = O(
√

T), ‖[
∑T

t=1 gt(xt)]+‖ = O(T 3/4)

[174] Centralized gt(x) ≤ 0m and
Slater’s condition

Reg(x[T], x∗[T]) = O(max{T 1/3 ∑T
t=1 ‖x

∗
t − x∗t−1‖,T

1/3V({gt}
T
t=1),T 2/3}),

‖[
∑T

t=1 gt(xt)]+‖ = O(T 2/3),

[175] Centralized gt(x) ≤ 0m and
Slater’s condition Reg(x[T], x̌∗[T])/T ≤ cε, ‖[

∑T
t=1 gt(xt)]+‖/T ≤ cε for T ≥ 1/ε2

[190] Distributed g(x) =∑n
i=1 gi(Xi) ≤ 0m

Reg(x[T], x̌∗[T]) = O(
√

T), ‖[
∑T

t=1 g(xt)]+‖ = O(
√

T) if dual variables
generated by the proposed algorithm are bounded

[191] Distributed g(x) =∑n
i=1 gi(Xi) ≤ 0m

Reg(x[T], x̌∗[T]) = O(T 1/2+2κ), ‖[
∑T

t=1 g(xt)]+‖ = O(T 1−κ/2), κ ∈ (0, 1/4)

This
chapter Distributed

gt(x) =∑n
i=1 gi,t(Xi) ≤

0m

Reg(x[T], x∗[T]) = O(max{T κ ∑T−1
t=1 ‖x

∗
t+1 − x∗t ‖,T

max{1−κ,κ}}),
‖[
∑T

t=1 gt(xt)]+‖ = O(T 1−κ/2) (without Slater’s condition),
‖[
∑T

t=1 gt(xt)]+‖ = O(T max{1−κ,κ}) (with Slater’s condition), κ ∈ (0, 1)

needed. We show that our algorithm simultaneously achieves sublinear dynamic
regret and constraint violation, if the accumulated variation of the optimal sequence
grows sublinearly. Moreover, we show in Corollary 6.2 that both static regret
and constraint violation bounds grow as O(

√
T), which are better than the results

achieved by the centralized algorithm in [175]. The authors of [190] achieved the
same bounds, but they assumed that the coupled inequality constraints are time-
invariant and they explicitly assumed boundedness of the dual variable sequence.
The conditions to guarantee this assumption are not so obvious since the dual
variable sequence is generated by the algorithm. In this chapter, we show that the
dual variable sequence is indeed bounded.

(C6.4) When the local objective functions are assumed to be strongly convex, we show
that in Theorem 6.3, without Slater’s condition, the proposed algorithm achieves
O(T κ) static regret and O(T 1−κ/2) constraint violation bounds. Moreover, we show
in Corollary 6.3 that the constraint violation bound can be reduced to O(T max{1−κ,κ})
when Slater’s condition holds.

Table 6.1 compares this chapter with other online convex optimization algorithms.

6.2 Distributed OCO with time-varying coupled inequality
constraints

We consider the problem of distributed online convex optimization with time-varying
coupled inequality constraints. Specifically, consider a network of n agents indexed by
i ∈ [n]. For each i, let { fi,t : Rpi → R}, {ri,t : Rpi → R}, and {gi,t : Rpi → Rm} be

6.2. Distributed OCO with time-varying coupled inequality constraints 187

arbitrary sequences of local convex cost, regularization, and constraint functions over time
t = 1, 2, . . . , respectively, where pi and m are positive integers. At time t, each agent i
selects a decision xi,t ∈ Xi, where Xi ⊆ R

pi is a known convex set. After the selection,
the agent receives its cost function fi,t and regularization ri,t together with its constraint
function gi,t, and obtains the loss li,t(xi,t) = fi,t(xi,t) + ri,t(xi,t). Here the regularization
function is used to influence the structure of the decisions. Examples of regularization
include `1-regularization ri,t(xi) = λi‖xi‖1 and `2-regularization ri,t(xi) = λi

2 ‖xi‖with λi > 0.
At the same moment, the agents exchange data with their neighbors over a time-varying
directed graph Gt = (V,Et), where V = [n] is the agent set and Et ⊆ V × V is the edge
set. The network’s objective is to choose a global decision sequence x[T] = (x1, . . . , xT)
with xt = col(x1,t, . . . , xn,t) so that the accumulated global loss

∑T
t=1 lt(xt) is competitive

with the loss of any comparator sequence y[T] = (y1, . . . , yT) with yt = col(y1,t, . . . , yn,t)
(i.e., the regret grows sublinearly in T) and at the same time the constraint violation grows
sublinearly in T , where T is the total number of iterations and lt(xt) =

∑n
i=1 li,t(xi,t) is the

global loss function.
From (1.5), we know that the regret of a global decision sequence x[T] with respect to

a comparator sequence y[T] is

Reg(x[T], y[T]) =

T∑
t=1

lt(xt) −
T∑

t=1

lt(yt).

For the above distributed online convex optimization problem with time-varying coupled
inequality constraints, there are two commonly used comparator sequences. One is the
optimal dynamic decision sequence y[T] = x∗[T] = (x∗1, . . . , x

∗
T) solving the following

constrained convex optimization problem when the sequences of cost, regularization, and
constraint functions are known a priori:

min
xt ∈ X

T∑
t=1

lt(xt)

s.t. gt(xt) ≤ 0m, ∀t ∈ [T],

(6.1)

where X = X1 × · · · × Xn ⊆ R
p is the global decision set, p =

∑n
i=1 pi, and gt(xt) =∑n

i=1 gi,t(xi,t) is the coupled constraint function. In order to guarantee that problem (6.1) is
feasible, for any T ∈ N+, we assume that XT , the set of all feasible decision sequences, is
nonempty, where

XT =
{
(x1, . . . , xT) : xt ∈ X, gt(xt) ≤ 0m, ∀t ∈ [T]

}
.

With this standing assumption, an optimal dynamic decision sequence to (6.1) always
exists. In this case Reg(x[T], x∗[T]) is called the dynamic regret for x[T]. Another comparator
sequence is y[T] = x̌∗[T] = (x̌∗T , . . . , x̌

∗
T), where x̌∗T is the optimal static decision solving

min
x ∈ X

T∑
t=1

lt(x)

s.t. gt(x) ≤ 0m, ∀t ∈ [T].

(6.2)

188 Distributed online primal–dual optimization algorithm

Similar to above, in order to guarantee that problem (6.2) is feasible, for any T ∈ N+, we
assume that X̌T , the set of all feasible static decision sequences, is nonempty, where

X̌T =
{
(x, . . . , x) : x ∈ X, gt(x) ≤ 0m, ∀t ∈ [T]

}
⊆ XT .

In this case Reg(x[T], x̌∗[T]) is called the static regret. It is straightforward to see that
Reg(x[T], y[T]) ≤ Reg(x[T], x∗[T]), ∀y[T] ∈ XT , and that Reg(x[T], x̌∗[T]) ≤ Reg(x[T], x∗[T]).

From (1.7), we know that the constraint violation of a decision sequence x[T] is

∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥.
This definition implicitly allows constraint violations at some times to be compensated
by strictly feasible decisions at other times. This is appropriate for constraints that have a
cumulative nature such as energy budgets enforced through average power constraints.

Based on the definitions introduced in Chapter 2, the following mild assumption is
made on the time-varying directed graph.

Assumption 6.1. For any t ∈ N+, the graph Gt satisfies the following conditions:

(i) The mixing matrix Wt is doubly stochastic, i.e.,
∑n

i=1[Wt]i j =
∑n

j=1[Wt]i j = 1, ∀i, j ∈
[n].

(ii) There exists a constant w ∈ (0, 1), such that [Wt]i j ≥ w if [Wt]i j > 0.

(iii) There exists an integer ι > 0 such that the graph (V,∪l=0,...,ι−1Et+l) is strongly
connected.

We make the following standing assumption on the cost, regularization, and constraint
functions.

Assumption 6.2. (i) For each i ∈ [n], the convex set Xi is compact, i.e., there exists a
positive constant d(X) such that

‖x − y‖ ≤ d(X), ∀x, y ∈ Xi, ∀i ∈ [n]. (6.3)

(ii) The functions { fi,t}, {ri,t}, and {gi,t} are convex and uniformly bounded on Xi, i.e., there
exists a constant F > 0 such that

| fi,t(x)| ≤ F, |ri,t(x)| ≤ F, ‖gi,t(x)‖ ≤ F, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi. (6.4)

(iii) The subgradients ∇ fi,t, ∇ri,t, and ∇gi,t exist and they are uniformly bounded on Xi,
i.e., there exists a constant G > 0 such that

‖∇ fi,t(x)‖ ≤ G, ‖∇ri,t(x)‖ ≤ G, ‖∇gi,t(x)‖ ≤ G, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi. (6.5)

Our goal in this chapter is to solve the following problem.

6.3. Distributed online primal–dual dynamic mirror descent algorithm 189

Problem 6.1. Develop a distributed algorithm to solve the problem of distributed
online optimization with time-varying coupled inequality constraints with guaranteed
performance measured by regret and constraint violation.

We are satisfied with low regret and constraint violation, by which we mean that both
Reg(x[T], y[T]) and ‖[

∑T
t=1 gt(xt)]+‖ grow sublinearly with T , i.e., there exist κ1, κ2 ∈ (0, 1)

such that Reg(x[T], y[T]) = O(T κ1) and ‖[
∑T

t=1 gt(xt)]+‖ = O(T κ2). This implies that the
upper bound of the time averaged difference between the accumulated cost of the decision
sequence and the accumulated cost of any comparator sequences tends to zero as T goes to
infinity. The same thing holds for the upper bound of the time averaged constraint violation.
The novel algorithm we design explores the stepsize sequences in a way that allows the
trade-off between how fast these two bounds tend to zero.

6.3 Distributed online primal–dual dynamic mirror descent
algorithm

In this section, we first propose a distributed online primal–dual dynamic mirror descent
algorithm. Then, we derive regret and constraint violation bounds for this algorithm.

6.3.1 Algorithm description

The regularized Lagrangian function associated with the considered problem at each time
t is

At(xt, ut) = ft(xt) + rt(xt) + u>t gt(xt) −
βt+1

2
‖ut‖

2, (6.6)

where {ut ∈ R
m
+ } is the dual variable or Lagrange multiplier vector sequence and {βt > 0}

is the regularization sequence. Inspired by the dynamic mirror descent [313], which is
a generalization of the composite objective mirror descent algorithm [316], a centralized
online primal–dual dynamic mirror descent algorithm to solve the considered problem is

x̃t+1 = argmin
x∈X

{αt+1(〈x,∇ ft(xt) + (∇gt(xt))>ut〉 + rt(xt)) +Dψ(x, xt)}, (6.7a)

ut+1 = [ut + γt+1(gt(xt) − βt+1ut)]+, (6.7b)
xt+1 = Φt+1(x̃t+1), (6.7c)

where {αt > 0} and {γt > 0} are the stepsize sequences used in the primal and dual updates,
respectively; ψi : Rpi → R is a function to define the Bregman divergenceDψ(·, ·), which is
differentiable and strongly convex with convexity parameter σi > 0 on Xi; and Φt : X→ X
is a dynamic model and characterizes a prior knowledge of the considered problem, akin
to developing a state space model for stochastic filters [313], and if the prior knowledge
is lacking then Φt is simply set to the identity mapping. When rt is a constant mapping
and Φt is the identity mapping, then the centralized online algorithm (6.7) is Algorithm 1
in [173]. The potential drawback of that algorithm is that the upper bounds of the objective

190 Distributed online primal–dual optimization algorithm

Algorithm 6.1 Distributed Online Primal–Dual Dynamic Mirror Descent Algorithm

1: Input: nonincreasing sequences {αt}, {βt}, {γt} ⊆ (0, 1]; differentiable and strongly
convex functions {ψi, i ∈ [n]}.

2: Initialize: xi,1 ∈ Xi and qi,1 = 0m, ∀i ∈ [n].
3: for t = 2, . . . do
4: for i = 1, . . . , n in parallel do
5: Observe ∇ fi,t−1(xi,t−1), ∇gi,t−1(xi,t−1), gi,t−1(xi,t−1), and ri,t−1(·);
6: Determine Φi,t(·);
7: Update

q̃i,t =

n∑
j=1

[Wt−1]i jq j,t−1, (6.9a)

ai,t = ∇ fi,t−1(xi,t−1) + (∇gi,t−1(xi,t−1))>q̃i,t, (6.9b)
x̃i,t = argmin

x∈Xi

{αt〈x, ai,t〉 + αtri,t−1(x) +Dψi (x, xi,t−1)}, (6.9c)

bi,t = ∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1) + gi,t−1(xi,t−1), (6.9d)
qi,t = [q̃i,t + γt(bi,t − βtq̃i,t)]+, (6.9e)
xi,t = Φi,t(x̃i,t); (6.9f)

8: Broadcast qi,t to Nout
i (Gt) and receive q j,t from j ∈ N in

i (Gt).
9: end for

10: end for
11: Output: {xt}.

and constraint functions and their subgradients need to be known in advance to choose the
stepsize sequences. In order to avoid using these upper bounds, inspired by the algorithm
proposed in [175], we slightly modify the dual update equation (6.7b) as

ut+1 = [ut + γt+1(gt(xt) + ∇gt(xt)(xt+1 − xt) − βt+1ut)]+. (6.8)

Then we modify the centralized online primal–dual dynamic mirror descent algorithm
(6.7a), (6.8), and (6.7c) to a distributed manner, which is given in pseudo-code as
Algorithm 6.1. The key difficulty caused by the distributed setting is that each agent does
not know the global dual variable. In order to overcome this, the consensus step (6.9a) is
introduced such that each agent has an estimation of the global dual variable.

Remark 6.1. In order to execute Algorithm 6.1, at each iteration t, each agent i needs
to know the regularization function at the previous time t − 1, i.e., ri,t−1(·). This is in
many situations a mild assumption since regularization functions are normally predefined
to influence the structure of the decision. Furthermore, gi,t−1(xi,t−1), ∇ fi,t−1(xi,t−1), and
∇gi,t−1(xi,t−1) rather than the full knowledge of fi,t−1(·) and gi,t−1(·) are needed, similar
to the assumption on most online algorithms in the literature, cf., [169,170,172,173,191].

6.3. Distributed online primal–dual dynamic mirror descent algorithm 191

Note that the total number of iterations or any parameters related to the objective or
constraint functions, such as upper bounds of the objective and constraint functions or their
subgradients, are not used in the algorithm. Also note that no local information related to
the primal is exchanged between the agents, but only local dual variables.

Remark 6.2. In Algorithm 6.1, the sequences {αt}, {βt}, and {γt} play a key role in deriving
the regret and constraint violation bounds. They allow the trade-off between how fast these
two bounds tend to zero, as will be seen in the next section. With some modifications, all
the results in this chapter still hold if the coordinated sequences {αt}, {βt}, and {γt} are
replaced by uncoordinated ones {αi,t}, {βi,t}, and {γi,t}, respectively.

The minimization problem (6.9c) is the composite objective mirror descent [316] and is
strongly convex, so it is solvable at a linear convergence rate and closed-form solutions are
available in special cases. For example, if ri,t is a constant mapping and Euclidean distance
is used as the Bregman distance, i.e., Dψi (x, y) = ‖x − y‖2, then (6.9c) can be solved by
the projection x̃i,t = PXi (xi,t−1 −

αt
2 ai,t). One mild assumption on the Bregman divergence

is stated as follows.

Assumption 6.3. For all i ∈ [n], function ψi : Rpi → R is differentiable and strongly
convex with convexity parameterσi > 0 onXi. Moreover, for all y ∈ Xi,Dψi (·, y) : Rpi → R
is Lipschitz-continuous on Xi, i.e., there exists a constant K > 0 such that

|Dψi (x1, y) −Dψi (x2, y)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Xi. (6.10)

This assumption is satisfied when ψi is Lipschitz-continuous on Xi. From Assump-
tions 6.2 and 6.3, it follows that

Dψi (x, y) ≤ d(X)K, ∀x, y ∈ Xi, ∀i ∈ [n]. (6.11)

The dynamic mapping Φi,t used in (6.9f) plays the role of a prediction, which is a
decentralized variant of the dynamical model Φt introduced in [313] and a generalization
of the time-invariant linear mapping A used in [181]. If the optimal sequence of agent i
has the dynamics x∗i,t = Φ∗i,t(x∗i,t−1) for some true dynamic mapping Φ∗i,t : Xi → Xi, then
Φi,t can be viewed as an estimate of Φ∗i,t. If Φi,t is equal or close enough to Φ∗i,t, then
x∗i,t − Φi,t(x∗i,t−1) = Φ∗i,t(x∗i,t−1) − Φi,t(x∗i,t−1) is small. Φi,t is chosen as the identity mapping
if at time t agent i has no knowledge about the dynamics of the optimal sequence. The
following assumption on the dynamic mapping Φi,t is needed.

Assumption 6.4. For any t ∈ N+ and i ∈ [n], the dynamic mapping Φi,t is nonexpansive,
i.e.,

Dψi (Φi,t(x),Φi,t(y)) ≤ Dψi (x, y), ∀x, y ∈ Xi. (6.12)

The assumption is used to exclude the situation that any poor prediction made at one
step could be exacerbated as the algorithm moves forward. The same assumption can also
be found in [181, 313]. An example of the mapping Φi,t that satisfies his assumption is the
identity mapping.

192 Distributed online primal–dual optimization algorithm

6.3.2 Regret and constraint violation bounds

This section presents the main results on regret and constraint violation bounds for
Algorithm 6.1, but first some preliminary results are given.

Preliminary results

Firstly, we state some results on the local dual variables.

Lemma 6.1. Suppose that Assumptions 6.1–6.2 hold. For all i ∈ [n] and t ∈ N+, q̃i,t and
qi,t generated by Algorithm 6.1 satisfy

‖qi,t‖ ≤
F
βt
, ‖q̃i,t+1‖ ≤

F
βt
, (6.13a)

‖q̃i,t+1 − q̄t‖ ≤ nτB1

t−1∑
s=1

γs+1λ
t−1−s, (6.13b)

∆t+1

2γt+1
≤

n(B1)2

2
γt+1 + [q̄t − q]>gt(xt) + E1(t) + E2(t) + n

(G2αt+1

σ
+
βt+1

2

)
‖q‖2, (6.13c)

where q is an arbitrary vector in Rm
+ , w and ι are constants given in Assumption 6.1, F, G,

and d(X) are constants given in Assumption 6.2, and

q̄t =
1
n

n∑
i=1

qi,t, τ =
(
1 −

w
2n2

)−2
> 1, B1 = 2F + Gd(X), λ =

(
1 −

w
2n2

)1/ι
,

∆t =

n∑
i=1

‖qi,t − q‖2 − (1 − βtγt)
n∑

i=1

‖qi,t−1 − q‖2, E1(t) = n2τB1F
t∑

s=1

γs+1λ
t−s,

E2(t) =
σ

4αt+1

n∑
i=1

‖x̃i,t+1 − xi,t‖
2 +

n∑
i=1

(q̃i,t+1)>∇gi,t(xi,t)(x̃i,t+1 − xi,t), σ = min
i∈[n]
{σi}.

Proof. See Section 6.6.1. �

Remark 6.3. An upper bound of the local dual variables is given in (6.13a) even
without Slater’s condition. (6.13b) is a standard estimate from the consensus protocol with
perturbations and time-varying communication graphs [190] and presents an upper bound
on the deviation of the local estimate from the average value of the local dual variables
at each iteration. (6.13c) gives an upper bound on the regularized drift of the local dual
variables ∆t, which extends Lemma 3 in [313] from a centralized setting to a distributed
one.

Next, we provide an upper bound on the regret for one update step.

Lemma 6.2. Suppose that Assumptions 6.1–6.4 hold. Let {xt} be the sequence generated
by Algorithm 6.1 and {yt} be an arbitrary sequence in X, then

[q̄t]>gt(xt) + lt(xt) − lt(yt) ≤ [q̄t]>
4nG2αt+1

σ
+

K
αt+1

n∑
i=1

‖yi,t+1 − Φi,t+1(yi,t)‖

6.3. Distributed online primal–dual dynamic mirror descent algorithm 193

+ gt(yt) + 2E1(t) − E2(t) + E3(t), ∀t ∈ N+, (6.14)

where K is a constant given in Lemma 6.3, and

E3(t) =
1
αt+1

n∑
i=1

(Dψi (yi,t, xi,t) −Dψi (yi,t+1, xi,t+1)).

Proof. See Section 6.6.2. �

Finally, we derive regret and constraint violation bounds for Algorithm 6.1.

Lemma 6.3. Suppose that Assumptions 6.1–6.4 hold. Let {xt} be the sequence generated
by Algorithm 6.1. Then, for any T ∈ N+ and any comparator sequence y[T] ∈ XT ,

Reg(x[T], y[T]) ≤
KVΦ(y[T])

αT
−

1
2

T∑
t=1

n∑
i=1

(1
γt
−

1
γt+1

+ βt+1

)
‖qi,t‖

2

+ C1,1

T∑
t=1

γt+1 + C1,2

T∑
t=1

αt+1 +

T∑
t=1

E3(t), (6.15a)

∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥2
≤ E4(T)

(
2nFT +

KV∗
Φ

αT
−

1
2

T∑
t=1

n∑
i=1

(1
γt
−

1
γt+1

+ βt+1

)
‖qi,t − qc‖

2

+ C1,1

T∑
t=1

γt+1 + C1,2

T∑
t=1

αt+1 +

T∑
t=1

E3(t)
)
, (6.15b)

where VΦ(y[T]) and V∗
Φ

are the accumulated dynamic variation of the sequence y[T] with
respect to {Φi,t} and the minimum accumulated dynamic variation of all feasible sequences,
respectively, defined as

VΦ(y[T]) =

T−1∑
t=1

n∑
i=1

‖yi,t+1 − Φi,t+1(yi,t)‖, V∗Φ = min
y[T]∈XT

VΦ(y[T]),

and

C1,1 =
3n2τB1F

1 − λ
+

n(B1)2

2
, C1,2 =

4nG2

σ
,

qc =
2[

∑T
t=1 gt(xt)]+

E4(T)
, E4(T) = 4n

(1
γ1

+

T∑
t=1

(G2αt+1

σ
+
βt+1

2

))
.

Proof. See Section 6.6.3. �

Remark 6.4. Note that the dependence on the stepsize sequences, the accumulated
dynamic variation of the comparator sequence, the number of agents, and the network
connectivity is characterized in (6.15a) and (6.15b). The accumulated variation of

194 Distributed online primal–dual optimization algorithm

constraints or the pointwise maximum variation of consecutive constraints defined in
[174] do, however, not appear in (6.15a) and (6.15b). This regret bound is the same
as the regret bound achieved by the centralized dynamic mirror descent in [313], while
[313] only considered static set constraints. The term V∗

Φ
in (6.15b) can be replaced

by VΦ(y[T]) due to V∗
Φ
≤ VΦ(y[T]). Moreover, if all {Φt,i} are the identity mapping, then

V∗
Φ

= miny[T]∈X̌T
VΦ(y[T]) = VΦ(x̌∗T) = 0.

In order to obtain sublinear regret and constraint violation bounds, the sequences
{αt}, {βt}, and {γt} should be properly chosen. Firstly, note that αt appears in both the
denominator and numerator of (6.15a) and (6.15b), so we should let αt = O(1

tc) with
c ∈ (0, 1) because otherwise one of the terms that contained αt will grow linearly or
superlinearly. Then, noting that the upper bound of the dual sequence is unclear, we should
let 1

γt+1
− 1

γt
− βt+1αt+1 ≤ 0. In the next section, we characterize the regret and constraint

violation bounds based on such sequences.

Dynamic regret and constraint violation bounds

This section states the main results on dynamic regret and constraint violation bounds for
Algorithm 6.1. The succeeding theorem characterizes the bounds based on some natural
decreasing stepsize sequences.

Theorem 6.1. Suppose that Assumptions 6.1–6.4 hold. Let {xt} be the sequence generated
by Algorithm 6.1 with

αt =
1
tc , βt =

1
tκ
, γt =

1
t1−κ , ∀t ∈ N+, (6.16)

where κ ∈ (0, 1) and c ∈ (0, 1) are constants. Then, for any T ∈ N+,

Reg(x[T], x∗[T]) ≤ C1T max{1−c,c,κ} + 2KT cVΦ(x∗[T]), (6.17a)∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥2
≤ C2T max{2−c,2−κ} + KC2,1T max{1,1+c−κ}V∗Φ, (6.17b)

where

C1 =
C1,1

κ
+

C1,2

1 − c
+ 2nd(X)K, C2 = C2,1(2nF + C1), C2,1 = 2n

(2G2

(1 − c)σ
+

1
1 − κ

+ 2
)
.

Proof. See Section 6.6.4. �

Remark 6.5. Sublinear dynamic regret and constraint violation is thus achieved if
VΦ(x∗[T]) grows sublinearly. If, in this case, there exists a constant ν ∈ [0, 1), such that
VΦ(x∗[T]) = O(T ν), then setting c ∈ (0, 1 − ν) in Theorem 6.1 gives Reg(x[T], x∗[T]) = o(T)
and ‖[

∑T
t=1 gt(xt)]+‖ = o(T). Note that VΦ(x∗[T]) depends on the dynamic mapping Φi,t.

In practice, agents may not know what is a good estimate of Φi,t and Φi,t may change
stochastically. It is for future research how to estimate Φi,t from a finite or parametric class
of candidates.

6.3. Distributed online primal–dual dynamic mirror descent algorithm 195

From (6.17b), we can see that the constraint violation bound is strictly greater than
O(
√

T) due to max{2 − c, 2 − κ} > 1. In the following we show that an O(
√

T) bound on
constraint violation can be achieved if all {Φi,t} are the identity mapping and the constraint
functions {gi,t} satisfy Slater’s condition, which was also assumed in [174, 175].

Assumption 6.5. (Slater’s condition) There exists a constant ε > 0 and a vector xc ∈ X,
such that

gt(xc) ≤ −ε1m, t ∈ N+. (6.18)

Theorem 6.2. Suppose that Assumptions 6.1–6.5 hold. Let {xt} be the sequence generated
by Algorithm 6.1 with all {Φi,t} being the identity mapping, and

αt =
1

t1−κ , βt =
1
tκ
, γt =

1
t1−κ , ∀t ∈ N+, (6.19)

where κ ∈ (0, 1). Then, for any T ∈ N+,

Reg(x[T], x∗[T]) ≤ C1T max{1−κ,κ} + 2KT 1−κVI(x∗T), (6.20a)∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥ ≤ C3T max{1−κ,κ}, (6.20b)

where VI(x∗[T]) is the accumulated variation of the optimal sequence x∗[T] defined ad

VI(x∗[T]) =

T−1∑
t=1

‖x∗t+1 − x∗t ‖,

and

C3 = n
(
2B2 +

B2

1 − κ
+

G2(B2 + 2)
√

m
σκ

)
,

B2 = max
{
2ε + 2(ε2 + nd(X)K)

1
2 ,

2B3

ε

}
, B3 = 2F + C1,1.

Proof. See Section 6.6.5. �

Remark 6.6. From (6.20b), we note that under Slater’s condition the constraint violation
bound is not affected by the optimal sequences or the pointwise maximum variation
of consecutive constraints, which is different from the bounds obtained in [174]. From
(6.20a), it follows that sublinear dynamic regret could be achieved if VI(x∗[T]) grows
sublinearly with a known upper bound. Then, there exists a constant ν ∈ [0, 1), such that
VI(x∗[T]) = O(T ν), so setting κ ∈ (ν, 1) in Theorem 6.2 gives Reg(x[T], x∗[T]) = o(T) and
‖[
∑T

t=1 gt(xt)]+‖ = o(T). Under the additional assumption that the accumulated variation of
constraints, V({gt}

T
t=1) =

∑T
t=1 maxx∈X ‖[gt+1(x) − gt(x)]+‖, grows sublinearly with a known

upper bound, similar results have been achieved by the modified centralized online saddle-
point method proposed in [174]. However, [174] assumed not only that the time-varying

196 Distributed online primal–dual optimization algorithm

constraint functions satisfy Slater’s condition but also that the slack constant is larger than
the pointwise maximum variation of consecutive constraints. The latter assumption is not
always satisfied. Moreover, in [174] the total number of iterations T needs to be known in
advance.

Static regret and constraint violation bounds

This section states the main results on static regret and constraint violation bounds for
Algorithm 6.1. When considering static regret, {Φi,t} should be set to the identity mapping
since the static optimal sequence is used as the comparator sequence. In this case, replacing
x∗[T] by the static sequence x̌∗T in Theorem 6.1 gives the following results on the bounds of
static regret and constraint violation.

Corollary 6.1. Under the same conditions as stated in Theorem 6.1 with all {Φi,t} being
the identity mapping and c = κ, it holds that

Reg(x[T], x̌∗[T]) ≤ C1T max{1−κ,κ}, (6.21a)∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥ ≤ √
C2T 1−κ/2. (6.21b)

Proof. Substituting c = κ in Theorem 6.1 gives the results. �

Remark 6.7. From Corollary 6.1, we know that Algorithm 6.1 achieves the same static
regret and constraint violation bounds as in [170]. As discussed in [170], κ ∈ (0, 1)
is a user-defined parameter which enables the trade-off between the static regret bound
and the constraint violation bound. Corollary 6.1 recovers the O(

√
T) static regret and

O(T 3/4) constraint violation bounds from [169, 173] when κ = 0.5. Moreover, the result
extends the O(T 2/3) bound for both static regret and constraint violation achieved in
[169] for linear constraint functions. However, the algorithms proposed in [169,170,173]
are centralized and the constraint functions considered in [169, 170] are time-invariant.
Moreover, in [169, 173] the total number of iterations and in [169, 170, 173] the upper
bounds of the objective and constraint functions and their subgradients need to be known
in advance to choose the stepsize sequences. Furthermore, Corollary 6.1 achieves smaller
static regret and constraint violation bounds than [191], although [191] considered time-
invariant coupled inequality constraints. However, [191] did not require the time-varying
directed graph to be balanced. Although the algorithm proposed in [172] achieved more
strict constraint violation bound than our Algorithm 6.1, that algorithm assumed time-
invariant constraint functions and the centralized computations.

Similarly, replacing x∗[T] by the static sequence x̌∗T in Theorem 6.2 gives the following
results on the bounds of static regret and constraint violation.

Corollary 6.2. Under the same conditions as stated in Theorem 6.2, it holds that

Reg(x[T], x̌∗[T]) ≤C1T max{1−κ,κ}, (6.22a)

6.3. Distributed online primal–dual dynamic mirror descent algorithm 197

∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥ ≤C3T max{1−κ,κ}. (6.22b)

Remark 6.8. Setting κ = 0.5 in Corollary 6.2 gives Reg(x[T], x̌∗T) = O(
√

T) and
‖[
∑T

t=1 gt(xt)]+‖ = O(
√

T). Hence, Algorithm 6.1 achieves stronger results than [175]
and the same results as [176, 190]. However, the algorithms proposed in [175, 176] are
centralized and in [176] it is assumed that the constraint functions are independent and
identically distributed. Moreover, in [190] the coupled inequality constraints are time-
invariant and the boundedness of the dual variable sequence generated by the proposed
algorithm is explicitly assumed.

The static regret bounds in Corollaries 6.1 and 6.2 can be reduced, if a generalized
strong convexity of the local objective functions fi,t + ri,t is assumed. We put the strong
convexity assumption on the local cost functions fi,t so ri,t can be simply convex, such as
an `1-regularization.

Assumption 6.6. For any i ∈ [n], there exist constants µi > 0 such that for any t ∈ N+, fi,t
are µi-strongly convex on Xi with respect to ψi.

Theorem 6.3. Suppose Assumptions 6.1–6.4 and 6.6 hold. Let {xt} be the sequence
generated by Algorithm 6.1 with

αt =
1

tmax{1−κ,κ} , βt =
1
tκ
, γt =

1
t1−κ , ∀t ∈ N+, (6.23)

where κ ∈ (0, 1). Then, for any T ∈ N+,

Reg(x[T], x̌∗[T]) ≤ max{C1,C4}T κ, (6.24a)∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥ ≤ √
C2T 1−κ/2, (6.24b)

where

C4 =
n(B1)2

2κ
+

B1C1,1

κ
+

C1,2

κ
+ 2nd(X)K(B4)1−κ, B4 =

⌈ 1

(µ)
1
κ

⌉
, µ = min

i∈[n]
{µi}.

Proof. See Section 6.6.6. �

Corollary 6.3. Under the same conditions as stated in Theorem 6.2, if Assumption 6.6
also holds. Then,

Reg(x[T], x̌∗[T]) ≤ C4T κ, (6.25a)∥∥∥∥[T∑
t=1

gt(xt)
]
+

∥∥∥∥ ≤ C3T max{1−κ,κ}. (6.25b)

198 Distributed online primal–dual optimization algorithm

Proof. (6.25a) follows from the first step in the proof of (6.24a) and (6.25b) follows from
(6.20b). �

Remark 6.9. With some minor modifications, the results stated in Theorem 6.3 and
Corollary 6.3 still hold if Assumption 6.6 is replaced by the assumption that for any i ∈ [n]
and t ∈ N+, fi,t or ri,t is µi-strongly convex on Xi with respect to ψi.

6.4 Simulations

This section evaluates the performance of Algorithm 6.1 in solving the multi-target
tracking problem introduced in Section 1.1. In the simulations, for each agent i ∈ [n],
Φi,t is set as the identity mapping and the strongly convex function ψi(x) = σ‖x‖2 is used
to define the Bregman divergenceDψi . Thus,Dψi (x, y) = σ‖x − y‖2,∀i ∈ [n]. The stepsize
sequences given (6.23) are used. Moreover, agent i could use a regularization function
ri,t(xi,t) = λi,1‖xi,t‖1 +λi,2‖xi,t‖

2 to influence the structure of its action, where λi,1 and λi,2 are
nonnegative constants. At each time t, an undirected graph is used as the communication
graph. Specifically, connections between vertices are random and the probability of two
vertices being connected is ρ. To guarantee that Assumption 6.1 holds, edges (i, i + 1), i ∈
[n − 1] are added and [Wt]i j = 1

n if (j, i) ∈ Et and [Wt]ii = 1 −
∑

j∈N in
i (Gt)[Wt]i j.

We assume n = 50, m = 5, σ = 10, pi = 6, Xi = [0, 5]pi , ζi,1 = λi,1 = 1, ζi,2 = λi,2 = 30,
i ∈ [n], and ρ = 0.2. Each component of πi,t is drawn from the discrete uniform distribution
in [0, 10] and each component of Di,t is drawn from the discrete uniform distribution in
[−5, 5]. We let ξi,t = (2(ζi,2 + λi,2)x0

i,t + ζi,1πi,t + λi,11pi)/(2ζi,2), where x0
i,t+1 = Ai,t x0

i,t with
Ai,t being a doubly stochastic matrix and x0

i,1 being a vector that is uniformly drawn from
Xi. In order to guarantee the constraints are feasible, we let di,t = Di,t x0

i,t.

6.4.1 Dynamics of optimal sequences

Under the above settings, we have that x∗i,t = x0
i,t. To investigate the dependence of the

dynamic regret and constraint violation with Φi,t, we run Algorithm 6.1 for two cases: Φi,t is
the identity mapping and the linear mapping Ai,t. Figures 6.1 (a) and (b) show the evolutions
of Reg(x[T], x∗[T])/T and ‖[

∑T
t=1 gt(xt)]+‖/T , respectively, and we can see that knowing the

dynamics of the optimal sequence leads to smaller dynamic regret and constraint violation.

6.4.2 Regularization function

To highlight the dependence of the dynamic regret and constraint violation with the
regularization function, we run Algorithm 6.1 for two cases. Case I: fi,t(xi) = ζi,1〈πi,t, xi〉 +

ζi,2‖Hi,t xi−yi,t‖
2, ri,t(xi) = λi,1‖xi‖1 +λi,2‖xi‖

2 and Case II: fi,t(xi) = ζi,1〈πi,t, xi〉+ζi,2‖Hi,t xi−

yi,t‖
2 + λi,1‖xi‖1 + λi,2‖xi‖

2, ri,t(xi) = 0. Figures 6.2 (a) and (b) show the evolutions of
Reg(x[T], x∗[T])/T and ‖[

∑T
t=1 gt(xt)]+‖/T , respectively, for these two cases. From these two

figures, we can see that having the regularization term explicitly leads to smaller dynamic
regret and constraint violation.

6.4. Simulations 199

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
104

(a) Evolutions of dynamic regret Reg(x[T], x∗[T])/T .

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

(b) Evolutions of constraint violation ‖[
∑T

t=1 gt(xt)]+‖/T .

Figure 6.1: Comparison of different Φi,t in the multi-target tracking problem.

200 Distributed online primal–dual optimization algorithm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
104

Case I
Case II

(a) Evolutions of dynamic regret Reg(x[T], x∗[T])/T .

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Case I
Case II

(b) Evolutions of constraint violation ‖[
∑T

t=1 gt(xt)]+‖/T .

Figure 6.2: Effects of the regularization function in the multi-target tracking problem.

6.5. Summary 201

6.4.3 Effects of parameter κ

To investigate the dependence of the dynamic regret and constraint violation with the
parameter κ, we run Algorithm 6.1 with κ = 0.1, 0.3, 0.5, 0.7, 0.9. Figures 6.3 (a) and
(b) show effects of κ on Reg(x[T], x∗[T])/T and ‖[

∑T
t=1 gt(xt)]+‖/T , respectively, when

T = 100, 500, 1000. From these two figures, we can see that κ almost does not affect
Reg(x[T], x∗[T])/T and ‖[

∑T
t=1 gt(xt)]+‖/T when T is large (e.g., T ≥ 500). This phenomenon

is not contradictory to the theoretical results shown in Theorem 6.3 since the theoretical
results provide upper bounds of Reg(x[T], x∗[T])/T and ‖[

∑T
t=1 gt(xt)]+‖/T .

6.4.4 Comparison to other algorithms

Since there are no distributed online algorithms to solve the problem of distributed online
optimization with time-varying coupled inequality constraints, we compare Algorithm 6.1
with the centralized online algorithms in [173–175]. Here, Algorithm 1 in [173] with α =

10, δ = 1, and µ = 1/
√

T , Algorithm 1 in [174] with α = µ = T−1/3, and the virtual queue
algorithm in [175] with V =

√
T and α = V2 are used. Figures 6.4 (a) and (b) show the

evolutions of Reg(x[T], x∗[T])/T and ‖[
∑T

t=1 gt(xt)]+‖/T , respectively, for these algorithms.
From these two figures, we can see that in this example Algorithm 6.1 achieves smaller
dynamic regret and constraint violation than the algorithms in [174, 175] and almost the
same values as the algorithm in [173].

6.5 Summary

In this chapter, we considered an online convex optimization problem with time-varying
coupled inequality constraints. We proposed a distributed online primal–dual dynamic
mirror descent algorithm to solve this problem. We derived regret and constraint violation
bounds for the algorithm and showed how they depend on the stepsize sequences, the
accumulated dynamic variation of the comparator sequence, the number of agents, and the
network connectivity. We proved that the algorithm achieves sublinear regret and constraint
violation for both convex and strongly convex objective functions. We showed that the
results in this chapter can be cast as extensions of existing literature. Future research
directions include considering a strict form of the constraint violations and learning the
dynamics of the optimal sequence.

6.6 Proofs

6.6.1 Proof of Lemma 6.1

(i) We prove (6.13a) by induction.
It is straightforward to see that qi,1 = q̃i,2 = 0m, ∀i ∈ [n], thus ‖qi,1‖ ≤

F
β1
, ‖q̃i,2‖ ≤

F
β1
, ∀i ∈ [n]. Assume that (6.13a) is true at time t for all i ∈ [n]. We show that it remains

202 Distributed online primal–dual optimization algorithm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

(a) Dynamic regret Reg(x[T], x∗[T])/T at T = 100, 500, 1000.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

(b) Constraint violation ‖[
∑T

t=1 gt(xt)]+‖/T at T = 100, 500, 1000.

Figure 6.3: Effects of parameter κ in the multi-target tracking problem.

6.6. Proofs 203

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
105

Algorithm 6.1
[173]
[174]
[175]

(a) Evolutions of dynamic regret Reg(x[T], x∗[T])/T .

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Algorithm 6.1
[173]
[174]
[175]

(b) Evolutions of constraint violation ‖[
∑T

t=1 gt(xt)]+‖/T .

Figure 6.4: Performance of online convex optimization algorithms in the multi-target
tracking problem.

204 Distributed online primal–dual optimization algorithm

true at time t + 1. (2.9) and (6.9d) imply

(1 − γt+1βt+1)q̃i,t+1 + γt+1bi,t+1 ≤ (1 − γt+1βt+1)q̃i,t+1 + γt+1gi,t(x̃i,t+1). (6.26)

Noting that ‖[x]+‖ ≤ ‖y‖ for all x ≤ y, (6.9e), (6.26), and (6.4) imply

‖qi,t+1‖ ≤ (1 − γt+1βt+1)‖q̃i,t+1‖ + γt+1‖gi,t(x̃i,t+1)‖

≤ (1 − γt+1βt+1)
F
βt

+ γt+1F ≤ (1 − γt+1βt+1)
F
βt+1

+ γt+1F =
F
βt+1

, ∀i ∈ [n],

where the last inequality holds due to the sequence {βt} is nonincreasing. The convexity of
norms and

∑n
j=1[Wt]i j = 1 yield

‖q̃i,t+2‖ ≤

n∑
j=1

[Wt]i j‖q j,t+1‖ ≤

n∑
j=1

[Wt]i j
F
βt+1

=
F
βt+1

, ∀i ∈ [n].

Thus, (6.13a) follows.
(ii) We can rewrite (6.9e) as

qi,t+1 =

n∑
j=1

[Wt]i jq j,t + ε
q
i,t,

where εq
i,t = [(1 − γt+1βt+1)q̃i,t+1 + γt+1bi,t+1]+ − q̃i,t+1. From (6.4), (6.5), and (6.3), we have

‖bi,t+1‖ ≤ ‖gi,t(xi,t)‖ + ‖∇gi,t(xi,t)‖‖(x̃i,t+1 − xi,t)‖ ≤ F + Gd(X), ∀i ∈ [n]. (6.27)

Thus, (2.10), (6.13a), and (6.27) give

‖ε
q
i,t‖ ≤ ‖ − γt+1βt+1q̃i,t+1 + γt+1bi,t+1‖ ≤ B1γt+1, ∀i ∈ [n]. (6.28)

Then, Lemma 2 in [190], qi,1 = 0m, ∀i ∈ [n], and (6.28) yield

‖qi,t+1 − q̄t+1‖ ≤ nτB1

t∑
s=1

γs+1λ
t−s, ∀i ∈ [n].

So (6.13b) follows due to
∑n

j=1[Wt]i j = 1 and ‖q̃i,t+1 − q̄t‖ = ‖
∑n

j=1[Wt]i jq j,t − q̄t‖ ≤∑n
j=1[Wt]i j‖q j,t − q̄t‖.

(iii) Applying (2.10) to (6.9e) gives

‖qi,t − q‖2 ≤ ‖(1 − βtγt)q̃i,t + γtbi,t − q‖2

= ‖q̃i,t − q‖2 + (γt)2‖bi,t − βtq̃i,t‖
2 + 2γt(q̃i,t)>∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1)

− 2γtq>∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1) + 2γt(q̃i,t − q)>gi,t−1(xi,t−1)
− 2βtγt(q̃i,t − q)>q̃i,t. (6.29)

6.6. Proofs 205

For the first term of the right-hand side of (6.29), by convexity of norms and
∑n

j=1[Wt−1]i j =

1, it can be concluded that

‖q̃i,t − q‖2 =
∥∥∥∥ n∑

j=1

[Wt−1]i jq j,t−1 −

n∑
j=1

[Wt−1]i jq
∥∥∥∥2
≤

n∑
j=1

[Wt−1]i j‖q j,t−1 − q‖2. (6.30)

For the second term of the right-hand side of (6.29), (6.13a) and (6.27) yield

(γt)2‖bi,t − βtq̃i,t‖
2 ≤ (B1γt)2. (6.31)

For the fourth term of the right-hand side of (6.29), (6.5) and the Cauchy-Schwarz
inequality yield

−2γtq>∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1) ≤ 2γt

(G2αt

σ
‖q‖2 +

σ

4αt
‖x̃i,t − xi,t−1‖

2
)
. (6.32)

For the fifth term of the right-hand side of (6.29), we have

2γt(q̃i,t − q)>gi,t−1(xi,t−1) = 2γt(q̄t−1 − q)>gi,t−1(xi,t−1) + 2γt(q̃i,t − q̄t−1)>gi,t−1(xi,t−1).
(6.33)

Moreover, from (6.4) and (6.13b), we have

2γt(q̃i,t − q̄t−1)>gi,t−1(xi,t−1) ≤ 2γt‖q̃i,t − q̄t−1‖‖gi,t−1(xi,t−1)‖ ≤
2γtE1(t − 1)

n
. (6.34)

For the last term of the right-hand side of (6.29), neglecting the nonnegative term βtγt‖q̃i,t‖
2

gives

−2βtγt(q̃i,t − q)>q̃i,t ≤ βtγt(‖q‖2 − ‖q̃i,t − q‖2). (6.35)

Then, combining (6.29)–(6.35), summing over i ∈ [n], and dividing by 2γt, and using∑n
i=1[Wt−1]i j = 1, ∀t ∈ N+ yields (6.13c).

6.6.2 Proof of Lemma 6.2

From (2.9), we have

li,t(xi,t) − li,t(yi,t)
= fi,t(xi,t) − fi,t(yi,t) + ri,t(xi,t) − ri,t(x̃i,t+1) + ri,t(x̃i,t+1) − ri,t(yi,t)
≤ 〈∇ fi,t(xi,t), xi,t − yi,t〉 + 〈∇ri,t(xi,t), xi,t − x̃i,t+1〉 + 〈∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

= 〈∇ fi,t(xi,t) + ∇ri,t(xi,t), xi,t − x̃i,t+1〉 + 〈∇ fi,t(xi,t) + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉. (6.36)

We now bound each of the two terms above. For the first term, (6.5) and the Cauchy-
Schwarz inequality give

〈∇ fi,t(xi,t) + ∇ri,t(xi,t), xi,t − x̃i,t+1〉 ≤ 2G‖xi,t − x̃i,t+1‖ ≤
σ

4αt+1
‖xi,t − x̃i,t+1‖

2 +
4G2αt+1

σ
.

(6.37)

206 Distributed online primal–dual optimization algorithm

For the second term, we have

〈∇ fi,t(xi,t) + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

= 〈(∇gi,t(xi,t))>q̃i,t+1, yi,t − x̃i,t+1〉 + 〈ai,t+1 + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

= 〈(∇gi,t(xi,t))>q̃i,t+1, yi,t − xi,t〉 + 〈(∇gi,t(xi,t))>q̃i,t+1, xi,t − x̃i,t+1〉

+ 〈ai,t+1 + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉. (6.38)

From (2.9) and q̃i,t ≥ 0m, ∀t ∈ N+, ∀i ∈ [n], we have

〈(∇gi,t(xi,t))>q̃i,t+1, yi,t − xi,t〉 ≤ (q̃i,t+1)>gi,t(yi,t) − (q̃i,t+1)>gi,t(xi,t)
= (q̄t)>(gi,t(yi,t) − gi,t(xi,t)) + (q̃i,t+1 − q̄t)>(gi,t(yi,t) − gi,t(xi,t)). (6.39)

Similar to (6.34), we have

(q̃i,t+1 − q̄t)>(gi,t(yi,t) − gi,t(xi,t)) ≤
2E1(t)

n
. (6.40)

Applying (2.21) to the update rule (6.9c), we get

〈ai,t+1 + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

≤
1
αt+1

(Dψi (yi,t, xi,t) −Dψi (yi,t, x̃i,t+1) −Dψi (x̃i,t+1, xi,t))

=
1
αt+1

(Dψi (yi,t, xi,t) −Dψi (yi,t+1, xi,t+1) +Dψi (yi,t+1, xi,t+1) −Dψi (Φi,t+1(yi,t), xi,t+1)

+Dψi (Φi,t+1(yi,t), xi,t+1) −Dψi (yi,t, x̃i,t+1) −Dψi (x̃i,t+1, xi,t))

≤
1
αt+1

(
Dψi (yi,t, xi,t) −Dψi (yi,t+1, xi,t+1) + K‖yi,t+1 − Φi,t+1(yi,t)‖ −

σ

2
‖x̃i,t+1 − xi,t‖

2
)
,

(6.41)

where the last inequality holds due to (6.9f), (6.12), (6.10), and (2.18).
Combining (6.36)–(6.41) and summing over i ∈ [n] yields (6.14).

6.6.3 Proof of Lemma 6.3

(i) The definition of ∆t given in Lemma 6.1 yields

−
∆t

2γt
=

1
2γt

n∑
i=1

((1 − βtγt)‖qi,t−1 − q‖2 − ‖qi,t − q‖2)

=
1
2

n∑
i=1

(1
γt−1
‖qi,t−1 − q‖2 −

1
γt
‖qi,t − q‖2

)
+

1
2

n∑
i=1

(1
γt
−

1
γt−1
− βt

)
‖qi,t−1 − q‖2. (6.42)

6.6. Proofs 207

For any nonnegative sequence ζ1, ζ2, . . . , it holds that

T∑
t=1

t∑
s=1

ζs+1λ
t−s =

T∑
t=1

ζt+1

T−t∑
s=0

λs ≤
1

(1 − λ)

T∑
t=1

ζt+1. (6.43)

Let gc : Rm
+ → R be a function defined as

gc(q) =
(T∑

t=1

gt(xt)
)>

q − n
(1
γ1

+

T∑
t=1

(G2αt+1

σ
+
βt+1

2

))
‖q‖2. (6.44)

Combining (6.13c) and (6.14), summing over t ∈ [T], neglecting the nonnegative term
‖qi,T+1 − q‖2, and using (6.42)–(6.44), ‖qi,1 − q‖2 ≤ 2‖qi,1‖

2 + 2‖q‖2 = 2‖q‖2, and gt(yt) ≤
0m, y[T] ∈ XT yields

gc(q) + Reg(x[T], y[T]) ≤ C1,1

T∑
t=1

γt+1 +
4nG2

σ

T∑
t=1

αt+1 +

T∑
t=1

E3(t)

−
1
2

T∑
t=1

n∑
i=1

(1
γt
−

1
γt+1

+ βt+1

)
‖qi,t − q‖2

+ K
T∑

t=1

n∑
i=1

‖yi,t+1 − Φi,t+1(yi,t)‖
αt+1

, ∀q ∈ Rm
+ . (6.45)

Then, substituting q = 0m into (6.45), setting yi,T+1 = Φi,T+1(yi,T), noting that {αt} is
nonincreasing, and rearranging the terms yields (6.15a).
(ii) Substituting q = qc into gc(q) gives

gc(qc) =
‖[
∑T

t=1 gt(xt)]+‖
2

E4(T)
. (6.46)

Moreover, (6.4) gives

|Reg(x[T], y[T])| ≤ 2nFT, ∀y[T] ∈ XT . (6.47)

Substituting q = qc into (6.45), combining (6.46)–(6.47), and rearranging the terms gives
(6.15b).

6.6.4 Proof of Theorem 6.1

(i) Applying (2.37) to the third and forth terms of the right-hand side of (6.15a) gives

C1,1

T∑
t=1

γt+1 ≤
C1,1

κ
T κ, (6.48a)

C1,2

T∑
t=1

αt+1 ≤
C1,2

1 − c
T 1−c. (6.48b)

208 Distributed online primal–dual optimization algorithm

Noting that {αt} is nonincreasing and (6.11), for any s ∈ [T], we have

T∑
t=s

E3(t) =

T∑
t=s

n∑
i=1

(1
αt
Dψi (yi,t, xi,t) −

1
αt+1
Dψi (yi,t+1, xi,t+1)

)
+

T∑
t=s

n∑
i=1

(1
αt+1

−
1
αt

)
Dψi (yi,t, xi,t)

≤
1
αs

n∑
i=1

Dψi (yi,s, xi,s) −
1

αT+1

n∑
i=1

Dψi (yi,T+1, xi,T+1) + n
(1
αT+1

−
1
αs

)
d(X)K

≤
nd(X)K
αT+1

. (6.49)

Combining (6.15a) and (6.48a)–(6.49), setting yi,t = x∗i,t, ∀t ∈ [T], and noting that the
second last term of the right-hand side of (6.15a) is nonpositive due to 1

γt
− 1

γt+1
+ βt+1 > 0

yield (6.17a).
(ii) Using (2.37) gives

E4(T) ≤ C2,1T max{1−c,1−κ}. (6.50)

Combining (6.15b) and (6.48a)–(6.50) and noting that the last term of the right-hand
side of (6.15b) is nonpositive due to 1

γt
− 1

γt+1
+ βt+1 > 0 give (6.17b).

6.6.5 Proof of Theorem 6.2

(i) Substituting c = 1 − κ in (6.17a) gives (6.20a).
(ii) We first show that ‖qt‖ ≤ B2 by induction, where qt = col(q1,t, . . . , qn,t).

It is straightforward to see that ‖q1‖ = 0 ≤ B2. Suppose that there exists T1 ∈ N+ such
that ‖qt‖ ≤ B2, ∀t ∈ [T1]. We show that ‖qT1+1‖ ≤ B2 by contradiction. Now suppose that
‖qT1+1‖ > B2. Noting that ‖q̄T1+1‖1 = ‖qT1+1‖1 ≥ ‖qT1+1‖ > B2 and ‖q̄1‖1 = 0, we know
that there exists t0 ∈ [T1] such that ‖q̄t0‖1 ≤

B2
2 . Let t1 = max{t0 : ‖q̄t0‖1 ≤

B2
2 , t0 ∈ [T1]}.

Combining (6.13c) and (6.14), substituting q = 0m and yt = xc, setting {Φt,i} as the identity
mapping, and using |lt(xt) − lt(xc)| ≤ 2F and (6.18) yields

‖qt+1‖
2 − (1 − βt+1γt+1)‖qt‖

2 ≤ 2B3γt+1 + 2γt+1E3(t + 1) − 2ε‖q̄t‖1γt+1. (6.51)

Summing (6.51) over t ∈ {t1, . . . ,T1}, using (6.11), αt = γt = 1
t1−κ and βt ≥ 0, and noting

that ‖qT1+1‖ > B2, ‖qt1‖ ≤ ‖q̄t1‖1 ≤
B2
2 , and ‖q̄t‖1 >

B2
2 , ∀t ∈ {t1 + 1, . . . ,T1} gives

3(B2)2

4
< ‖qT1+1‖

2 − ‖qt1‖
2 +

T1∑
t=t1

βt+1γt+1‖qt‖
2

≤ 2B3

T1∑
t=t1

γt+1 + 2nd(X)K − 2ε
T1∑

t=t1

‖q̄t‖1γt+1

6.6. Proofs 209

≤
2B3

κ
((T1 + 1)κ − (t1 + 1)κ) + 2B3 + 2nd(X)K

−
εB2

κ
((T1 + 1)κ − (t1 + 1)κ) + εB2 − 2ε‖q̄t1‖1

≤ 2nd(X)K + 2εB2 ≤
(B2)2

2
, (6.52)

which is a contradiction. Thus, ‖qT1+1‖ ≤ B2.
We now show (6.20b) holds. Applying (2.22) to the update (6.9c) and noting ‖q̃i,t+1‖ ≤

‖qt‖ ≤ B2 gives

‖x̃i,t+1 − xi,t‖ ≤
‖αt+1ai,t+1‖ + αt+1G

σ
≤

Gαt+1

σ
(B2 + 2). (6.53)

(6.9a) and (6.9e) give

qi,t+1 ≥ (1 − βt+1γt+1)
n∑

j=1

[Wt]i jq j,t + γt+1bi,t+1. (6.54)

Summing (6.54) over i ∈ [n], dividing by nγt+1, and using
∑n

i=1[Wt]i j = 1, ∀t ∈ N+, (6.5),
(6.9d), and (6.53) yields

q̄t+1

γt+1
≥

(1
γt+1
− βt+1

)
q̄t +

1
n

n∑
i=1

bi,t+1

≥
(1
γt+1
− βt+1

)
q̄t +

1
n

gt(xt) −
G2αt+1

σ
(B2 + 2)1m. (6.55)

Summing (6.55) over t ∈ [T] gives

1
n

T∑
t=1

gt(xt) ≤
q̄T+1

γT+1
+

T∑
t=1

βt+1q̄t +

T∑
t=1

G2αt+1

σ
(B2 + 2)1m. (6.56)

Noting that ‖[x]+‖ ≤ ‖y‖ for all x ≤ y and using ‖q̄t‖ ≤ ‖qt‖ ≤ B2 and (2.37) yields (6.20b).

6.6.6 Proof of Theorem 6.3

(i) We first show that Reg(x[T], x̌∗T) ≤ C4T κ when αt = 1
t1−κ .

Under Assumption 6.6, (6.36) can be replaced by

li,t(xi,t) − li,t(yi,t) ≤ 〈∇ fi,t(xi,t), xi,t − yi,t〉 + 〈∇ri,t(xi,t), xi,t − x̃i,t+1〉

+ 〈∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉 − µDψi (yi,t, xi,t)

= 〈∇ fi,t(xi,t) + ∇ri,t(xi,t), xi,t − x̃i,t+1〉

+ 〈∇ fi,t(xi,t) + ∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉 − µDψi (yi,t, xi,t). (6.57)

210 Distributed online primal–dual optimization algorithm

Thus, (6.14)–(6.15b) still hold if replacing E3(t) by

E5(t) =

n∑
i=1

(1
αt+1

(
Dψi (yi,t, xi,t) −Dψi (yi,t+1, xi,t+1)

)
− µDψi (yi,t, xi,t)

)
.

Then,

T∑
t=1

E5(t) =

T∑
t=1

n∑
i=1

(1
αt
Dψi (yi,t, xi,t) −

1
αt+1
Dψi (yi,t+1, xi,t+1)

)
+

T∑
t=1

n∑
i=1

(1
αt+1

−
1
αt
− µ

)
Dψi (yi,t, xi,t). (6.58)

Noting that µ > 0, Dψi (·, ·) ≥ 0, and 1
αt+1
− 1

αt
− µ = t+1

(t+1)κ −
t
tκ − µ <

1
tκ − µ ≤ 0, ∀t ≥ B4

and using (6.49) and (6.58) yields

T∑
t=1

E5(t) =

B4−1∑
t=1

E3(t) +

T∑
t=B4

E5(t)

≤
nd(X)K
αB4

+

T∑
t=B4

n∑
i=1

(1
αt+1

−
1
αt
− µ

)
Dψi (yi,t, xi,t)

+

T∑
t=B4

n∑
i=1

(1
αt
Dψi (yi,t, xi,t) −

1
αt+1
Dψi (yi,t+1, xi,t+1)

)
≤

2nd(X)K
αB4

. (6.59)

Replacing (6.49) with (6.59) and along the same line as the proof of (6.17a) in Theorem 6.1
gives that Reg(x[T], x̌∗T) ≤ C4T κ when αt = 1

t1−κ .
Next, we show that (6.24a) holds. When κ ∈ (0, 0.5), we have αt = 1/t(1−κ). Thus, from

the above result, we have Reg(x[T], x̌∗T) ≤ C4T κ. When κ ∈ [0.5, 1), we have αt = 1/tκ.
Thus, (6.21a) gives Reg(x[T], x̌∗T) ≤ C1T κ. In conclusion, (6.24a) holds.
(ii) Substituting c = 1 − κ when κ ∈ (0, 0.5) and c = κ when κ ∈ [0.5, 1) in (6.17b) gives
(6.24b).

Chapter 7

Distributed bandit online primal–dual
optimization algorithms

In this chapter, distributed bandit online convex optimization with time-varying coupled
inequality constraints is considered, motivated by a repeated game between a group of
learners and an adversary. The learners attempt to minimize a sequence of global loss
functions and at the same time satisfy a sequence of coupled constraint functions, where
the constraints are coupled across the distributed learners at each round. The global loss
and the coupled constraint functions are the sum of local convex loss and constraint
functions, respectively, which are adaptively generated by the adversary. The local loss
and constraint functions are revealed in a bandit manner, i.e., only the values of loss
and constraint functions are revealed to the learners at the sampling instance, and the
revealed function values are held privately by each learner. Both one- and two-point bandit
feedback are studied with the two corresponding distributed bandit online algorithms used
by the learners. We show that sublinear expected dynamic regret and constraint violation
are achieved by these two algorithms, if the accumulated variation of the comparator
sequence also grows sublinearly. In particular, we show that O(T θ1) expected static regret
and O(T 7/4−θ1) constraint violation bounds are achieved in the one-point bandit feedback
setting, and O(T max{κ,1−κ}) expected static regret and O(T 1−κ/2) constraint violation bounds
in the two-point bandit feedback setting, where T is the total number of rounds and
θ1 ∈ (3/4, 5/6] and κ ∈ (0, 1) are user-defined trade-off parameters. The effectiveness
of the theoretical results is illustrated by numerical simulations.

This chapter is organized as follows. Section 7.1 introduces the background. Sec-
tion 7.2 gives the problem formulation. Sections 7.3 and 7.4 provide the distributed
bandit online algorithms for one- and two-point bandit feedback, respectively, and present
their expected regret and constraint violation bounds. Section 7.5 presents numerical
simulations. Section 7.6 concludes this chapter. To improve the readability, all the proofs
can be found in Section 7.7.

211

212 Distributed bandit online primal–dual optimization algorithms

7.1 Introduction

Bandit online convex optimization is online convex optimization with bandit feedback, i.e.,
at each round only the values of the loss functions are revealed, rather than the entire loss
function, the gradient of the loss function, or some other information. Bandit feedback is
suitable to model various applications, where the entire function or gradient information
is not available, such as online source localization, online routing in data networks,
and online advertisement placement in web search [165]. For such applications, existing
online algorithms are inapplicable but gradient-free (zeroth-order) optimization methods
are needed. Gradient-free optimization methods have a long history [271] and have an
evident advantage since computing a function value is much simpler than computing
its gradient. Gradient-free optimization methods have gained renewed interests in recent
years, e.g., [147,150,213,243]. Essentially, a bandit online convex optimization algorithm
is a gradient-free method to solve online convex optimization problems. In a bandit setting,
a sublinear static regret bound may not be guaranteed if the adversary still can arbitrarily
choose the loss function. Under completely adaptive adversary, the authors of [164] gave
an example to show that any algorithm suffer at least linear regret. Therefore, the power of
the adversary should be limited to achieve a sublinear regret bound. For a so called adaptive
adversary [164], the adversary chooses ft based only on the learner’s past decisions
x1, . . . , xt−1, but not on her current decision xt. In other words, the adversary chooses ft
at the beginning of round t, before the learner chooses her decision.

A key step in bandit online convex optimization is to estimate the gradient of the loss
function by sampling the loss function. Various algorithms have been developed and can
be divided into two categories depending on the number of samplings. Algorithms with
one sampling at each round have been proposed in [212, 317–324]. Specifically, in [212],
O(T 3/4) expected static regret bound was achieved for Lipschitz-continuous functions,
where T is the total number of rounds. Better regret bounds can be guaranteed if additional
assumptions are made. The authors of [317] considered linear loss functions and achieved
O(
√

T) expected static regret bound. The authors of [318, 319] also considered linear
loss functions and proposed algorithms that achieved O(

√
T log(T)) expected static regret

bound. The authors of [320] studied smooth loss functions and achievedO(T 2/3(log(T))1/3)
expected static regret bound. The authors of [321] considered strongly convex and smooth
loss functions and achieved O(

√
T log(T)) expected static regret bound. One common

assumption in [318–321] is that the convex domain admits a self-concordant barrier. The
authors of [322] showed that O(

√
T log(T)) expected static regret bound can be achieved

for Lipschitz-continuous loss functions with one-dimensional domains, but they did not
develop any explicit algorithm. This result was extended to arbitrary dimensions in [323],
but still without any explicit algorithm. Based on the application of the ellipsoid method to
online learning, the authors of [324] proposed an algorithm for Lipschitz-continuous loss
functions and achieved O(

√
T log(T)) expected static regret bound.

Algorithms with two or more samplings at each round have been proposed in
[164,214,280,325–327]. The expected static regret bounds can then be reduced compared
to the one-sample case. The authors of [164] extended the one-point sampling bandit
algorithm proposed in [212] to a two-point sampling bandit algorithm and obtained

7.1. Introduction 213

O(log(T)) expected static regret bound for Lipschitz-continuous and strongly convex loss
functions. Moreover, with p + 1 samplings at each round, where p is the state dimension,
they proposed a deterministic algorithm and showed that the algorithm can achieve O(

√
T)

static regret bound for Lipschitz-continuous and smooth loss functions, and O(log(T))
static regret bound for strongly convex and smooth loss functions. The author of [280]
proposed a simple algorithm with two samplings at each round and obtained O(

√
T)

expected static regret bound for Lipschitz-continuous loss functions. Without assuming
that the decision set is bounded, the author of [326] proposed a class of algorithms with
one and two samplings at each round and obtained O(T 2/3) and O(

√
T) expected static

regret bounds, respectively, for smooth loss functions.
Aforementioned studies did not consider equality or inequality constraints. In the

literature, there are few studies considering bandit online convex optimization with such
constraints, although such constraints are common in applications. The authors of [169]
studied online convex optimization with static inequality constraints and bandit feedback
for constraints, while the authors of [328] studied online convex optimization with time-
varying inequality constraints and bandit feedback for loss functions. The authors of [329]
studied online convex optimization with time-varying inequality constraints and bandit
feedback for both loss and constraint functions.

Most existing bandit online convex optimization studies are in a centralized setting
and only few studies considered distributed bandit online convex optimization. When loss
functions are strongly convex, the authors of [330] proposed a consensus-based distributed
bandit online algorithm with one sampling at each round and obtained O(

√
T log(T))

expected static regret bound. When loss functions are quadratic, the authors of [188]
proposed a consensus-based distributed bandit online algorithm with two samplings at each
round and obtained O(

√
T) expected static regret bound when there are set constraints.

When there are static linear inequality constraints, they also established O(T max{β,1−β}) and
O(T 1−β/2) bounds on the expected static regret and constraint violation, respectively, where
β ∈ (0, 1) is a user-defined trade-off parameter of the proposed algorithm.

This chapter considers the problem of distributed bandit online convex optimization
with time-varying coupled inequality constraints. This problem can be interpreted as a
repeated game between a group of learners and an adversary. The learners attempt to
minimize a sequence of global loss functions and at the same time satisfy a sequence
of coupled constraint functions. The global loss and the coupled constraint functions are
the sum of local convex loss and constraint functions, respectively. They are generated
adaptively by the adversary. The local loss and constraint functions are revealed in a bandit
manner and the revealed information is held privately by each learner.

We first consider that the situation that at each round each learner can sample both her
local loss and constraint functions at one point. We have the following contributions.

(C7.1) We propose a distributed bandit online algorithm based on the one-point sampling
gradient estimator (Algorithm 7.1) to solve the considered optimization problem.
To the best of our knowledge, this is the first algorithm to solve the online convex
optimization problem with time-varying inequality constraints in the one-point
bandit feedback setting. An advantage of our algorithm is that the total number of

214 Distributed bandit online primal–dual optimization algorithms

rounds is not used in the algorithm and thus does not need to be known a priori,
which is an improvement compared to the one-point sampling bandit algorithms
in [212,318–321,328,330]. Moreover, note that these studies did not consider bandit
feedback for time-varying inequality constraints or did not even consider time-
varying inequality constraints at all.

(C7.2) We show in Theorem 7.1 that sublinear expected regret and constraint violation
bounds are achieved by the proposed algorithm if V(x∗[T]), the path-length of the
optimal dynamic decision sequence, grows sublinearly with a known order. We also
show in Corollary 7.1 that O(T θ1) expected static regret and O(T 7/4−θ1) constraint
violation bounds are achieved, where θ1 ∈ (3/4, 5/6] is a user-defined trade-
off parameter. As a special case, when there are no inequality constraints, the
proposed algorithm achieves O(T 3/4) expected static regret bound, which is the same
expected static regret bound that has been achieved by the one-point sampling bandit
algorithm in [212]. However, in [212] the total number of iterations, T , as well as
the Lipschitz constant and upper bound of the loss functions are needed for the
algorithm.

We then consider that the situation that at each round each learner can sample both her
local loss and constraint functions at two points. We have the following contributions.

(C7.3) We propose a distributed bandit online algorithm based on the two-point sampling
gradient estimator (Algorithm 7.2). This algorithm does not require the total number
of rounds or any other parameters related to the loss or constraint functions, which is
different from the two-point sampling bandit algorithms in [164, 169, 188, 214, 280,
325, 327–329].

(C7.4) In an average sense, the two-point sampling based distributed bandit online algo-
rithm is as efficient as the algorithms proposed in [169, 170, 173] and Chapter 6,
although [170, 173] and Chapter 6 are in a full-information feedback setting and
[169] considers bandit setting only for the constraint functions. Specifically, we
show in Theorem 7.2 that sublinear expected regret and constraint violation bounds
are achieved by the proposed algorithm if the path-length of the optimal dynamic
decision sequence grows sublinearly with a known order ν ∈ [0, 1). For example,
O(T (1+ν)/2) expected dynamic regret and O(T (3+ν)/4) constraint violation bounds
are achieved by our algorithm. Thus the bounds achieved by the centralized two-
point sampling bandit algorithms in [325, 329] are recovered by our algorithm. We
also show in Corollary 7.2 that O(T max{κ,1−κ}) expected static regret and O(T 1−κ/2)
constraint violation bounds are also achieved, where κ ∈ (0, 1) is a user-defined
parameter. Thus the bounds achieved by the centralized two-point sampling bandit
algorithm in [169, 280] are also recovered with κ = 1/2. However, in [280, 325]
static set constraints rather than time-varying inequality constraints are considered;
in [169] static inequality constraints and full-information feedback for the cost
function are studied; and in [169, 280, 325, 329] the total number of rounds as well
as the Lipschitz constant of the loss function are needed.

7.2. Distributed bandit OCO with time-varying coupled inequality constraints 215

Table 7.1: Comparison of Chapter 7 to some related bandit online convex optimization
algorithms.

Reference Problem
type

Constraint
type

Information
feedback Regret and constraint violation bounds

[212] Centralized gt(x) ≡ 0m One-point sampling E[Reg(x[T], x̌∗[T])] = O(T 3/4)

[324] Centralized gt(x) ≡ 0m One-point sampling E[Reg(x[T], x̌∗[T])] = O(T 1/2 log(T))

[280] Centralized gt(x) ≡ 0m Two-point sampling E[Reg(x[T], x̌∗[T])] = O(T 1/2)

[325] Centralized gt(x) ≡ 0m Two-point sampling E[Reg(x[T], x∗[T])] = O(max{(TV(x∗[T]))
1/2, T 1/2})

[169] Centralized g(x) ≤ 0m
∇ ft and two-point

sampling for g
E[Reg(x[T], x̌∗[T])] = O(T 1/2),
E[‖[

∑T
t=1 g(xt)]+‖] = O(T 3/4)

[328] Centralized
gt(x) ≤ 0m
and Slater’s
condition

∇gt and one-point
sampling for ft

E[Reg(x[T], x∗[T])] = O(max{T 3/4V(x∗[T]), T 3/4}),
‖[
∑T

t=1 g(xt)]+‖ = O(T 3/4)

∇gt and two-point
sampling for ft

E[Reg(x[T], x∗[T])] = O(max{T 1/2V(x∗[T]), T 1/2}),
‖[
∑T

t=1 g(xt)]+‖ = O(T 1/2)

[329] Centralized gt(x) ≤ 0m Two-point sampling
E[Reg(x[T], x̌∗[T])] = O((TV(x∗[T]))

1/2)),
E[‖[

∑T
t=1 g(xt)]+‖] = O((T 3V(x∗[T]))

1/4)

This
chapter Distributed

gt(x) =∑n
i=1 gi,t(xi) ≤

0m

One-point sampling
E[Reg(x[T], x∗[T])] = O(max{T θ1 V(x∗[T]), T θ1 }),
‖[
∑T

t=1 g(xt)]+‖ = O(T 7/4−θ1), where θ1 ∈ (3/4, 5/6]

Two-point sampling
E[Reg(x[T], x∗[T])] = O(max{T κV(x∗[T]), T max{κ,1−κ}}),
‖[
∑T

t=1 g(xt)]+‖ = O(T 1−κ/2), where κ ∈ (0, 1)

Table 7.1 compares this chapter with other bandit online convex optimization algo-
rithms.

7.2 Distributed bandit OCO with time-varying coupled inequality
constraints

We consider the problem of distributed bandit online convex optimization with time-
varying coupled inequality constraints. This problem can be defined as a repeated game
between a group of n learners indexed by i ∈ [n] and an adversary. At round t of the game,
the adversary first arbitrarily chooses n local loss functions { fi,t : Rpi → R, i ∈ [n]} and n
local constraint functions {gi,t : Rpi → Rm, i ∈ [n]}, where pi and m are positive integers.
Then, without knowing { fi,t, i ∈ [n]} and {gi,t, i ∈ [n]}, all learners simultaneously choose
their decisions {xi,t ∈ Xi, i ∈ [n]}, where Xi ⊆ R

pi are known convex sets. Each learner i
samples the values of fi,t and gi,t at the point xi,t as well as at other potential points, i.e.,
the learners receive bandit feedback from the adversary. These values are held privately
by each learner. At the same moment, the learners exchange data with their neighbors
over a time-varying directed graph Gt. The goal of the learners is to cooperatively choose
a global decision sequence x[T] = (x1, . . . , xT), where T is the total number of rounds
and xt = col(x1,t, . . . , xn,t) is the decision vector, such that the accumulated global loss∑T

t=1 ft(xt), where ft(xt) =
∑n

i=1 fi,t(xi,t) is the global loss function, is competitive with the
loss of any comparator sequence y[T] = (y1, . . . , yT) with yt = col(y1,t, . . . , yn,t) (i.e., the
regret is as small as possible) and at the same time the constraint violation is as small as

216 Distributed bandit online primal–dual optimization algorithms

possible.
From (1.5), we know that the regret of a global decision sequence x[T] with respect to

a comparator sequence y[T] is

Reg(x[T], y[T]) =

T∑
t=1

ft(xt) −
T∑

t=1

ft(yt).

For the above distributed bandit online convex optimization problem with time-varying
coupled inequality constraints, two commonly used comparator sequences are y[T] =

x∗[T] = (x∗1, . . . , x
∗
T) and y[T] = x̌∗[T] = (x̌∗T , . . . , x̌

∗
T), where x̌∗T , which solve the following

two constrained convex optimization problems

min
xt ∈ X

T∑
t=1

ft(xt)

s.t. gt(xt) ≤ 0m, ∀t ∈ [T],

(7.1)

and

min
x ∈ X

T∑
t=1

ft(x)

s.t. gt(x) ≤ 0m, ∀t ∈ [T],

(7.2)

respectively, where X = X1 × · · · × Xn ⊆ R
p is the global decision set, p =

∑n
i=1 pi, and

gt(xt) =
∑n

i=1 gi,t(xi,t) is the coupled constraint function.
From (1.7), we know that the constraint violation of a decision sequence x[T] is∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥.
Based on the definitions introduced in Chapter 2, we make the following assumptions

on the time-varying directed graph Gt as well as the loss and constraint functions.

Assumption 7.1. For any t ∈ N+, the directed graph Gt satisfies the following conditions:

(i) The mixing matrix Wt is doubly stochastic, i.e.,
∑n

i=1[Wt]i j =
∑n

j=1[Wt]i j = 1, ∀i, j ∈
[n].

(ii) There exists a constant w ∈ (0, 1), such that [Wt]i j ≥ w if [Wt]i j > 0.

(iii) There exists an integer ι > 0 such that the directed graph (V,∪l=0,...,ι−1Et+l) is strongly
connected.

Assumption 7.2. (i) For each i ∈ [n], the convex set Xi is closed. Moreover, there exist
ri > 0 and Ri > 0 such that

riB
pi ⊆ Xi ⊆ RiB

pi , (7.3)

and ri is known a priori.

7.3. Distributed bandit online primal–dual algorithm based on one-point sampling 217

(ii) For each i ∈ [n], { fi,t(x)} and {[gi,t(x)] j, j ∈ [m]} are convex and uniformly bounded
on Xi, i.e., there exist constants F fi > 0 and Fgi > 0 such that for all t ∈ N+, j ∈
[m], x ∈ Xi,

| fi,t(x)| ≤ F fi , |[gi,t(x)] j| ≤ Fgi . (7.4)

(iii) For each i ∈ [n], fi,t and gi,t are differentiable on Xi. Moreover, {∇ fi,t} and
{∇[gi,t(x)] j, j ∈ [m]} are uniformly bounded on Xi, i.e., there exist constants G fi > 0
and Ggi > 0 such that for all t ∈ N+, j ∈ [m], x ∈ Xi,

‖∇ fi,t(x)‖ ≤ G fi , ‖∇[gi,t(x)] j‖ ≤ Ggi . (7.5)

Assumption 7.1 is a mild assumption and common in the literature on distributed
optimization. Assumption 7.2 appears often in the literature of bandit online convex
optimization. From Assumption 7.2 and Lemma 2.6 in [157], it follows that for all
t ∈ N+, i ∈ [n], j ∈ [m], x, y ∈ Xi,

| fi,t(x) − fi,t(y)| ≤ G fi‖x − y‖, (7.6a)
|[gi,t(x)] j − [gi,t(y)] j| ≤ Ggi‖x − y‖, (7.6b)

i.e., { fi,t(x)} and {[gi,t(x)] j} are Lipschitz-continuous on Xi with constants G fi and Ggi ,
respectively.

Our goal in this chapter is to solve the following problem.

Problem 7.1. Develop distributed algorithms to solve the problem of distributed bandit
online optimization with time-varying coupled inequality constraints with guaranteed
performance measured by expected regret and constraint violation.

The considered problem can be viewed as an extension of the problem studied in
Chapter 6, from full information feedback to bandit feedback. As discussed in Section 7.1,
two main motivations of considering bandit feedback are that (i) gradient information is not
available in many applications [165]; and (ii) computing a function value is much simpler
than computing its gradient [213]. We consider two scenarios: one-point and two-point
bandit feedback. More specifically, one-point bandit feedback means that at each round
each learner samples her local loss and constraint function values at her decision point
in the last round. Two-point bandit feedback means that each learner can do one more
sampling at an any other point.

7.3 Distributed bandit online primal–dual algorithm based on
one-point sampling

In this section, we consider the one-point feedback scenario. We propose a distributed
bandit online primal–dual algorithm based on the one-point sampling random gradient
estimator introduced in Section 2.8 to solve the considered optimization problem and
derive its expected regret and constraint violation bounds.

218 Distributed bandit online primal–dual optimization algorithms

Algorithm 7.1 Distributed Bandit Online Primal–Dual Algorithm Based on One-Point
Sampling

1: Input: nonincreasing sequences {αi,t}, {βi,t}, {γi,t} ⊆ (0,+∞), {ξi,t} ⊆ (0, 1), and {δi,t} ⊆

(0, riξi,t−1], i ∈ [n], t ∈ N+.
2: Initialize: ui,1 ∈ S

pi , zi,1 ∈ (1 − ξi,1)Xi, xi,1 = zi,1 + δi,1ui,1, and qi,1 = 0m, i ∈ [n].
3: for t = 2, . . . do
4: for i ∈ [n] in parallel do
5: Select vector ui,t ∈ S

pi independently and uniformly at random.
6: Sample fi,t−1(xi,t−1) and gi,t−1(xi,t−1).
7: Update

q̃i,t =

n∑
j=1

[Wt−1]i jq j,t−1, (7.7a)

zi,t = P(1−ξi,t)Xi (zi,t−1 − αi,tai,t), (7.7b)
xi,t = zi,t + δi,tui,t, (7.7c)
qi,t = [(1 − βi,tγi,t)q̃i,t + γi,tgi,t−1(xi,t−1)]+. (7.7d)

8: Broadcast qi,t to Nout
i (Gt) and receive q j,t from j ∈ N in

i (Gt).
9: end for

10: end for
11: Output: {xt}.

7.3.1 Algorithm description

The proposed algorithm is given in pseudo-code as Algorithm 7.1. In this algorithm,
each agent i maintains four local sequences: the local primal decision variable sequence
{xi,t} ⊆ Xi, the local intermediate decision variable sequence {zi,t} ⊆ (1 − ξi,t)Xi, the local
dual variable sequence {qi,t} ⊆ R

m
+ , and the estimates of the average of local dual variables

{q̃i,t} ⊆ R
m
+ . They are updated recursively by the update rules (7.7a)–(7.7d). In (7.7b), ai,t is

the updating direction information for the local intermediate decision variable defined as

ai,t = ∇̂1 fi,t−1(zi,t−1, δi,t−1, ui,t−1) + (∇̂1gi,t−1(zi,t−1, δi,t−1, ui,t−1))>q̃i,t, (7.8)

where ∇̂1 fi,t−1(zi,t−1, δi,t−1, ui,t−1) and ∇̂1gi,t−1(zi,t−1, δi,t−1, ui,t−1) are the one-point sampling
random estimators of ∇ fi,t−1(zi,t−1) and ∇gi,t−1(zi,t−1), respectively, as defined in (2.25),
δi,t−1 > 0 is an adaptive smoothing parameter, and ui,t−1 ∈ S

pi is a uniformly distributed
random vector. Recall that

∇̂1 fi,t−1(zi,t−1, δi,t−1, ui,t−1) =
pi

δi,t−1
fi,t−1(zi,t−1 + δi,t−1ui,t−1)ui,t−1

=
pi

δi,t−1
fi,t−1(xi,t−1)ui,t−1 ∈ R

pi ,

7.3. Distributed bandit online primal–dual algorithm based on one-point sampling 219

and

∇̂1gi,t−1(zi,t−1, δi,t−1, ui,t−1) =

(∇̂1[gi,t−1(zi,t−1, δi,t−1, ui,t−1)]1)>

(∇̂1[gi,t−1(zi,t−1, δi,t−1, ui,t−1)]2)>
...

(∇̂1[gi,t−1(zi,t−1, δi,t−1, ui,t−1)]m)>

∈ Rm×pi ,

where

∇̂1[gi,t−1(zi,t−1, δi,t−1, ui,t−1)]l =
pi

δi,t−1
[gi,t−1(zi,t−1 + δi,t−1ui,t−1)]lui,t−1

=
pi

δi,t−1
[gi,t−1(xi,t−1)]lui,t−1 ∈ R

pi , ∀l ∈ [m].

The intuition of the update rules (7.7a)–(7.7d) is as follows. The regularized Lagrangian
function associated with the constrained optimization problem with cost function f and
constraint function g is

A(x, µ) = f (x) + µ>g(x) −
β

2
‖µ‖2, (7.9)

where µ ∈ Rm
+ is the Lagrange multiplier and β > 0 is the regularization parameter.A(x, µ)

is a convex-concave function. A standard primal–dual algorithm to find its saddle point is

xk+1 = PX(xk − α(∇ f (xk) + (∇g(xk))>µk)), (7.10a)
µk+1 = [µk + γ(g(xk) − βµk)]+, (7.10b)

where α > 0 and γ > 0 are the stepsizes used in the primal and dual updates, respectively.
The update rules (7.7a)–(7.7d) are the distributed, online, and gradient-free extensions of
(7.10a) and (7.10b).

Remark 7.1. The differences between Algorithm 7.1 and the centralized one-point
sampling bandit algorithm in [328] are (i) in [328] full-information feedback for the
constraint functions is used; and (ii) in the update of the dual variables in Algorithm 7.1,
i.e., (7.7d), there is an additional term −βi,tγi,tq̃i,t, which comes from the regularized
Lagrangian function and it plays a key role to bound the dual variables as shown later
in Lemma 7.1.

The sequences {αi,t}, {βi,t}, {γi,t}, {ξi,t}, and {δi,t} used in Algorithm 7.1 are predetermined
and the vector sequences {ui,t} are randomly selected. Moreover, {q̃i,t}, {zi,t}, {xi,t}, and
{qi,t} are random vector sequences generated by Algorithm 7.1. Let Ut denote the σ-
algebra generated by the independent and identically distributed (i.i.d.) random variables
u1,t, . . . , un,t and let Ut =

⋃t
s=1 Us. It is straightforward to see that q̃t+1, zi,t, xi,t−1, and

qi,t, i ∈ [n] depend onUt−1 and are independent of Us for all s ≥ t.

220 Distributed bandit online primal–dual optimization algorithms

7.3.2 Expected regret and constraint violation bounds

This section states the main results on the expected regret and constraint violation bounds
for Algorithm 7.1. The following theorem characterizes these bounds based on some
specially selected stepsizes, shrinkage coefficients, and exploration parameters.

Theorem 7.1. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.1 with

αi,t =
r2

i

4mp2
i F2

gi
tθ1
, βi,t =

2
tθ2
, γi,t =

1
t1−θ2

, ξi,t =
1

(t + 1)θ3
, δi,t =

ri

(t + 1)θ3
, i ∈ [n], t ∈ N+,

(7.11)

where θ1 ∈ (0, 1), θ2 ∈ (0, θ1/3) and θ3 ∈ (θ2, (θ1 − θ2)/2] are constants. Then, for any
T ∈ N+ and any comparator sequence y[T] ∈ XT ,

E[Reg(x[T], y[T])] ≤ C1T max{θ1,1−θ1+2θ3,1−θ3+θ2} + C1,1T θ1 V(y[T]), (7.12a)

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥] ≤ C2T 1−θ2/2, (7.12b)

where

C1 =

4∑
j=1

C1, j +
C0

θ2
, C1,1 =

n∑
i=1

8mp2
i F2

gi
R2

i

r2
i

, C2 =
(
C2,1

(
2

n∑
i=1

F fi + C1

)) 1
2
,

C1,2 =

n∑
i=1

mFgGgi (2ri + Ri)
1 − θ3 + θ2

, C1,3 =

n∑
i=1

G fi (2ri + Ri)
1 − θ3

, C1,4 =

n∑
i=1

F2
fi

4mF2
gi

(1 − θ1 + 2θ3)
,

Fg = max
i∈[n]
{Fgi }, C0 =

6mn2F2
gτ

1 − λ
+ 2mnF2

g , τ =
(
1 −

w
2n2

)−2
> 1,

λ =
(
1 −

w
2n2

) 1
ι
, C2,1 = 2n

(
1 + max

i∈[n]

{ F2
fi

F2
gi

(1 − θ1 + 2θ3)

}
+

1
1 − θ2

)
,

w and ι are constants given in Assumption 7.1, ri, Ri, F fi , Fgi , G fi , and Ggi are constants
given in Assumption 7.2, and

V(y[T]) =

T−1∑
t=1

n∑
i=1

‖yi,t+1 − yi,t‖

is the accumulated variation (path-length) of the comparator sequence y[T].

Proof. See Section 7.7.1. �

Remark 7.2. From (7.12b), we see that Algorithm 7.1 achieves sublinear expected
constraint violation. From (7.12a), we see that Algorithm 7.1 can achieve sublinear

7.3. Distributed bandit online primal–dual algorithm based on one-point sampling 221

expected dynamic regret if V(x∗[T]) grows sublinearly with a known order. In this case,
there exists a known constant ν ∈ [0, 1), such that V(x∗[T]) = O(T ν), then setting y[T] = x∗[T]
and θ1 ∈ (0, 1 − ν) in Theorem 7.1 gives E[Reg(x[T], x∗[T])] = o(T).

Remark 7.3. To the best of our knowledge, Algorithm 7.1 is the first algorithm to solve the
online convex optimization problem with time-varying inequality constraints in the one-
point bandit feedback setting. In Algorithm 7.1 the information about the total number of
rounds is not used, which is an improvement compared to the one-point sampling bandit
algorithms in [212,317–321,328,330,331]. Note that these studies did not consider bandit
feedback for time-varying inequality constraints or did not even consider time-varying
inequality constraints at all. The potential drawback of Algorithm 7.1 is that in order to use
the sequences defined in (7.11), each learner i needs to know Fgi , the uniform upper bound
of her time-varying constraint function. One way to overcome this is to let αi,t = τi/tθ1 and
θ3 ∈ (θ2, (θ1 − θ2)/2), where τi > 0 is a user-defined parameter. In this case, similar to the
way we prove (7.12a) and (7.12b), we can establish similar results as (7.12a) and (7.12b)
for T ≥ (4m maxi∈[n]{p2

i F2
gi
τi/r2

i })
1/(θ1−θ2−2θ3) rather than any T ∈ N+.

Remark 7.4. The preliminary results on the expected regret and constraint violation
bounds are stated by (7.43a) and (7.43b) in Lemma 7.3 in Section 7.7. The intuition of
the choices of the sequences given in (7.11) is to let the terms in the right-hand side of
(7.43a) and (7.43b) be as small as possible. Specifically, the first four terms in the right-
hand side of (7.43a) need to be sublinear. Moreover, the coefficient of E[‖qi,t‖

2] should be
nonpositive otherwise it is unclear how to show that the last terms in the right-hand side
of (7.43a) and (7.43b) are sublinear.

Setting y[T] = x̌∗[T] in Theorem 7.1 gives following results, which characterize the
expected static regret and constraint violation bounds.

Corollary 7.1. Under the same conditions as in Theorem 7.1 with θ1 ∈ (3/4, 5/6], θ2 =

2θ1 − 3/2, and θ3 = θ1 − 1/2, it holds that

E[Reg(x[T], x̌∗[T])] ≤ C1T θ1 , (7.13a)

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥] ≤ C2T 7/4−θ1 . (7.13b)

Remark 7.5. The parameter θ1 in Corollary 7.1 is a user-defined parameter influencing
the step length in (7.11). It enables the trade-off between the expected static regret bound
and the expected constraint violation bound. Same as [212], if there are no inequality
constraints, i.e., gi,t ≡ 0m, ∀i ∈ [n], ∀t ∈ N+, then by setting αi,t = 1

t3/4 , βi,t = γi,t = 0, ξi,t =
1

(t+1)1/4 , δi,t = ri
(t+1)1/4 in (7.11), we have that (7.13a) can be replaced by E[Reg(x[T], x̌∗[T])] ≤

Ĉ1T 3/4, where Ĉ1 =
∑n

i=1(4G fi (2ri+Ri)
3 + 6R2

i +
4p2

i F2
fi

3r2
i

). Hence, Algorithm 7.1 achieves the
same expected static regret bound as the bandit algorithm in [212]. However, in [212] the
total number of rounds, the Lipschitz constant, and upper bound of the loss functions need
to be known in advance to run the algorithm.

222 Distributed bandit online primal–dual optimization algorithms

Algorithm 7.2 Distributed Bandit Online Primal–Dual Algorithm Based on Two-Point
Sampling

1: Input: nonincreasing sequences {αi,t}, {βi,t}, {γi,t} ⊆ (0,+∞), {ξi,t} ⊆ (0, 1), and {δi,t} ⊆

(0, riξi,t−1], i ∈ [n], t ∈ N+.
2: Initialize: xi,1 ∈ (1 − ξi,1)Xi and qi,1 = 0m, i ∈ [n].
3: for t = 2, . . . do
4: for i ∈ [n] in parallel do
5: Select vector ui,t−1 ∈ S

pi independently and uniformly at random.
6: Sample fi,t−1(xi,t−1 + δi,t−1ui,t−1), fi,t−1(xi,t−1), gi,t−1(xi,t−1 + δi,t−1ui,t−1) and

gi,t−1(xi,t−1).
7: Update

q̃i,t =

n∑
j=1

[Wt−1]i jq j,t−1, (7.14a)

xi,t = P(1−ξi,t)Xi (xi,t−1 − αi,tbi,t), (7.14b)
qi,t = [(1 − γi,tβi,t)q̃i,t + γi,tci,t]+. (7.14c)

8: Broadcast qi,t to Nout
i (Gt) and receive q j,t from j ∈ N in

i (Gt).
9: end for

10: end for
11: Output: {xt}.

7.4 Distributed bandit online primal–dual algorithm based on
two-point sampling

In this section, we consider the two-point feedback scenario. We propose a distributed
bandit online primal–dual algorithm based on the two-point random sampling gradient
estimator introduced in Section 2.8 to solve the considered optimization problem and
derive its expected regret and constraint violation bounds.

7.4.1 Algorithm description

With two-point bandit feedback at each round each learner samples the values of her
local loss and constraint at two points. This gives the freedom to design a more efficient
algorithm which at the same time avoids the potential drawback of Algorithm 7.1 stated
in Remark 7.3 on knowing the upper bounds of the time-varying constraint functions. The
proposed algorithm is given in pseudo-code as Algorithm 7.2. In (7.14b), bi,t is the updating
direction information for the local primal decision variable defined as

bi,t = ∇̂2 fi,t−1(xi,t−1, δi,t−1, ui,t−1) + (∇̂2gi,t−1(xi,t−1, δi,t−1, ui,t−1))>q̃i,t, (7.15)

where ∇̂2 fi,t−1(xi,t−1, δi,t−1, ui,t−1) and ∇̂2gi,t−1(xi,t−1, δi,t−1, ui,t−1) are the two-point sampling
random estimators of ∇ fi,t−1(xi,t−1) and ∇gi,t−1(xi,t−1), respectively, as defined in (2.26),

7.4. Distributed bandit online primal–dual algorithm based on two-point sampling 223

δi,t−1 > 0 is an adaptive smoothing parameter, and ui,t−1 ∈ S
pi is a uniformly distributed

random vector. Recall that

∇̂2 fi,t−1(xi,t−1, δi,t−1, ui,t−1) =
pi

δi,t−1
(fi,t−1(xi,t−1 + δi,t−1ui,t−1) − fi,t−1(xi,t−1))ui,t−1 ∈ R

pi ,

and

∇̂2gi,t−1(xi,t−1, δi,t−1, ui,t−1) =

(∇̂2[gi,t−1(xi,t−1, δi,t−1, ui,t−1)]1)>

(∇̂2[gi,t−1(xi,t−1, δi,t−1, ui,t−1)]2)>
...

(∇̂2[gi,t−1(xi,t−1, δi,t−1, ui,t−1)]m)>

∈ Rm×pi ,

where

∇̂2[gi,t−1(xi,t−1, δi,t−1, ui,t−1)]l

=
pi

δi,t−1
[gi,t−1(xi,t−1 + δi,t−1ui,t−1) − gi,t−1(xi,t−1)]lui,t−1 ∈ R

pi , ∀l ∈ [m].

Similarly, in (7.14c), ci,t is the updating direction information for the local dual variable
defined as

ci,t = ∇̂2gi,t−1(xi,t−1, δi,t−1, ui,t−1)(xi,t − xi,t−1) + gi,t−1(xi,t−1). (7.16)

In addition to that Algorithm 7.2 uses a two-point sampling gradient estimator, another
difference between Algorithms 7.1 and 7.2 is that when updating the local dual variable,
in Algorithm 7.2, ci,t is used to replace gi,t−1(xi,t−1), which is a key difference between
Algorithm 7.2 and the centralized two-point sampling bandit algorithm in [329]. This
modification is inspired by the algorithm proposed in [175] and Algorithm 6.1, and helps
to avoid using the uniform upper bound of each learner’s time-varying constraint function,
i.e., to remove the potential drawback stated in Remark 7.3.

7.4.2 Expected regret and constraint violation bounds

This section states the main results on the expected regret and constraint violation bounds
for Algorithm 7.2.

Theorem 7.2. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.2 with

αt =
1
tκ
, βt =

1
tκ
, γt =

1
t1−κ , ξi,t =

1
t + 1

, δi,t =
ri

t + 1
, i ∈ [n], t ∈ N+, (7.17)

where κ ∈ (0, 1) is a constant. Then, for any T ∈ N+ and any comparator sequence y[T] ∈

XT ,

E[Reg(x[T], y[T])] ≤ C3T max{κ,1−κ} + 2RmaxT κV(y[T]), (7.18a)

224 Distributed bandit online primal–dual optimization algorithms

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥] ≤ C4T 1−κ/2, (7.18b)

where

C3 =

n∑
i=1

(
2G fi (ri + Ri) + 8R2

i +
2
√

mB1Ggi Ri

κ
+

p2
i G2

fi

1 − κ

)
+

Ĉ0

κ
,

C4 =
(
C4,1

(
2

n∑
i=1

F fi + C3

)) 1
2
, C4,1 =

n∑
i=1

2
(2mp2

i G2
gi

+ 1

1 − κ
+ 1

)
,

Ĉ0 =
6n2 √mτB1Fg

1 − λ
+ 2nB2

1, B1 =
√

mFg +
√

mpGgRmax, Rmax = max
i∈[n]
{Ri}.

Proof. See Appendix 7.7.2. �

Remark 7.6. The bounds obtained in (7.18a) and (7.18b) are the same as the bounds
shown in (6.17a) and (6.17b) achieved by Algorithm 6.1 in Chapter 6 under the same
assumptions, although Chapter 6 considered a full-information feedback setting. In other
words, in an average sense, Algorithm 7.2, which only uses two-point bandit feedback, is
as efficient as Algorithm 6.1, which uses full-information feedback. By comparing (7.11),
(7.12a), and (7.12b) with (7.17), (7.18a), and (7.18b), respectively, we see that if a two-
point sampling gradient estimator is used, then not only the uses of Fgi , the uniform upper
bound of the time-varying constraint functions, is avoided, but also the upper bounds of the
expected regret and constraint violation are both reduced. An advantage of Algorithm 7.2
is that the total number of rounds or any other parameters related to loss or constraint
functions are not used, which is different from the two-point sampling bandit algorithms
in [164, 169, 188, 214, 280, 325, 327–329].

Remark 7.7. Similar to the analysis in Remark 7.2, from (7.18b), we know that Algo-
rithm 7.2 achieves sublinear expected constraint violation. Algorithm 7.2 can also achieve
sublinear expected dynamic regret if V(x∗[T]) grows sublinearly with a known order. In this
case, there exists a known constant ν ∈ [0, 1), such that V(x∗[T]) = O(T ν). Then setting
y[T] = x∗[T] and κ ∈ (0, 1 − ν) in Theorem 7.2 gives E[Reg(x[T], x∗[T])] = o(T). One
special case is to set κ = (1 − ν)/2 in (7.18a) and (7.18b). It gives E[Reg(x[T], x̌∗[T])] =

O(T (1+ν)/2) and E[‖[
∑T

t=1 gt(xt)]+‖] = O(T (3+ν)/4), which recovers the bounds achieved by
the centralized two-point sampling bandit algorithms in [325, 329].

Setting y[T] = x̌∗[T] in Theorem 7.2 gives the following results.

Corollary 7.2. Under the same conditions as stated in Theorem 7.2, it holds that

E[Reg(x[T], x̌∗[T])] ≤ C3T max{κ,1−κ}, (7.19a)

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥] ≤ C4T 1−κ/2. (7.19b)

7.5. Simulations 225

Remark 7.8. The parameter κ for the sequences {αi,t}, {βi,t}, and {γi,t} in Corollary 7.2
enables the user to trade-off the expected static regret bound for the expected constraint
violation bound. For example, setting κ = 1/2 in Corollary 7.2 gives E[Reg(x[T], x̌∗[T])] =

O(
√

T) and E[‖[
∑T

t=1 gt(xt)]+‖] = O(T 3/4). These two bounds are the same as the bounds
achieved in [169, 170, 173]. In other words, Algorithm 7.2 is as efficient as the algorithms
proposed in [169, 170, 173]. However, [170, 173] use full-information feedback and [169]
considers bandit setting only for the constraint functions. The algorithms proposed in [169,
170, 173] are centralized and the constraint functions considered in [169, 170] are time-
invariant. Moreover, in [169, 173] the total number of rounds and in [169, 170, 173] the
upper bounds of the loss and constraint functions and their subgradients need to be known
in advance to execute the algorithms. Also, an O(

√
T) expected static regret bound was

achieved by the bandit algorithm in [280]. However, in [280] static set constraints (rather
than time-varying inequality constraints) are considered and the proposed algorithm is
centralized (rather than distributed). Moreover, in [280] the total number of rounds and
the Lipschitz constant need to be known in advance.

7.5 Simulations

This section evaluates the performance of Algorithms 7.1 and 7.2 in solving the DERs
coordination problem introduced in Section 1.1. The local cost and constraint functions
are given as

fi,t(xi,t) = x>i,tΠ
>
i,tΠi,t xi,t + 〈πi,t, xi,t〉, gi,t(xi,t) = x>i,tΦ

>
i,tΦi,t xi,t + 〈φi,t, xi,t〉 + ci,t,

respectively, where Πi,t ∈ R
pi×pi , πi,t ∈ R

pi
+ , Φi,t ∈ R

pi×pi , φi,t ∈ R
pi , and ci,t ∈ R. At each

time t, an undirected graph is used as the communication graph. Specifically, connections
between vertices are random and the probability of two vertices being connected is ρ > 0.
Moreover, edges (i, i + 1), i ∈ [n − 1] are added and [Wt]i j = 1/n if (j, i) ∈ Et and
[Wt]ii = 1 −

∑
j∈N in

i (Gt)[Wt]i j. The parameters are set as: n = 50, m = 1, pi = 6, Xi =

[−10, 10]pi , and ρ = 0.2. Each element of Πi,t, πi,t, Φi,t, φi,t, and ci,t are drawn from the
discrete uniform distribution in [−5, 5], [0, 10], [−5, 5], [−5, 5], and [−5,−1], respectively.
Under above settings, Assumptions 7.1–7.2 hold.

Since there are no other distributed bandit online algorithms to solve the problem
of online optimization with time-varying coupled inequality constraints, we compare
our Algorithms 7.1 and 7.2 with the centralized one- and two-point sampling bandit
algorithms in [328], which use full-information feedback for the constraint functions,
and the centralized two-point sampling bandit algorithm in [329]. Figures 7.1 (a) and (b)
show the evolutions of E[Reg(x[T], x∗[T])]/T and E[‖[

∑T
t=1 gt(xt)]+‖]/T , respectively. The

average is taken over 100 realizations. Note that E[‖[
∑T

t=1 gt(xt)]+‖]/T → 0. This is in
agreement with (7.12b), (7.18b), and the theoretical results shown in [328, 329]. From
the zoomed figures, we see that the centralized algorithms in [328, 329] achieve smaller
expected dynamic regret and constraint violation than our distributed algorithms, which is
reasonable. We also see that Algorithm 7.2 achieves smaller expected dynamic regret and
constraint violation than Algorithm 7.1, which is consistent with our theoretical results.

226 Distributed bandit online primal–dual optimization algorithms

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3
104

Algorithm 7.1
Algorithm 7.2
[328] (One-Point Sampling)
[328] (Two-Point Sampling)
[329]

200 250 300 350 400 450 500
5200

5250

5300

5350

(a) Evolutions of expected dynamic regret E[Reg(x[T], x∗[T])]/T .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
104

Algorithm 7.1
Algorithm 7.2
[328] (One-Point Sampling)
[328] (Two-Point Sampling)
[329]

200 250 300 350 400
0

20

40

(b) Evolutions of expected constraint violation E[‖[
∑T

t=1 gt(xt)]+‖]/T .

Figure 7.1: Performance of bandit online convex optimization algorithms in the DERs
coordination problem.

7.6. Summary 227

7.6 Summary

In this chapter, we considered the distributed bandit online convex optimization problem
with time-varying coupled inequality constraints. We proposed distributed bandit online
algorithms with one- and two-point bandit feedback. We showed that sublinear expected
regret and constraint violation can be achieved by both proposed algorithms. We showed
that the results can be cast as nontrivial extensions of existing literature on online
optimization and bandit feedback. Future research directions include considering an
adaptive choice of the number of samplings at each round by different learners, relaxing
the doubly stochastic assumption, studying sampling noise, achieving a smaller regret
bound under stronger assumptions for the cost functions, and trying to establish sublinear
constraint violation under a stricter constraint violation metric.

7.7 Proofs

7.7.1 Proof of Theorem 7.1

To prove Theorem 7.1, the following three lemmas are used. Lemma 7.1 presents the
results on the local dual variables, while Lemma 7.2 provides an upper bound for the
regret of one round. Lemma 7.3 provides the expected regret constraint violation bounds
for Algorithm 7.1 for the general case.

To simplify notation, we denote βt = βi,t, γt = γi,t, and ξt = ξi,t.

Lemma 7.1. Suppose that Assumptions 7.1–7.2 hold. For all i ∈ [n] and t ∈ N+, q̃i,t and
qi,t generated by Algorithm 7.1 satisfy

‖q̃i,t+1‖ ≤

√
mFg

βt
, ‖qi,t‖ ≤

√
mFg

βt
, (7.20a)

‖q̃i,t+1 − q̄t‖ ≤ 2
√

mnFgτ

t−1∑
s=1

γs+1λ
t−1−s, (7.20b)

∆t+1

2γt+1
≤ (q̄t − q)>gt(xt) + 2mnF2

gγt+1 +
nβt+1

2
‖q‖2 + d1(t), (7.20c)

where q is an arbitrary vector in Rm
+ , and

∆t =

n∑
i=1

‖qi,t − q‖2 − (1 − βtγt)
n∑

i=1

‖qi,t−1 − q‖2,

q̄t =
1
n

n∑
i=1

qi,t, d1(t) = 2mn2F2
gτ

t∑
s=1

γs+1λ
t−s.

Proof. This lemma is Lemma 6.1 under bandit setting and the ideas of the proofs of these
two lemmas are similar.

228 Distributed bandit online primal–dual optimization algorithms

(i) From (7.4), we have

‖gi,t(xi,t)‖ ≤
√

mFg, ∀i ∈ [n], ∀t ∈ N+. (7.21)

We prove (7.20a) by induction.
It is straightforward to see that qi,1 = q̃i,2 = 0m, ∀i ∈ [n], thus ‖q̃i,2‖ ≤

√
mFg

β1
, ‖qi,1‖ ≤

√
mFg

β1
, ∀i ∈ [n]. Assume that (7.20a) is true at time t for all i ∈ [n]. We show that it remains

true at time t + 1. Firstly, from (2.11a), (7.7d), (7.21), 1 − γt+1βt+1 ≥ 0, and βt ≥ βt+1 we
know that for all i ∈ [n],

‖qi,t+1‖ ≤ (1 − γt+1βt+1)‖q̃i,t+1‖ + γt+1‖gi,t(xi,t)‖

≤ (1 − γt+1βt+1)
√

mFg

βt
+ γt+1

√
mFg

≤ (1 − γt+1βt+1)
√

mFg

βt+1
+ γt+1

√
mFg

≤

√
mFg

βt+1
.

Then, the convexity of norms and
∑n

j=1[Wt]i j = 1 yield

‖q̃i,t+2‖ ≤

n∑
j=1

[Wt+1]i j‖q j,t+1‖ ≤

n∑
j=1

[Wt]i j

√
mFg

βt+1

=

√
mFg

βt+1
, ∀i ∈ [n].

Thus, (7.20a) follows.
(ii) Note that (7.7d) can be rewritten as

qi,t+1 =

n∑
j=1

[Wt]i jq j,t + ε
q
i,t, (7.22)

where εq
i,t = [(1 − γt+1βt+1)q̃i,t+1 + γt+1gi,t(xi,t)]+ − q̃i,t+1. Then, (2.10), (7.20a), and (7.21)

give

‖ε
q
i,t‖ ≤ ‖ − γt+1βt+1q̃i,t+1 + γt+1gi,t(xi,t)‖ ≤ 2

√
mFgγt+1, ∀i ∈ [n]. (7.23)

Then, from Assumption 7.1, Lemma 2 in [190], qi,1 = 0m, ∀i ∈ [n], and (7.23), we know
that for any i ∈ [n] and t ∈ N+,

‖qi,t+1 − q̄t+1‖ ≤ 2
√

mnFgτ

t∑
s=1

γs+1λ
t−s. (7.24)

Thus, (7.20b) follows due to
∑n

j=1[Wt]i j = 1 and ‖q̃i,t+1 − q̄t‖ = ‖
∑n

j=1[Wt]i jq j,t − q̄t‖ ≤∑n
j=1[Wt]i j‖q j,t − q̄t‖.

7.7. Proofs 229

(iii) Applying (2.10) to (7.7d) yields

‖qi,t − q‖2 ≤ ‖(1 − βtγt)q̃i,t + γtgi,t−1(xi,t−1) − q‖2

= ‖q̃i,t − q‖2 + γ2
t ‖gi,t−1(xi,t−1) − βtq̃i,t‖

2

+ 2γt(q̃i,t − q)>gi,t−1(xi,t−1) − 2βtγt(q̃i,t − q)>q̃i,t. (7.25)

For the first term of the right-hand side of (7.25), by convexity of norms and
∑n

j=1[Wt−1]i j =

1, it can be concluded that

‖q̃i,t − q‖2 = ‖

n∑
j=1

[Wt−1]i jq j,t−1 −

n∑
j=1

[Wt−1]i jq‖2

≤

n∑
j=1

[Wt−1]i j‖q j,t−1 − q‖2. (7.26)

For the second term of the right-hand side of (7.25), (7.20a) and (7.21) yield

γ2
t ‖gi,t−1(xi,t−1) − βtq̃i,t‖

2 ≤ (2
√

mFgγt)2. (7.27)

For the fourth term of the right-hand side of (7.25), we have

2γt(q̃i,t − q)>gi,t−1(xi,t−1)
= 2γt(q̄t−1 − q)>gi,t−1(xi,t−1) + 2γt(q̃i,t − q̄t−1)>gi,t−1(xi,t−1). (7.28)

Moreover, from (7.21) and (7.20b), we have

2γt(q̃i,t − q̄t−1)>gi,t−1(xi,t−1) ≤ 2γt‖q̃i,t − q̄t−1‖‖gi,t−1(xi,t−1)‖

≤
2γtd1(t − 1)

n
. (7.29)

For the last term of the right-hand side of (7.25), neglecting the nonnegative term βtγt‖q̃i,t‖
2

gives

−2βtγt(q̃i,t − q)>q̃i,t ≤ βtγt(‖q‖2 − ‖q̃i,t − q‖2). (7.30)

Combining (7.25)–(7.30), summing over i ∈ [n], dividing by 2γt, using
∑n

i=1[Wt−1]i j =

1, ∀t ∈ N+, setting t = t + 1, and rearranging the terms yields (7.20c). �

Lemma 7.2. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.1 and {yt} be an arbitrary sequence in X, then

ft(xt) − ft(yt) ≤ (q̄t)>(gt(yt) − gt(xt)) + 2d1(t) + d2(t) + d3(t) + EUt [d4(t)]

+

n∑
i=1

p2
i F2

fi
αi,t+1

δ2
i,t

+

n∑
i=1

2Ri‖yi,t+1 − yi,t‖

αi,t+1
, ∀t ∈ N+, (7.31)

230 Distributed bandit online primal–dual optimization algorithms

where d1(t) is given in Lemma 7.1, and

d2(t) =

n∑
i=1

(
(2δi,t + Riξt)(

√
mGgi‖qi,t‖ + G fi) +

2R2
i (ξt − ξt+1)
αi,t+1

)
,

d3(t) = 2m max
i∈[n]

{ p2
i F2

gi
αi,t+1

δ2
i,t

}(
n‖q‖2 +

n∑
i=1

‖qi,t − q‖2
)
,

d4(t) =

n∑
i=1

‖y̌i,t − zi,t‖
2 − ‖y̌i,t+1 − zi,t+1‖

2

2αi,t+1
, y̌i,t = (1 − ξt)yi,t.

Proof. For any i ∈ [n], t ∈ N+ and x ∈ (1 − ξt)Xi, denote

f s
i,t(x) = Ev∈Bp [fi,t(x + δi,tv)], ĝi,t(x) = Ev∈Bp [gi,t(x + δi,tv)].

From Lemma 2.16, (7.4), (7.21), (7.6a), and (7.6b), we know that f s
i,t(x) and ĝi,t(x) are

convex on (1 − ξt)Xi, and for any i ∈ [n], t ∈ N+ and x ∈ (1 − ξt)Xi,

∇ f s
i,t(x) = EUt [∇̂1 fi,t(x)], (7.32a)

fi,t(x) ≤ f s
i,t(x) ≤ fi,t(x) + G fiδi,t, (7.32b)

‖∇̂1 fi,t(x)‖ ≤
piF fi

δi,t
, (7.32c)

∇ĝi,t(x) = EUt [∇̂1gi,t(x)], (7.32d)
gi,t(x) ≤ ĝi,t(x) ≤ gi,t(x) + Ggiδi,t1m, (7.32e)

‖∇̂1gi,t(x)‖ ≤
√

mpiFgi

δi,t
, (7.32f)

‖ĝi,t(x)‖ ≤
√

mFgi . (7.32g)

Then, (7.6a), (7.6b), (7.3), and (7.32b) yield

| fi,t(xi,t) − fi,t(zi,t)| ≤ G fi‖xi,t − zi,t‖ ≤ G fiδi,t, (7.33a)

‖gi,t(xi,t) − gi,t(zi,t)‖ ≤
√

mGgi‖xi,t − zi,t‖ ≤
√

mGgiδi,t, (7.33b)
f s
i,t(y̌i,t) − fi,t(yi,t) = fi,t(y̌i,t) − fi,t(yi,t) + f s

i,t(y̌i,t) − fi,t(y̌i,t)

≤ G fi‖y̌i,t − yi,t‖ + f s
i,t(y̌i,t) − fi,t(y̌i,t)

≤ G fi Riξt + G fiδi,t, (7.33c)
fi,t(zi,t) − f s

i,t(zi,t) ≤ 0, (7.33d)

‖gi,t(y̌i,t) − gi,t(yi,t)‖ ≤
√

mGgi Riξt. (7.33e)

From that f s
i,t(x) is convex on (1 − ξt)Xi, we have that

f s
i,t(zi,t) − f s

i,t(y̌i,t) ≤ 〈∇ f s
i,t(zi,t), zi,t − y̌i,t〉

= 〈EUt [∇̂1 fi,t(zi,t)], zi,t − y̌i,t〉

7.7. Proofs 231

= EUt [〈∇̂1 fi,t(zi,t), zi,t − y̌i,t〉], (7.34)

where the first equality holds from (7.32a) and the last equality holds since zi,t is
independent of Ut.

Next, we rewrite the right-hand side of (7.34) into two terms and bound them
individually.

EUt [〈∇̂1 fi,t(zi,t), zi,t − y̌i,t〉]

= EUt [〈∇̂1 fi,t(zi,t), zi,t − zi,t+1〉] + EUt [〈∇̂1 fi,t(zi,t), zi,t+1 − y̌i,t〉]. (7.35)

For the first term of the right-hand side of (7.35), the Cauchy-Schwarz inequality and
(7.32c) give

〈∇̂1 fi,t(zi,t), zi,t − zi,t+1〉 ≤ ‖∇̂1 fi,t(zi,t)‖‖zi,t − zi,t+1‖ ≤
piF fi

δi,t
‖zi,t − zi,t+1‖

≤
p2

i F2
fi
αi,t+1

δ2
i,t

+
1

4αi,t+1
‖zi,t − zi,t+1‖

2. (7.36)

For the second term of the right-hand side of (7.35), it follows from (7.8) that

EUt [〈∇̂1 fi,t(zi,t), zi,t+1 − y̌i,t〉] = EUt [〈(∇̂1gi,t(zi,t))>q̃i,t+1, y̌i,t − zi,t+1〉]
+ EUt [〈ai,t+1, zi,t+1 − y̌i,t〉]

= EUt [〈(∇̂1gi,t(zi,t))>q̃i,t+1, y̌i,t − zi,t〉]

+ EUt [〈(∇̂1gi,t(zi,t))>q̃i,t+1, zi,t − zi,t+1〉]
+ EUt [〈ai,t+1, zi,t+1 − y̌i,t〉]. (7.37)

For the first term of the right-hand side of (7.37), noting that xi,t and q̃i,t+1 are dependent of
Ut, from (7.32d), q̃i,t+1 ≥ 0m, q̄t ≥ 0m, (7.32e), and that ĝi,t is convex, we have

EUt [〈(∇̂1gi,t(zi,t))>q̃i,t+1, y̌i,t − zi,t〉] = 〈(EUt [∇̂1gi,t(zi,t)])>q̃i,t+1, y̌i,t − zi,t〉

= 〈(∇ĝi,t(zi,t))>q̃i,t+1, y̌i,t − zi,t〉

≤ (q̃i,t+1)>ĝi,t(y̌i,t) − [q̃i,t+1)>ĝi,t(zi,t)
= (q̄t)>(ĝi,t(y̌i,t) − ĝi,t(zi,t))

+ (q̃i,t+1 − q̄t)>(ĝi,t(y̌i,t) − ĝi,t(zi,t))
≤ (q̄t)>(gi,t(y̌i,t) + δi,tGgi 1m − gi,t(zi,t))

+ (q̃i,t+1 − q̄t)>(ĝi,t(y̌i,t) − ĝi,t(zi,t)). (7.38)

From (7.20b) and (7.32g), we have

(q̃i,t+1 − q̄t)>(ĝi,t(y̌i,t) − ĝi,t(zi,t)) ≤
2d1(t)

n
. (7.39)

232 Distributed bandit online primal–dual optimization algorithms

For the second term of the right-hand side of (7.37), from the Cauchy-Schwarz inequality,
(7.32f), and (7.26) we have

〈(∇̂1gi,t(zi,t))>q̃i,t+1, zi,t − zi,t+1〉 = q>∇̂1gi,t(zi,t)(zi,t − zi,t+1)

+ (q̃i,t+1 − q)>∇̂1gi,t(zi,t)(zi,t − zi,t+1)

≤
2mp2

i F2
gi
αi,t+1

δ2
i,t

‖q‖2 +
1

8αi,t+1
‖zi,t+1 − zi,t‖

2

+
2mp2

i F2
gi
αi,t+1

δ2
i,t

‖q̃i,t+1 − q‖2 +
1

8αi,t+1
‖zi,t+1 − zi,t‖

2

≤ 2m max
i∈[n]

{ p2
i F2

gi
αi,t+1

δ2
i,t

}(
‖q‖2 +

n∑
j=1

[Wt]i j‖q j,t − q‖2
)

+
1

4αi,t+1
‖zi,t+1 − zi,t‖

2. (7.40)

For the last term of the right-hand side of (7.37), noting that y̌i,t ∈ (1 − ξt)Xi ⊆ (1 − ξt+1)Xi

due to ξt ≥ ξt+1 and applying (2.12) to the update rule (7.7b) yield

2αi,t+1〈ai,t+1, zi,t+1 − y̌i,t〉 ≤ ‖y̌i,t − zi,t‖
2 − ‖y̌i,t − zi,t+1‖

2 − ‖zi,t+1 − zi,t‖
2

= ‖y̌i,t+1 − zi,t+1‖
2 − ‖y̌i,t − zi,t+1‖

2 + ‖y̌i,t − zi,t‖
2

− ‖y̌i,t+1 − zi,t+1‖
2 − ‖zi,t+1 − zi,t‖

2. (7.41)

The first two terms of the right-hand side of (7.41) can be bounded by

‖y̌i,t+1 − zi,t+1‖
2 − ‖y̌i,t − zi,t+1‖

2 ≤ ‖y̌i,t+1 − y̌i,t‖‖y̌i,t+1 + y̌i,t − 2zi,t+1‖

≤ 4Ri‖(1 − ξt+1)yi,t+1 − (1 − ξt)yi,t‖

= 4Ri‖(1 − ξt+1)(yi,t+1 − yi,t) + (ξt − ξt+1)yi,t‖

≤ 4Ri‖yi,t+1 − yi,t‖ + 4R2
i (ξt − ξt+1), (7.42)

where the last inequality holds since {ξt} ⊆ (0, 1) is nonincreasing.
Combining (7.33c)–(7.42), taking expectation in Ut, summing over i ∈ [n], and

rearranging the terms yields (7.31). �

Lemma 7.3. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.1. Then, for any T ∈ N+ and any comparator sequence y[T] ∈ XT ,

E[Reg(x[T], y[T])] ≤
T∑

t=1

E[d2(t)] + C0

T∑
t=1

γt+1 +

T∑
t=1

n∑
i=1

p2
i F2

fi
αi,t+1

δ2
i,t

+

n∑
i=1

2R2
i

αi,T+1

+

T−1∑
t=1

n∑
i=1

2Ri‖yi,t+1 − yi,t‖

αi,t+1
+

1
2

T∑
t=1

α̃tE[‖qi,t‖
2], (7.43a)

7.7. Proofs 233

E[‖[
T∑

t=1

gt(xt)]+‖
2] ≤ d5(T)

(T∑
t=1

E[d2(t)] + C0

T∑
t=1

γt+1 +

T∑
t=1

n∑
i=1

p2
i F2

fi
αi,t+1

δ2
i,t

+

n∑
i=1

2R2
i

αi,T+1
+ 2T

n∑
i=1

F fi +
1
2

T∑
t=1

α̃tE[‖qi,t − qc‖
2]
)
, (7.43b)

where

α̃t =

n∑
i=1

(
4m max

i∈[n]

{ p2
i F2

gi
αi,t+1

δ2
i,t

}
+

1
γt+1
−

1
γt
− βt+1

)
,

d5(T) = 2n
(1
γ1

+

T∑
t=1

(
4m max

i∈[n]

{ p2
i F2

gi
αi,t+1

δ2
i,t

}
+ βt+1

))
,

qc =
2[

∑T
t=1 gt(xt)]+

d5(T)
∈ Rm

+ .

Proof. (i) For any λ ∈ (0, 1) and nonnegative sequence ζ1, ζ2, . . . , it holds that

T∑
t=1

t∑
s=1

ζs+1λ
t−s =

T∑
t=1

ζt+1

T−t∑
s=0

λs ≤
1

1 − λ

T∑
t=1

ζt+1. (7.44)

Thus,

T∑
t=1

d1(t) ≤
2
√

mn2τB1Fg

1 − λ

T∑
t=1

γt+1. (7.45)

The definition of ∆t given in Lemma 7.1 yields

−

T∑
t=1

∆t+1

2γt+1
=

T∑
t=1

1
2γt+1

n∑
i=1

((1 − βt+1γt+1)‖qi,t − q‖2 − ‖qi,t+1 − q‖2)

=
1
2

n∑
i=1

T∑
t=1

(1
γt
‖qi,t − q‖2 −

1
γt+1
‖qi,t+1 − q‖2

)
+

1
2

T∑
t=1

n∑
i=1

(1
γt+1
−

1
γt
− βt+1

)
‖qi,t − q‖2

=
1
2

n∑
i=1

(1
γ1
‖qi,1 − q‖2 −

1
γT+1

‖qi,T+1 − q‖2
)

+
1
2

T∑
t=1

n∑
i=1

(1
γt+1
−

1
γt
− βt+1

)
‖qi,t − q‖2

≤
n

2γ1
‖q‖2 +

1
2

T∑
t=1

n∑
i=1

(1
γt+1
−

1
γt
− βt+1

)
‖qi,t − q‖2, (7.46)

234 Distributed bandit online primal–dual optimization algorithms

where the last inequality holds due to qi,1 = 0m and ‖qi,T+1 − q‖2 ≥ 0.
From the properties of conditional expectation, we know that

EUT [EUt [d4(t)]] = E[d4(t)], ∀t ∈ [T], (7.47)

where we recall the definitionUT =
⋃T

s=1 Us.
Noting that {αt} is nonincreasing and (7.3), for any s ∈ [T], we have

T∑
t=s

d4(t) =
1
2

T∑
t=s

n∑
i=1

(1
αi,t
‖y̌i,t − zi,t‖

2 −
1

αi,t+1
‖y̌i,t+1 − zi,t+1‖

2
)

+
1
2

T∑
t=s

n∑
i=1

(1
αi,t+1

−
1
αi,t

)
‖y̌i,t − zi,t‖

2

≤
1

2αi,s

n∑
i=1

‖y̌i,s − zi,s‖
2 −

1
2αi,T+1

n∑
i=1

‖y̌i,T+1 − zi,T+1‖
2

+ 2
n∑

i=1

(1
αi,T+1

−
1
αi,s

)
R2

i

≤

n∑
i=1

2R2
i

αi,T+1
. (7.48)

Let gc : Rm
+ → R be a function defined as

gc(q) =
(T∑

t=1

gt(xt)
)>

q −
d5(T)

4
‖q‖2. (7.49)

Combining (7.20c) and (7.31), summing over t ∈ [T], using (7.45)–(7.49) and gt(yt) ≤
0m, y[T] ∈ XT , and taking expectation inUT yields

E[gc(q)] + E[Reg(x[T], y[T])] ≤
T∑

t=1

E[d2(t)] + C0

T∑
t=1

γt+1 +

T∑
t=1

n∑
i=1

p2
i F2

fi
αi,t+1

δ2
i,t

+

n∑
i=1

2R2
i

αi,T+1
+

T∑
t=1

n∑
i=1

2Ri‖yi,t+1 − yi,t‖

αi,t+1

+
1
2

T∑
t=1

α̃tE[‖qi,t − q‖2], ∀q ∈ Rm
+ . (7.50)

Then, substituting q = 0m into (7.50), setting yi,T+1 = yi,T , and noting that {αt} is
nonincreasing yields (7.43a).
(ii) Substituting q = qc into gc(q) gives

gc(qc) =
‖[
∑T

t=1 gt(xt)]+‖
2

d5(T)
. (7.51)

7.7. Proofs 235

Moreover, (7.4) gives

|Reg(x[T], y[T])| ≤ 2T
n∑

i=1

F fi , ∀y[T] ∈ XT . (7.52)

Substituting q = qc and yt = x̌∗T , t ∈ [T + 1] into (7.50), combining (7.51)–(7.52), and
rearranging the terms gives (7.43b). �

We are now ready to prove Theorem 7.1.
(i) Applying (2.65), (2.37), and (7.20a) to the first three terms of the right-hand side of
(7.43a) and noting θ2 < θ3 gives

T∑
t=1

E[d2(t)] ≤ C1,2T 1−θ3+θ2 + C1,3T 1−θ3 + C1,1 log(T), (7.53a)

C0

T∑
t=1

γt+1 ≤
C0

θ2
T θ2 , (7.53b)

T∑
t=1

n∑
i=1

p2
i F2

fi
αi,t+1

δ2
i,t

≤ C1,4T 1−θ1+2θ3 . (7.53c)

From (7.11) and θ1 − 2θ3 ≥ θ2 we know that

α̃t =
1

(t + 1)θ1−2θ3
+

t + 1
(t + 1)θ2

−
t

tθ2
−

2
(t + 1)θ2

≤
1

(t + 1)θ2
+

t + 1
(t + 1)θ2

−
t

tθ2
−

2
(t + 1)θ2

=
t

(t + 1)θ2
−

t
tθ2

< 0. (7.54)

Combining (7.43a) and (7.53a)–(7.54) yields (7.12a).
(ii) Using (2.37) and noting θ1 − 2θ3 ≥ θ2 gives

d5(T) ≤ C2,1T 1−θ2 . (7.55)

Combining (7.43b) and (7.53a)–(7.55) gives

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥2]
≤ C2T 2−θ2 . (7.56)

Finally, combining (7.56) and (E[‖[
∑T

t=1 gt(xt)]+‖])2 ≤ E[‖[
∑T

t=1 gt(xt)]+‖
2] (which

follows from Jensen’s inequality) gives (7.12b).

236 Distributed bandit online primal–dual optimization algorithms

7.7.2 Proof of Theorem 7.2

The proof is similar to the proof of Theorem 7.1 with some modifications. Lemmas 7.1–7.3
are replaced by Lemmas 7.4–7.6.

To simplify notation, we denote αt = αi,t, βt = βi,t, γt = γi,t, and ξt = ξi,t.

Lemma 7.4. Suppose that Assumptions 7.1–7.2 hold. For all i ∈ [n] and t ∈ N+, q̃i,t and
qi,t generated by Algorithm 7.2 satisfy

‖q̃i,t+1‖ ≤
B1

βt
, ‖qi,t‖ ≤

B1

βt
, (7.57a)

‖q̃i,t+1 − q̄t‖ ≤ 2nB1τ

t−1∑
s=1

γs+1λ
t−1−s, (7.57b)

∆t+1

2γt+1
≤ (q̄t − q)>gt(xt) + 2nB2

1γt+1 + d6(t)

+
1
2

n∑
i=1

(2mp2
i G2

gi
αt+1 + βt+1)‖q‖2 + d7(t), (7.57c)

where q is an arbitrary vector in Rm
+ , and

d6(t) = 2
√

mn2B1Fgτ

t∑
s=1

γs+1λ
t−s,

d7(t) =
1

4αt+1

n∑
i=1

‖xi,t+1 − xi,t‖
2 +

n∑
i=1

(q̃i,t+1)>∇̂2gi,t(xi,t)(xi,t+1 − xi,t).

Proof. From the fifth part in Lemma 2.16 and (7.6b), we know that for all i ∈ [n], x ∈
(1 − ξi,t)Xi, and t ∈ N+,

‖∇̂2gi,t(x)‖ ≤
√

mpiGgi . (7.58)

Hence, (7.16), (7.3), (7.4), and (7.58) yield

‖ci,t+1‖ ≤ ‖gi,t(xi,t)‖ + ‖∇̂2gi,t(xi,t)‖‖(xi,t+1 − xi,t)‖

≤
√

mFgi + 2
√

mpiGgi Ri ≤ B1, ∀i ∈ [n], ∀t ∈ N+. (7.59)

Replacing zi,t and gi,t(zi,t) by xi,t and ci,t+1, respectively, and following steps similar to
those used to prove (7.20a) and (7.20b) yields (7.57a) and (7.57b).

Applying (2.10) to (7.14c) yields

‖qi,t − q‖2 ≤ ‖(1 − βtγt)q̃i,t + γtci,t − q‖2

= ‖q̃i,t − q‖2 + γ2
t ‖ci,t − βtq̃i,t‖

2 + 2γt(q̃i,t)>∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1)

− 2γtq>∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1) + 2γt(q̃i,t − q)>gi,t−1(xi,t−1)
− 2βtγt(q̃i,t − q)>q̃i,t. (7.60)

7.7. Proofs 237

For the fourth term of the right-hand side of (7.60), (7.58) and the Cauchy-Schwarz
inequality yield

−2γtq>∇̂2gi,t−1(xi,t−1)(xi,t − xi,t−1) ≤ 2γt

(
mp2

i G2
gi
αt‖q‖2 +

1
4αt
‖xi,t − xi,t−1‖

2
)
. (7.61)

Replacing (7.25) by (7.60), using (7.61), and following steps similar to those used to
prove (7.20c) yields (7.57c). �

Lemma 7.5. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.2 and {yt} be an arbitrary sequence in X, then

ft(xt) − ft(yt) ≤ (q̄t)>(gt(yt) − gt(xt)) + 2d6(t) − EUt [d7(t)] + d8(t) + EUt [d9(t)]

+

n∑
i=1

p2
i G2

fiαt+1 +

n∑
i=1

2Ri‖yi,t+1 − yi,t‖

αt+1
, ∀t ∈ N+, (7.62)

where

d8(t) =

n∑
i=1

(
(δi,t + Riξt)(

√
mGgi‖qi,t‖ + G fi) +

2R2
i (ξt − ξt+1)
αt+1

)
,

d9(t) =
1

2αt+1

n∑
i=1

(‖y̌i,t − xi,t‖
2 − ‖y̌i,t+1 − xi,t+1‖

2), y̌i,t = (1 − ξt)yi,t.

Proof. Replacing zi,t, ai,t, and (7.32c) by xi,t, bi,t, and

‖∇̂2 fi,t(x)‖ ≤ piG fi , (7.63)

respectively, deleting (7.40), and following steps similar to those used to prove (7.31) yields
(7.62). �

Lemma 7.6. Suppose that Assumptions 7.1–7.2 hold. Let {xt} be the sequence generated
by Algorithm 7.2. Then, for any T ∈ N+ and any comparator sequence y[T] ∈ XT ,

E[Reg(x[T], y[T])] ≤
T∑

t=1

E[d8(t)] + Ĉ0

T∑
t=1

γt+1 +

n∑
i=1

2R2
i

αT+1
+

T∑
t=1

n∑
i=1

p2
i G2

fiαt+1

+
2RmaxV(y[T])

αT
+

1
2

T∑
t=1

n∑
i=1

(1
γt+1
−

1
γt
− βt+1

)
E[‖qi,t‖

2], (7.64a)

E
[∥∥∥∥[T∑

t=1

gt(xt)
]
+

∥∥∥∥2]
≤ d10(T)

(T∑
t=1

E[d8(t)] + Ĉ0

T∑
t=1

γt+1 +

n∑
i=1

2R2
i

αT+1

+

T∑
t=1

n∑
i=1

p2
i G2

fiαt+1 + 2T
n∑

i=1

F fi

238 Distributed bandit online primal–dual optimization algorithms

+
1
2

T∑
t=1

n∑
i=1

(1
γt+1
−

1
γt
− βt+1

)
E[‖qi,t − q̂c‖

2]
)
, (7.64b)

where

d10(T) = 2n
(1
γ1

+

T∑
t=1

(2mp2
i G2

gi
αt+1 + βt+1)

)
, q̂c =

2[
∑T

t=1 gt(xt)]+

d10(T)
∈ Rm

+ .

Proof. With Lemmas 7.4 and 7.5 at hand, the proof of Lemma 7.6 follows steps similar to
those used to prove Lemma 7.3. �

With Lemmas 7.4–7.6 at hand, the proofs of (7.18a) and (7.18b) in Theorem 7.2 follow
steps similar to those used to prove (7.12a) and (7.12b) in Theorem 7.1.

Part III

Distributed Event-Triggered Control

239

Chapter 8

Distributed dynamic event-triggered
control algorithms

In this and the following two chapters, in order to achieve a common control objective
for a networked system, we propose distributed event-triggered algorithms to reduce the
amount of information exchanged. In this chapter, we propose two novel dynamic event-
triggered control laws to solve the average consensus problem for first-order continuous-
time multi-agent systems over undirected graphs. Compared with most existing triggering
laws, the proposed laws involve internal dynamic variables, which play an essential role in
guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Moreover,
some existing triggering laws are special cases of ours. For the proposed self-triggered
algorithm, continuous agent listening is avoided as each agent predicts its next triggering
time and broadcasts it to its neighbors at the current triggering time. Thus, each agent only
needs to sense and broadcast at its triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. It is proved that the proposed
triggering laws ensure that the state of each agent converge exponentially to the average of
all agents’ initial states if and only if the underlying graph is connected. The idea behind
these approaches will also play an important role in the following two chapters. Numerical
simulations are provided to illustrate the effectiveness of the theoretical results.

This chapter is organized as follows. Section 8.1 gives the background. Section 8.2
introduces the problem formulation. Section 8.3 presents two distributed dynamic event-
triggered control algorithms to determine triggering times such that average consensus
is achieved exponentially. A self-triggered control algorithm to solve the aforementioned
problem is presented in Section 8.4. Simulations are given in Section 8.5. This chapter is
concluded in Section 8.6.

8.1 Introduction

The consensus problem has a long history in computer science, particular in distributed
computing [332]. For multi-agent systems, consensus means that the group of agents reach
an agreement upon a certain quantity of interest that may depend on the initial states of

241

242 Distributed dynamic event-triggered control algorithms

all agents. In the study of complex networks, the synchronization has sometime a similar
meaning as consensus.

There is a huge amount of research work on consensus or synchronization in the
past decades. Here we only recall some of them. In [333–337], the authors introduced
theoretical frameworks for analysis of consensus for first-order linear multi-agent systems
with an emphasis on the role of directed information flow, robustness to changes in
network topology due to link/node failures, time-delays, and performance guarantees. One
fundamental result is that the performance of the consensus protocol is determined by the
algebraic connectivity. Consensus is achieved if and only if the underlying fixed undirected
graph is connected or directed graph has a directed spanning tree [333–335]. In [338], the
authors studied general linear multi-agent systems with directed communication graphs.
Similar work can be found in earlier studies [198, 339], in which the authors presented
a framework for analysing synchronization of linearly coupled ordinary differential equa-
tions. In [340], the authors used a high-gain methodology to construct linear decentralized
consensus controllers for general linear multi-agent systems with time-invariant and time-
varying topologies. In [341], the authors considered consensus for first-order multi-agent
systems with stochastically switching topologies modeled as a stochastic process. In [342],
the authors studied asynchronous consensus problems for continuous-time multi-agent
systems with discontinuous information transmission. In [343], the authors investigated
the joint effect of agent dynamics, network topologies and communication data rate on the
consensus problem. In [344], the authors considered nonlinear consensus protocols.

The average consensus problem involves a group of agents in a network who seeks the
average of a set of network-wide measurements or states. It has been widely investigated
because its many applications in sensor networks, mobile robots, autonomous underwater
vehicles, and unmanned air vehicles, e.g., [336] and the references therein. In these
studies, agents have continuous-time dynamics and actuation. However, continuous com-
munication cannot usually be implemented in multi-agent systems, since the interactions
among agents are typically realized over a digital communication channel with limited
capacity. Moreover, in order to simplify and reduce communication, the information
exchange should be kept as small as possible. In order to realize this, in practice,
typically agents communicate with their neighbors and take actions at discrete time points.
There are various studies considered agents with discrete-time dynamics or continuous-
time dynamics but discontinuous information transmission, e.g., [342, 343]. In these
studies, time-triggered sampling was used to determine when agents should establish
communication with its neighbors, which is often implemented periodically. A nice feature
of such a model is that analysis and design becomes rather straightforward and the vast
literature on sample-data control can be used [192]. Drawbacks are that agents need to
take actions in a synchronous manner, which is often hard to implement when the number
of agents is large, and it is not energy-efficient to communicate when the state has not
changed much.

Event-triggered sampling has been proposed for single-agent systems [345–347]. The
concept was originally extended to multi-agent systems in [193]. In event-triggered multi-
agent systems actuation updates and inter-agent communications occur only when some
specific events are triggered, for instance, a measure of the state error exceeds a specified

8.1. Introduction 243

threshold. The control is often constant between any two consecutive triggering times.
In [348], by introducing an internal dynamic variable, a new class of event-triggered
mechanisms was presented and it was extended to discrete-time setting in [349]. The idea
of using internal dynamic variables in event- and self-triggered control can also be found
in [350–354]. Many researchers studied event-triggered control for multi-agent systems
recently [193–195, 200, 355–360]. A key challenge is how to design triggering laws to
determine the corresponding triggering times, while excluding Zeno behavior, i.e., infinite
number of triggers in a finite time interval [196].

To overcome the drawback of continuous monitoring of the triggering law, self-
triggered control were proposed for single-agent systems [361–363]. Many researchers
have investigated self-triggered control for multi-agent systems [193, 200, 358]. For self-
triggered single-agent systems, the next triggering time is determined at the previous
triggering instance. However, the self-triggered approaches for multi-agent systems men-
tioned above are not in accordance with this. Although continuous sensing of each
agent’s own and neighbors’ states is avoided in these studies, continuous listening is
still needed since the triggering times are determined during runtime and not known in
advance. To overcome this drawback, some researchers introduced local clock variables
in the self-triggering policy [350], others combined event-triggered control with periodic
sampling [351, 355, 357], and some proposed cloud-supported algorithms [364]. By
introducing an internal dynamic variable, a new class of event-triggering mechanisms
was presented in [348] and later extended to a discrete-time setting in [349]. The idea
of using internal dynamic variables in event- and self-triggered control can also be found
in [350–352, 365]. In this chapter, we make essential modifications to the dynamic event-
triggering mechanism for single-agent systems in [348] and extend it to multi-agent
systems.

In this chapter, we propose two novel dynamic event-triggered control laws to solve
the average consensus problem for first-order continuous-time multi-agent systems over
undirected graphs. We have the following contributions.

(C8.1) The first main contribution of this chapter is in the introduction and convergence
analysis of dynamic event- and self-triggered control laws for multi-agent systems.
The control laws are truly distributed in the sense that they do not require any a
priori knowledge of global network parameters. We prove that the proposed dynamic
triggering laws yield consensus exponentially fast, and we show that they are free
from Zeno behavior by verifying that the triggering time sequence of each agent is
divergent. We show also that the triggering laws in [194, 195] are special cases of
our event-triggered law.

(C8.2) To overcome the main disadvantage of event-triggered laws, i.e., avoid continuous
sensing and listening, we present a self-triggered control law. The main idea to avoid
continuous listening is that each agent predicts its next triggering time and broadcasts
it to its neighbors at the current triggering time. As a result, each agent only needs
to sense and broadcast at its triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. This is to say that, in terms
of avoiding continuous listening, our self-triggered algorithm improves the ones

244 Distributed dynamic event-triggered control algorithms

in [193, 200, 358] and other studies using a similar approach. Although continuous
sensing, broadcasting, listening, and receiving are also avoided in [351,355,357] by
combining event-triggered control with periodic sampling, the additional periodic
sensing and listening are still needed. Moreover, it is not clear how to show that the
average inter-event time is strictly larger than the required sampling period. Our self-
triggered control law is reminiscent of the event-triggered cloud access in [364]. The
main difference is that we do not need the cloud to store data and we use different
analysis techniques.

8.2 Average consensus for first-order multi-agent systems

We consider a set of n agents modelled as single integrators

ẋi(t) = ui(t), i ∈ [n], t ≥ 0, (8.1)

where xi(t) ∈ R is the state and ui(t) ∈ R is the control input.

Remark 8.1. For the ease of presentation, we study the case where all the agents have
scalar states, i.e., xi ∈ R. However, the analysis in this chapter is also valid for the cases
where the agents have vector-valued states, i.e., xi ∈ R

p.

Definition 8.1 (Average consensus). We say average consensus for the multi-agent system
(8.1) is achieved if limt→∞ xi(t) = 1

n
∑n

j=1 x j(0), ∀i ∈ [n].

The classic distributed consensus protocol is given by [336, 337],

ui(t) = −

n∑
j=1

Li jx j(t), (8.2)

where Li j is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is undirected. Figure 1.10 shows how agents communicate when the
control input has the form (8.2).

To implement the consensus protocol (8.2), a continuous exchange of information
among agents and a continuous update of actuators are needed. However, it is often
impractical to require continuous communication and update in real applications.

Inspired by the idea of event-triggered control for multi-agent systems [193], we use
the event-triggered control input

ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

). (8.3)

Note that the event-triggered control input (8.3) only updates at the triggering times and
it remains constant between any two consecutive triggering times. Figure 1.9 shows how
agents communicate when the control input has the form (8.3).

Our goal in this chapter is to solve the following problem.

8.3. Distributed dynamic event-triggered control algorithms 245

Problem 8.1. Propose methods to determine the triggering times such that average
consensus is reached, while continuous exchange of information, continuous update of
actuators, and Zeno behavior are avoided.

For simplicity, let x(t) = col(x1(t), . . . , xn(t)), x̂i(t) = xi(ti
ki(t)

), x̂(t) = col(x̂1(t), . . . , x̂n(t)),
ei(t) = x̂i(t) − xi(t), and e(t) = col(e1(t), · · · , en(t)) = x̂(t) − x(t). Then we can rewrite the
multi-agent system with agent dynamics as in (8.1) and event-triggered control input as in
(8.3) in the stack vector form

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)).

8.3 Distributed dynamic event-triggered control algorithms

In this section, we will propose two distributed dynamic event-triggered control algorithms
to design the triggering times such that the average consensus can be achieved.

8.3.1 Continuous approach

We first show that the average state in (8.1) is constant.

Lemma 8.1. Consider the multi-agent system (8.1)–(8.3), and assume that the underlying
graph G is undirected. The average of all agents’ states x̄(t) = 1

n
∑n

i=1 xi(t) is constant, i.e.,
x̄(t) = x̄(0), ∀t ≥ 0.

Proof. It follows from (8.1)–(8.3) that the time derivative of the average value is given by

˙̄x(t) =
1
n

n∑
i=1

ẋi(t) = −
1
n

n∑
i=1

n∑
j=1

Li jx j(t
j
k j(t)

) = −
1
n

n∑
j=1

x j(t
j
k j(t)

)
n∑

i=1

Li j = 0.

Thus x̄(t) is constant. �

Now, consider a Lyapunov candidate as follows

V(x(t)) =
1
2

x>(t)Knx(t) =
1
2

x>(t)(In −
1
n

1n1>n)x(t)

=
1
2

n∑
i=1

x2
i (t) −

n
2

x̄2(0) =
1
2

n∑
i=1

(xi(t) − x̄(0))2. (8.4)

Then the derivative of V(x(t)) along the trajectories of the multi-agent system (8.1)–(8.3)
satisfies

V̇(x(t)) =

n∑
i=1

[xi(t) − x̄(0)]ẋi(t) =

n∑
i=1

xi(t)ẋi(t) − x̄(0)
n∑

i=1

ẋi(t) =

n∑
i=1

xi(t)ẋi(t)

=

n∑
i=1

xi(t)
n∑

j=1

(−Li jx j(t
j
k j(t)

)) = −

n∑
i=1

xi(t)
n∑

j=1

Li j(x j(t) + e j(t))

246 Distributed dynamic event-triggered control algorithms

∗
= −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1

xi(t)Li je j(t) = −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1

ei(t)Li jx j(t)

= −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1, j,i

ei(t)Li j(x j(t) − xi(t))

≤ −

n∑
i=1

qi(t) −
n∑

i=1

n∑
j=1, j,i

Li je2
i (t) −

n∑
i=1

n∑
j=1, j,i

Li j
1
4

(x j(t) − xi(t))2

= −

n∑
i=1

qi(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

n∑
j=1

1
4

Li j(x j(t) − xi(t))2

∗
= −

n∑
i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t), (8.5)

where

qi(t) = −
1
2

n∑
j=1

Li j(x j(t) − xi(t))2 ≥ 0, (8.6)

and the equalities denoted by ∗= hold due to

n∑
i=1

qi(t) = −

n∑
i=1

1
2

n∑
j=1

Li j(x j(t) − xi(t))2 =

n∑
i=1

n∑
j=1

xi(t)Li jx j(t) = x>(t)Lx(t),

and the inequality holds due to ab ≤ a2 + 1
4 b2.

Similar to [193] and [358], the following law can be used to determine the triggering
times:

ti
1 = 0, ti

k+1 = min
{
t : Liie2

i (t) −
σi

2
qi(t) ≥ 0, t ≥ ti

k

}
, k ∈ N+, (8.7)

where σi ∈ (0, 1) is a design parameter. From the way to determine the triggering times by
(8.7), we have

Liie2
i (t) ≤

σi

2
qi(t), ∀t ≥ 0. (8.8)

Then, from (8.5) and (8.8), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

(1 − σmax)
n∑

i=1

qi(t) = −
1
2

(1 − σmax)x>(t)Lx(t)

≤ −
1
2

(1 − σmax)ρ2(L)x>(t)Knx(t) = −(1 − σmax)ρ2(L)V(x(t)),

where σmax = maxi∈[n]{σi} < 1 and the last inequality holds due to (2.6). Then

V(x(t)) ≤ V(x(0))e−(1−σmax)ρ2(L)t, ∀t ≥ 0. (8.9)

8.3. Distributed dynamic event-triggered control algorithms 247

This implies that system (8.1)–(8.3) reaches average consensus exponentially if the
underlying graph G is connected.

Remark 8.2. Note that (8.7) is a static triggering law since it does not involve any extra
dynamic variables but the agent state variables xi(t), x̂i(t) and x j(t), j ∈ Ni. The static
triggering law (8.7) is distributed since each agent’s control input only depends on its own
state information and its neighbors’ state information, without any a prior knowledge of
any global parameters, such as the eigenvalues of the Laplacian matrix.

Remark 8.3. If we consider the same unweighted graph as in [193], i.e., ai j = 1 if (vi, v j) ∈
E, then Lii = |Ni|. Noting a(1− a|Ni|) ≤ 1

4|Ni |
and (

∑n
j=1(x j(t)− xi(t)))2 ≤ 2|Ni|

∑n
j=1(x j(t)−

xi(t))2, we have σia(1−a|Ni |)
|Ni |

(
∑n

j=1(x j(t) − xi(t)))2 ≤
σi

2|Ni |
qi(t). In other words, the distributed

triggering law (10) proposed in [193] is a special case of the static triggering law (8.7).

The main purpose of using event-triggered control is to reduce the overall need of
actuation updates and communication between agents, so it is essential to exclude Zeno
behavior. However, as stated in [193], Zeno behavior may not be excluded under (8.7). In
order to explicitly exclude Zeno behavior, in the following we propose a dynamic triggering
law to determine the triggering times.

Inspired by [348], we propose the following internal dynamic variable ηi to agent i:

η̇i(t) = −βiηi(t) − δi

(
Liie2

i (t) −
σi

2
qi(t)

)
, i ∈ [n], (8.10)

where ηi(0) > 0, βi > 0, δi ∈ [0, 1], and σi ∈ [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. These dynamic variables are correlated in the
triggering law, as defined in our first main result.

Theorem 8.1. Consider the multi-agent system (8.1)–(8.3). Suppose that the underlying
graph G is undirected. Given θi > 1−δi

βi
and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : θi

(
Liie2

i (t) −
σi

2
qi(t)

)
≥ ηi(t), t ≥ ti

k

}
, (8.11)

where qi(t) and ηi(t) are defined in (8.6) and (8.10), respectively. Then,

(i) average consensus is achieved exponentially if and only if G is connected;

(ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. From the
way to determine the triggering times by (8.11), we have

θi

(
Liie2

i (t) −
σi

2
qi(t)

)
≤ ηi(t), ∀t ≥ 0. (8.12)

From (8.10) and (8.12), we have

η̇i(t) ≥ −βiηi(t) −
δi

θi
ηi(t), ∀t ≥ 0.

248 Distributed dynamic event-triggered control algorithms

Thus

ηi(t) ≥ ηi(0)e−(βi+
δi
θi

)t
> 0, ∀t ≥ 0. (8.13)

Consider a Lyapunov candidate

W(x(t), η(t)) = V(x(t)) +

n∑
i=1

ηi(t),

where η(t) = col(η1(t), . . . , ηn(t)). Then the derivative of W(x(t), η(t)) along the trajectories
of the multi-agent system (8.1)–(8.3) and system (8.10) satisfies

Ẇ(x(t), η(t)) = V̇(x(t)) +

n∑
i=1

η̇i(t)

≤ −

n∑
i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

βiηi(t) +

n∑
i=1

δi

(σi

2
qi(t) − Liie2

i (t)
)

= −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

βiηi(t) +

n∑
i=1

(δi − 1)
(σi

2
qi(t) − Liie2

i (t)
)

≤ −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

βiηi(t) +

n∑
i=1

1 − δi

θi
ηi(t)

= −

n∑
i=1

1
2

(1 − σi)qi(t) −
n∑

i=1

(
βi −

1 − δi

θi

)
ηi(t)

≤ −(1 − σmax)
n∑

i=1

1
2

qi(t) − kd

n∑
i=1

ηi(t)

≤ −(1 − σmax)ρ2(L)V(x(t)) − kd

n∑
i=1

ηi(t)

≤ −kWW(x(t), η(t)),

where

kd = min
i
{βi −

1 − δi

θi
} > 0, kW = min{(1 − σmax)ρ2(L), kd} > 0.

Then

V(x(t)) ≤ W(x(t), η(t)) ≤ W(x(0), η(0))e−kW t, ∀t ≥ 0. (8.14)

This implies that system (8.1)–(8.3) reaches average consensus exponentially.
(ii) Next, we prove that there is no Zeno behavior by contradiction. Suppose there exists
Zeno behavior. Then there exists an agent i, such that limk→+∞ ti

k = T0, where T0 is a
positive constant.

8.3. Distributed dynamic event-triggered control algorithms 249

Whether G is connected or not, from the proof in (i) we know that all the agents in the
same connected component reach consensus and there is a result similar to (8.14). Thus,
we know that there exists a positive constant M0 > 0 such that |xi(t)| ≤ M0 for all t ≥ 0 and
i = 1, . . . , n. Then, we have

|ui(t)| ≤ 2M0Lii, ∀t ≥ 0.

Let ε0 =

√
ηi(0)

4
√
θiL3

ii M0
e−

1
2 (βi+

δi
θi

)T0 > 0. Then from the property of limits, there exists a

positive integer N(ε0) such that

ti
k ∈ [T0 − ε0,T0], ∀k ≥ N(ε0). (8.15)

Noting qi(t) ≥ 0 and (8.13), we can conclude that one necessary condition to guarantee
that the inequality in (8.11) holds is

|x̂i(t) − xi(t)| ≥

√
ηi(0)
θiLii

e−
1
2 (βi+

δi
θi

)t
.

Again noting |ẋi(t)| = |ui(t)| ≤ 2M0Lii and |x̂i(ti
k) − xi(ti

k)| = 0 for any triggering time ti
k, we

can conclude that one necessary condition to guarantee that the above inequality holds is

(t − ti
k)2M0Lii ≥

√
ηi(0)
√
θiLii

e−
1
2 (βi+

δi
θi

)t
. (8.16)

Now suppose that the N(ε0)-th triggering time of agent i, ti
N(ε0), has been determined.

Let ti
N(ε0)+1 and t̃i

N(ε0)+1 denote the next triggering time determined by (8.11) and (8.16),
respectively. Then

ti
N(ε0)+1 − ti

N(ε0) ≥ t̃i
N(ε0)+1 − ti

N(ε0) =

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

δi
θi

)t̃i
N(ε0)+1

≥

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

δi
θi

)ti
N(ε0)+1 ≥

√
ηi(0)

2
√
θiL3

iiM0

e−
1
2 (βi+

δi
θi

)T0 = 2ε0, (8.17)

which contradicts to (8.15). Therefore, Zeno behavior is excluded. �

Remark 8.4. Note that (8.11) is a dynamic triggering law since it involves the extra
dynamic variables ηi(t). Similar to the static triggering law (8.7), it is also distributed.
The static triggering law (8.7) can be seen as a limit case of the dynamic triggering law
(8.11) when θi grows large. Thus, from the analysis in Remark 8.3, we can conclude that
the distributed triggering law (10) proposed in [193] is a special case of the dynamic
triggering law (8.11).

Remark 8.5. If we choose δi = 0 in (8.10) and σi = 0 in (8.11), then ηi(t) = ηi(0)e−βit

and now the inequality in (8.11) is |ei(t)| ≥
√
ηi(0)e−

βi
2 t/
√
θiLii. The later is the triggering

function (7) proposed in [195] with c0 = 0, c1 =
√
ηi(0)/

√
θiLii, α = βi/2. However, we

do not need the constraint α < ρ2(L) which is necessary in [195].

250 Distributed dynamic event-triggered control algorithms

If we choose βi large enough, then kW = (1−σmax)ρ2(L). Hence, in this case, from (8.9)
and (8.14), we know that the trajectories of the multi-agent system (8.1) –(8.3) under static
triggering law (8.7) and dynamic triggering law (8.11) have the same guaranteed decay
rate given by (8.9).

Remark 8.6. Intuitively, from (8.16), one can conclude that the larger ηi(0) the larger
the inter-event time. This is also consistent with the definition of ε0. However, how those
design parameters ηi(0), βi, ξi, σi, θi affect the inter-event times and decay rate in theory is
unclear. We leave this as a future research direction.

8.3.2 Discontinuous approach

In the above static and dynamic triggering laws, continuous updating of the control input
is avoided. However, in order to monitor the inequalities (8.7) and (8.11), each agent still
needs to continuously monitor its neighbors’s states, which means continuous broadcasting
and receiving are still needed. In what follows, we will modify the above results to avoid
these two requirements.

We estimate the upper bound of the derivative of V(x(t)) along the trajectories of the
multi-agent system (8.1)–(8.3) in a different way. Similar to the derivation process to get
(8.5), we have

V̇(x(t)) =

n∑
i=1

xi(t)
n∑

j=1

−Li j x̂ j(t) = −

n∑
i=1

(x̂i(t) − ei(t))
n∑

j=1

Li j x̂ j(t)

∗∗
= −

n∑
i=1

q̂i(t) +

n∑
i=1

n∑
j=1

ei(t)Li j x̂ j(t)

= −

n∑
i=1

q̂i(t) +

n∑
i=1

n∑
j=1, j,i

ei(t)Li j(x̂ j(t) − x̂i(t))

≤ −

n∑
i=1

q̂i(t) −
n∑

i=1

n∑
j=1, j,i

Li je2
i (t) −

n∑
i=1

n∑
j=1, j,i

Li j
1
4

(x̂ j(t) − x̂i(t))2

= −

n∑
i=1

q̂i(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

n∑
j=1

1
4

Li j(x̂ j(t) − x̂i(t))2

∗∗
= −

n∑
i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t), (8.18)

where

q̂i(t) = −
1
2

n∑
j=1

Li j(x̂ j(t) − x̂i(t))2 ≥ 0, (8.19)

8.3. Distributed dynamic event-triggered control algorithms 251

and the equalities denoted by ∗∗= hold due to

n∑
i=1

q̂i(t) = −

n∑
i=1

1
2

n∑
j=1

Li j(x̂ j(t) − x̂i(t))2 =

n∑
i=1

n∑
j=1

x̂i(t)Li j x̂ j(t) = x̂>(t)Lx̂(t),

and the inequality holds due to ab ≤ a2 + 1
4 b2.

Similar to [194] and [358], the following law can be used to determine the triggering
times:

ti
1 = 0, ti

k+1 = min
{
t : Liie2

i (t) −
σi

2
q̂i(t) ≥ 0, t ≥ ti

k

}
, k ∈ N+, (8.20)

where σi ∈ (0, 1) is a design parameter. From the way to determine the triggering times by
(8.20), we have

Liie2
i (t) ≤

σi

2
q̂i(t), ∀t ≥ 0. (8.21)

Then, from (8.18) and (8.21), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

(1 − σmax)
n∑

i=1

q̂i(t)

= −
1
2

(1 − σmax)x̂>(t)Lx̂(t).

Furthermore,

x>(t)Lx(t) = (x̂(t) + e(t))>L(x̂(t) + e(t)) ≤ 2x̂>(t)Lx̂(t) + 2e>(t)Le(t)

≤ 2x̂>(t)Lx̂(t) + 2‖L‖‖e(t)‖2 ≤ 2x̂>(t)Lx̂(t) +
‖L‖σmax

mini∈[n]{Lii}

n∑
i=1

q̂i(t)

=
(
2 +

‖L‖σmax

mini∈[n]{Lii}

)
x̂>(t)Lx̂(t), (8.22)

where the first inequality holds since L is positive semi-definite as well as 2a>Lb ≤ a>La+

b>Lb,∀a, b ∈ Rn, and the second inequality holds due to a>La ≤ ‖L‖‖a‖2,∀a ∈ Rn, and
the last inequality holds due to (8.21). We then obtain

V̇(x(t)) ≤ −
(1 − σmax) mini∈[n]{Lii}

4 mini Lii + 2‖L‖σmax
x>(t)Lx(t)

≤ −
(1 − σmax) mini∈[n]{Lii}

4 mini∈[n]{Lii} + 2‖L‖σmax
ρ2(L)x>(t)Knx(t)

= −
(1 − σmax) mini∈[n]{Lii}

2 mini∈[n]{Lii} + ‖L‖σmax
ρ2(L)V(x(t)).

Hence,

V(x(t)) ≤ V(x(0))e−
(1−σmax) mini∈[n] {Lii }

2 mini∈[n] {Lii }+‖L‖σmax
ρ2(L)t

, ∀t ≥ 0. (8.23)

252 Distributed dynamic event-triggered control algorithms

This implies that system (8.1)–(8.3) reaches average consensus exponentially if the
underlying graph G is connected.

Remark 8.7. Similar to the analysis in Remark 8.2, (8.20) is a static triggering law and it
is also distributed. Moreover, similar to the analysis in Remark 8.3, we can conclude that
the distributed triggering law (6) proposed in [194] is a special case of the static triggering
law (8.20).

In [357] it is argued that the distributed triggering law (6) in [194] “does not discard
the possibility of an infinite number of events happening in a finite time period”. Zeno
behavior may also not be excluded under the static triggering law (8.20). In the following,
in order to explicitly exclude Zeno behavior, we will replace the static triggering law (8.20)
by the dynamic one.

Similar to (8.10), we propose an internal dynamic variable χi to agent i:

χ̇i(t) = −βiχi(t) − δi

(
Liie2

i (t) −
σi

2
q̂i(t)

)
, i ∈ [n], (8.24)

where χi(0) > 0, βi > 0, δi ∈ [0, 1], and σi ∈ [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. Our second main result is given in the following
theorem.

Theorem 8.2. Consider the multi-agent system (8.1)–(8.3). Suppose that the underlying
graph G is undirected. Given θi > 1−δi

βi
and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : θi

(
Liie2

i (t) −
σi

2
q̂i(t)

)
≥ χi(t), t ≥ ti

k

}
, (8.25)

where q̂i(t) and χi(t) are defined in (8.19) and (8.24), respectively. Then,

(i) average consensus is achieved exponentially if and only if G is connected;

(ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. Similar to
(8.13), we have

χi(t) ≥ χi(0)e−(βi+
δi
θi

)t
> 0, ∀t ≥ 0.

Consider a Lyapunov candidate

F(x(t), χ(t)) = V(x(t)) +

n∑
i=1

χi(t),

where χ(t) = col(χ1(t), . . . , χn(t)). Then the derivative of F(x(t), χ(t)) along the trajectories
of the multi-agent system (8.1)–(8.3) and system (8.24) satisfies

Ḟ(x(t), χ(t)) = V̇(x(t)) +

n∑
i=1

χ̇i(t)

8.3. Distributed dynamic event-triggered control algorithms 253

≤ −

n∑
i=1

1
2

q̂i(t) +

n∑
i=1

Liie2
i (t) −

n∑
i=1

βiχi(t) +

n∑
i=1

δi

(σi

2
q̂i(t) − Liie2

i (t)
)

= −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

βiχi(t) +

n∑
i=1

(δi − 1)
(σi

2
q̂i(t) − Liie2

i (t)
)

≤ −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

βiχi(t) +

n∑
i=1

1 − δi

θi
χi(t)

= −

n∑
i=1

1
2

(1 − σi)q̂i(t) −
n∑

i=1

(
βi −

1 − δi

θi

)
χi(t)

≤ −(1 − σmax)
n∑

i=1

1
2

q̂i(t) − kd

n∑
i=1

χi(t)

= −
1
2

(1 − σmax)x̂>(t)Lx̂(t) − kd

n∑
i=1

χi(t).

Similar to the derivation process to get (8.22), we have

x>(t)Lx(t) ≤ 2x̂>(t)Lx̂(t) + 2‖L‖‖e(t)‖2

≤ 2x̂>(t)Lx̂(t) +
‖L‖σmax

mini∈[n]{Lii}

n∑
i=1

q̂i(t) +
2‖L‖

mini∈[n]{θiLii}

n∑
i=1

χi(t)

=
(
2 +

‖L‖σmax

mini∈[n]{Lii}

)
x̂>(t)Lx̂(t) +

2‖L‖
mini∈[n]{θiLii}

n∑
i=1

χi(t)

≤ kx x̂>(t)Lx̂(t) +
2‖L‖

mini∈[n]{θiLii}

n∑
i=1

χi(t),

where

kx = max
{
2 +

‖L‖σmax

mini∈[n]{Lii}
,

2(1 − σmax)‖L‖
kd mini∈[n]{θiLii}

}
.

Then,

−
1
2

(1 − σmax)x̂>(t)Lx̂(t) ≤ −
1

2kx
(1 − σmax)x>(t)Lx(t) +

kd

2

n∑
i=1

χi(t).

Thus,

Ḟ(x(t), χ(t)) ≤ −
1

2kx
(1 − σmax)x>(t)Lx(t) −

kd

2

n∑
i=1

χi(t)

≤ −
ρ2(L)
2kx

(1 − σmax)x>(t)Knx(t) −
kd

2

n∑
i=1

χi(t)

254 Distributed dynamic event-triggered control algorithms

= −
ρ2(L)

kx
(1 − σmax)V(t) −

kd

2

n∑
i=1

χi(t)

≤ kF F(x(t), χ(t)),

where

kF = min
{ρ2(L)

kx
(1 − σmax),

kd

2

}
.

Hence,

V(x(t)) < F(x(t), χ(t)) ≤ F(x(0), χ(0))e−kF t, ∀t ≥ 0. (8.26)

This implies that system (8.1)–(8.3) reaches average consensus exponentially.
(ii) The way to exclude Zeno behavior is the same as the proof of Theorem 8.1. �

Remark 8.8. The triggering law (8.25) is dynamic and it is also distributed. One can
easily check that every agent does not need to continuously access its neighbors’ states
when implementing the static triggering law (8.20) and dynamic triggering law (8.25).
The static triggering law (8.20) can be seen as a limit case of the dynamic triggering law
(8.25) when θi grows large. Thus, from the analysis in Remark 8.7, we can conclude that the
distributed triggering law (6) proposed in [194] is a special case of the dynamic triggering
law (8.25).

If we choose βi large enough, then kF =
(1−σmax) mini∈[n]{Lii}

2 mini∈[n]{Lii}+‖L‖σmax
ρ2(L). Hence, in this case,

from (8.23) and (8.26), we know that the trajectories of the multi-agent system (8.1)–
(8.3) under static triggering law (8.20) and dynamic triggering law (8.25) have the same
guaranteed decay rate given by (8.23).

Remark 8.9. In [358], the authors propose three distributed triggering laws for multi-
agent systems with event-triggered control and directed topologies. With some modifica-
tions, similar to this chapter, the three distributed triggering laws in [358] can be extended
to dynamic triggering laws as the one in Theorems 8.1 and 8.2. In other words, the results
in Theorems 8.1 and 8.2 can be extended to the case that the underlying graph is directed
and has a directed spanning tree. Moreover, the results in Theorems 8.1 and 8.2 also can
most likely be extended to general linear and even nonlinear multi-agent systems. However,
in the general linear case, the triggering laws are not distributed anymore since global
information, such as the eigenvalues of the Laplacian matrix, is needed. Actually, to the
best of our knowledge, in all the existing studies that considered event-triggered control
for general linear multi-agent systems, the use of the eigenvalues of the Laplacian matrix
cannot be avoided. And for the nonlinear case, some standard continuity assumptions,
such as upper and lower Lipschtiz continuity assumptions, for the nonlinear dynamics are
normally required.

8.4. Distributed self-triggered control algorithm 255

8.4 Distributed self-triggered control algorithm

When applying the dynamic triggering law (8.25) in Theorem 8.2, although each agent
avoids to continuously monitor its neighbors’ states, agent i still needs to continuously
sense its own state since it has to continuously monitor the triggering law (8.25) and
continuously listen to x j(t

j
k), k ∈ N+, j ∈ Ni, since it does not know the triggering times

of its neighbors, t j
k, k ∈ N+, j ∈ Ni, in advance. The way to avoid continuous sensing is

straightforward since the control input of each agent is piecewise constant and the state of
each agent can be predicted by simple calculation as (8.27) in the following. The challenge
is to avoid continuous listening. If every agent i ∈ [n], at its current triggering time ti

k,
can predict (determine) its next triggering time ti

k+1 and broadcast it to its neighbors, then
at time ti

k agent i knows agent j’s latest triggering time t j
k j(ti

k)
which is before ti

k and its

next triggering time t j
k j(ti

k)+1
which is after ti

k, for j ∈ Ni. In this case, agent i only needs

listen to and receive information at {t j
k}
∞
k=1, j ∈ Ni since it knows these time instants in

advance. In this case, each agent only needs to to sense its state information and broadcast
its triggering information at its own triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. Inspired by this, in the following
we will propose a self-triggered algorithm such that at time ti

k each agent i could determine
ti
k+1 in advance. The idea is explained below.

Denote ui j(t) = x j(t
j
k j(t)

) − xi(ti
ki(t)

), then we have

ẋi(t) = ui(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

) = −

n∑
j=1

Li jui j(t).

Thus,

xi(t) = xi(ti
k) +

∫ t

ti
k

ui(s)ds = xi(ti
k) −

∫ t

ti
k

n∑
j=1

Li jui j(s)ds, t ∈ [ti
k, t

i
k+1). (8.27)

Then, for t ∈ [ti
k, t

i
k+1), we have

|ei(t)| = |xi(ti
k) − xi(t)| =

∣∣∣∣∣ n∑
j=1

∫ t

ti
k

Li jui j(s)ds
∣∣∣∣∣. (8.28)

Here we need to highlight that ui j(t) may not be a constant for all t ∈ [ti
k, t

i
k+1) since x j(t

j
k j(t)

)
may not be a constant for all t ∈ [ti

k, t
i
k+1). So at time ti

k, we do not know the value of |ei(t)|
for all t ∈ (ti

k, t
i
k+1) in advance. However, if at time ti

k we can estimate the upper bound of
ui j(t), then we can also estimate the upper bound of |ei(t)|. In this case, we can estimate ti

k+1
at time ti

k.
In order to estimate the upper bound of ui j(t), we first need to simplify the dynamic

triggering laws (8.11) and (8.25) in Theorems 8.1 and 8.2. As Remark 8.5 pointed out,
if we choose δi = 0 in (8.10) and σi = 0 in (8.11), then ηi(t) = ηi(0)e−βit and now the

256 Distributed dynamic event-triggered control algorithms

inequality in (8.11) is |ei(t)| ≥ αie−
βi
2 t with αi =

√
ηi(0)/

√
θiLii > 0. Here, αi can be chosen

as any positive real numbers since ηi(0) can be chosen as any positive real numbers. Then
from Theorem 8.1, we derive the following corollary1.

Corollary 8.1. Consider the multi-agent system (8.1)–(8.3). Suppose that the underlying
graph G is undirected. Given α > 0, β > 0 and the first triggering time ti

1 = 0, agent i
determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min

{
t : |ei(t)| ≥

α
√

Lii
e−

β
2 t, t ≥ ti

k

}
. (8.29)

Then,

(i) average consensus is achieved exponentially if and only if G is connected;

(ii) there is no Zeno behavior.

Remark 8.10. The design parameters α and β can be distributively chosen for each agent
in the above corollary, but their effects on inter-event times and decay rate are not clear in
theory. The reason that we require every agent to choose the same design parameters here
is that it is convenient to design the self-triggered algorithm in the following.

Next, let us estimate the upper bound of |xi(t) − x j(t)| which will be used later. From
the way to determine the triggering times in (8.29), we have

|ei(t)| ≤
α
√

Lii
e−

β
2 t, ∀t ≥ 0. (8.30)

From (8.5) and (8.30), we have

V̇(x(t)) ≤ −
n∑

i=1

1
2

qi(t) +

n∑
i=1

Liie2
i (t) ≤ −

1
2

x>(t)Lx(t) +

n∑
i=1

α2e−βt

≤ −
1
2
ρ2(L)x>(t)Knx(t) + nα2e−βt = −ρ2(L)V(x(t)) + nα2e−βt.

Then,

dV(t)eρ2(L)t

dt
≤ nα2e(ρ2(L)−β)t.

Thus,

V(x(t)) ≤

V(0)e−ρ2(L)t + nα2

ρ2(L)−β (e−βt − e−ρ2(L)t), if ρ2(L) , β,
V(0)e−ρ2(L)t + nα2te−ρ2(L)t, if ρ2(L) = β.

1If we choose δi = 0 in (8.24) and σi = 0 in (8.25), then Corollary 8.1 is also a special case of Theorem 8.2.

8.4. Distributed self-triggered control algorithm 257

From the fact that for any given ε > 0, eεt ≥ 1 + εt holds, we have

V(x(t)) ≤ k1e−ρ2(L)t + k2e−k3t, ∀t ≥ 0,

where

k1 =

 V(x(0)) − nα2

ρ2(L)−β , if ρ2(L) , β,
V(x(0)) − nα2

ε
, if ρ2(L) = β,

k2 =

 nα2

ρ2(L)−β , if ρ2(L) , β,
nα2

ε
, if ρ2(L) = β,

k3 =

 β, if ρ2(L) , β,
β − ε, if ρ2(L) = β,

and ε ∈ (0, β) is a design parameter. Then, from (8.4), we have
n∑

i=1

|xi(t) − x̄(0)|2 = 2V(x(t)) ≤ 2(k1e−ρ2(L)t + k2e−k3t), ∀t ≥ 0.

Thus,

|xi(t) − x j(t)| ≤ |xi(t) − x̄(0)| + |x j(t) − x̄(0)|

≤

√
2(|xi(t) − x̄(0)|2 + |x j(t) − x̄(0)|2) ≤ f x(t), ∀t ≥ 0,

where

f x(t) = 2
√

k1e−ρ2(L)t + k2e−k3t.

Now, let us estimate the upper bound of ui j(t) as follows

|ui j(t)| = |x j(t
j
k j(t)

) − xi(ti
ki(t))| = |x j(t

j
k j(t)

) − x j(t) + x j(t) − xi(t) + xi(t) − xi(ti
ki(t))|

≤ |x j(t
j
k j(t)

) − x j(t)| + |x j(t) − xi(t)| + |xi(t) − xi(ti
ki(t))|

≤
(α
√

Lii
+

α√
L j j

)
e−

β
2 t + f x(t), ∀t ≥ 0. (8.31)

Finally, let us estimate the upper bound of ei(t). For t ∈ [ti
k, t

i
k+1), denote

t1
i j(t) = min

{
t, t j

k j(ti
k)+1

}
, t2

i j(t) = max
{
t, t j

k j(ti
k)+1

}
. (8.32)

Figure 8.1 illustrates the relation of ti
k, ti

k+1, t ∈ [ti
k, t

i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t) and t2
i j(t).

From the definition of ui j(t) and t1
i j(t), we know that ui j(t) is constant for all t ∈

[ti
k, t

1
i j(t)]. And for t > t1

i j(t), ui j(t) can be bounded above by (8.31). Thus, from (8.28),
for t ∈ [ti

k, t
i
k+1) we have

|ei(t)| =
∣∣∣∣∣ n∑

j=1

∫ t

ti
k

Li jui j(s)ds
∣∣∣∣∣ =

∣∣∣∣∣ n∑
j=1

Li j

(∫ t1
i j

ti
k

ui j(s)ds +

∫ t2
i j

t j

k j (tik)+1

ui j(s)ds
)∣∣∣∣∣ ≤ gi(t),

258 Distributed dynamic event-triggered control algorithms

 0

 𝑡𝑡
𝑘𝑘𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖)
𝑗𝑗

𝑡𝑡
𝑘𝑘𝑗𝑗�𝑡𝑡𝑘𝑘

𝑖𝑖 �+1
𝑗𝑗

 𝑡𝑡𝑘𝑘𝑖𝑖

𝑡𝑡𝑘𝑘+1𝑖𝑖

𝑡𝑡𝑖𝑖𝑗𝑗1 (𝑡𝑡)

𝑡𝑡𝑖𝑖𝑗𝑗2 (𝑡𝑡)

 Time

(a) The case of t j
k j(tik)+1

< ti
k+1.

 0

 𝑡𝑡
𝑘𝑘𝑗𝑗(𝑡𝑡𝑘𝑘

𝑖𝑖)
𝑗𝑗

𝑡𝑡
𝑘𝑘𝑗𝑗�𝑡𝑡𝑘𝑘

𝑖𝑖 �+1
𝑗𝑗

 𝑡𝑡𝑘𝑘𝑖𝑖

𝑡𝑡𝑘𝑘+1𝑖𝑖

𝑡𝑡𝑖𝑖𝑗𝑗1 (𝑡𝑡)

𝑡𝑡𝑖𝑖𝑗𝑗2 (𝑡𝑡)

 Time

(b) The case of t j
k j(tik)+1

≥ ti
k+1.

Figure 8.1: Illustration of the relation of ti
k, ti

k+1, t ∈ [ti
k, t

i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t) and t2
i j(t).

where

gi(t) =

∣∣∣∣∣ n∑
j=1

Li j(t1
i j − ti

k)ui j(ti
k)
∣∣∣∣∣ − n∑

j=1, j,i

Li j

∫ t2
i j

t j

k j (tik)+1

((α
√

Lii
+

α√
L j j

)
e−

β
2 s + f x(s)

)
ds.

Hence, one necessary condition to guarantee that the inequality in (8.29) holds, i.e.,

|ei(t)| ≥
α
√

Lii
e−

β
2 t, ∀t ∈ [ti

k, t
i
k+1),

is

gi(t) ≥
α
√

Lii
e−

β
2 t, ∀t ∈ [ti

k, t
i
k+1).

Noting that α
√

Lii
e−

β
2 t decreases with respect to t, gi(t) increases with respect to t during

[ti
k, t

i
k+1), and gi(ti

k) = 0, for given ti
k, agent i can estimate ti

k+1 by solving

gi(t) =
α
√

Lii
e−

β
2 t, t ≥ ti

k. (8.33)

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, x j(t

j
k j(ti

k)
), L j j, ∀ j ∈ Ni, then it

can determine its next triggering time ti
k+1 by solving (8.33). The above implement idea is

summarized in Algorithm 8.1.
The following theorem proves that consensus is achieved exponentially and there is no

Zeno behavior when every agent performs Algorithm 8.1.

8.4. Distributed self-triggered control algorithm 259

Algorithm 8.1 Distributed Self-Triggered Control Algorithm

1: Choose α > 0, β > 0 and ε ∈ (0, β);
2: Agent i ∈ [n] sends Lii to its neighbors;
3: Agent i initializes ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i senses its own state xi(ti
k), and updates its control input ui(ti

k)
by (8.3), and determines ti

k+1 by (8.33)1, and broadcasts its triggering information
{ti

k+1, xi(ti
k)} to its neighbors;

5: At agent i’s neighbors’ triggering times which are between [ti
k, t

i
k+1], agent i listens to

and receives triggering information from its neighbors2, and updates its control input
ui(·) by (8.3);

6: Agent i resets k = k + 1, and goes back to Step 4.

Theorem 8.3. Consider the multi-agent system (8.1)–(8.3). Suppose that the underlying
graph G is undirected. If all agents perform Algorithm 8.1, then

(i) average consensus is achieved exponentially if and only if G is connected;

(ii) there is no Zeno behavior.

Proof. The necessity is straightforward.
Under Algorithm 8.1, we have |ei(t)| ≤ α

√
Lii

e−
β
2 t for all i ∈ [n] and t ≥ 0. Then from

Corollary 8.1, we know that consensus is achieved exponentially.
The method of the exclusion of Zeno behavior is similar to the corresponding proof of

Theorem 8.1. �

Remark 8.11. Self-triggered control approaches has also been proposed in [193, 200,
358,366–369]. However, one potential drawback of these studies and other studies using a
similar approach is that continuous listening is still needed. One can verify that continuous
sensing, broadcasting, listening, and receiving are avoided under Algorithm 8.1. Although
these are also avoided in [351, 355, 357, 370] by combining event-triggered control with
periodic sampling, periodic sensing and listening are still needed. Moreover, it is not clear
how to show that the average inter-event time is strictly larger than the required sampling
period in theory. In order to perform Algorithm 8.1, the global parameters V(x(0)), n, and
ρ2(L) are needed to be known in advance, which may be a drawback.

Table 8.1 summarizes the communication requirements for agent i ∈ [n] if the dynamic
triggering laws (8.11) and (8.25), and Algorithm 8.1 are performed.

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (8.33) when tik = t j
k j(tik)

.
2In other words, agent i onlys listen to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided.

260 Distributed dynamic event-triggered control algorithms

Table 8.1: Summary of the communication requirements for agent i when dynamic
triggering laws (8.11) and (8.25), and Algorithm 8.1 are performed.

Law (8.11) Law (8.25) Algorithm 8.1

Broadcasting time All t ≥ 0 {ti
k}
∞
k=1 {ti

k}
∞
k=1

Listening time All t ≥ 0 All t ≥ 0 {t j
k , j ∈ Ni}

∞
k=1

Receiving time All t ≥ 0 {t j
k , j ∈ Ni}

∞
k=1 {t j

k , j ∈ Ni}
∞
k=1

Information broadcasted {xi(t), t ≥ 0} {xi(ti
k)}∞k=1 {ti

k+1, xi(ti
k)}∞k=1

Zeno behavior No No No

8.5 Simulations

In this section, a numerical example is given to demonstrate the presented results. Consider
a connected undirected graph in Figure 2.2 (a). We choose an arbitrary initial state x(0) =

[6.2945, 8.1158,−7.4603, 8.2675]>. Then the average initial state is x̄(0) = 3.8044.
Figure 8.2 (a) shows the state evolutions of the multi-agent system (8.1)–(8.3) under the

static triggering law (8.7) with σi = 0.5. Figure 8.2 (b) shows the corresponding triggering
times for each agent.

Figure 8.3 (a) shows the state evolutions of the multi-agent system (8.1)–(8.3) under
the dynamic triggering law (8.11) with σi = 0.5, ηi(0) = 10, βi = 1, δi = 1 and θi = 1.
Figure 8.3 (b) shows the corresponding triggering times for each agent.

Figure 8.4 (a) shows the state evolutions of the multi-agent system (8.1)–(8.3) under
the static triggering law (8.20) with σi = 0.5. Figure 8.4 (b) shows the corresponding
triggering times for each agent.

Figure 8.5 (a) shows the state evolutions of the multi-agent system (8.1)–(8.3) under
the dynamic triggering law (8.25) with σi = 0.5, χi(0) = 10, βi = 1, δi = 1 and θi = 1.
Figure 8.5 (b) shows the corresponding triggering times for each agent.

Figure 8.6 (a) shows the state evolutions of the multi-agent system (8.1)–(8.3) when
each agent performs Algorithm 8.1 with α = 10, β = 1 and ε =

β
2 . Figure 8.6 (b) shows the

corresponding triggering times for each agent. And the smallest inter-event time is 0.009
in this simulation.

It can be seen that average consensus is achieved when performing the four triggering
laws and Algorithm 8.1 proposed in this chapter. Moreover, as stated in Theorems 8.1–8.3,
from the simulations we can also see that there is no Zeno behavior under the dynamic
triggering laws (8.11) and (8.25) and Algorithm 8.1. It can also be seen that the average
inter-event times under the dynamic triggering laws (8.11) and (8.25) are in general
larger than these determined by the corresponding static triggering laws (8.7) and (8.20),
respectively, and they are also larger than that determined by Algorithm 8.1. Although there
is also no Zeno behavior under the static triggering laws (8.7) and (8.20) in the simulations,
it is still not clear if this could be proved in theory.

8.5. Simulations 261

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (8.1)–(8.3) under the static
triggering law (8.7).

(b) The triggering times for each agent.

Figure 8.2: Performance of the distributed static event-triggered control algorithm with
continuous broadcasting and receiving.

262 Distributed dynamic event-triggered control algorithms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (8.1)–(8.3) under the dynamic
triggering law (8.11).

(b) The triggering times for each agent.

Figure 8.3: Performance of the distributed dynamic event-triggered control algorithm with
continuous broadcasting and receiving.

8.5. Simulations 263

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (8.1)–(8.3) under the static
triggering law (8.20).

(b) The triggering times for each agent.

Figure 8.4: Performance of the distributed static event-triggered control algorithm with
discontinuous broadcasting and receiving.

264 Distributed dynamic event-triggered control algorithms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (8.1)–(8.3) under the dynamic
triggering law (8.25).

(b) The triggering times for each agent.

Figure 8.5: Performance of the distributed dynamic event-triggered control algorithm with
discontinuous broadcasting and receiving.

8.5. Simulations 265

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (8.1)–(8.3) when performing
Algorithm 8.1.

(b) The triggering times for each agent.

Figure 8.6: Performance of the distributed self-triggered control algorithm.

266 Distributed dynamic event-triggered control algorithms

8.6 Summary

In this chapter, we presented two dynamic triggering laws and one self-triggered algorithm
for multi-agent systems with event-triggered control over undirected graphs. We showed
that, some existing triggering laws are special cases of the proposed dynamic triggering
laws and average consensus is achieved exponentially if and only if the communication
graph is connected. In addition, Zeno behavior was excluded by proving that the triggering
time sequence of each agent is divergent. Moreover, each agent only needs to sense and
broadcast at its own triggering times, and to listen to and receive incoming information
from its neighbors at their triggering times. Thus continuous listening is avoided. Future
research directions include considering the influence of parameters in the proposed
dynamic triggering laws.

Chapter 9

Distributed event-triggered saturation
control algorithms

In this chapter, the global consensus problem for first-order continuous-time multi-
agent systems with input saturation is considered. We first show that the underlying
directed graph having a directed spanning tree is a necessary and sufficient condition
for global consensus; thus, this condition for consensus without input saturation extends
to the case with saturation constraints. Moreover, in order to reduce the overall need
of communication and system updates, we then propose an event-triggered consensus
protocol and a triggering law, which do not require any a priori knowledge of global
network parameters. Furthermore, in order to avoid continuous listening, we also propose
a self-triggered algorithm. It is shown that Zeno behavior is excluded for these systems and
that global consensus is achieved, again, if and only if the underlying directed graph has a
directed spanning tree. We use a new Lyapunov function to show the sufficient condition
and it inspires the triggering law. Numerical simulations are provided to illustrate the
effectiveness of the theoretical results.

This chapter is organized as follows. Section 9.1 gives the background. Section 9.2
reviews the global consensus problem for the first-order continuous-time multi-agent
systems with input saturation. Section 9.3 shows that the underlying digraph having
a directed spanning tree is a necessary and sufficient condition for global consensus.
Sections 9.4 and 9.5 use event- and self-triggered control to solve the same problem,
respectively. Simulations are given in Section 9.6. The chapter is concluded in Section 9.7.
Section 9.8 gives the proof of the main results.

9.1 Introduction

Physical systems are subject to physical constraints, such as input, output, communication,
and sensor constraints. These constraints normally lead to nonlinearities in the closed-
loop dynamics. Thus the behavior of each agent is affected and special attention to the
constraints needs to be taken in order to understand their influence on the consensus
convergence. Some recent investigations on this problem include, for example, [371]

267

268 Distributed event-triggered saturation control algorithms

considered the global consensus problem for multi-agent systems with input saturation;
[372] considered the leader-following consensus problem for multi-agent systems subject
to input saturation; [373] studied global consensus for discrete-time multi-agent systems
with input saturation constraint; [374, 375] investigated initial conditions for achieving
consensus in the presence of output saturation; [371] shown that the distributed consensus
protocol asymptotically leads to consensus, for multi-agent systems with input saturations
and directed topologies; and [376] achieved the same result under a more general problem
settings.

In almost all real applications, actuators have bounds. However, there are few event-
triggered studies took saturation into consideration. In fact, even for a single-agent system
with input saturation and event-triggered control, the stability problem is challenging. [377]
addressed the influence of actuator saturation on event-triggered control. [378] studied a
global stabilization of multiple integrator system using event-triggered bounded control.
Consensus problem with input saturation and event-triggered control is challenging since
the constraints lead to nonlinearities in the closed-loop dynamics. [379] proposed a
distributed event-triggered control strategy to achieve consensus for multi-agent systems
subject to input saturation through output feedback. Different from this chapter, the
underlying graph they consider is undirected and they do not exclude Zeno behavior in
their analysis. [380] investigated the event-triggered semi-global consensus problem for
general linear multi-agent systems subject to input saturation. However, the underlying
graph is assumed to be undirected and in order to determine the triggering times, each
agent needs to continuously measure its neighbors’ states, i.e., continuous communication
is still needed.

In this chapter, we solve the global consensus problem for multi-agent systems with
input saturation over digraphs. We have the following contributions.

(C9.1) We first show that the multi-agent systems achieve consensus if and only if the
underlying digraph has a directed spanning tree. In other words, the existence of a
directed spanning tree is a necessary and sufficient condition for consensus for both
multi-agent systems with and without input saturation, despite that the saturation
gives rise to a more complex nonlinear dynamic behavior.

(C9.2) We then consider event-triggered control and propose a distributed triggering law,
which leads to global consensus under the same necessary and sufficient directed
spanning tree condition. By distributed, we mean that the event-triggered control
input together with the triggering law do not require any a priori knowledge of global
network parameters. The triggering law is a special kind of dynamic triggering law,
and is free from Zeno behavior, and is inspired by the Lyapunov function we use in
the proof of the above consensus result. The Lyapunov function is different from the
one in [371, 376]. As a result, continuous broadcasting, receiving, and updating are
avoided.

(C9.3) Note that in the above distributed triggering law, continuous sensing is needed since
each agent has to continuously monitor the triggering law and continuous listening is
also needed since the triggering times are determined during runtime and not known

9.2. Global consensus for multi-agent systems with input saturation 269

in advance. Inspired by the idea of the self-triggered algorithm in Section 8.4, we
also propose a self-triggered algorithm to avoid continuous sensing and listening.

9.2 Global consensus for multi-agent systems with input saturation

We consider a set of n agents modeled as single integrators with input saturation:

ẋi(t) = sath(ui(t)), i ∈ [n], t ≥ 0, (9.1)

where xi(t) ∈ Rp and ui(t) ∈ Rp are the state and the control input of agent i, respectively,
p > 0 is the state dimension, and sath(·) is the saturation function with h being a positive
constant referred to as saturation level. For any s = col(s1, . . . , sp) ∈ Rp, the saturation
function sath(s) is defined (with slight abuse of notation) as

sath(s) = col(sath(s1), . . . , sath(sp)), (9.2)

where

sath(si) =

h, if si ≥ h,
si, if |si| < h,
−h, if si ≤ −h.

Remark 9.1. For the ease of presentation, we focus on the case where all the agents have
the same saturation level. The analysis can be readily extended to the case where the agents
have different saturation levels.

Definition 9.1 (Global consensus). We say global consensus for the multi-agent system
(9.1) is achieved if

lim
t→∞
‖xi(t) − x j(t)‖ = 0, ∀i, j ∈ [n], ∀xl(0) ∈ Rp, l ∈ [n].

Our first goal in this chapter is to solve the following problem.

Problem 9.1. Design control input for the saturated multi-agent system (9.1) such that
global consensus is achieved.

The following properties about the saturation function are useful for our analysis.

Lemma 9.1. For any real constants a and b,

1
2

a2 ≥

∫ a

0
sath(s)ds ≥

1
2

(sath(a))2, (a − b)2 ≥ (sath(a) − sath(b))2.

Lemma 9.2. Suppose that L is the Laplacian matrix associated with a digraph G that
has a directed spanning tree. For x1, . . . , xn ∈ R

p, define πi = sath(−
∑n

j=1 Li jx j). Then
π1 = · · · = πn if and only if x1 = · · · = xn.

270 Distributed event-triggered saturation control algorithms

Agent 𝑖𝑖

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)
 Channel

Control

Sensor Sensor

Control

Agent 𝑗𝑗

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)
 𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)

𝑢𝑢𝑖𝑖(𝑡𝑡)

𝑢𝑢𝑗𝑗(𝑡𝑡)

Figure 9.1: Illustration of how one agent communicates with another agent when the
control input is saturated.

Proof. The sufficiency is straightforward. Let us show the necessity. Let µi = −
∑n

j=1 Li jx j.
From π1 = · · · = πn, we know that for any l = 1, . . . , p, cl(µi) > 0, ∀i ∈ [n], or cl(µi) <
0, ∀i ∈ [n], or cl(µi) = 0, ∀i ∈ [n], where cl(µi) is the l-th component of µi.

From Lemma 2 in [371], we know that neither cl(µi) > 0, ∀i ∈ [n] nor cl(µi) <
0, ∀i ∈ [n] holds. Thus −

∑n
j=1 Li jcl(x j) = cl(µi) = 0, ∀i ∈ [n]. From Lemma 2.1, we

know rank(L) = n − 1. Thus, we have cl(xi) = cl(x j), ∀i, j ∈ [n]. Hence x1 = · · · = xn. �

9.3 Distributed continuous-time saturation control algorithm

In this section, we show that consensus is achieved by the classic distributed continuous-
time consensus protocol even in the presence of input saturation if G has a directed
spanning tree. The mathematical analysis is inspired by [381].

We consider the classic distributed continuous-time consensus protocol

ui(t) = −

n∑
j=1

Li jx j(t), (9.3)

where Li j is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is directed. The communication in a multi-agent system described by
(9.1) and (9.3) is illustrated in Figure 9.1. Note that the control signal is saturated before it
is transmitted to the actuator..

In the following, we show a necessary and sufficient condition to consensus for system
(9.1) and (9.3).

Theorem 9.1. Consider the multi-agent system (9.1) and (9.3). Global consensus is
achieved if and only if the digraph G has a directed spanning tree.

9.4. Distributed event-triggered saturation control algorithm 271

Proof. The necessity in Theorem 9.1 is a direct result of Lemma 2.3. We illustrate the main
idea of the proof of sufficiency here, while the detailed proof is given in Section 9.8.1. We
first consider the case where G is strongly connected, i.e., M = 1 in (2.2), and show that
consensus is achieved. We next consider the case where G has a directed spanning tree
but it is not strongly connected, i.e., M ≥ 2. From the first case (M = 1), it follows
that all agents in SCCM achieve consensus since SCCM is either strongly connected
or of dimension one. Then, we consider SCCM−1 and note that all agents in SCCM−1,
which is either strongly connected or of dimension one, achieve the same consensus
value as those in SCCM , since the agents in SCCM and SCCM−1 are not influenced by
SCC1, . . . ,SCCM−2 and the consensus problem of this subsystem can be treated as a leader–
follower problem where agents in SCCM are leaders and agents in SCCM−1 are followers.
Notice that SCC1, . . . ,SCCM−2, are either strongly connected or of dimension one. By
applying a similar analysis, consensus of SCCm,SCCm+1, . . . ,SCCM can be treated as
a leader–follower consensus problem with agents in SCCM ,SCCM−1, . . . ,SCCm+1 being
leaders and agents in SCCm being followers. Therefore, the result follows. �

Remark 9.2. The proof of Theorem 9.1 is based on the Lyapunov function

V(x(t)) =

n∑
i=1

ξi

p∑
l=1

∫ −
∑n

j=1 Li jcl(x j(t))

0
sath(s)ds, (9.4)

where x(t) = col(x1(t), . . . , xn(t)) and ξ = col(ξ1, . . . , ξn) is the vector defined in Lemma
2.1. It is different from the one used in [371]. In addition, our Lyapunov function facilitates
the design of event-triggered control as shown in Section 9.4.

Remark 9.3. When h → ∞, i.e., the multi-agent system is free from saturation, Theorem
9.1 corresponds to the well-known result for the consensus problem of multi-agent systems
without saturation [334, 335]. The main differences between the case with and without
saturation are the convergence speed and the consensus value. For the saturated case,
the convergence speed is slower and the consensus value is not fully determined by the
Laplacian matrix L and the initial states of the agents. From the proof of Theorem 9.1, we
know that the saturation is no longer active after a finite time T2 ≥ 0 which depends on
the initial value of each agent, the saturation level, and the communication network. Thus
after T2 the convergence speed is exponential and the consensus value is determined by the
state of each agent at T2.

9.4 Distributed event-triggered saturation control algorithm

To avoid continuous exchange of information among agents and update of actuators, we
equip the consensus protocol (9.3) with an event-triggered communication scheme. The
control signal is only updated when the triggering condition is satisfied. It results in the
following multi-agent system with input saturation and event-triggered control input

ẋi(t) = sath(ûi(t)), i ∈ [n], t ≥ 0, (9.5)

272 Distributed event-triggered saturation control algorithms

ûi(t) = −

n∑
j=1

Li jx j(t
j
k j(t)

). (9.6)

Note that the consensus protocol (9.6) only updates at the triggering times and is constant
between two consecutive triggering times. For simplicity, let x̂i(t) = xi(ti

ki(t)
), and ei(t) =

x̂i(t) − xi(t).
Our second goal in this chapter is to solve the following problem.

Problem 9.2. Propose methods to determine the triggering times such that consensus is
reached, while continuous exchange of information, continuous update of actuators, and
Zeno behavior are avoided.

This problem is solved by the following theorem.

Theorem 9.2. Consider the multi-agent system (9.5)–(9.6). Given αi > 0, βi > 0 and the
first triggering time ti

1 = 0, agent i determines the triggering times {ti
k}
∞
k=2 by

ti
k+1 = min{t : ‖ei(t)‖2 ≥ αie−βit, t ≥ ti

k}. (9.7)

Then,

(i) there is no Zeno behavior;

(ii) global consensus is achieved iff the underlying digraphG has a directed spanning tree.

Proof. The proof is given in Section 9.8.2. �

Remark 9.4. The event-triggered control input (9.6) together with the triggering law (9.7)
is fully distributed. That is, each agent only requires its own state information and its
neighbors’ state information, without any a priori knowledge of any global parameter,
such as the eigenvalue of the Laplacian matrix. This is different from [195, 366].

9.5 Distributed self-triggered saturation control algorithm

When performing the event-triggered control input (9.6) together with the triggering law
(9.7), each agent needs to broadcast its state to its neighbors at its triggering times, and
to receive and to update its input at its neighbors’ triggering times. Thus, continuous
broadcasting, receiving, and updating are avoided. However, continuous sensing is needed
since each agent has to continuously monitor the triggering law and continuous listening
is also needed since the triggering times are determined during runtime and not known in
advance. Inspired by the idea of self-triggered algorithm in Section 8.4, if each agent can
predict its next triggering time and broadcast it to its neighbors at the current triggering
time, then each agent only needs to sense and broadcast at its own triggering times, and to
listen to and receive incoming information from its neighbors at their triggering times. In
the following we will propose a self-triggered algorithm such that at time ti

k each agent i
could estimate ti

k+1. The idea is illustrated as follows.

9.5. Distributed self-triggered saturation control algorithm 273

From ẋi(t) = sath(ûi(t)), we have

xi(t) = xi(ti
k) +

∫ t

ti
k

sath(ûi(s))ds, t ∈ [ti
k, t

i
k+1].

Thus for t ∈ [ti
k, t

i
k+1), we have

‖ei(t)‖ = ‖xi(ti
k) − xi(t)‖ =

∥∥∥∥∥ ∫ t

ti
k

sath(ûi(s))ds
∥∥∥∥∥.

Here we need to highlight that sath(ûi(t)) may be not a constant vector for all t ∈ [ti
k, t

i
k+1)

since x j(t
j
k j(t)

) may be not a constant vector for all t ∈ [ti
k, t

i
k+1) which is due to that agent j

may trigger at some time instants in this interval. So at time ti
k we do not know what is the

value of ‖ei(t)‖ for all t ∈ (ti
k, t

i
k+1). However, we know sath(ûi(t)) is a constant vector for

t ∈ [ti
k,T

1
i (ti

k)), where

T 1
i (ti

k) = min
{
ti
k j(ti

k)+1, j ∈ Ni

}
,

i.e., T 1
i (ti

k) is the first triggering time of all agent i’s neighbors after time ti
k. Although,

at time ti
k, agent i does not know sath(ûi(t)) for t > T 1

i (ti
k), it knows |cl(sath(ûi(t)))| ≤ h,

l = 1 . . . , p. Hence

‖ei(t)‖ =

∥∥∥∥∥ ∫ t

ti
k

sath(ûi(s))ds
∥∥∥∥∥ =

∥∥∥∥∥ ∫ T 2
i (t)

ti
k

sath(ûi(s))ds +

∫ t

T 2
i (t)

sath(ûi(s))ds
∥∥∥∥∥ ≤ %i(t),

where

T 2
i (t) = min

{
T 1

i (ti
k), t

}
, for t ∈ [ti

k, t
i
k+1),

and

%i(t) = (T 2
i (t) − ti

k)‖sath(ûi(ti
k))‖ + (t − T 2

i (t))h
√

p, for t ∈ [ti
k, t

i
k+1).

Then, a necessary condition to guarantee that the inequality in (9.7) holds, i.e.,

‖ei(t)‖2 ≥ αie−βit, ∀t ∈ [ti
k, t

i
k+1),

is

%i(t) ≥
√
αie−

βi
2 t, ∀t ∈ [ti

k, t
i
k+1).

Noting that
√
αie−

βi
2 t decreases with respect to t, %i(t) increases with respect to t during

[ti
k, t

i
k+1), and %i(ti

k) = 0, for given ti
k, agent i can estimate ti

k+1 by solving

%i(t) =
√
αie−

βi
2 t, t ≥ ti

k. (9.8)

274 Distributed event-triggered saturation control algorithms

Algorithm 9.1 Distributed Self-Triggered Saturation Control Algorithm

1: Agent i ∈ [n] chooses αi > 0 and βi > 0;
2: Agent i initializes ti

1 = 0 and k = 1;
3: At time s = ti

k, agent i senses xi(ti
k), and updates ui(ti

k) by (9.6), and determines ti
k+1 by

(9.8)1, and broadcasts its triggering information {ti
k+1, xi(ti

k)} to its neighbors;
4: At agent i’s neighbors’ triggering times which are between [ti

k, t
i
k+1], agent i listens to

and receives triggering information from its neighbors2, and updates its ui(·) by (9.6);
5: Agent i resets k = k + 1, and goes back to Step 3.

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, x j(t

j
k j(ti

k)
), ∀ j ∈ Ni, then it

can estimate its next triggering time ti
k+1 by solving (9.8). The above implement idea is

summarized in Algorithm 9.1.
The following theorem shows that consensus is achieved and there is no Zeno behavior

when every agent performs Algorithm 9.1.

Theorem 9.3. Consider the multi-agent system (9.5)–(9.6). If all agents perform Algorithm
9.1, then,

(i) there is no Zeno behavior;

(ii) global consensus is achieved iff the underlying digraphG has a directed spanning tree.

Proof. The method of the exclusion of Zeno behavior is similar to the way in the proof of
Theorem 9.2. Under Algorithm 9.1, we have ‖ei(t)‖2 ≤ αie−βit for all i ∈ [n] and t ≥ 0.
Then from Theorem 9.2, we know that consensus is achieved. �

Remark 9.5. In order to perform Algorithm 9.1, no global parameters are used, i.e.,
Algorithm 9.1 is distributed.

9.6 Simulations

In this section, simulations are given to demonstrate the theoretical results. Consider again
the digraph and the corresponding multi-agent system in Figure 2.1. Let the saturation level
be h = 10. We choose an arbitrary initial state x(0) = [6.2945, 8.1158,−7.4603, 8.2675,
2.6472,−8.0492,−4.4300]>.

Figure 9.2 (a) shows the state evolutions of the multi-agent system (9.1)–(9.3) and
Figure 9.2 (b) shows the saturated input of each agent. We see that consensus is achieved,
even if some agents are saturated initially.

We next consider the case with event-triggered control input. Figure 9.3 (a) shows the
state evolutions of the multi-agent system (9.5)–(9.6) under the triggering law (9.7) with

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (9.8) when tik = t j
k j(tik)

.
2In other words, agent i only listen to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided.

9.6. Simulations 275

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (9.1)–(9.3).

0 0.5 1 1.5 2 2.5 3 3.5 4

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) The saturated input of each agent.

Figure 9.2: Performance of the distributed continuous-time saturation control algorithm.

276 Distributed event-triggered saturation control algorithms

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (9.5)–(9.6) under the triggering
law (9.7).

0 1 2 3 4 5 6 7 8 9 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) The saturated input of each agent.

Figure 9.3: Performance of the distributed event-triggered saturation control algorithm.

9.7. Summary 277

Figure 9.4: The triggering times for each agent determined by the distributed event-
triggered saturation control algorithm.

αi = 10 and βi = 1. Figure 9.3 (b) shows the saturated input of each agent. Figure 9.4 shows
the corresponding triggering times for each agent. We see that consensus is achieved also
in this case. Moreover, from Figure 9.4, we see that each agent only needs to broadcast its
state to its neighbors at its triggering times. Thus continuous broadcasting and receiving
are avoided.

Figure 9.5 (a) shows the state evolutions of the multi-agent system (9.5)–(9.6) when
each agent performs Algorithm 9.1 with αi = 10 and βi = 1. Figure 9.5 (b) shows the
saturated input of each agent. Figure 9.6 shows the corresponding triggering times for
each agent. From Figure 9.5 (a) and (b), we see that consensus is achieved and sath(ui(t))
is within the saturation level. Moreover, from Figure 9.6, we see that each agent only
needs to sense and broadcast at its triggering times. Thus continuous sensing, broadcasting,
receiving, and listening are avoided. Note however that both the event-triggered control
and self-triggered control give rise to a less smooth state evolutions because of the large
variability in the control input.

9.7 Summary

In this chapter, we studied the global consensus problem for multi-agent systems with
input saturation constraints over digraphs. We showed that global consensus is achieved if
and only if the underlying directed communication network has a directed spanning tree by
using a Laypunov function. Moreover, we considered event-triggered control and presented

278 Distributed event-triggered saturation control algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4
-8

-6

-4

-2

0

2

4

6

8

(a) The state evolutions of the multi-agent system (9.5)–(9.6) when each agent
performs Algorithm 9.1.

0 0.5 1 1.5 2 2.5 3 3.5 4

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) The saturated input of each agent.

Figure 9.5: Performance of the distributed self-triggered saturation control algorithm.

9.8. Proofs 279

Figure 9.6: The triggering times for each agent determined by the distributed self-triggered
saturation control algorithm.

a distributed triggering law and a self-triggered algorithm to reduce the overall need of
communication and system updates. We showed that global consensus is still achieved
under the same connectivity condition. Furthermore, Zeno behavior was excluded. Future
research directions include considering more general systems such as double integrator
systems and comparing the convergence speed between the saturation and non-saturation
cases.

9.8 Proofs

9.8.1 Proof of sufficiency of Theorem 9.1

The proof of sufficiency follows the structure outlined after the theorem stated in
Section 9.3. More specifically, we first show consensus for the case where M = 1 in (2.2)
which corresponds to only one SCC. Then, we consider the case M = 2 in (2.2), and show
that the agents in SCC1 and SCC2 reach consensus. We finally argue that the general case
where M > 2 follows in a similar way.
(i) In this step, we consider the situation where G is strongly connected, i.e., M = 1 in
(2.2).

We first prove that consensus is achieved. Consider the Lyapunov candidate (9.4)
introduced in Remark 9.2. From Lemma 2.1, we have ξi > 0, i ∈ [n], since G is strongly

280 Distributed event-triggered saturation control algorithms

connected. From Lemma 9.1, we know that

Vil(x(t)) :=
∫ −

∑n
j=1 Li jcl(x j(t))

0
sath(s)ds ≥ 0,

and Vil(x(t)) = 0 if and only if −
∑n

j=1 Li jcl(x j(t)) = 0. Then, we know that

V(x(t)) =

n∑
i=1

ξi

p∑
l=1

Vil(x) ≥ 0,

and V(x(t)) = 0 if and only if −
∑n

j=1 Li jcl(x j(t)) = 0 for all i ∈ [n] and l ∈ [p]. This is
furthermore equivalent to x1(t) = · · · = xn(t) due to rank(L) = n − 1. Hence, we have
V(x(t)) ≥ 0 and V(x(t)) = 0 if and only if x1(t) = · · · = xn(t).

The derivative of V(x(t)) along the trajectories of (9.1)–(9.3) is

V̇(x(t)) =

n∑
i=1

ξi

p∑
l=1

sath
(
−

n∑
j=1

Li jcl(x j(t))
)(
−

n∑
j=1

Li jcl(ẋ j(t))
)

=

n∑
i=1

ξi

p∑
l=1

sath(cl(ui(t)))
(
−

n∑
j=1

Li jsath(cl(u j(t)))
)

=

n∑
i=1

ξi(sath(ui(t)))>
n∑

j=1

−Li jsath(u j(t))

= −

n∑
i=1

ξiqs
i (t), (9.9)

where

qs
i (t) = −

1
2

n∑
j=1

Li j‖sath(u j(t)) − sath(ui(t))‖2 ≥ 0,

and the last equality of (9.9) holds since

−

n∑
i=1

ξiqs
i (t) =

n∑
i=1

1
2

n∑
j=1

ξiLi j‖sath(u j(t)) − sath(ui(t))‖2

=

n∑
i=1

1
2

n∑
j=1

ξiLi j(‖sath(u j(t))‖2 + ‖sath(ui(t))‖2)

−

n∑
i=1

n∑
j=1

ξiLi j(sath(u j(t)))>sath(ui(t))

=
1
2

n∑
j=1

‖sath(u j(t))‖2
n∑

i=1

ξiLi j +
1
2

n∑
i=1

ξi‖sath(ui(t))‖2
n∑

j=1

Li j

9.8. Proofs 281

−

n∑
i=1

n∑
j=1

ξiLi j(sath(u j(t)))>sath(ui(t))

= −

n∑
i=1

n∑
j=1

ξiLi j(sath(u j(t)))>sath(ui(t)), (9.10)

where we have used ξ>L = 0n and L1n = 0n in (9.10).
From (9.9), we know that V̇(x(t)) ≤ 0 and V̇(x(t)) = 0 if and only if sath(ui(t)) =

sath(u j(t)), ∀i, j ∈ [n]. It follows from Lemma 9.2 that, this is equivalent to xi(t) =

x j(t), ∀i, j ∈ [n]. Thus, by LaSalle Invariance Principle [382], we have

lim
t→∞
‖xi(t) − x j(t)‖ = 0, ∀i, j ∈ [n], (9.11)

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.
Noting that −

∑n
j=1 Li jcl(x j(t)), i ∈ [n], l ∈ [p] are continuous with respect to t, it

follows from (9.11) that there exists a constant T1 ≥ 0 such that

|cl(ui(t))| =
∣∣∣∣ − n∑

j=1

Li jcl(x j(t))
∣∣∣∣ ≤ h, ∀t ≥ T1.

In other words the saturation function in (9.1) is not active after T1. Thus,

ẋi(t) = −

n∑
j=1

Li jx j(t), t ≥ T1. (9.12)

Finally, we estimate the convergence speed, which will be used later. Consider the
function

Ṽ(x(t)) =
1
2

x>(t)(U ⊗ Ip)x(t). (9.13)

From Lemma 2.2, we know that Ṽ(x(t)) ≥ 0. The derivative of Ṽ(x(t)) along the trajectories
of system (9.12) satisfies

˙̃V(x(t)) = x>(t)(U ⊗ Ip)ẋ(t) = x>(t)(U ⊗ Ip)(−L ⊗ Ip)x(t) = −x>(t)(R ⊗ Ip)x(t)

≤ −
ρ2(R)
ρ(U)

x>(t)(U ⊗ Ip)x(t) = −2
ρ2(R)
ρ(U)

Ṽ(x(t)), ∀t ≥ T1.

Thus,

Ṽ(x(t)) ≤ Ṽ(x(T1))e−2 ρ2(R)
ρ(U) (t−T1), ∀t ≥ T1.

Noting that Ṽ(x(t)) is continuous with respect to t, there exists a positive constant C1 such
that

Ṽ(x(t)) ≤ C1, ∀t ∈ [0,T1].

282 Distributed event-triggered saturation control algorithms

Then,

Ṽ(x(t)) ≤ C2e−2 ρ2(R)
ρ(U) t, ∀t ≥ 0, (9.14)

where C2 = max{Ṽ(x(T1)), C1e2 ρ2(R)
ρ(U) T1 }.

Moreover, from Lemma 2.2, we know that

n∑
j=1

‖u j(t)‖2 = x>(t)(L>L ⊗ Ip)x(t) ≤
ρ(L>L)
ρ2(U)

x>(t)(U ⊗ Ip)x(t)

= 2
ρ(L>L)
ρ2(U)

Ṽ(x(t)) ≤ 2
ρ(L>L)
ρ2(U)

C2e−2 ρ2(R)
ρ(U) t, ∀t ≥ 0. (9.15)

(ii) In this step, we consider the case where M ≥ 2, but we first introduce some notations
which will be used later.

Let N0 = 0, Nl =
∑l

m=1 nm, l ∈ [M], where nm is the dimension of Lm,m. Then
the i-th agent in SCCm is the Nm−1 + i-th agent of the whole graph. In the following,
we exchangeably use vm

i and vNm−1+i to denote this agent. Accordingly, denote xm
i (t) =

xNm−1+i(t), x̂m
i (t) = x̂Nm−1+i(t), um

i (t) = uNm−1+i(t) and um(t) = col(um
1 (t), . . . , um

nm
(t)).

In the following we only consider the case where M = 2. The case where M > 2 can
be treated in a similar manner, as discussed in the proof sketch in Section 9.3.

First, note that the agents in SCC2 do not depend on any agents in SCC1. Thus, SCC2
can be treated as a strongly connected digraph. Then, from the analysis in (i), we have

lim
t→+∞

‖x2
i (t) − x2

j (t)‖ = 0, i, j ∈ [n2],

and that there exists a constant T2 ≥ 0 such that

|cl(u2
i (t))| =

∣∣∣∣ − n2∑
j=1

L2,2
i j cl(x2

j (t))
∣∣∣∣ ≤ h, ∀t ≥ T2. (9.16)

In addition, similar to (9.15), we have

‖u2(t)‖2 =

n2∑
j=1

‖u2
j (t)‖

2 ≤ C3e−C4t, t ≥ 0,

where C3 and C4 are two positive constants.
Second, let us consider SCC1. Similar to V(x) defined in (9.4), define

V1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

∫ cl(u1
i (t))

0
sath(s)ds, (9.17)

V2(x(t)) =

n2∑
i=1

ξ2
i

p∑
l=1

∫ cl(u2
i (t))

0
sath(s)ds. (9.18)

9.8. Proofs 283

From the definition of the component operator cl(·), we know cl(u1
i (t)) = −

∑n1
j=1 L1,1

i j cl(x1
i (t))−∑n2

j=1 L1,2
i j cl(x2

i (t)) and cl(u2
i (t)) = −

∑n2
j=1 L2,2

i j cl(x2
i (t)). From Lemma 9.1, we have V1(x) ≥ 0

and V2(x) ≥ 0.
Similar to the way to get (9.9), we have

V̇2(x(t)) =

n2∑
i=1

−ξ2
i q2

i (t),

where

q2
i (t) = −

1
2

n∑
j=1

L2,2
i j ‖sath(u2

j (t)) − sath(u2
i (t))‖2 ≥ 0.

Moreover, similar to the analysis of V̇(x(t)) in (i), we know that V̇2(x(t)) = 0 if and only if
x2

i (t) = x2
j (t), ∀i, j ∈ [n2].

The derivative of V1(x(t)) along the trajectories of (9.1)–(9.3) satisfies

V̇1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

sath(cl(u1
i (t)))cl(u̇1

i (t))

=

n1∑
i=1

ξ1
i

p∑
l=1

cl(sath(u1
i (t)))

(
−

n1∑
j=1

L1,1
i j cl(sath(u1

j (t))) −
n2∑
j=1

L1,2
i j cl(sath(u2

j (t)))
)

=

n1∑
i=1

ξ1
i (sath(u1

i (t)))>
(
−

n1∑
j=1

L1,1
i j sath(u1

j (t)) −
n2∑
j=1

L1,2
i j sath(u2

j (t))
)

= −(sath(u1(t)))>(Q1 ⊗ Ip)sath(u1(t)) −
n1∑
i=1

ξ1
i (sath(u1

i (t)))>
n2∑
j=1

L1,2
i j sath(u2

j (t))

≤ −ρ2(Q1)‖sath(u1(t))‖2 +
ρ2(Q1)

2

n1∑
i=1

‖sath(u1
i (t))‖2

+
1

2ρ2(Q1)

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(u2

j (t))
∥∥∥∥2

≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n1n2 maxi∈[n1], j∈[n2]{(L1,2
i j)2}

2ρ2(Q1)
‖sath(u2(t))‖2

≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n1n2 maxi∈[n1], j∈[n2]{(L1,2
i j)2}

2ρ2(Q1)
C3e−C4t, t ≥ 0,

where the first inequality holds due to Q1 > 0 which is stated in Lemma 2.4.
Let us treat yi(t) = e−C4t, t ≥ 0, i ∈ [n], as an additional state of each agent, and let

y(t) = col(y1(t), . . . , yn(t))>. Consider a Lyapunov candidate:

V3(x(t), y(t)) = V1(x(t)) + V2(x(t)) +
2n1n2 maxi∈[n1], j∈[n2]{(L1,2

i j)2}

2ρ2(Q1)C4n
C3

n∑
i=1

yi(t).

284 Distributed event-triggered saturation control algorithms

The derivative of V3(x(t), y(t)) along the trajectories of (9.1)–(9.3) is

V̇3(x(t), y(t)) = V̇1(x(t)) + V̇2(x(t)) −
2n1n2 maxi∈[n1], j∈[n2]{(L1,2

i j)2}

2ρ2(Q1)n
C3

n∑
i=1

yi(t).

Then, we have

V̇3(x(t), y(t)) ≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n2∑
i=1

−ξ2
i q2

i (t)

−
n1n2 maxi∈[n1], j∈[n2]{(L1,2

i j)2}

2ρ2(Q1)n
C3

n∑
i=1

yi(t), t ≥ 0.

By LaSalle Invariance Principle, similar to the analysis in (i), we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, ∀i, j ∈ [n].

Thus, consensus is achieved. Moreover, similar to the analysis in (i), we can show that after
a finite time T2 ≥ 0 the saturation is no longer active.

9.8.2 Proof of Theorem 9.2

(i) Similar to the proof of excluding Zeno behavior in Theorem 8.1, we prove that there is
no Zeno behavior by contradiction. Suppose there exists Zeno behavior. Then there exists
an agent i, such that limk→∞ ti

k = T0 for some constant T0. Let ε0 =
√
αi

2
√

ph e−
1
2 βiT0 > 0. Then

from the property of limits, there exists a positive integer N(ε0) such that

ti
k ∈ [T0 − ε0,T0], ∀k ≥ N(ε0). (9.19)

Also noting ‖sath(s)‖ ≤ h
√

p for any s ∈ Rp, we have

‖sath(ûi(t))‖ ≤ h
√

p.

Noting ∣∣∣∣∣d‖ei(t)‖
dt

∣∣∣∣∣ ≤ ‖ẋi(t)‖ = ‖sath(ûi(t))‖ ≤ h
√

p,

and ‖x̂i(ti
k)−xi(ti

k)‖ = 0 for any triggering time ti
k, we conclude that one necessary condition

to guarantee ‖ei(t)‖2 ≥ αie−βit, t ≥ ti
k is

(t − ti
k)h
√

p ≥
√
αie−

1
2 βit, t ≥ ti

k.

Then, similar to (8.17), we have

ti
N(ε0)+1 − ti

N(ε0) ≥

√
αi
√

ph
e−

1
2 βiti

N(ε0)+1 ≥

√
αi
√

ph
e−

1
2 βiT0 = 2ε0,

9.8. Proofs 285

which contradicts (9.19). Therefore, there is no Zeno behavior.
(ii) (Necessity) Necessity follows from Lemma 2.3.
(Sufficiency) (ii-1) In this step, we consider the situation where G is strongly connected,
i.e., M = 1 in (2.2).

We first show that consensus is achieved. Let fi(t) = sath(ûi(t)) − sath(ui(t)). We have

−

n∑
i=1

n∑
j=1, j,i

ξiLi j‖ f j(t)‖2 = −

n∑
i=1

(
− ξiLii‖ fi(t)‖2 +

n∑
j=1

ξiLi j‖ f j(t)‖2
)

=

n∑
i=1

ξiLii‖ fi(t)‖2 −
n∑

j=1

n∑
i=1

ξiLi j‖ f j(t)‖2

∗
=

n∑
i=1

ξiLii‖ fi(t)‖2, (9.20)

where the equality denoted by ∗= holds due to ξ>L = 0n.
We have

−

n∑
i=1

n∑
j=1

ξiLi j[f j(t)]>sath(ui(t))

∗
= −

n∑
i=1

n∑
j=1

ξiLi j[f j(t)]>[sath(ui(t)) − sath(u j(t))]

= −

n∑
i=1

n∑
j=1, j,i

ξiLi j[f j(t)]>[sath(ui(t)) − sath(u j(t))]

≤ −

n∑
i=1

n∑
j=1, j,i

ξiLi j

(
‖ f j(t)‖2 +

1
4
‖sath(ui(t)) − sath(u j(t))‖2

)
= −

n∑
i=1

n∑
j=1, j,i

ξiLi j‖ f j(t)‖2 −
1
4

n∑
i=1

n∑
j=1, j,i

ξiLi j‖sath(ui(t)) − sath(u j(t))‖2

= −

n∑
i=1

n∑
j=1, j,i

ξiLi j‖ f j(t)‖2 −
1
4

n∑
i=1

n∑
j=1

ξiLi j‖sath(ui(t)) − sath(u j(t))‖2

∗∗
=

n∑
i=1

ξiLii‖ fi(t)‖2 +
1
2

n∑
i=1

ξiqs
i (t), (9.21)

where the equality denoted by ∗
= holds due to ξ>L = 0n; the inequality holds due to the

Cauchy-Schwarz inequality; and the equality denoted by ∗∗= holds due to (9.20) and the
definition of qs

i (t).
The derivative of V(x), as defined in (9.4), but along the trajectories of (9.5)–(9.6),

286 Distributed event-triggered saturation control algorithms

satisfies

V̇(x(t)) =

n∑
i=1

ξi

p∑
l=1

sath
(
−

n∑
j=1

Li jcl(x j(t))
)(
−

n∑
j=1

Li jcl(ẋ j(t))
)

=

n∑
i=1

ξi

p∑
l=1

sath(cl(ui(t)))
(
−

n∑
j=1

Li jsath(cl(û j(t)))
)

= −

n∑
i=1

ξi(sath(ui(t)))>
n∑

j=1

Li jsath(û j(t))

= −

n∑
i=1

ξi(sath(ui(t)))>
n∑

j=1

Li j(sath(u j(t)) + f j(t))

= −

n∑
i=1

n∑
j=1

ξiLi j(sath(ui(t)))>sath(u j(t)) −
n∑

i=1

n∑
j=1

ξiLi j(f j(t))>sath(ui(t))

∗

≤ −

n∑
i=1

ξiqs
i (t) +

n∑
i=1

ξiLii‖ fi(t)‖2 +
1
2

n∑
i=1

ξiqs
i (t)

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖ fi(t)‖2

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖sath(ûi(t)) − sath(ui(t))‖2

∗∗

≤ −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii‖ûi(t) − ui(t)‖2

= −

n∑
i=1

ξi

2
qs

i (t) +

n∑
i=1

ξiLii

∥∥∥∥ n∑
j=1

Li je j(t)
∥∥∥∥2

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i∈[n]
{ξiLii}e>(t)(L>L ⊗ Ip)e(t)

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

‖ei(t)‖2, (9.22)

where the inequality denoted by
∗

≤ holds due to (9.10) and (9.21); and the inequality

denoted by
∗∗

≤ holds due to Lemma 9.1.
Let us treat zi(t) = e−βit, t ≥ 0 as an additional state to agent i, i ∈ [n], and let

z(t) = col(z1(t), . . . , zn(t)). Consider a Lyapunov candidate:

W(x(t), z(t)) = V(x(t)) + 2 max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

αi

βi
zi(t).

9.8. Proofs 287

The derivative of W(x(t), z(t)) along the trajectories of (9.5)–(9.6) and żi(t) = −βizi(t) is

Ẇ(x(t), z(t)) = V̇(x) − 2 max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

αie−βit

≤ −

n∑
i=1

ξi

2
qs

i (t) + max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

‖ei(t)‖2

− 2 max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

αie−βit

≤ −

n∑
i=1

ξi

4
qs

i (t) −max
i∈[n]
{ξiLii}ρ(L>L)

n∑
i=1

αie−βit ≤ 0.

By LaSalle Invariance Principle, similar to the proof of Theorem 9.1, we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, i, j ∈ [n], (9.23)

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.
Noting that cl(ûi(t)) = −

∑n
j=1 Li jcl(x j(t))−

∑n
j=1 Li jcl(e j(t)), (9.7),−

∑n
j=1 Li jcl(x j(t)), i ∈

[n], l ∈ [p] are continuous with respect to t, it follows from (9.23) that there exists a
constant T3 ≥ 0 such that

|cl(ûi(t))| ≤
∣∣∣∣ − n∑

j=1

Li jcl(x j(t))
∣∣∣∣ +

∣∣∣∣ − n∑
j=1

Li jcl(e j(t))
∣∣∣∣ ≤ h, ∀t ≥ T3.

In other words, the saturation function in (9.5) is no longer active after T3. Thus, the multi-
agent system (9.5) with event-triggered control input (9.6) reduces to

ẋi(t) = −

n∑
j=1

Li j x̂ j(t), t ≥ T3.

Finally, we estimate the convergence speed, which will be used later. Similar to the
proof of Theorem 2 in [358], we conclude that there exist C5 > 0 and C6 > 0 such that

Ṽ(x(t)) ≤ C5e−C6t, ∀t ≥ T3,

where Ṽ(x(t)) is defined in (9.13). Similar to (9.14), we have

Ṽ(x(t)) ≤ C7e−C6t, ∀t ≥ 0,

where C7 is a positive constant.
Moreover, similar to the analysis for obtaining (9.15), we have

n∑
i=1

‖ûi(t)‖2 =

n∑
i=1

‖ui(t) −
n∑

j=1

Li je j(t)‖2

288 Distributed event-triggered saturation control algorithms

≤ 2
n∑

i=1

‖ui(t)‖2 + 2ρ(L>L)
n∑

i=1

‖ei(t)‖2 ≤ C9e−C8t, ∀t ≥ 0, (9.24)

where C9 and C8 are two positive constants.
(ii-2) In this step, we consider the situation whereG has a directed spanning tree but it is not
strongly connected, i.e., M ≥ 2 in (2.2). For simplicity, we only consider the case where
M = 2. The general case can be treated in a similar manner. We use the same notation
as in the proof of Theorem 9.1. For simplicity, let ûm

i (t) = ûNm−1+i(t), em
i (t) = eNm−1+i(t),

f m
i (t) = fNm−1+i(t), αm

i = αNm−1+i, βm
i = βNm−1+i, and ûm(t) = col(ûm

1 (t), . . . , ûm
nm

(t)).
First, let us consider SCC2 and note that no agent in SCC2 is dependent on any agent in

SCC1. Thus, SCC2 can be treated as a strongly connected digraph. Then, from the analysis
in (ii-1), we have that

lim
t→∞
‖x2

i (t) − x2
j (t)‖ = 0, i, j ∈ [n2],

and that there exists a constant T4 ≥ 0 such that

|cl(û2
i (t))| =

∣∣∣∣ − n2∑
j=1

L2,2
i j cl(x̂2

j (t))
∣∣∣∣ ≤ h, ∀t ≥ T4.

In addition, similar to (9.24), we have

‖û2(t)‖2 =

n2∑
j=1

‖û2
j (t)‖

2 ≤ C11e−C10t, t ≥ 0,

where C11 and C10 are two positive constants.
Second, let us consider SCC1. Similar to (9.22), the derivative of V2(x(t)), as defined in

(9.18), but along the trajectories of system (9.5)–(9.6), satisfies

V̇2(x(t)) ≤ −
n2∑
i=1

ξ2
i

2
q2

i (t) + d1

n2∑
i=1

‖e2
i (t)‖2,

where
d1 = max

i∈[n]
{ξ2

i L2,2
ii }ρ((L2,2)>L2,2).

The derivative of V1(x(t)), as defined in (9.17), but along the trajectories of system
(9.5)–(9.6), satisfies

V̇1(x(t)) =

n1∑
i=1

ξ1
i

p∑
l=1

sath(cl(u1
i (t)))cl(u̇1

i (t))

=

n1∑
i=1

ξ1
i

p∑
l=1

cl(sath(u1
i (t)))

(
−

n1∑
j=1

L1,1
i j cl(sath(û1

j (t))) −
n2∑
j=1

L1,2
i j cl(sath(û2

j (t)))
)

=

n1∑
i=1

ξ1
i (sath(u1

i (t)))>
(
−

n1∑
j=1

L1,1
i j sath(û1

j (t)) −
n2∑
j=1

L1,2
i j sath(û2

j (t))
)

9.8. Proofs 289

=

n1∑
i=1

ξ1
i (sath(û1

i (t)) − f 1
i (t))>

(
−

n1∑
j=1

L1,1
i j sath(û1

j (t)) −
n2∑
j=1

L1,2
i j sath(û2

j (t))
)

= −(sath(û1(t)))>(Q1 ⊗ Ip)sath(û1(t)) +

n1∑
i=1

ξ1
i (sath(û1

i (t)))>
n2∑
j=1

L1,2
i j sath(û2

j (t))

+

n1∑
i=1

ξ1
i (f 1

i (t))>
(n1∑

j=1

L1,1
i j sath(û1

j (t)) +

n2∑
j=1

L1,2
i j sath(û2

j (t))
)

≤ −ρ2(Q1)‖sath(û1(t))‖2 +
ρ2(Q1)

4

n1∑
i=1

‖sath(û1
i (t))‖2

+
1

ρ2(Q1)

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(û2

j (t))
∥∥∥∥2

+
ρ2(Q1)

4

n1∑
j=1

‖sath(û1
j (t))‖

2

+
1

ρ2(Q1)

n1∑
j=1

∥∥∥∥ n1∑
i=1

ξ1
i L1,1

i j f 1
i (t)

∥∥∥∥2
+

n1∑
i=1

1
4
‖ f 1

i (t)‖2 +

n1∑
i=1

∥∥∥∥ξ1
i

n2∑
j=1

L1,2
i j sath(û2

j (t))
∥∥∥∥2

≤ −
ρ2(Q1)

2
‖sath(û1(t))‖2 + d2

n1∑
i=1

‖ f 1
i (t)‖2 + d3‖sath(û2(t))‖2, (9.25)

where

d2 =
1
4

+ (n1)2 max
i, j∈[n1]

{(ξ1
i L1,1

i j)2}
1

ρ2(Q1)
, d3 = 2n1n2 max

i∈[n1], j∈[n2]
{(ξ1

i L1,2
i j)2}

(1
ρ2(Q1)

+ 1
)
.

Similar to the analysis to get (9.22), from (9.25), we have

V̇1(x(t)) ≤ −
ρ2(Q1)

2
‖sath(û1(t))‖2 + d4

n1∑
i=1

‖e1
i (t)‖2 + d4

n2∑
i=1

‖e2
i (t)‖2 + d3‖sath(û2(t))‖2,

where

d4 = d2ρ(L>L).

Let us treat ηr
i (t) = e−β

r
i y, t ≥ 0, as an additional state of agent vr

i , r = 1, 2, i ∈ [n2],
θ2

i (t) = e−C10t, t ≥ 0, as an additional state of agent v2
i , i ∈ [n2], and θ1

i (t) = 0, t ≥ 0, as an
additional state of agent v1

i , i ∈ [n1]. Let η(t) = col(η1
1(t), . . . , η1

n1
(t), η2

1(t), . . . , η1
n2

(t)) and
θ(t) = col(θ1

1(t), . . . , θ1
n1

(t), θ2
1(t), . . . , θ1

n2
(t)).

Consider the Lyapunov candidate

Wr(x(t), η(t), θ(t)) = V1(x(t)) + V2(x(t)) + 2
C11

C10
d3

n2∑
i=1

θ2
i (t)

+ 2
n2∑
i=1

(d1 + d4)α2
i

β2
i

η2
i (t) + 2

n1∑
i=1

d4α
1
i

β1
i

η1
i (t).

290 Distributed event-triggered saturation control algorithms

The derivative of Wr(x(t), η(t), θ(t)) along the trajectories of system (9.5)–(9.6) satisfies

Ẇr(x(t), η(t), θ(t)) = V̇1(x(t)) + V̇2(x(t)) − 2C11d3

n2∑
i=1

θ2
i (t)

− 2
n2∑
i=1

(d1 + d4)α2
i η

2
i (t) − 2

n1∑
i=1

d4α
1
i η

1
i (t).

Then, for any t ≥ T4, we have

Ẇr(x(t), η(t), θ(t)) ≤ −
ρ2(Q1)

2
‖sath(u1(t))‖2 +

n2∑
i=1

−
ξ2

i

2
q2

i (t)

−C11d3

n2∑
i=1

θ2
i (t) −

n2∑
i=1

(d1 + d4)α2
i η

2
i (t) −

n1∑
i=1

d4α
1
i η

1
i (t).

By LaSalle Invariance Principle again, we have

lim
t→∞
‖x j(t) − xi(t)‖ = 0, i, j ∈ [n].

Thus, consensus is achieved. Moreover, similar to the analysis in (ii-1), we can show that
after a finite time the saturation is no longer active.

Chapter 10

Distributed event-triggered formation
control algorithms

In this chapter, event- and self-triggered control algorithms are proposed to establish
prespecified formations with connectivity preservation. Each agent only needs to update
its control input by sensing the relative state to its neighbors and to broadcast its triggering
information at its own triggering times. The agents listen to and receive neighbors’
triggering information at their triggering times. Two types of system dynamics, single and
double integrators, are considered. It is shown that all agents converge to the prespecified
formation exponentially with connectivity preservation and exclusion of Zeno behavior.
Numerical simulations are provided to illustrate the effectiveness of the theoretical results.

The rest of this chapter is organized as follows. Section 10.1 gives the background.
Section 10.2 introduces the formation control problem. Section 10.3 provides event-
triggered formation control algorithms for first-order continuous-time multi-agent systems
with connectivity preservation. Section 10.4 extends the results to second-order systems.
Simulations are given in Section 10.5. This chapter is concluded in Section 10.6. Proofs
can be found in Section 10.7.

10.1 Introduction

Generally speaking, formation control for a multi-agent system is about making the agents
move to a desired geometric shape. In the survey paper [383], the authors categorized
the existing results on formation control into position-, displacement-, and distance-
based control according to types of sensed and controlled variables, as summarized in
Table 10.1. In position-based control, agents sense their own positions with respect to
a global coordinate system. They actively control their own positions to achieve the
desired formation, which is prescribed by desired positions with respect to the global
coordinate system. This kind of work can be found in [384–387]. In displacement-based
control, agents actively control displacements of their neighboring agents to achieve the
desired formation, which is specified by the desired displacements with respect to a global
coordinate system under the assumption that each agent is able to sense relative positions

291

292 Distributed event-triggered formation control algorithms

Table 10.1: Summary of formation control principles.

Position-based Displacement-based Distance-based

Sensors Positions Relative positions Relative positions

Controls Positions Relative positions Inter-agent distances

Coordinates Global coordinate system Orientation aligned local coordinate systems Local coordinate systems

Interactions Usually not required Existence of a spanning tree Rigidity or persistence

to its neighboring agents with respect to the global coordinate system. This implies that the
agents need to know the orientation of the global coordinate system. However, the agents
require neither knowledge on the global coordinate system itself nor their positions with
respect to the coordinate system. This kind of work can be found in [388–392]. In distance-
based control, inter-agent distances are actively controlled to achieve the desired formation,
which is given by the desired inter-agent distances. Individual agents are assumed to
be able to sense relative positions to their neighboring agents with respect to their own
local coordinate systems. The orientations of local coordinate systems are not necessarily
aligned with each other. This kind of work can be found in [393–396].

In the study of distributed coordination, such as consensus and formation control,
one vital assumption is that the associated communication graph is connected or has a
directed spanning tree, at least in some average sense. However, in realistic applications,
it is difficult to guarantee this assumption. For example, in mobile robot networks with
limited communication range, connectivity of the initial deployment of the robots do not
guarantee connectivity in the future.

Motivated by this, many researchers have studied connectivity preservation for multi-
agent systems. In particular, the control should ensure that the associated communication
graph remains connected during the evolution of the system. For instance, in [397],
the authors presented a geometric analysis of wireless connectivity in vehicle networks.
In [398], the authors proposed a decentralized control strategy that drives a system of
multiple nonholonomic kinematic unicycles to agreement and maintains at the same time
the connectivity properties of the initially formed communication graph. In [388], the
authors designed nonlinear control input based on an edge-tension function to solve the
formation control problem while ensuring connectedness. In [399], the authors proposed
a centralized feedback control framework based on artificial potential fields to maintain
graph connectivity. In [400], the authors introduced a general class of distributed potential
functions guaranteeing connectivity for single-integrator agents. In [401], based on the
navigation function formalism, the authors developed a decentralized controller to enable a
group of agents to achieve a desired global configuration while maintaining global network
connectivity. In [402], the authors provided a decentralized robust control approach, which
guarantees that connectivity is maintained when certain bounded input terms are added to
the control law.

In this chapter, we study formation control for multi-agent systems with connectivity
preservation and event-triggered control. We have the following contributions.

10.2. Formation control for multi-agent systems with connectivity preservation 293

(C10.1) We propose distributed triggering laws for agents to determine their triggering times
and one corresponding algorithm for each agent to avoid continuous monitoring
of its own triggering law. The advantages of this algorithm are that absolute
measurements of states are avoided and it is only at its triggering times that each
agent needs to update its control input by sensing the relative states, to broadcast
its triggering information, including current triggering time and control input at this
time, to its neighbors. The main disadvantage is that continuous listening is still
needed. To overcome this, we then present two self-triggered algorithms.

(C10.2) Two types of system dynamics, single integrators and double integrators, are
considered. We show that under the proposed event- and self-triggered algorithms
all agents converge to prespecified formations exponentially with connectivity
preservation. In addition, Zeno behavior can be excluded by proving that the inter-
event times are lower bounded by a positive constant for single integrators and
the triggering time sequence of each agent is divergent for double integrators. Two
related existing studies are [403], [404]. However, [403] does not explicitly exclude
Zeno behavior, but it is well known that such behavior can be problematic, see [196].
And it is under the assumption that no agent exhibits Zeno behavior, that [404]
proves asymptotic rendezvous can be achieved.

10.2 Formation control for multi-agent systems with connectivity
preservation

Consider a connected and undirected graph G with n vertices and ne edges. Let B(G)
denotes its incidence matrix which is defined in Section 2.2 and di j ∈ R

p the desired
internode displacement of edge (i, j) ∈ E(G). Denote Φ = {col(τ1, . . . , τn) ∈ Rnp : τi−τ j =

di j, ∀(i, j) ∈ E(G)}. We call the set of desired internode displacements {di j, (i, j) ∈ E(G)}
a formation associated with G and we say it is feasible if Φ , ∅.

Definition 10.1 (Achieving desired formation). Consider a multi-agent system with n
agents whose underlying graph is G. Let xi(t) ∈ Rp denotes the position of agent i at
time t ≥ 0. The multi-agent system converges to a desired formation {di j, (i, j) ∈ E(G)} if

lim
t→∞

(xi(t) − x j(t)) = di j, ∀(i, j) ∈ E(G).

In practice, agents normally have limited communication capabilities and one agent
cannot exchange information with the agents that outside its communication radius. For
simplicity we assume all agents have the same communication radius ∆ > 0. Figure 10.1 (a)
shows the initial positions of three agents and each agent has the same communication
radius ∆; and Figure 10.1 (b) shows the desired formation {d12, d13, d23}. We say the graph
G and the multi-agent system are consistent if ‖xi(t) − x j(t)‖ ≤ ∆ for all (i, j) ∈ E(G) and
all times t ≥ 0. Namely, the communication channels are kept for all time. Notice here that
we assume the following.

294 Distributed event-triggered formation control algorithms

Agent 2

Agent 1

Agent 3
 ∆

(a) The initial positions of three agents.

 Agent 2

 Agent 1 Agent 3
 ∆

 𝑑𝑑23

 𝑑𝑑12

 𝑑𝑑13

(b) The desired formation {d12, d13, d23}.

Figure 10.1: Illustration of formation control.

Assumption 10.1. The desired formation {di j, (i, j) ∈ E(G)} is feasible and ‖di j‖ < ∆,
∀(i, j) ∈ E(G).

Definition 10.2 (Achieving desired formation with connectivity preservation). A group
of agents are said to converge to the desired formation with connectivity preservation if
they converge to the desired formation while the graph G remains consistent with their
dynamics.

Note that we do not assume new edges are created, while we only show that old edges
are maintained. Our goal in this chapter is to solve the following problem.

Problem 10.1. Propose distributed event-triggered control input and determine the
corresponding triggering times for first- and second-order multi-agent systems such
that the desired formation is achieved with connectivity preservation, while continuous
exchange of information, continuous update of actuators, and Zeno behavior are avoided.

10.3 Distributed event-triggered formation control for single
integrators

In this section, we consider the case that the dynamics of agents are modeled as single
integrators

ẋi(t) = ui(t), i ∈ [n], t ≥ 0, (10.1)

where xi(t) ∈ Rp is the position and ui(t) ∈ Rp is the control input of agent i with p > 0
being the dimension.

10.3. Distributed event-triggered formation control for single integrators 295

From Assumption 10.1, we know Φ , ∅. Choose any col(τ1, . . . , τn) ∈ Φ. Let yi(t) =

xi(t) − τi for i ∈ [n] and y(t) = col(y1(t), . . . , yn(t)). Then, we can rewrite the above multi-
agent system as

ẏi(t) = ui(t), i ∈ [n], t ≥ 0. (10.2)

At time t, for ‖yi(t) − y j(t)‖ < ∆ − ‖di j‖, the edge-tension function νi j (introduced
in [388]) is defined as

νi j(∆, y(t)) =

 ‖yi(t)−y j(t)‖2

∆−‖di j‖−‖yi(t)−y j(t)‖
, if (i, j) ∈ E(G),

0, otherwise

with

∂νi j(∆, y(t))
∂yi

=

2∆−2‖di j‖−‖yi(t)−y j(t)‖
(∆−‖di j‖−‖yi(t)−y j(t)‖)2 (yi(t) − y j(t)), if (i, j) ∈ E(G),

0, otherwise.

We denote as ωi j(t) the weight coefficient of the partial derivative of νi j with respect to
yi as above, i.e.,

ωi j(t) =

2∆−2‖di j‖−‖yi(t)−y j(t)‖
(∆−‖di j‖−‖yi(t)−y j(t)‖)2 , if (i, j) ∈ E(G),

0, otherwise.

Note that ωi j(t) can also be written as a function of xi(t) and x j(t) due to yi(t) − y j(t) =

xi(t) − x j(t) − di j.
Let Lω denotes the Laplacian matrix associated withG after assigning the above weight

ωi j(t) to edge (i, j) ∈ E(G). Then, from Lemma 2.6, we have

Lω = B(G)Ω(G)B(G)>,

where Ω(G) = Diag([ω(e1), · · · , ω(ene)]), where ω(ek) = ωi j with ek being the label of
edge (i, j).

In order to reduce the overall need of communication and system updates, we use the
event-triggered control input

ui(t) =
∑
j∈Ni

−ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t))) (10.3)

=
∑
j∈Ni

−ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j). (10.4)

One can see that the above control input uses relative state information and only updates
at the triggering times. Figure 10.2 illustrates how one agent gathers relative state
information. Specifically, Figure 10.2 (a) shows that each agent continuously sense the
relative state information between itself and its neighbors and use such information to
generate its control input. Figure 10.2 (b) shows a similar process except that each agent
only senses the relative state information at discrete time instants {ti

1, t
i
2, . . . }.

296 Distributed event-triggered formation control algorithms

Agent 𝑖𝑖

Control

Sensor
 𝑥𝑥𝑗𝑗(𝑡𝑡)-𝑥𝑥𝑖𝑖(𝑡𝑡)

 𝑥𝑥𝑗𝑗(𝑡𝑡)-𝑥𝑥𝑖𝑖(𝑡𝑡)

(a) Continuous-time control input.

Agent 𝑖𝑖

Control

Sensor
 𝑥𝑥𝑗𝑗�𝑡𝑡𝑘𝑘𝑖𝑖 �-𝑥𝑥𝑖𝑖�𝑡𝑡𝑘𝑘𝑖𝑖 �

 𝑥𝑥𝑗𝑗�𝑡𝑡𝑘𝑘𝑖𝑖 �-𝑥𝑥𝑖𝑖�𝑡𝑡𝑘𝑘𝑖𝑖 �

(b) Event-triggered control input.

Figure 10.2: Illustration of how one agent gathers relative state information.

Remark 10.1. The control input (10.4) is constant during each interval [ti
k, t

i
k+1). In other

words, the control input (10.4) of each agent is not affected by its neighbors during [ti
k, t

i
k+1).

On the contrary, the control input (1.10) is not necessarily a constant during [ti
k, t

i
k+1) since

x j(t
j
k j(t)

) normally is not a constant for all t ∈ [ti
k, t

i
k+1). In other words, the control input

(1.10) of each agent is affected by its neighbors during each interval [ti
k, t

i
k+1). Another

difference between (10.4) and (1.10) is that the (weighted) summation of the control input
(1.10) is zero, which does not present in (10.4).

10.3.1 Distributed event-triggered formation control algorithm

In the following theorem, we will give triggering laws to determine the triggering times
such that the formation with connectivity preservation can be established and Zeno
behavior can be excluded.

Theorem 10.1. Given a graph G which is undirected and connected, and a desired
formation associated with G which satisfies Assumption 10.1. Consider the multi-agent
system (10.1) with event-triggered control input (10.4) associated with G. Assume that at
the initial time,

‖xi(0) − x j(0) − di j‖ = ‖yi(0) − y j(0)‖ < ∆ − ‖di j‖, ∀(i, j) ∈ E(G). (10.5)

Given α > 0, 0 < β < β0 with β0 =
ρ2(B(G)B(G)>)

∆0
and ∆0 = max(i, j)∈E(G) ∆ − ‖di j‖, and given

the first triggering time ti
1 = 0, agent i determines the triggering times {ti

k}
∞
k=2 by

ti
k+1 = min{t : ‖ei(t)‖ ≥ αe−βt, t ≥ ti

k}, (10.6)

where

ei(t) =
∑
j∈Ni

ωi j(t)(xi(t) − x j(t) − di j) −
∑
j∈Ni

ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j).

Then,

10.3. Distributed event-triggered formation control for single integrators 297

Algorithm 10.1 Distributed Event-Triggered Formation Control Algorithm for Single
Integrators

1: Choose α > 0 and 0 < β < β0;
2: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G)} to its neighbors;
3: Agent i initializes ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i senses the relative position xi(s) − x j(s) and predicts future
relative position xi(t) − x j(t), t ≥ s, ∀ j ∈ Ni by (10.7);

5: Agent i substitutes these relative positions into ei(t) and finds out τi
k+1 which is the

smallest solution to equation ‖ei(t)‖ = αe−βt, t ≥ s;
6: Agent i continuously listens to whether there is broadcasting from its neighbors and

receives the broadcasted information if it occurs;
7: if there is broadcasting from its neighbors at t0 ∈ (s, τi

k+1), i.e., there exists j ∈ Ni such
that agent j broadcasts its triggering information at t0 ∈ (s, τi

k+1)1 then
8: agent i receives information at t0, and updates s = t0, and goes back to Step 4;
9: else

10: agent i determines ti
k+1 = τi

k+1, and updates its control input ui(ti
k+1) by sensing

the relative positions to its neighbors, and broadcasts its triggering information
{ti

k+1, ui(ti
k+1)} to its neighbors, and resets k = k + 1, and goes back to Step 4;

11: end if

(i) ‖xi(t) − x j(t)‖ ≤ ∆, ∀(i, j) ∈ E(G), ∀t ≥ 0;

(ii) limt→∞(xi(t) − x j(t)) = di j, ∀(i, j) ∈ E(G), exponentially;

(iii) there exists a constant εi > 0, such that ti
k+1 − ti

k ≥ εi, ∀i ∈ [n], ∀k ∈ N+.

Proof. The proof is given in Section 10.7.1. �

Apparently, in order to monitor the inequality in the triggering law (10.6), each agent
needs to continuously sense the relative positions to its neighbors. This may be a drawback.
In the following we will give an event-triggered algorithm to avoid this. In other words, the
following algorithm is an implementation of Theorem 10.1, but it only requires agents to
sense, broadcast and receive at the triggering times. The idea is illustrated as follows.

Each agent i ∈ [n], at any time s ≥ 0, knows its last triggering time ti
ki(s) and its control

input ui(s) = ui(ti
ki(s)) which is a constant until it determines its next triggering time. If agent

i also knows the relative position xi(s)− x j(s) and u j(s) = u j(t
j
k j(s)) which is a constant until

agent j determines its next triggering time, for j ∈ Ni, then agent i can predict

xi(t) − x j(t) = xi(s) − x j(s) + (t − s)(ui(ti
ki(s)) − u j(t

j
k j(s))), t ≥ s, (10.7)

until t ≤ min{ti
ki(s)+1, t j

k j(s)+1}. This means continuous sensing, broadcasting and receiving
are not needed any more. The above implement idea is summarized in Algorithm 10.1.

1This kind of situation can only occur at most finite times during (s, τi
k+1) since |Ni | is finite and there is no

Zeno behavior.

298 Distributed event-triggered formation control algorithms

Remark 10.2. In order to implement Algorithm 10.1, β0 should be known first. However
β0 is a global parameter since it relates to ρ2(B(G)B(G)>) and ∆0. We can lower bound β0
by 4

n(n−1)∆ due to ∆0 < ∆ and ρ2(B(G)B(G)>) ≥ 4
n(n−1) , see [405].

10.3.2 Distributed self-triggered formation control algorithms

When applying Algorithm 10.1, although continuous broadcasting and sensing are avoided,
each agent still needs to continuously listen to incoming information from its neighbors
since the triggering times are determined during runtime and not known in advance. If
every agent i ∈ [n], at its current triggering time ti

k, can predict its next triggering time ti
k+1

and broadcast it to its neighbors, then at time ti
k agent i knows agent j’s latest triggering

time t j
k j(ti

k)
which is before ti

k and its next triggering time t j
k j(ti

k)+1
which is after ti

k, for j ∈ Ni.

In this case, agent i only needs to listen to and receive information at {t j}∞k=1, j ∈ Ni since it
knows these time instants in advance. Thus, each agent only needs to sense and broadcast
at its own triggering times, and to listen to and receive the incoming information from its
neighbors at their triggering times. Inspired by this, in the following we will propose two
self-triggered algorithms such that at time ti

k each agent i could estimate ti
k+1 in a more

precise way than ti
k + εi. The idea is explained below.

From (10.44) and (10.50), we have

‖yi(t) − y j(t)‖ < k̂i j(t), ∀(i, j) ∈ E(G), ∀t ≥ 0, (10.8)

where
k̂i j(t) = min{ki j, 2

√
kVe−βt}.

Then, from (10.53), we have

‖ui(t)‖ = ‖ẏi(t)‖ ≤ θi(t), ∀i ∈ [n], ∀t ≥ 0, (10.9)

where
θi(t) = αe−βt +

∑
j∈Ni

fi j(k̂i j(t))k̂i j(t).

From (10.2), we have ẏi(t) − ẏ j(t) = ui(t) − u j(t). Then,

yi(t) − y j(t) = yi(ti
k) − y j(ti

k) +

∫ t

ti
k

(ui(s) − u j(s))ds, t ≥ ti
k.

Agent i can determine yi(ti
k)− y j(ti

k) = xi(ti
k)− x j(ti

k)− di j for j ∈ Ni by sensing the relative
position to its neighbors at time ti

k.
The control input ui(s) is a constant during [ti

k, t
i
k+1) and u j(s) is a constant during

[t j
k j(ti

k)
, t j

k j(ti
k)+1

). At time ti
k, agent i already knows t j

k j(ti
k)

and u j(t
j
k j(ti

k)
), for j ∈ Ni. If at time

ti
k, agent i also knows t j

k j(ti
k)+1

, then at time ti
k it knows u j(s) ≡ u j(t

j
k j(ti

k)
), for s ∈ [ti

k, t
j
k j(ti

k)+1
).

In other words, same as (8.32), for t ∈ [ti
k, t

i
k+1), if denote

t1
i j(t) = min

{
t, t j

k j(ti
k)+1

}
, t2

i j(t) = max
{
t, t j

k j(ti
k)+1

}
, (10.10)

10.3. Distributed event-triggered formation control for single integrators 299

then at time ti
k, agent i knows u j(s) ≡ u j(t

j
k j(ti

k)
), for s ∈ [ti

k, t
1
i j(t)) but does not know u j(s),

for s ≥ t2
i j(t). Figure 8.1 illustrates the relation of ti

k, ti
k+1, t ∈ [ti

k, t
i
k+1), t j

k j(ti
k)

, t j
k j(ti

k)+1
, t1

i j(t)

and t2
i j(t). Then,

yi(t) − y j(t) = zi j(ti
k, t) −

∫ t2
i j(t)

t j

k j (tik)+1

u j(s)ds, ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (10.11)

where

zi j(ti
k, t) = yi(ti

k) − y j(ti
k) + (t − ti

k)ui(ti
k) − (t1

i j(t) − ti
k)u j(t

j
k j(ti

k)
).

Thus

‖yi(t) − y j(t)‖ ≤ ‖zi j(ti
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

‖u j(s)‖ds, ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1).

Then, from (10.9), we have

‖yi(t) − y j(t)‖ ≤ ǩi j(t), ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (10.12)

where

ǩi j(t) = ‖zi j(ti
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

θ j(s)ds, ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1).

Then, from (10.8) and (10.12), we have

‖yi(t) − y j(t)‖ ≤ k̃i j(t), ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (10.13)

where

k̃i j(t) = min{k̂i j(t), ǩi j(t)}, t ∈ [ti
k, t

i
k+1). (10.14)

Thus, from (10.55), (10.56), (10.9), (10.11) and (10.13), we have

‖ei(t)‖ ≤ ϕi(t), t ∈ [ti
k, t

i
k+1),

where

ϕi(t) =

∥∥∥∥∥∑
j∈Ni

∫ t1
i j(t)

ti
k

(
hi j(‖zi j(ti

k, s)‖)
(zi j(ti

k, s))>

‖zi j(ti
k, s)‖

(
ui(ti

k) − u j

(
t j
k j(ti

k)

))
zi j(ti

k, s)

+ fi j(‖zi j(ti
k, s)‖)

(
ui(ti

k) − u j

(
t j
k j(ti

k)

)))
ds

∥∥∥∥∥

300 Distributed event-triggered formation control algorithms

Algorithm 10.2 Distributed Self-Triggered Formation Control Algorithm for Single
Integrators

1: Choose α > 0 and 0 < β < β0;
2: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G)} to its neighbors;
3: Agent i initializes ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i updates its control input ui(ti
k) by sensing the relative

positions to its neighbors, and determines ti
k+1 by (10.16)1, and broadcasts its triggering

information {ti
k+1, ui(ti

k)} to its neighbors;
5: At agent i’s neighbors’ triggering times which are between [ti

k, t
i
k+1], agent i listens to

and receives triggering information from its neighbors2;
6: Agent i resets k = k + 1, and goes back to Step 4.

+
∑
j∈Ni

∫ t

t1
i j(t)

gi j(k̃i j(s))‖ui(ti
k)‖ds +

∑
j∈Ni

∫ t2
i j(t)

t j

k j (tik)+1

gi j(k̃i j(s))θ j(s)ds

=

∥∥∥∥∥∑
j∈Ni

(
fi j(‖zi j(ti

k, t
1
i j(t))‖)zi j(ti

k, t
1
i j(t)) − fi j(‖zi j(ti

k, t
i
k)‖)zi j(ti

k, t
i
k)
)∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

gi j(k̃i j(s))‖ui(ti
k)‖ds +

∑
j∈Ni

∫ t2
i j(t)

t j

k j (tik)+1

gi j(k̃i j(s))θ j(s)ds, t ∈ [ti
k, t

i
k+1).

(10.15)

Hence, a necessary condition to guarantee that the inequality in (10.6) holds, i.e.,

αe−βt ≤ ‖ei(t)‖, ∀t ∈ [ti
k, t

i
k+1),

is

αe−βt ≤ ϕi(t), ∀t ∈ [ti
k, t

i
k+1).

Noting that αe−βt decreases with respect to t, ϕi(t) increases with respect to t during
[ti

k, t
i
k+1), and ϕi(ti

k) = 0, for given ti
k, agent i can estimate ti

k+1 by the solution to

αe−βt = ϕi(t), t ≥ ti
k. (10.16)

In conclusion, if at time ti
k agent i knows ui(ti

k), t j
k j(ti

k)
, t j

k j(ti
k)+1

, u j(t
j
k j(ti

k)
), ∀ j ∈ Ni, then it

can predict its next triggering time ti
k+1 by solving (10.16). The above implement idea is

summarized in Algorithm 10.2.

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (10.16) when tik = t j
k j(tik)

, i.e., when agent i does

not know t j
k j(tik)+1

at time tik . This situation could occur, for example when two adjacent agents trigger at the same

time.
2In other words, agent i only listens to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided. This is the main difference with Algorithm 10.1.

10.3. Distributed event-triggered formation control for single integrators 301

Algorithm 10.3 Distributed Self-Triggered Formation Control Algorithm for Single
Integrators (Sensing Only)

1: Choose α > 0 and 0 < β < β0;
2: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G)} to its neighbors;
3: Agent i initializes ti

1 = 0 and k = 1;
4: At time s = ti

k, agent i updates its control input ui(ti
k) by sensing the relative positions

to its neighbors, and determines ti
k+1 by (10.18), and resets k = k + 1, and repeats this

step.

Actually, broadcasting, receiving and listening can be ruled out except at the beginning,
and each agent only needs to sense the relative positions to its neighbors and update its
control input at its triggering times. The idea is illustrated as follows.

From (10.8), (10.53) and (10.57), we have

d‖ei(t)‖
dt

< ĉi(t), ∀t ≥ 0, (10.17)

where
ĉi(t) =

∑
j∈Ni

gi j(k̂i j(t))
(
2α +

∑
l∈Ni

fil(k̂il(t))k̂il(t) +
∑
l∈N j

f jl(k̂ jl(t))k̂ jl(t)
)
.

Then, similar to the way to determine εi in (10.60), if ti
k is known, then agent i can

estimate ti
k+1 by

∫ ti
k+1

ti
k

ĉi(t)dt = αe−βti
k+1 . (10.18)

The above implement idea is summarized in Algorithm 10.3.
The following theorem shows that the formation with connectivity preservation can be

established and Zeno behavior can be excluded.

Theorem 10.2. Under the same settings as Theorem 10.1. All agents perform Algorithm
10.2 or 10.3, then the multi-agent system (10.1) with event-triggered control input (10.4)
converges to the formation exponentially with connectivity preservation, and there is no
Zeno behavior.

Proof. Under both Algorithms 10.2 and 10.3, ‖ei(t)‖ ≤ αe−βt holds for all i ∈ [n] and t ≥ 0.
Then from Theorem 10.1, we know that the formation is achieved exponentially and the
connectivity is preserved. The method of the exclusion of Zeno behavior is similar to the
way in the proof of Theorem 10.1. �

Remark 10.3. In order to perform Algorithms 10.2 and 10.3, the global parameters n, β0,
kν defined in (10.43) and kV defined in (10.49) are needed to be known in advance. Firstly,

302 Distributed event-triggered formation control algorithms

from Remark 10.2, we can estimate β0 by 4
n2∆

. Secondly, one way to avoid using kν is by
choosing an arbitrary small ε > 0. Then, from (10.45), we have

k̂i j(ε) := ∆ − ‖di j‖ − ε ≥ ki j.

Thus, k̂i j(ε) can be used to replace ki j since fi j(·) defined in (10.47) and gi j(·) defined
in (10.51) are increasing functions. Thirdly, kV can be estimated if we know the upper
bound of V(y(0)) defined in (10.46). From the underlying graph G is connected, we have
‖yi(0) − y j(0)‖ < (n − 1)∆, ∀i, j ∈ [n]. Then ‖yi(0) − ȳ(0)‖ < ∆, ∀i ∈ [n]. Hence V(y(0)) <
1
2 n∆2. Thus, the only global parameter that is needed to perform Algorithms 10.2 and 10.3
is the number of agents n.

The comparison of the inter-event times determined by Algorithms 10.1– 10.3 is shown
as below.

Property 10.1. Consider the multi-agent system (10.1) with event-triggered control input
(10.4). For agent i, assume ti

k has been determined, let ti,E1
k+1 , ti,S 1

k+1 and ti,S 2
k+1 be the next

triggering time determined by Algorithms 10.1–10.3 respectively, then ti,E1
k+1 ≥ ti,S 2

k+1 ≥ ti
k + εi

and ti,S 1
k+1 ≥ ti,S 2

k+1 ≥ ti
k + εi.

Proof. From (10.59) and (10.17), we know cie−βt ≥ ĉi(t),∀t ≥ 0 since (10.8), and fi j(·)
defined in (10.47) and gi j(·) defined in (10.51) are increasing functions. Thus ti,S 2

k+1 ≥ ti
k + εi.

From (10.15) and (10.17), we know ϕi(t) ≤
∫ t

ti
k
ĉi(s)ds, for t ≥ ti

k since (10.14), and

fi j(·) and gi j(·) are increasing functions. Thus ti,S 1
k+1 ≥ ti,S 2

k+1 .
From (10.17), we know ti,E1

k+1 ≥ ti,S 2
k+1 . �

Remark 10.4. Property 10.1 has to be considered carefully, since it only shows that for
given ti

k, the next triggering time determined by Algorithm 10.1 or 10.2 is larger than
that determined by Algorithm 10.3. However, we cannot say anything on further triggering
times because generally ti,E1

k+1 , ti,S 2
k+1 and ti,S 1

k+1 , ti,S 2
k+1 , and thus we cannot apply this property

again. Moreover, we cannot to compare ti,E1
k+1 and ti,S 1

k+1 since u j(·) are different when we
perform Algorithms 10.1 and 10.2.

Table 10.2 summarizes the communication requirements for agent i ∈ [n] when
Algorithms 10.1–10.3 are performed.

10.4 Distributed event-triggered formation control for double
integrators

In this section, we extend the results in above section to the case where the dynamics of
agents are modeled as double integratorsẋi(t) = ri(t),

ṙi(t) = ud
i (t), i ∈ [n], t ≥ 0,

(10.19)

10.4. Distributed event-triggered formation control for double integrators 303

Table 10.2: Summary of the communication requirements for agent i when Algorithms
10.1–10.3 are performed.

Algorithm 10.1 Algorithm 10.2 Algorithm 10.3

Sensing time {ti
k , t

j
k , j ∈ Ni}

∞
k=1 {ti

k}
∞
k=1 {ti

k}
∞
k=1

Broadcasting time {ti
k}
∞
k=1 {ti

k}
∞
k=1 ti

1 = 0

Listening time All t ≥ 0 {t j
k , j ∈ Ni}

∞
k=1 ti

1 = 0

Receiving time {t j
k , j ∈ Ni}

∞
k=1 {t j

k , j ∈ Ni}
∞
k=1 ti

1 = 0

Information sensed
{xi(ti

k) − x j(ti
k)}∞k=1,

{xi(t
j
k) − x j(t

j
k), j ∈ Ni}

∞
k=1

{xi(ti
k) − x j(ti

k)}∞k=1 {xi(ti
k) − x j(ti

k)}∞k=1

Information broadcasted {ti
k , ui(ti

k)}∞k=1, di j, j ∈ Ni {ti
k , ui(ti

k)}∞k=1, di j, j ∈ Ni di j, j ∈ Ni

Zeno behavior No No No

where xi(t) ∈ Rp still denotes the position of agent i at time t, ri(t) ∈ Rp denotes the speed
and ud

i (t) ∈ Rp is the control input. Recall that yi(t) = xi(t) − τi, so we can rewrite (10.19)
as ẏi(t) = ri(t),

ṙi(t) = ud
i (t), i ∈ [n], t ≥ 0.

(10.20)

Denote

B1 =

 0 1
0 0

 , B2 =

 0
1

 , zi(t) =

 yi(t)
ri(t)

 ,
then we can rewrite (10.20) as

żi(t) = (B1 ⊗ Ip)zi(t) + (B2 ⊗ Ip)ud
i (t). (10.21)

It can be derived that (B1, B2) is controllable and (I2, B1) is observable. Hence, from [406],
we know that there exist positive constants k0, k1 and k2 such that

P > 0,
1
2

(PB1 + B>1 P) − β1PB2B>2 P + 2I2 ≤ 0, (10.22)

where P =

 k0 k1

k1 k2

 and 0 < β1 ≤ β0. Similar to (2.6), we have

ρ(P)I2 ≥ P ≥ ρ2(P)I2. (10.23)

Similar to the event-triggered control input (10.4), we use the event-triggered control
input

ud
i (t) = −k1

∑
j∈Ni

ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t)))

304 Distributed event-triggered formation control algorithms

− k2

∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))) − k3ri(ti

ki(t)) (10.24)

= −k1

∑
j∈Ni

ωi j(ti
ki(t))(xi(ti

ki(t)) − x j(ti
ki(t)) − di j)

− k2

∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))) − k3ri(ti

ki(t)), (10.25)

where k3 is a constant which will be determined later. Here we should highlight that this
control input needs absolute speed information because of the term k3ri(ti

ki(t)
). Later we will

show that no agent needs to sense absolute speed if each agent knows its initial speed.

10.4.1 Distributed event-triggered formation control algorithm

Similar to Theorem 10.1, we know that the multi-agent system (10.19) with event-
triggered control input (10.25) converges to the formation exponentially with connectivity
preservation, and there is no Zeno behavior as stated in the following theorem.

Theorem 10.3. Given a graph G which is undirected and connected, and a desired
formation associated with G which satisfies Assumption 10.1. Given 0 < β1 ≤ β0 with
β0 defined in Theorem 10.1, determine the matrix P by (10.22). Consider the multi-agent
system (10.19) with event-triggered control input (10.25) associated with G. Assume the
initial position satisfies (10.5) for all (i, j) ∈ E(G) and every agent knows its initial
speed1. Given 0 < k3 < 4/(k2 + (k2

1 + k2
2)1/2), αd > 0, 0 < βd < (2 − k4)/ρ(P) with

k4 = k3(k2 + (k2
1 + k2

2)1/2)/2 < 2, and the first triggering time ti
1 = 0, agent i determines the

triggering times {ti
k}
∞
k=2 by

ti
k+1 = min{t : ‖Ei(t)‖ ≥ αde−βd t, t ≥ ti

k}, (10.26)

where

Ei(t) = k1ei(t) + k2er
i (t) + k3(ri(t) − ri(ti

ki(t))),

er
i (t) =

∑
j∈Ni

ωi j(t)(ri(t) − r j(t)) −
∑
j∈Ni

ωi j(ti
ki(t))(ri(ti

ki(t)) − r j(ti
ki(t))),

and ei(t) is given in Theorem 10.1. Then,

(i) ‖xi(t) − x j(t)‖ ≤ ∆, ∀(i, j) ∈ E(G), ∀t ≥ 0;

(ii) limt→∞(xi(t) − x j(t)) = di j, ∀(i, j) ∈ E(G), exponentially;

(iii) there is no Zeno behavior.

Proof. The proof is given in Section 10.7.2. �

1In real applications, initial speed normally is zero.

10.4. Distributed event-triggered formation control for double integrators 305

Similar to the analysis after Theorem 10.1, in order to monitor the inequality in the
triggering law (10.26), each agent needs to continuously sense its absolute speed, the
relative positions and speeds to its neighbors. In the following we will give an event-
triggered algorithm to implement Theorem 10.3 and at the same time to avoid continuous
sensing by using the similar idea as Algorithm 10.1.

Noting that it is assumed that every agent knows its initial speed, each agent i ∈ [n]
knows {ri(ti

k)}∞k=1 through iterative computation as follows

ri(ti
k+1) = ri(ti

k) + (ti
k+1 − ti

k)ud
i (ti

k). (10.27)

Thus, at any time s ≥ 0, agent i can predict

ri(t) = ri(ti
ki(s)) + (t − ti

ki(s))u
d
i (ti

ki(s)), ∀t ≥ s. (10.28)

This means that no agent needs to sense absolute speed.
Each agent i ∈ [n], at any time s ≥ 0, knows its last triggering time ti

ki(s) and control
input ud

i (ti
ki(s)) which is a constant until it determines its next triggering time. If agent i also

knows the relative position xi(s) − x j(s), relative speed ri(s) − r j(s) and ud
j (s) = ud

j (t
j
k j(s))

which is a constant until agent j determines its next triggering time, for j ∈ Ni, then agent
i can predict

xi(t) − x j(t) = xi(s) − x j(s) + (t − s)(ri(s) − r j(s)) +
1
2

(t − s)2(ud
i (ti

ki(s)) − ud
j (t

j
k j(s))),

(10.29)

ri(t) − r j(t) = ri(s) − r j(s) + (t − s)(ud
i (ti

ki(s)) − ud
j (t

j
k j(s))), t ≥ s, (10.30)

until t ≤ min{ti
ki(s)+1, t j

k j(s)+1}. This means that continuous sensing, broadcasting and
receiving are not needed any more.

The above implement idea is summarized in Algorithm 10.4.

10.4.2 Distributed self-triggered formation control algorithms

As noted earlier, each agent still needs to continuously listen to incoming information
from its neighbors. In order to avoid this, in the following we will first give a self-triggered
algorithm which is similar to Algorithm 10.2 such that each agent only needs to listen at
its neighbors’ triggering times. Then, we will give another self-triggered algorithm which
is similar to Algorithm 10.3 such that broadcasting, receiving, and listening only occur at
the beginning.

From (10.61) and (10.64), we have

‖yi(t) − y j(t)‖ < k̂y
i j(t), ∀(i, j) ∈ E(G), ∀t ≥ 0, (10.31)

where
k̂y

i j(t) = min
{
kd

i j,
√

kd
Ve−βd t

}
.

306 Distributed event-triggered formation control algorithms

Algorithm 10.4 Distributed Event-Triggered Formation Control Algorithm for Double
Integrators

1: Choose 0 < β1 ≤ β0 and determine P by (10.22);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G)} to its neighbors;
4: Agent i initializes ti

1 = 0 and k = 1;
5: At time s = ti

k, agent i senses the relative position xi(s) − x j(s) and relative speed
ri(s) − r j(s), and predicts future relative position xi(t) − x j(t), future relative speed
ri(t) − r j(t), ∀ j ∈ Ni, and its future speed ri(t), t ≥ s by (10.29), (10.30) and (10.28),
respectively;

6: Agent i substitutes these into Ei(t) and finds out τi
k+1 which is the smallest solution to

equation ‖Ei(t)‖ = αde−βd t, t ≥ s;
7: Agent i continuously listens to whether there is broadcasting from its neighbors and

receives the broadcasted information if it occurs;
8: if there is broadcasting from its neighbors at t0 ∈ (s, τi

k+1), i.e., there exists j ∈ Ni such
that agent j broadcasts its triggering information at t0 ∈ (s, τi

k+1) then
9: agent i receives information at t0, and updates s = t0, and goes back to Step 5;

10: else
11: agent i determines ti

k+1 = τi
k+1, and gets ri(ti

k+1) by (10.27), and updates ud
i (ti

k+1)
by sensing the relative positions and speeds to its neighbors, and broadcasts its
triggering information {ti

k+1, ud
i (ti

k+1)} to its neighbors, and resets k = k + 1, and
goes back to Step 5;

12: end if

From (10.64) and (10.65), we have

‖ri(t) − r j(t)‖ < k̂r
i j(t), ∀i, j ∈ [n], ∀t ≥ 0. (10.32)

where

k̂r
i j(t) = min

{√
kd

Ve−βd t, ‖ri(0)‖ + ‖r j(0)‖ +
cr

i + cr
j

βd

}
.

Then, similar to (10.68), we have

‖ṙi(t) − ṙ j(t)‖ = ‖ud
i (t) − ud

j (t)‖ < θ
d
i j(t), ∀(i, j) ∈ E(G), ∀t ≥ 0, (10.33)

where

θd
i j(t) = 2αde−βd t +

∑
l∈Ni

fil(k̂
y
il(t))

(
k1k̂y

il(t) + k2k̂r
il(t)

)
+

∑
l∈N j

f jl(k̂
y
jl(t))

(
k1k̂y

jl(t) + k2k̂r
jl(t)

)
+ k3k̂r

i j(t).

10.4. Distributed event-triggered formation control for double integrators 307

Then, similar to (10.11), we have

ri(t) − r j(t) = zr
i j(t

i
k, t) +

∫ t2
i j(t)

t j

k j (tik)+1

(ud
i (s) − ud

j (s))ds, ∀(i, j) ∈ E(G), t ∈ [ti
k, t

i
k+1), (10.34)

where t1
i j(t) and t2

i j(t) defined in (10.10), and

zr
i j(t

i
k, t) = ri(ti

k) − r j(ti
k) + (t1

i j(t) − ti
k)(ud

i (ti
k) − ud

j (t
j
k j(ti

k)
)).

Thus

‖ri(t) − r j(t)‖ ≤ ‖zr
i j(t

i
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

‖ud
i (s) − ud

j (s)‖ds ≤ ǩr
i j(t), t ∈ [ti

k, t
i
k+1),

where

ǩr
i j(t) = ‖zr

i j(t
i
k, t)‖ +

∫ t2
i j(t)

t j

k j (tik)+1

θd
i j(s)ds, t ∈ [ti

k, t
i
k+1). (10.35)

Hence, then, from (10.32) and (10.35), we have

‖ri(t) − r j(t)‖ ≤ k̃r
i j(t), ∀(i, j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (10.36)

where

k̃r
i j(t) = min

{
k̂r

i j(t), ǩr
i j(t)

}
, t ∈ [ti

k, t
i
k+1).

From ẏi(t) = ri(t) and (10.34), we have

yi(t) − y j(t) = yi(ti
k) − y j(ti

k) +

∫ t

ti
k

[ri(s) − r j(s)]ds

= zy
i j(t

i
k, t) +

∫ t

ti
k

∫ t2
i j(r)

t j

k j (tik)+1

(ud
i (s) − ud

j (s))dsdr, t ∈ [ti
k, t

i
k+1), (10.37)

where

zy
i j(t

i
k, t) = yi(ti

k) − y j(ti
k) + (t1

i j(t) − ti
k)(ri(ti

k) − r j(ti
k)) +

1
2

(t1
i j(t) − ti

k)2(ud
i (ti

k) − ud
j (t

j
k j(ti

k)
)).

Thus

‖yi(t) − y j(t)‖ ≤ ‖z
y
i j(t

i
k, t)‖ +

∫ t

ti
k

∫ t2
i j(r)

t j

k j (tik)+1

‖ud
i (s) − ud

j (s)‖dsdr

≤ ǩy
i j(t), ∀(i, j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (10.38)

308 Distributed event-triggered formation control algorithms

where

ǩy
i j(t) = ‖zy

i j(t
i
k, t)‖ +

∫ t

ti
k

∫ t2
i j(r)

t j

k j (tik)+1

θd
i j(s)dsdr.

Hence, then, from (10.31) and (10.38), we have

‖yi(t) − y j(t)‖ ≤ k̃y
i j(t), ∀(i, j) ∈ E(G), t ∈ [ti

k, t
i
k+1), (10.39)

where

k̃y
i j(t) = min

{
k̂y

i j(t), ǩy
i j(t)

}
, t ∈ [ti

k, t
i
k+1).

Then from (10.69)–(10.72), (10.33), (10.34), (10.36), (10.37), and (10.39), we have

‖Ei(t)‖ ≤ ϕd
i (t), t ∈ [ti

k, t
i
k+1),

where

ϕd
i (t) =

∥∥∥∥∥∑
j∈Ni

∫ t1
i j(t)

ti
k

(
k1hi j(‖z

y
i j(t

i
k, s)‖)

(zy
i j(t

i
k, s))>

‖zy
i j(t

i
k, s)‖

zr
i j(t

i
k, s)zy

i j(t
i
k, s)

+ k1 fi j(‖z
y
i j(t

i
k, s)‖)(zr

i j(t
i
k, s)) + k2hi j(‖z

y
i j(t

i
k, s)‖)

(zy
i j(t

i
k, s))>

‖zy
i j(t

i
k, s)‖

zr
i j(t

i
k, s)zr

i j(t
i
k, s)

+ k2 fi j(‖z
y
i j(t

i
k, s)‖)

(
ud

i (ti
k) − ud

j

(
t j
k j(ti

k)

)))
ds + k3(t − ti

k)ud
i (ti

k)
∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

(
k1gi j(k̃

y
i j(s))k̃r

i j(s) + k2hi j(k̃
y
i j(s))(k̃r

i j(s))2 + k2 fi j(k̃
y
i j(s))θd

i j(s)
)
ds

=

∥∥∥∥∥∑
j∈Ni

(
fi j(‖z

y
i j(t

i
k, t

1
i j(t))‖)(k1zy

i j(t
i
k, t

1
i j(t)) + k2zr

i j(t
i
k, t

1
i j(t)))

− fi j(‖z
y
i j(t

i
k, t

i
k)‖)(k1zy

i j(t
i
k, t

i
k) + k2zr

i j(t
i
k, t

i
k))

)
+ k3(t − ti

k)ud
i (ti

k)
∥∥∥∥∥

+
∑
j∈Ni

∫ t

t1
i j(t)

(
k1gi j(k̃

y
i j(s))k̃r

i j(s) + k2hi j(k̃
y
i j(s))(k̃r

i j(s))2

+ k2 fi j(k̃
y
i j(s))θd

i j(s)
)
ds, t ∈ [ti

k, t
i
k+1).

Hence, a necessary condition to guarantee that the inequality in (10.26) holds, i.e.,

αde−βd t ≤ ‖Ei(t)‖, ∀t ∈ [ti
k, t

i
k+1),

is

αde−βd t = ϕd
i (t), ∀t ∈ [ti

k, t
i
k+1).

10.4. Distributed event-triggered formation control for double integrators 309

Algorithm 10.5 Distributed Self-Triggered Formation Control Algorithm for Double
Integrators

1: Choose 0 < β1 ≤ β0 and determine P by (10.22);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G), ri(0)} to its neighbors;
4: Agent i initializes ti

1 = 0 and k = 1;
5: At time s = ti

k, agent i gets ri(ti
k) by (10.27), and updates ud

i (ti
k) by sensing the relative

positions and speeds to its neighbors, and determines ti
k+1 by (10.40)1, and broadcasts

its triggering information {ti
k+1, ud

i (ti
k)} to its neighbors;

6: At agent i’s neighbors’ triggering times which are between [ti
k, t

i
k+1], agent i listens to

and receives triggering information from its neighbors2;
7: Agent i resets k = k + 1, and goes back to Step 5.

Noting that αde−βd t decreases with respect to t, ϕd
i (t) increases with respect to t during

[ti
k, t

i
k+1), and ϕd

i (ti
k) = 0, for given ti

k, agent i can estimate ti
k+1 by the solution to

αde−βd t = ϕd
i (t), t ≥ ti

k. (10.40)

In other words, if at time ti
k agent i knows t j

k j(ti
k)

, t j
k j(ti

k)+1
, ud

j (t
j
k j(ti

k)
), ∀ j ∈ Ni, then it can

estimate its next triggering time ti
k+1 by solving (10.40). The above implement idea is

summarized in Algorithm 10.5.
Similar to the single integrators case, broadcasting, receiving and listening can be ruled

out except at the beginning, and each agent only needs to sense the relative positions to its
neighbors and to update its control input at its triggering times. The idea is illustrated as
follows.

From (10.31), (10.32), (10.67) and (10.72), we have

d‖Ei(t)‖
dt

≤ ĉd
i (t), ∀t ≥ 0,

where

ĉd
i (t) =

∑
j∈Ni

(
k1gi j(k̂

y
i j(t))k̂

r
i j(t) + k2hi j(k̂

y
i j(t))(k̂

r
i j(t))

2 + k2 fi j(k̂
y
i j(t))θ

d
i j(t)

)
+ k3‖ud

i (t)‖.

If ti
k is known, then agent i can estimate ti

k+1 by∫ ti
k+1

ti
k

ĉd
i (t)dt = αde−βd ti

k+1 . (10.41)

The above implement idea is summarized in Algorithm 10.6.

1Agent i uses t j
k j(tik)

to replace t j
k j(tik)+1

to determine tik+1 by (10.40) when tik = t j
k j(tik)

.
2In other words, agent i only listen to incoming information at its neighbors’ triggering times. Thus

continuous listening is avoided.

310 Distributed event-triggered formation control algorithms

Algorithm 10.6 Distributed Self-Triggered Formation Control Algorithm for Double
Integrators (Sensing Only)

1: Choose 0 < β1 ≤ β0 and determine P by (10.22);
2: Choose 0 < k3 <

4
k2+
√

k2
1+k2

2

, αd > 0 and 0 < βd <
2−k4
ρ(P) ;

3: Agent i ∈ [n] sends {di j, (i, j) ∈ E(G), ri(0)} to its neighbors;
4: Agent i initializes ti

1 = 0 and k = 1;
5: At time s = ti

k, agent i gets ri(ti
k) by (10.27), and updates ud

i (ti
k) by sensing the relative

positions and speeds to its neighbors, and determines ti
k+1 by (10.41), and resets k =

k + 1, and repeats this step.

The following theorem shows that the formation with connectivity preservation can be
established and Zeno behavior can be excluded.

Theorem 10.4. Under the same settings as Theorem 10.3. All agents perform Algo-
rithm 10.5 or 10.6, then the multi-agent system (10.19) with event-triggered control input
(10.25) converges to the formation exponentially with connectivity preservation, and there
is no Zeno behavior.

Proof. Under both Algorithms 10.5 and 10.6, ‖Ei(t)‖ ≤ αde−βd t holds for all i ∈ [n] and
t ≥ 0. Then from Theorem 10.3, we know that the formation is achieved exponentially and
the connectivity is preserved. The method of the exclusion of Zeno behavior is similar to
the way in the proof of Theorem 10.3. �

Remark 10.5. In real applications, it is reasonable to assume the initial speed of each
agent is zero. By this assumption and Remark 10.3, we know that the only global parameter
that is needed to perform Algorithms 10.5 and 10.6 is the number of agents n.

Similar to Table 10.2, we can summarizes what and when information should be
exchanged by each agent when Algorithms 10.4–10.6 are performed. Since it is similar to
Table 10.2, we omit it here. Moreover, the comparison of the inter-event times determined
by Algorithms 10.4–10.6 is similar to Property 10.1. The absolute measurements of
positions and speeds are not needed when Algorithms 10.1–10.6 are performed.

10.5 Simulations

In this section, two numerical examples are given to demonstrate the effectiveness of the
presented algorithms.

Consider a network of n = 3 agents in R2 whose Laplacian matrix is given by

L =

2 −1 −1
−1 2 −1
−1 −1 2

 .

10.5. Simulations 311

The three agents are trying to establish a right triangle formation with

d12 =

 0
−3

 , d13 =

 −4
0

 , d23 =

 −4
3

 .
The communication radius is ∆ = 20. We have β0 = 0.1765.

Firstly, we consider the situation that the three agents are modeled as single integrators.
The initial positions of agents can be randomly selected as long as the initial condition
(10.5) is satisfied. Here, the initial positions of agents are chosen as

x1(0) =

 2
4

 , x2(0) =

 3.5
7

 , x3(0) =

 4.5
5.5

 .
One can easily check that both Assumption 10.1 and initial condition (10.5) hold. Choose
α = 100 and β =

β0
50 , by applying the Algorithm 10.2 to the multi-agent system (10.1)

with event-triggered control input (10.4), we show the evolutions of the formation in
Figure 10.3. Figure 10.4 (a) shows the position evolutions of the multi-agent system
(10.1) with event-triggered control input (10.4) when performing Algorithm 10.2, where
“circles” denote the initial positions and “triangle” denotes the desired formation, and the
triggering times for each agent are shown in Figure 10.4 (b). When every agent performs
Algorithm 10.3, Figures 10.5 (a) and (b) show the position evolutions and the triggering
times, respectively.

Secondly, we consider the situation that the three agents are modeled as double
integrators. The initial positions of agents are chosen as before. The initial speeds of agents
can be randomly selected and here we choose

r1(0) =

 1
2

 , r2(0) =

 −1
−2

 , r3(0) =

 −1
−1

 .
Moreover, we choose β1 = β0. Then, from (10.22), we have

P =

 5.0237 1.1547
1.1547 1.4502

 .
Thus, k1 = 1.1547, k2 = 1.4502, and ρ(P) = 5.3643. Choose k3 = 2

k2+
√

k2
1+k2

2

=

0.6053, αd = 100, and βd =
(2−k4)
10ρ(P) , by applying the Algorithm 10.5, we show the

evolutions of the position in Figure 10.6 (a), where “circles” denote the initial positions
and “triangle” denotes the desired formation, and show the triggering times for each agent
in Figure 10.6 (b). When every agent performs Algorithm 10.6, Figures 10.7 (a) and (b)
show the position evolutions and the triggering times, respectively.

It can be seen that the formation is achieved when any one of the four self-triggered
algorithms is performed, but the formation could be achieved in different positions. It
can also be seen that the average inter-event time determined by Algorithm 10.2 is
greater than that determined by Algorithm 10.3. However, just as Table 10.2 summarized,

312 Distributed event-triggered formation control algorithms

when performing Algorithm 10.3, each agent only need to sense the relative positions
to its neighbors at its triggering times. This is simpler than the case when performing
Algorithm 10.2. Similar comparison can be made between Algorithms 10.5 and 10.6.
Moreover, we can see that double integrators have more smooth trajectories compared
with single integrators.

10.6 Summary

In this chapter, formation control for multi-agent systems with limited communication, in-
cluding sensing, broadcasting, receiving and listening, was addressed. We first considered
the situation that agents are modeled as single integrators. An event-triggered algorithm
and two self-triggered algorithms, to avoid continuous communication and using absolute
measurements of states, were proposed. It was shown that each agent only updates its
control input by sensing the relative state to its neighbors and broadcasts its triggering
information at its triggering times, and listens to and receives its neighbors’ triggering
information at their triggering times. Moreover, the desired formation was established
exponentially with connectivity preservation and exclusion of Zeno behavior. Then, these
results were extended to double integrators. Future research directions of this work include
taking input saturation into account since the proposed event-triggered control input could
be very large, which is unrealistic.

10.7 Proofs

10.7.1 Proof of Theorem 10.1

(i) We define the total tension energy of G as

ν(∆, y(t)) =
1
2

n∑
i=1

∑
j∈Ni

νi j(∆, y(t)).

The time derivative of ν(∆, y(t)) along the trajectories of the multi-agent system (10.2)–
(10.3) is

ν̇(∆, y(t)) =

n∑
i=1

∑
j∈Ni

(∂νi j(∆, y)
∂yi

)>∣∣∣∣
y=y(t)

ẏi(t)

=

n∑
i=1

∑
j∈Ni

(ωi j(t)(yi(t) − y j(t)))>
(∑

j∈Ni

−ωi j(ti
ki(t))(yi(ti

ki(t)) − y j(ti
ki(t)))

)
=

n∑
i=1

∑
j∈Ni

(ωi j(t)(yi(t) − y j(t)))>
(
ei(t) −

∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
)

=

n∑
i=1

∑
j∈Ni

(ωi j(t)(yi(t) − y j(t)))>
(
−

∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
)

10.7. Proofs 313

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(a) At t = 0.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(b) At t = 1.2.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(c) At t = 1.6.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(d) At t = 2.4.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(e) At t = 3.2.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

(f) At t = 10.4.

Figure 10.3: Evolutions of the formation process when performing Algorithm 10.2 for
single integrators.

314 Distributed event-triggered formation control algorithms

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(a) The position evolutions of the multi-agent system (10.1) with event-triggered
control input (10.4) when performing Algorithm 10.2.

(b) The triggering times for each agent.

Figure 10.4: Performance of the distributed self-triggered formation control algorithm for
single integrators.

10.7. Proofs 315

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(a) The position evolutions of the multi-agent system (10.1) with event-triggered
control input (10.4) when performing Algorithm 10.3.

(b) The triggering times for each agent.

Figure 10.5: Performance of the distributed self-triggered formation control algorithm for
single integrators (sensing only).

316 Distributed event-triggered formation control algorithms

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(a) The position evolutions of the multi-agent system (10.19) with event-
triggered control input (10.25) when performing Algorithm 10.5.

(b) The triggering times for each agent.

Figure 10.6: Performance of the distributed self-triggered formation control algorithm for
double integrators.

10.7. Proofs 317

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(a) The position evolutions of the multi-agent system (10.19) with event-
triggered control input (10.25) when performing Algorithm 10.6.

(b) The triggering times for each agent.

Figure 10.7: Performance of the distributed self-triggered formation control algorithm for
double integrators (sensing only).

318 Distributed event-triggered formation control algorithms

+

n∑
i=1

∑
j∈Ni

(ωi j(t)(yi(t) − y j(t)))>ei(t)

≤ −‖Lωy(t)‖2 +

n∑
i=1

∥∥∥∥∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
∥∥∥∥2

+
1
4

n∑
i=1

‖ei(t)‖2

=
1
4

n∑
i=1

‖ei(t)‖2,

From (10.6), we know that

‖ei(t)‖ ≤ αe−βt, ∀t ≥ 0. (10.42)

Hence

ν̇(∆, y(t)) ≤
nα2

4
e−2βt, ∀t ≥ 0.

Thus

ν(∆, y(t)) ≤ν(∆, y(0)) +
nα2

8β
(1 − e−2βt) ≤ kν, ∀t ≥ 0,

where

kν = ν(∆, y(0)) +
nα2

8β
=

1
2

n∑
i=1

∑
j∈Ni

‖xi(0) − x j(0) − di j‖
2

∆ − ‖di j‖ − ‖xi(0) − x j(0) − di j‖
+

nα2

8β
. (10.43)

Then, for any (i, j) ∈ E(G) and t ≥ 0, we have

νi j(∆, y(t)) =
‖yi(t) − y j(t)‖2

∆ − ‖di j‖ − ‖yi(t) − y j(t)‖
≤ 2ν(∆, y(t)) ≤ 2kν.

Hence

‖yi(t) − y j(t)‖ ≤ ki j, ∀t ≥ 0, (10.44)

where

ki j = −kν +

√
k2
ν + 2kν(∆ − ‖di j‖) < ∆ − ‖di j‖. (10.45)

Then, we have

‖xi(t) − x j(t)‖ = ‖xi(t) − τi − (x j(t) − τ j) + di j‖

= ‖yi(t) − y j(t) + di j‖ ≤ ‖yi(t) − y j(t)‖ + ‖di j‖ ≤ ki j + ‖di j‖ < ∆, ∀t ≥ 0,

and thus connectivity maintenance is established.

10.7. Proofs 319

(ii) Let e(t) = col(e1(t), . . . , en(t)), ȳ(t) = 1
n
∑n

i=1 yi(t) and δ(t) = y(t) − 1n ⊗ ȳ(t) = (Kn ⊗

Ip)y(t). We consider the Lyapunov candidate

V(y(t)) =
1
2
δ>(t)δ(t) =

1
2

y>(t)(Kn ⊗ Ip)y(t). (10.46)

Then its derivative along the trajectories of the multi-agent system (10.2)–(10.3) is

V̇(y(t)) = y>(t)(Kn ⊗ Ip)ẏ(t) = y>(t)(Kn ⊗ Ip)(−(Lω ⊗ Ip)y(t) + e(t))
= −y>(t)(Lω ⊗ Ip)y(t) + δ>(t)e(t).

For (i, j) ∈ E(G), define

fi j(l) =
2∆ − 2‖di j‖ − l
(∆ − ‖di j‖ − l)2 , l ∈ [0,∆ − ‖di j‖). (10.47)

We can easily check that fi j(l) is an increasing function on [0,∆−‖di j‖). Then from (10.44)
and (10.45) we have

ωi j(t) ≤ fi j(ki j), ωi j(t) ≥ fi j(0) =
2

∆ − ‖di j‖
≥

2
∆0
, ∀(i, j) ∈ E(G), ∀t ≥ 0. (10.48)

Then,

Ω(G) = Diag([ω(e1), · · · , ω(em)]) ≥
2
∆0

Im,

and

Lω = B(G)Ω(G)B(G)> ≥
2
∆0

B(G)ImB(G)> ≥
2ρ2(B(G)B(G)>)

∆0
Kn = 2β0Kn.

Thus

V̇(y(t)) = −y>(t)(Lω ⊗ Ip)y(t) + δ>(t)e(t)

≤ −2β0y>(t)(Kn ⊗ Ip)y(t) + β0δ
>(t)δ(t) +

1
4β0
‖e(t)‖2

= −2β0V(y(t)) +
1

4β0
‖e(t)‖2 ≤ −2β0V(y(t)) +

nα2

4β0
e−2βt,

where the first inequality holds due to Lω ≥ 2β0Kn and the second inequality holds due to
(10.42). Hence

V(y(t)) ≤ V(y(0))e−2β0t +
nα2

8β0(β0 − β)
(e−2βt − e−2β0t) < kVe−2βt,

where

kV = V(y(0)) +
nα2

8β0(β0 − β)
. (10.49)

320 Distributed event-triggered formation control algorithms

Thus

‖yi(t) − y j(t)‖2 ≤ 2‖yi(t) − ȳ(t)‖2 + 2‖ȳ(t) − y j(t)‖2

≤ 4V(y(t)) < 4kVe−2βt, ∀t ≥ 0, ∀i, j ∈ [n]. (10.50)

Hence

lim
t→∞

(xi(t) − x j(t)) = lim
t→∞

(yi(t) − τi − (y j(t) − τ j)) = di j,

exponentially.
(iii) For (i, j) ∈ E(G), define

gi j(l) =
2(∆ − ‖di j‖)2

(∆ − ‖di j‖ − l)3 , l ∈ [0,∆ − ‖di j‖), (10.51)

hi j(l) =
3∆ − 3‖di j‖ − l
(∆ − ‖di j‖ − l)3 , l ∈ [0,∆ − ‖di j‖). (10.52)

We can easily check that both gi j(l) and hi j(l) are increasing functions on [0,∆ − ‖di j‖).
From (10.48), we have

‖ẏi(t)‖ =
∥∥∥∥ei(t) −

∑
j∈Ni

ωi j(t)(yi(t) − y j(t))
∥∥∥∥ ≤ ‖ei(t)‖ +

∑
j∈Ni

ωi j(t)‖(yi(t) − y j(t))‖ (10.53)

< αe−βt +
∑
j∈Ni

2 fi j(ki j)
√

kVe−βt. (10.54)

From

ėi(t) =
∑
j∈Ni

(ω̇i j(t)(yi(t) − y j(t)) + ωi j(t)(ẏi(t) − ẏ j(t)))

=
∑
j∈Ni

(
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ẏi(t) − ẏ j(t))(yi(t) − y j(t))

+ ωi j(t)(ẏi(t) − ẏ j(t))
)
, (10.55)

we have

d‖ei(t)‖
dt

≤ ‖ėi(t)‖

≤
∑
j∈Ni

(∥∥∥∥hi j(‖yi(t) − y j(t)‖)
(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ẏi(t) − ẏ j(t))(yi(t) − y j(t))

∥∥∥∥
+ ‖ωi j(t)(ẏi(t) − ẏ j(t))‖

)
≤

∑
j∈Ni

(
hi j(‖yi(t) − y j(t)‖)‖ẏi(t) − ẏ j(t)‖‖yi(t) − y j(t)‖ + ωi j(t)‖ẏi(t) − ẏ j(t)‖

)

10.7. Proofs 321

=
∑
j∈Ni

gi j(‖yi(t) − y j(t)‖)‖ẏi(t) − ẏ j(t)‖ (10.56)

≤
∑
j∈Ni

gi j(‖yi(t) − y j(t)‖)(‖ẏi(t)‖ + ‖ẏ j(t)‖) (10.57)

≤
∑
j∈Ni

gi j(ki j)(‖ẏi(t)‖ + ‖ẏ j(t)‖) < cie−βt, (10.58)

where

ci =
∑
j∈Ni

gi j(ki j)
(
2α +

∑
l∈Ni

2 fil(kil)
√

kV +
∑
l∈N j

2 f jl(k jl)
√

kV

)
. (10.59)

Thus, a necessary condition to guarantee that the inequality in (10.6) holds, i.e.,

αe−βt ≤ ‖ei(t)‖ =

∫ t

ti
k

d‖ei(s)‖
ds

ds, ∀t ∈ [ti
k, t

i
k+1),

is

αe−βt ≤

∫ t

ti
k

cie−βsds =
ci

β
(e−βti

k − e−βt)

⇔ (ci + αβ)e−βt ≤ cie−βti
k ⇔ (ci + αβ)e−β(t−ti

k) ≤ ci

⇒ (ci + αβ)(1 − β(t − ti
k)) ≤ ci ⇔ t − ti

k ≥ εi,

where

εi =
α

ci + αβ
> 0. (10.60)

In other words, for all t ∈ [ti
k, t

i
k + εi], ‖ei(t)‖ ≤ αe−βt holds. Hence ti

k+1 ≥ ti
k + εi.

10.7.2 Proof of Theorem 10.3

(i) We define the total tension energy of G as

νd(∆, y(t)) = k1ν(∆, y(t)) +
1
2

n∑
i=1

‖ri(t)‖2.

Then time derivative of νd(∆, y(t)) along the trajectories of the multi-agent system (10.20)
with (10.24) is

ν̇d(∆, y(t)) = k1

n∑
i=1

∑
j∈Ni

(∂νi j(∆, y)
∂yi

)>∣∣∣∣
y=y(t)

ẏi(t) +

n∑
i=1

r>i (t)ṙi(t)

=

n∑
i=1

r>i (t)
(
k1

∑
j∈Ni

(ωi j(t)(yi(t) − y j(t))) + ud
i (t)

)

322 Distributed event-triggered formation control algorithms

=

n∑
i=1

r>i (t)
(
Ei(t) − k2

∑
j∈Ni

ωi j(t)(ri(t) − r j(t)) − k3ri(t)
)

≤
1

4k3

n∑
i=1

‖Ei(t)‖2 −
n∑

i=1

r>i (t)k2

∑
j∈Ni

ωi j(t)(ri(t) − r j(t))

=
1

4k3

n∑
i=1

‖Ei(t)‖2 − k2r>(t)Lωr(t).

From (10.26), we know that

‖Ei(t)‖ ≤ αde−βd t, ∀t ≥ 0.

Hence

ν̇d(∆, y(t)) ≤
nα2

d

4k3
e−2βd t, ∀t ≥ 0.

Thus

νd(∆, y(t)) ≤ νd(∆, y(0)) +
nα2

d

8k3βd
(1 − e−2βd t) ≤ kd

ν , ∀t ≥ 0,

where

kd
ν = νd(∆, y(0)) +

nα2
d

8k3βd

=
k1

2

n∑
i=1

∑
j∈Ni

‖xi(0) − x j(0) − di j‖
2

∆ − ‖di j‖ − ‖xi(0) − x j(0) − di j‖
+

1
2

n∑
i=1

‖ri(0)‖2 +
nα2

d

8k3βd
.

Then, for any (i, j) ∈ E(G) and t ≥ 0, we have

νi j(∆, y(t)) =
‖yi(t) − y j(t)‖2

∆ − ‖di j‖ − ‖yi(t) − y j(t)‖
≤

2
k1
νd(∆, y(t)) ≤

2
k1

kd
ν .

Hence

‖yi(t) − y j(t)‖ ≤ kd
i j, (10.61)

where

kd
i j = −

kd
ν

k1
+

((kd
ν

k1

)2
+ 2

kd
ν

k1
(∆ − ‖di j‖)

) 1
2
< ∆ − ‖di j‖.

Then, we have

‖xi(t) − x j(t)‖ = ‖xi(t) − τi − (x j(t) − τ j) + di j‖ = ‖yi(t) − y j(t) + di j‖

10.7. Proofs 323

≤ ‖yi(t) − y j(t)‖ + ‖di j‖ ≤ kd
i j + ‖di j‖ < ∆, ∀t ≥ 0,

and thus connectivity maintenance is guaranteed.
(ii) Note B>2 P = [k1 k2], then we can rewrite the control input (10.24) as

ud
i (t) = −(B>2 P ⊗ Ip)

∑
j∈Ni

ωi j(t)(zi(t) − z j(t)) + Ei(t) − k3(B>2 ⊗ Ip)zi(t).

Let z(t) = col(z1(t), . . . , zn(t)) and z̄(t) = 1
n
∑n

i=1 zi(t). We consider the Lyapunov candidate

Vd(z(t)) =
1
2

(z(t) − 1nz̄(t))>(In ⊗ P ⊗ Ip)(z(t) − 1nz̄(t)) =
1
2

z>(t)(Kn ⊗ P ⊗ Ip)z(t).

The last equality holds since

z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) = (z(t) − 1nz̄(t))>(In ⊗ I2 ⊗ Ip)(z(t) − 1nz̄(t)).

Then the derivative of Vd(z(t)) along the trajectories of (10.21) is

V̇d(z(t)) = z>(t)(Kn ⊗ P ⊗ Ip)ż(t)

= z>(t)(Kn ⊗ P ⊗ Ip)((In ⊗ B1 ⊗ Ip)z(t) + (In ⊗ B2 ⊗ Ip)ud(t))
= z>(t)(Kn ⊗ P ⊗ Ip)((In ⊗ B1 ⊗ Ip)z(t)

+ (In ⊗ B2 ⊗ Ip)(−(Lω ⊗ B>2 P ⊗ Ip)z(t) + E(t) − k3(In ⊗ B>2 ⊗ Ip)z(t)))

=
1
2

z>(t)(Kn ⊗ (PB1 + B>1 P) ⊗ Ip)z(t) − z>(t)(Lω ⊗ PB2B>2 P ⊗ Ip)z(t)

− k3z>(t)(Kn ⊗ PB2B>2 ⊗ Ip)z(t) + z>(t)(Kn ⊗ PB2 ⊗ Ip)E(t),

where ud(t) = col(ud
1(t), . . . , ud

n(t)) and E(t) = col(E1(t), . . . , En(t)). From PB2B>2 P ≥ 0 and
Lω ≥ 2β0Kn ≥ 2β1Kn due to (2.6), we have

−z>(t)(Lω ⊗ PB2B>2 P ⊗ Ip)z(t) ≤ −2β1z>(t)(Kn ⊗ PB2B>2 P ⊗ Ip)z(t). (10.62)

Noting

PB2B>2 + B2B>2 P
2

=

 0 k1
2

k1
2 k2

 ,
one can easily check that ρ(1

2 (PB2B>2 + B2B>2 P)) = 1
2 (k2 + (k2

1 +k2
2)

1
2). Noting k4 = 1

2 k3(k2 +

(k2
1 + k2

2)
1
2), we have

−k3z>(t)(Kn ⊗ PB2B>2 ⊗ Ip)z(t) ≤ k4z>(t)(Kn ⊗ I2 ⊗ Ip)z(t). (10.63)

Then from (10.62), (10.63) and the inequality

z>(t)(Kn ⊗ PB2 ⊗ Ip)E(t) ≤ β1z>(t)(Kn ⊗ PB2B>2 P ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2,

324 Distributed event-triggered formation control algorithms

we get

V̇d(z(t)) ≤
1
2

z>(t)
(
Kn ⊗ (PB1 + B>1 P − 2β1PB2B>2 P) ⊗ Ip

)
z(t)

+ k4z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2

≤ −(2 − k4)z>(t)(Kn ⊗ I2 ⊗ Ip)z(t) +
1

4β1
‖E(t)‖2

≤ −
2(2 − k4)
ρ(P)

Vd(z(t)) +
nα2

d

4β1
e−2βd t,

where the second inequality holds due to (10.22) and the last inequality holds due to
(10.23). Hence

Vd(z(t)) ≤ Vd(z(0))e−
2(2−k4)
ρ(P) t

+
ρ(P)nα2

d(e−2βd t − e−
2(2−k4)
ρ(P) t)

8β1(2 − k4 − βdρ(P))
.

Thus

‖yi(t) − y j(t)‖2 + ‖ri(t) − r j(t)‖2 = ‖zi(t) − z j(t)‖2 ≤ 2‖zi(t) − z̄(t)‖2 + 2‖z̄(t) − z j(t)‖2

≤
4

ρ2(P)
Vd(z(t)) < kd

Ve−2βd t, (10.64)

where

kd
V =

4Vd(z(0))
ρ2(P)

+
ρ(P)nα2

d

2ρ2(P)β1(2 − k4 − βdρ(P))
.

Hence

lim
t→∞

(xi(t) − x j(t)) = lim
t→∞

(yi(t) − τi − (y j(t) − τ j)) = di j,

and

lim
t→∞

(ri(t) − r j(t)) = 0,

exponentially.
(iii) From

ṙi(t) = ud
i (t) = Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) − k3ri(t),

we have

dek3tri(t)
dt

=
(
Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t))
)
ek3t.

10.7. Proofs 325

Then, similar to (10.54), we have

d‖ek3tri(t)‖
dt

≤

∥∥∥∥∥∥dek3tri(t)
dt

∥∥∥∥∥∥
=

∥∥∥∥Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t))
∥∥∥∥ek3t

≤ cr
i e

(k3−βd)t,

where

cr
i = αd + (k1 + k2)

∑
l∈Ni

fil(kd
il)

√
kd

V .

From

ek3t d‖ri(t)‖
dt

≤ ek3t d‖ri(t)‖
dt

+ k3ek3t‖ri(t)‖ =
dek3t‖ri(t)‖

dt
=

d‖ek3tri(t)‖
dt

,

we have

d‖ri(t)‖
dt

≤ cr
i e
−βd t, ∀t ≥ 0.

Thus

‖ri(t)‖ ≤ ‖ri(0)‖ +
cr

i

βd
, ∀t ≥ 0, (10.65)

and

‖ud
i (t)‖ = ‖ṙi(t)‖

=
∥∥∥∥Ei(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t)) − k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) − k3ri(t)
∥∥∥∥

≤ cr
i e
−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

)
. (10.66)

Again, similar to (10.54), we have

‖ṙi(t) − ṙ j(t)‖ =
∥∥∥∥Ei(t) − E j(t) − k1

∑
l∈Ni

ωil(t)(yi(t) − yl(t))

− k2

∑
l∈Ni

ωil(t)(ri(t) − rl(t)) + k1

∑
l∈N j

ω jl(t)(y j(t) − yl(t))
∥∥∥∥

+ k2

∑
l∈N j

ω jl(t)(r j(t) − rl(t)) − k3(ri(t) − r j(t))‖ (10.67)

< cr
i je
−βd t, (10.68)

326 Distributed event-triggered formation control algorithms

where cr
i j = 2αd + ((k1 + k2)(

∑
l∈Ni

fil(kd
il) +

∑
l∈N j

f jl(kd
jl)) + k3)

√
kd

V

Similar to (10.55), we have

ėi(t) =
∑
j∈Ni

(ω̇i j(t)(yi(t) − y j(t)) + ωi j(t)(ẏi(t) − ẏ j(t)))

=
∑
j∈Ni

(
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ri(t) − r j(t))(yi(t) − y j(t))

+ ωi j(t)(ri(t) − r j(t))
)
, (10.69)

and

ėr
i (t) =

∑
j∈Ni

(ω̇i j(t)(ri(t) − r j(t)) + ωi j(t)(ṙi(t) − ṙ j(t)))

=
∑
j∈Ni

(
hi j(‖yi(t) − y j(t)‖)

(yi(t) − y j(t))>

‖yi(t) − y j(t)‖
(ri(t) − r j(t))(ri(t) − r j(t))

+ ωi j(t)(ṙi(t) − ṙ j(t))
)
. (10.70)

Similar to (10.58), from (10.61), (10.66), and (10.68), we have

d‖Ei(t)‖
dt

=
d‖k1ei(t) + k2er

i (t) + k3(ri(t) − ri(ti
ki(t)

))‖

dt
≤ ‖k1ėi(t) + k2ėr

i (t) + k3ṙi(t)‖ (10.71)
≤ k1‖ėi(t)‖ + k2‖ėr

i (t)‖ + k3‖ṙi(t)‖

≤
∑
j∈Ni

(
k1gi j(‖yi(t) − y j(t)‖)‖ri(t) − r j(t)‖

+ k2hi j(‖yi(t) − y j(t)‖)‖ri(t) − r j(t)‖2 + k2ωi j(t)(‖ṙi(t) − ṙ j(t)‖)
)

+ k3‖ud
i (t)‖ (10.72)

≤
∑
j∈Ni

k1gi j(kd
i j)‖ri(t) − r j(t)‖ + k2hi j(kd

i j)‖ri(t) − r j(t)‖2

+ k2 fi j(kd
i j)(‖ṙi(t) − ṙ j(t)‖) + k3

(
cq

i e−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

))
< cd

i e−βd t + k3

(
cr

i e
−βd t + k3

(
‖ri(0)‖ +

cr
i

βd

))
,

where cd
i =

∑
j∈Ni

(k1gi j(kd
i j)

√
kd

V + k2hi j(kd
i j)k

d
V + k2 fi j(kd

i j)c
r
i j). Thus

d‖Ei(t)‖
dt

< ce
i , ∀t ≥ 0, (10.73)

where ce
i = cd

i + k3(cr
i + k3(‖qi(0)‖ +

cr
i
βd

)).
From (10.73), similar to the way to exclude Zeno behavior in the proof of Theorem 8.1

or 9.2, we can prove that there is no Zeno behavior by contradiction.

Chapter 11

Conclusions and future research

In this chapter, we summarize this thesis and discuss possible directions for future research.

11.1 Summary

The main results of this thesis were presented in Chapters 3–10 and divided into three
parts.

Distributed nonconvex optimization

In this part, we proposed distributed algorithms to solve nonconvex optimization problems
under different information feedback settings. We showed convergence properties, such
as linear convergence and linear speedup, of these algorithms under weaker assumptions
on the underlying communication network and cost functions than existing results in the
literature.

In Chapter 3, we proposed three algorithms: a distributed primal–dual FO algorithm,
a distributed ADMM algorithm, and a distributed linearized ADMM algorithm, to solve
the nonconvex optimization problem with full-information feedback. We derived their
convergence rates. More specifically, the classic O(1/T) convergence rate was achieved
when each local cost function is smooth, and linear convergence was established when
the global cost function satisfies the P–Ł condition in addition, which relaxes the standard
strong convexity condition in the literature. One immediate future research direction is to
show other distributed optimization algorithms, such as distributed heavy-ball and adaptive
momentum algorithms, also achieve linear convergence under the P–Ł condition.

In Chapter 4, we studied distributed nonconvex optimization with stochastic gradient
feedback. We proposed a distributed primal–dual SGD algorithm which is suitable for
arbitrarily connected communication networks and any smooth cost functions. We showed
that the linear speedup convergence rate O(1/

√
nT) was established for smooth nonconvex

cost functions. The convergence rate was improved to the linear speedup convergence rate
O(1/(nT)) when the global cost function satisfies the P–Ł condition in addition. It was
also shown that the output of the proposed algorithm with constant parameters linearly

327

328 Conclusions and future research

Table 11.1: Summary of the results in Part I of this thesis and comparison with the
literature.

Extra assumption? Linear convergence? Linear speedup?

[68–74, 76–91] No Strongly convex Not applicable

Chapter 3 No P–Ł condition Not applicable

[31–33, 132, 133, 135–137, 140, 141, 251, 255,
257–259] Yes Not applicable Yes

Chapter 4 No Not applicable Yes

[147–149, 151–155] No Not applicable No

Chapter 5 No Not applicable Yes

converges to a neighborhood of a global optimum. With some modifications, we believe
that the results in this chapter still hold for the distributed primal SGD and stochastic
gradient tracking algorithms.

In Chapter 5, we investigated distributed nonconvex optimization with ZO oracle
feedback. We first proposed a distributed primal–dual DZO algorithm to solve this problem
when DZO oracle feedback is available. We showed that it has the same convergence
properties as its FO counterpart under the same conditions. We then proposed two
distributed SZO algorithms to solve this problem when SZO oracle feedback is available.
We showed that the linear speedup convergence rate O(

√
p/(nT)) was established for

smooth nonconvex cost functions under arbitrarily connected communication networks.
The convergence rate was improved to O(p/(nT)) when the global cost function satisfies
the P–Ł condition in addition. It was also shown that the output of the these two algorithms
linearly converges to a neighborhood of a global optimum. One immediate future research
direction is to achieve faster convergence with reduced sampling complexity by using
variance reduction techniques.

We summarize some aspects of the results in this part in Table 11.1 and compare them
with the literature. The columns list some specific properties of distributed optimization
algorithms. Strong convexity is needed by existing full-information based distributed
optimization algorithms to obtain linear convergence, whereas this condition has been
relaxed by the P–Ł condition in Chapter 3, see the second and third rows in Table 11.1.
Existing SGD algorithms that obtained linear speedup require extra assumptions on the
communication network and cost functions, such as star graph, bounded gradients of the
local cost functions, and/or bounded difference between the gradients of the local and
global cost functions, but Chapter 4 does not, see the fourth and fifth rows in Table 11.1.
None of existing distributed ZO algorithms achieve linear speedup and most of them do
not consider the SZO oracle feedback setting either, while Chapter 5 does both, see the last
two rows in Table 11.1.

11.1. Summary 329

Distributed online convex optimization

In this part, we proposed distributed online algorithms to solve convex optimization
problems with time-varying coupled inequality constraints under different information
feedback settings. We showed that the proposed algorithms achieve comparable and
sometimes better performance than existing (centralized) algorithms in the literature
measured by regret and constraint violation under weaker assumptions.

In Chapter 6, we considered an online convex optimization problem with time-
varying coupled inequality constraints. To the best of our knowledge, no existing studies
considered this problem before. We proposed a distributed online primal–dual dynamic
mirror descent algorithm to solve this problem. This algorithm does not require knowledge
of the total number of rounds or any other parameters related to the loss or constraint
functions. We derived regret and constraint violation bounds for the algorithm and showed
how they depend on the stepsize sequences, the accumulated dynamic variation of the
comparator sequence, the number of agents, and the network connectivity. We proved
that the algorithm achieves sublinear regret and constraint violation for both convex
and strongly convex objective functions. Compared with existing literature, this chapter
achieved better results under much weaker assumptions. With some modifications, we
believe that the results in this chapter can be extended to the situation where stochastic
gradient information is available. Furthermore, the results also can most likely be extended
to time-varying unbalanced directed communication networks.

In Chapter 7, we considered the distributed bandit online convex optimization problem
with time-varying coupled inequality constraints. To the best of our knowledge, no
existing studies considered this problem before. There are even no studies considered
the centralized bandit online convex optimization problem with time-varying inequality
constraints in the one-point bandit feedback setting. We proposed distributed bandit online
algorithms with one- and two-point bandit feedback, which do not require knowledge of the
total number of rounds or any other parameters related to the loss or constraint functions.
We showed that sublinear expected regret and constraint violation can be achieved by both
algorithms, which recover the bounds achieved by existing centralized bandit algorithms.
With some modifications, we believe that the results in this chapter still hold when
considering sampling noise. Furthermore, the results also most likely hold under time-
varying unbalanced directed communication networks.

We summarize some aspects of the results in this part in Table 11.2 and compare
them with the literature. The columns list some specific properties of (bandit) online
convex optimization algorithms. Most of existing algorithms require assumptions, such as
knowing the total number of rounds or any other parameters related to the loss or constraint
functions. Moreover, most are centralized and do not consider time-varying constraints.

Distributed event-triggered control

In this part, we proposed distributed dynamic event-triggered control algorithms for multi-
agent systems to reduce the amount of information exchanged and system update in
general. In particular, the three problems of average consensus for single-integrator agents,

330 Conclusions and future research

Table 11.2: Summary of the results in Part II of this thesis and comparison with the
literature.

Extra assumption? Distributed setting? Time-varying constraints? Bandit feedback?

[169, 170, 172] Yes No No No

[173–175] Yes No Yes No

[190, 191] No Yes No No

Chapter 6 No Yes Yes No

[169, 212, 280, 324,
325] Yes No No Yes

[328, 329] Yes No Yes Yes

Chapter 7 No Yes Yes Yes

global consensus for single-integrator agents with input saturation, and formation control
for single- and double-integrator agents with connectivity preservation were solved.

In Chapter 8, we first proposed two dynamic event-triggered control algorithms for
first-order continuous-time multi-agent systems to solve average consensus problem.
Compared with existing event-triggered control algorithms, our dynamic event-triggered
control algorithms involve internal dynamic variables which play an essential role in
guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Some of the
existing event-triggered control algorithms are special cases of our strategies. We proved
that average consensus is achieved exponentially if and only if the communication graph is
connected, and Zeno behavior was excluded by proving that the triggering time sequence
of each agent is divergent. Then, we proposed a self-triggered control algorithm to avoid
continuous listening over the network. As a result, each agent only needs to sense and
broadcast at its triggering times, and to listen to and receive incoming information from
its neighbors at their triggering times. Thus continuous listening is avoided. With some
modifications, the results in this chapter can be extended to the cases that the underlying
graph is directed and has a directed spanning tree. Furthermore, the results also can most
likely be extended to general linear and nonlinear multi-agent systems with standard
controllability assumptions for linear dynamics and standard continuity assumptions for
the nonlinear dynamics.

In Chapter 9, we extended the results above to multi-agent systems with input
saturation constraints over digraphs. We first showed that global consensus is achieved
if and only if the underlying directed communication network has a directed spanning
tree. We then considered event-triggered control and presented a distributed triggering
law to reduce the overall need of communication and system updates. The triggering
law was a special kind of dynamic triggering and was inspired by a Lyapunov function
we used in the proof of the first result. We showed that consensus is achieved for the
event-triggered control under the same connectivity condition, and the triggering law was
proven to be free of Zeno behavior. Moreover, we presented a self-triggered algorithm to
avoid continuous listening. With some modifications, we believe that the results in this
chapter can be extended to multi-agent systems with output saturation constraints and even

11.2. Future research directions 331

Table 11.3: Summary of the results in Part III of this thesis and comparison with the
literature.

Continuous
broadcasting?

Continuous
listening?

State
information?

Avoiding
Zeno?

[193–195, 358, 366, 379, 403, 408] No Yes Absolute ?

[200, 367–369, 380, 404, 407] No Yes Relative ?

Chapter 8 No No Absolute Yes

Chapter 9 No No Absolute Yes

Chapter 10 No No Relative Yes

nonlinear multi-agent systems with standard continuity assumptions.
In Chapter 10, formation control for multi-agent systems with limited communication

was addressed. We first considered the situation that agents are modeled as single
integrators and designed distributed event-triggered control. An event-triggered algorithm
and two self-triggered algorithms were proposed. It was shown that each agent only
updates its control input by sensing the relative state to its neighbors and broadcasts its
triggering information at its triggering times, and listens to and receives its neighbors’
triggering information at their triggering times. The desired formation was shown to be
established exponentially with connectivity preservation and exclusion of Zeno behavior.
Then, these results were extended to double integrators. With some modifications, we
think the results in this chapter can be extended to position- and distance-based formation
control, and can most likely be extended to systems with input saturation.

We summarize some aspects of the results in this part in Table 11.3 and compare them
with the literature. The columns list some specific properties of distributed event-triggered
control algorithms. None of the listed work assume continuous broadcasting of the agents’
state to its neighbors, but it is common in the literature to assume continuous listening.
None of results in Chapters 8–10 require agents to continuously listen to their neighbors.
The table specifies if the considered control laws are based on absolute state information
or relative state information. Finally, as shown in the thesis it is important to exclude
Zeno behavior. In the literature, this issue has not always been carefully investigated. In
particular, references [193,194,367,369,379,403,404,407] do not strictly show that Zeno
behavior is excluded, while [195, 200, 358, 366, 368, 380, 408] do.

11.2 Future research directions

There are several interesting research directions that can be based on the work of this thesis.
Some of the immediate ones were mentioned above. Other extensions are discussed in this
section.

332 Conclusions and future research

Distributed optimization with adversarial agents

A common assumption in the distributed optimization literature and Chapters 3–5 is
that all agents cooperate to learn the optimal solution. However, in networked cyber-
physical systems, some agents may become adversarial. Therefore, it is important to
investigate the performance of existing distributed optimization algorithms in the presence
of adversarial agents. Although distributed resilient consensus has been quite well studied,
e.g., [409–411], distributed resilient optimization with adversarial agents is a more open
problem, e.g., [412–414]. Existing results establish sufficient and/or necessary conditions
under which the proposed distributed algorithms ensure that the non-adversarial agents
converge to the convex hull of the local minimizers even in the presence of adversarial
agents. However, these results focus on distributed algorithms with diminishing stepsizes
and thus the convergence rate is slow. It is interesting to develop distributed resilient
optimization algorithms with fixed stepsizes such that faster convergence rate can be
achieved.

Distributed online convex optimization with aggregated variables

Distributed online convex optimization literature and Chapters 6–7 focus on the case
where each local loss and constraint functions depend only on local decision variables.
However, in many applications, the local loss and constraint functions depend also on
other agents’ decision variables. For example, the target surrounding problem, in which
a collection of agents desire to form a circular formation enclosing a moving target in
dynamic environments, can be formulated as an online optimization problem with each
local loss function resting not only on each agent’s own decision variable (such as position),
but also on the average of all agents’ decision variables. There are only few results on this
direction, e.g., [415]. It is challenging to develop distributed online algorithms such that
sublinear regret can be achieved.

Distributed event-triggered control with limited data rate

In Chapters 8–10, we showed that when agents use dynamic event-triggered strategies the
overall need of communication and system updates are reduced. It would be interesting to
quantify this reduction systematically and compare it with other event- and time-triggered
strategies. One specific problem is to determine the number of triggering times that are
needed to guarantee that all agents reach a ball of given radius centered at the average of
all agents’ states. It would be also interesting to find the minimum communication rate
between agents to guarantee that desired properties still can be achieved. Such minimum
rate question is well studied for single-agent systems, e.g., [416–420]. Although there
are some results also for multi-agent systems, e.g., [421, 422], this direction is far from
being complete. For example, it would be relevant to establish bit rate conditions under
which desired properties for multi-agent systems based on event-triggered control can be
guaranteed.

Bibliography

[1] C. H. Botts, J. C. Spall, and A. J. Newman, “Multi-agent surveillance and tracking
using cyclic stochastic gradient,” in American Control Conference, 2016, pp. 270–
275.

[2] E. Shakshuki and M. Reid, “Multi-agent system applications in healthcare: Current
technology and future roadmap,” Procedia Computer Science, vol. 52, pp. 252–261,
2015.

[3] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar,
R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, and P. Van den Hof, “Systems &
control for the future of humanity, research agenda: Current and future roles, impact
and grand challenges,” Annual Reviews in Control, vol. 43, pp. 1–64, 2017.

[4] C. Giannella, R. Bhargava, and H. Kargupta, “Multi-agent systems and distributed
data mining,” in International Workshop on Cooperative Information Agents.
Springer, 2004, pp. 1–15.

[5] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the art,”
Autonomous Agents and Multi-agent Systems, vol. 11, no. 3, pp. 387–434, 2005.

[6] D. Meng and K. L. Moore, “Learning to cooperate: Networks of formation agents
with switching topologies,” Automatica, vol. 64, pp. 278–293, 2016.

[7] M. Wooldridgey and P. Ciancarini, “Agent-oriented software engineering: The state
of the art,” in International Workshop on Agent-Oriented Software Engineering.
Springer, 2000, pp. 55–82.

[8] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a
distributed smart grid: Design and implementation,” in Power Systems Conference
and Exposition, 2009, pp. 1–8.

[9] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed
control and economic optimality in microgrids,” IEEE Transactions on Control of
Network Systems, vol. 3, no. 3, pp. 241–253, 2015.

[10] X. F. Xie, S. F. Smith, and G. J. Barlow, “Schedule-driven coordination for real-
time traffic network control,” in International Conference on Automated Planning
and Scheduling, 2012, pp. 323–331.

333

334 Bibliography

[11] T. Máhr, J. Srour, M. de Weerdt, and R. Zuidwijk, “Can agents measure up?
A comparative study of an agent-based and on-line optimization approach for a
drayage problem with uncertainty,” Transportation Research Part C: Emerging
Technologies, vol. 18, no. 1, pp. 99–119, 2010.

[12] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT Press,
2016.

[13] A. Antoniadis, I. Gijbels, and M. Nikolova, “Penalized likelihood regression for
generalized linear models with non-quadratic penalties,” Annals of the Institute of
Statistical Mathematics, vol. 63, no. 3, pp. 585–615, 2011.

[14] R. Gerehberg and W. Saxton, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, no. 2, pp. 237–246, 1972.

[15] J. R. Fienup, “Reconstruction of an object from the modulus of its fourier
transform,” Optics Letters, vol. 3, no. 1, pp. 27–29, 1978.

[16] ——, “Phase retrieval algorithms: A comparison,” Applied Optics, vol. 21, no. 15,
pp. 2758–2769, 1982.

[17] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Communications on Pure and Applied Mathematics, vol. 66, no. 8, pp. 1241–1274,
2013.

[18] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger flow:
Theory and algorithms,” IEEE Transactions on Information Theory, vol. 61, no. 4,
pp. 1985–2007, 2015.

[19] T. Goldstein and C. Studer, “Phasemax: Convex phase retrieval via basis pursuit,”
IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2675–2689, 2018.

[20] S. Bahmani and J. Romberg, “Phase retrieval meets statistical learning theory: A
flexible convex relaxation,” in Artificial Intelligence and Statistics, 2017, pp. 252–
260.

[21] R. Chandra, T. Goldstein, and C. Studer, “Phasepack: A phase retrieval library,” in
International Conference on Sampling Theory and Applications, 2019, pp. 1–5.

[22] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev,
“Phase retrieval with application to optical imaging: A contemporary overview,”
IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 87–109, 2015.

[23] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep big simple
neural nets excel on handwritten digit recognition,” Neural Computation, vol. 22,
no. 12, pp. 3207–3220, 2010.

Bibliography 335

[24] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in International Conference on Artificial Intelligence and
Statistics, 2011, pp. 215–223.

[25] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On
optimization methods for deep learning,” in International Conference on Machine
Learning, 2011.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Representations,
2015.

[27] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang et al., “Large scale distributed deep networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1223–1231.

[28] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. P.
Xing, “STRADS: A distributed framework for scheduled model parallel machine
learning,” in European Conference on Computer Systems, 2016, pp. 1–16.

[29] V. Hegde and S. Usmani, “Parallel and distributed deep learning,” in Technical
report, Stanford University, 2016.

[30] J. Hermans, “On scalable deep learning and parallelizing gradient descent,” Master’s
thesis, Maastricht University, 2017.

[31] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized
parallel stochastic gradient descent,” in Advances in Neural Information Processing
Systems, 2017, pp. 5330–5340.

[32] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training over
decentralized data,” in International Conference on Machine Learning, 2018, pp.
4848–4856.

[33] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication
efficient momentum SGD for distributed non-convex optimization,” in International
Conference on Machine Learning, 2019, pp. 7184–7193.

[34] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial attacks
on deep neural networks,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017, pp. 1310–1318.

[35] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in IEEE European Symposium
on Security and Privacy, 2016, pp. 372–387.

336 Bibliography

[36] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1625–1634.

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations, 2014.

[38] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations, 2015.

[39] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in International Conference on Learning Representations, 2017.

[40] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in IEEE Symposium on Security and Privacy, 2017, pp. 39–57.

[41] J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative models,” in
IEEE Security and Privacy Workshops, 2018, pp. 36–42.

[42] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Caffe model description:
VGG CNN S,” https://gist.github.com/ksimonyan/ fd8800eeb36e276cd6f9, 2014.

[43] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger, “Simple black-
box adversarial attacks,” in International Conference on Machine Learning, 2019.

[44] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” in International
Conference on Machine Learning, 2018, pp. 274–283.

[45] C. Finlay, A. M. Oberman, and B. Abbasi, “Improved robustness to adversarial ex-
amples using lipschitz regularization of the loss,” arXiv preprint arXiv:1810.00953,
2018.

[46] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models,” in ACM Workshop on Artificial Intelligence and Security, 2017,
pp. 15–26.

[47] A. N. Bhagoji, W. He, B. Li, and D. Song, “Practical black-box attacks on deep
neural networks using efficient query mechanisms,” in European Conference on
Computer Vision, 2018, pp. 158–174.

[48] S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box adversarial
attacks with a transfer-based prior,” in Advances in Neural Information Processing
Systems, 2019, pp. 10 934–10 944.

Bibliography 337

[49] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromsom, A. S.
Meliopoulous, R. Yinger, and J. Eto, “Integration of distributed energy resources.
The CERTS Microgrid Concept,” Lawrence Berkeley National Laboratory, Tech.
Rep., 2002.

[50] F. Rahimi and A. Ipakchi, “Demand response as a market resource under the smart
grid paradigm,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 82–88, 2010.

[51] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated scheduling of
residential distributed energy resources to optimize smart home energy services,”
IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 134–143, 2010.

[52] A. Abdelaziz, E. Ali, and S. A. Elazim, “Combined economic and emission dispatch
solution using flower pollination algorithm,” International Journal of Electrical
Power and Energy Systems, vol. 80, pp. 264–274, 2016.

[53] C. Sabol, R. Burns, and C. A. McLaughlin, “Satellite formation flying design and
evolution,” Journal of Spacecraft and Rockets, vol. 38, no. 2, pp. 270–278, 2001.

[54] S. Persson, S. Veldman, and P. Bodin, “PRISMA—a formation flying project in
implementation phase,” Acta Astronautica, vol. 65, no. 9, pp. 1360–1374, 2009.

[55] R. Faller, A. Ohndorf, B. Schlepp, and S. Eberle, “Preparation, handover,
and conduction of prisma mission operations at gsoc,” in IAF International
Astronautical Congress, 2012, pp. 1–11.

[56] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, “Heavy-duty
vehicle platooning for sustainable freight transportation: A cooperative method to
enhance safety and efficiency,” IEEE Control Systems Magazine, vol. 35, no. 6, pp.
34–56, Dec 2015.

[57] R. Ringbräck, “Multi-agent autonomous target tracking using distance-based
formations,” Master’s thesis, KTH Royal Institute of Technology, 2017.

[58] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,”
Ph.D. dissertation, MIT, Cambridge, MA, 1984.

[59] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic
and stochastic gradient optimization algorithms,” IEEE Transactions on Automatic
Control, vol. 31, no. 9, pp. 803–812, 1986.

[60] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Englewood Cliffs, NJ: Prentice Hall, 1989.

[61] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

338 Bibliography

[62] Y. Nesterov, Lectures on Convex Optimization, 2nd ed. Springer International
Publishing, 2018.

[63] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgradient
methods and consensus algorithms for solving convex optimization problems,” in
IEEE Conference on Decision and Control, 2008, pp. 4185–4190.

[64] M. Zhu and S. Martı́nez, “On distributed convex optimization under inequality and
equality constraints,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp.
151–164, 2011.

[65] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual averaging
for convex optimization,” in IEEE Conference on Decision and Control, 2012, pp.
5453–5458.

[66] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed
graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615, 2014.

[67] T. Yang, J. Lu, D. Wu, J. Wu, G. Shi, Z. Meng, and K. H. Johansson, “A distributed
algorithm for economic dispatch over time-varying directed networks with delays,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5095–5106, 2017.

[68] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed convex
optimization: The continuous-time case,” IEEE Transactions on Automatic Control,
vol. 57, no. 9, pp. 2348–2354, 2012.

[69] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication,”
Automatica, vol. 55, pp. 254–264, 2015.

[70] D. Jakovetić, J. M. Moura, and J. Xavier, “Linear convergence rate of a class of
distributed augmented Lagrangian algorithms,” IEEE Transactions on Automatic
Control, vol. 60, no. 4, pp. 922–936, 2015.

[71] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the
ADMM in decentralized consensus optimization,” IEEE Transactions on Signal
Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[72] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized alternating
direction method of multipliers,” IEEE Transactions on Signal Processing, vol. 63,
no. 15, pp. 4051–4064, 2015.

[73] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed ADMM over
networks,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 5082–
5095, 2017.

[74] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing
communication and computation in distributed optimization,” IEEE Transactions
on Automatic Control, vol. 64, no. 8, pp. 3141–3155, 2018.

Bibliography 339

[75] H. Li and Z. Lin, “Revisiting extra for smooth distributed optimization,” SIAM
Journal on Optimization, vol. 30, no. 3, pp. 1795–1821, 2020.

[76] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized quadratically
approximated alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 64, no. 19, pp. 5158–5173, 2016.

[77] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM Journal on Optimization,
vol. 27, no. 4, pp. 2597–2633, 2017.

[78] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geometrically convergent
distributed optimization with uncoordinated step-sizes,” in American Control
Conference, 2017, pp. 3950–3955.

[79] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,” IEEE
Transactions on Automatic Control, vol. 65, no. 6, pp. 2566–2581, 2020.

[80] ——, “Harnessing smoothness to accelerate distributed optimization,” IEEE
Transactions on Control of Network Systems, vol. 5, no. 3, pp. 1245–1260, 2018.

[81] D. Jakovetić, “A unification and generalization of exact distributed first-order
methods,” IEEE Transactions on Signal and Information Processing over Networks,
vol. 5, no. 1, pp. 31–46, 2019.

[82] F. Mansoori and E. Wei, “A flexible framework of first-order primal–dual algorithms
for distributed optimization,” arXiv preprint arXiv:1912.07526, 2019.

[83] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated distributed directed
optimization,” IEEE Transactions on Automatic Control, vol. 63, no. 5, pp. 1329–
1339, 2018.

[84] S. Pu, W. Shi, J. Xu, and A. Nedić, “A push-pull gradient method for distributed
optimization in networks,” in IEEE Conference on Decision and Control, 2018, pp.
3385–3390.

[85] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs
with geometric convergence,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 325–
330, 2018.

[86] R. Xin, C. Xi, and U. A. Khan, “FROST–Fast row-stochastic optimization with
uncoordinated step-sizes,” EURASIP Journal on Advances in Signal Processing,
vol. 2019, no. 1, p. 1, 2019.

[87] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous distributed
gradient methods over stochastic networks,” IEEE Transactions on Automatic
Control, vol. 63, no. 2, pp. 434–448, 2018.

340 Bibliography

[88] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato, “Newton-
Raphson consensus for distributed convex optimization,” IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 994–1009, 2016.

[89] F. Saadatniaki, R. Xin, and U. A. Khan, “Optimization over time-varying directed
graphs with row and column-stochastic matrices,” IEEE Transactions on Automatic
Control, 2020.

[90] M. Maros and J. Jaldén, “On the Q-linear convergence of distributed generalized
ADMM under non-strongly convex function components,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 5, no. 3, pp. 442–453, 2019.

[91] Y. Tian, Y. Sun, and G. Scutari, “ASY-SONATA: Achieving linear convergence in
distributed asynchronous multiagent optimization,” in Annual Allerton Conference
on Communication, Control, and Computing, 2018, pp. 543–551.

[92] B. Yang and M. Johansson, “Distributed optimization and games: A tutorial
overview,” in Networked Control Systems. Springer, 2010, pp. 109–148.

[93] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[94] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei, “A survey of distributed optimization and control algorithms for electric
power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962,
2017.

[95] A. Nedić and J. Liu, “Distributed optimization for control,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–103, 2018.

[96] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and
K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control,
vol. 47, pp. 278–305, 2019.

[97] A. H. Sayed et al., “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–801, 2014.

[98] A. Nedić, “Convergence rate of distributed averaging dynamics and optimization in
networks,” Foundations and Trends in Systems and Control, vol. 2, no. 1, pp. 1–100,
2015.

[99] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol.
106, no. 5, pp. 953–976, 2018.

[100] W. Ren and Y. Cao, Distributed Coordination of Multi-Agent Networks: Emergent
Problems, Models, and Issues. Springer Science & Business Media, 2010.

Bibliography 341

[101] M. Zhu and S. Martı́nez, Distributed Optimization-Based Control of Multi-Agent
Networks in Complex Environments. Springer, 2019.

[102] F. Bullo, Lectures on Network Systems. Kindle Direct Publishing, 2019, with
contributions by J. Cortes, F. Dörfler, and S. Martinez. [Online]. Available:
http://motion.me.ucsb.edu/book-lns

[103] P. Giselsson and A. Rantzer, Large-Scale and Distributed Optimization. Springer,
2018.

[104] J. Guo, G. Hug, and O. K. Tonguz, “A case for nonconvex distributed optimization
in large-scale power systems,” IEEE Transactions on Power Systems, vol. 32, no. 5,
pp. 3842–3851, 2016.

[105] G. Tychogiorgos, A. Gkelias, and K. K. Leung, “A non-convex distributed
optimization framework and its application to wireless ad-hoc networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 9, pp. 4286–4296, 2013.

[106] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale
machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[107] P. Bianchi, G. Fort, and W. Hachem, “Performance of a distributed stochastic
approximation algorithm,” IEEE Transactions on Information Theory, vol. 59,
no. 11, pp. 7405–7418, 2013.

[108] H.-T. Wai, T.-H. Chang, and A. Scaglione, “A consensus-based decentralized
algorithm for non-convex optimization with application to dictionary learning,” in
IEEE International Conference on Acoustics, Speech and Signal Processing, 2015,
pp. 3546–3550.

[109] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-convex
optimization under inexact hessian information,” Mathematical Programming, pp.
1–36, 2017.

[110] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE
Transactions on Signal Processing, vol. 66, no. 11, pp. 2834–2848, 2018.

[111] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.

[112] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal primal–dual
algorithm for fast distributed nonconvex optimization and learning over networks,”
in International Conference on Machine Learning, 2017, pp. 1529–1538.

[113] H. Sun and M. Hong, “Distributed non-convex first-order optimization and
information processing: Lower complexity bounds and rate optimal algorithms,”
arXiv preprint arXiv:1804.02729, 2018.

342 Bibliography

[114] ——, “Distributed non-convex first-order optimization and information processing:
Lower complexity bounds and rate optimal algorithms,” IEEE Transactions on
Signal Processing, vol. 67, no. 22, pp. 5912–5928, 2019.

[115] D. Hajinezhad and M. Hong, “Perturbed proximal primal–dual algorithm for
nonconvex nonsmooth optimization,” Mathematical Programming, vol. 176, no. 1-
2, pp. 207–245, 2019.

[116] A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order guarantees
of gradient algorithms over networks,” in Annual Allerton Conference on
Communication, Control, and Computing, 2018, pp. 359–365.

[117] M. Hong, M. Razaviyayn, and J. Lee, “Gradient primal–dual algorithm converges
to second-order stationary solution for nonconvex distributed optimization over
networks,” in International Conference on Machine Learning, 2018, pp. 2009–2018.

[118] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed gradient descent:
Nonconvergence to saddle points and the stable-manifold theorem,” in Annual
Allerton Conference on Communication, Control, and Computing, 2019, pp. 595–
601.

[119] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments–part
I: Agreement at a linear rate,” arXiv preprint arXiv:1907.01848, 2019.

[120] ——, “Distributed learning in non-convex environments–part II: Polynomial escape
from saddle-points,” arXiv preprint arXiv:1907.01849, 2019.

[121] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic
gradient algorithm for non-convex optimization,” IEEE Transactions on Automatic
Control, vol. 58, no. 2, pp. 391–405, 2012.

[122] M. Zhu and S. Martı́nez, “An approximate dual subgradient algorithm for multi-
agent non-convex optimization,” IEEE Transactions on Automatic Control, vol. 58,
no. 6, pp. 1534–1539, 2012.

[123] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.
120–136, 2016.

[124] H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized Frank–Wolfe
algorithm for convex and nonconvex problems,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5522–5537, 2017.

[125] N. Chatzipanagiotis and M. M. Zavlanos, “On the convergence of a distributed
augmented Lagrangian method for nonconvex optimization,” IEEE Transactions on
Automatic Control, vol. 62, no. 9, pp. 4405–4420, 2017.

Bibliography 343

[126] F. Farina, A. Garulli, A. Giannitrapani, and G. Notarstefano, “A distributed
asynchronous method of multipliers for constrained nonconvex optimization,”
Automatica, vol. 103, pp. 243–253, 2019.

[127] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization over time-
varying digraphs,” Mathematical Programming, vol. 176, no. 1-2, pp. 497–544,
2019.

[128] Y. Sun, A. Daneshmand, and G. Scutari, “Convergence rate of distributed optimiza-
tion algorithms based on gradient tracking,” arXiv preprint arXiv:1905.02637, 2019.

[129] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in fixed
topology networks,” in Advances in Neural Information Processing Systems, 2017,
pp. 5904–5914.

[130] J. George, T. Yang, H. Bai, and P. Gurram, “Distributed stochastic gradient
method for non-convex problems with applications in supervised learning,” in IEEE
Conference on Decision and Control, 2019, pp. 5538–5543.

[131] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” in International Conference on Machine Learning,
2018, pp. 3043–3052.

[132] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for
distributed deep learning,” in International Conference on Machine Learning, 2019,
pp. 344–353.

[133] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication compression
for decentralized training,” in Advances in Neural Information Processing Systems,
2018, pp. 7652–7662.

[134] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Robust and
communication-efficient collaborative learning,” in Advances in Neural Information
Processing Systems, 2019, pp. 8386–8397.

[135] H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized push-sum
for gossip and decentralized optimization over directed graphs,” in International
Conference on Machine Learning, 2020.

[136] N. Singh, D. Data, J. George, and S. Diggavi, “SQuARM-SGD: Communication-
efficient momentum SGD for decentralized optimization,” arXiv preprint
arXiv:2005.07041, 2020.

[137] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” arXiv preprint
arXiv:1808.07576, 2018.

344 Bibliography

[138] S. Lu, X. Zhang, H. Sun, and M. Hong, “GNSD: A gradient-tracking based
nonconvex stochastic algorithm for decentralized optimization,” in IEEE Data
Science Workshop, 2019, pp. 315–321.

[139] J. Zhang and K. You, “Decentralized stochastic gradient tracking for empirical risk
minimization,” arXiv preprint arXiv:1909.02712, 2019.

[140] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization and
gossip algorithms with compressed communication,” in International Conference
on Machine Learning, 2019, pp. 3478–3487.

[141] A. Olshevsky, I. C. Paschalidis, and S. Pu, “A non-asymptotic analysis of
network independence for distributed stochastic gradient descent,” arXiv preprint
arXiv:1906.02702, 2019.

[142] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-order methods for nonconvex
stochastic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–
2368, 2013.

[143] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent optimal for
strongly convex stochastic optimization,” in International Conference on Machine
Learning, 2012, pp. 1571–1578.

[144] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free
Optimization. MPS-SIAM Series on Optimization. SIAM Philadelphia, 2009.

[145] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization. Springer,
2017.

[146] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,”
Acta Numerica, vol. 28, pp. 287–404, 2019.

[147] D. Yuan and D. W. Ho, “Randomized gradient-free method for multiagent
optimization over time-varying networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 6, pp. 1342–1347, 2014.

[148] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Distributed zeroth order
optimization over random networks: A Kiefer–Wolfowitz stochastic approximation
approach,” in IEEE Conference on Decision and Control, 2018, pp. 4951–4958.

[149] Y. Wang, W. Zhao, Y. Hong, and M. Zamani, “Distributed subgradient-free
stochastic optimization algorithm for nonsmooth convex functions over time-
varying networks,” SIAM Journal on Control and Optimization, vol. 57, no. 4, pp.
2821–2842, 2019.

[150] Y. Pang and G. Hu, “Randomized gradient-free distributed optimization methods for
a multi-agent system with unknown cost function,” IEEE Transactions on Automatic
Control, vol. 65, no. 1, pp. 333–340, 2020.

Bibliography 345

[151] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for nonconvex
multi-agent optimization,” arXiv preprint arXiv:1908.11444v3, 2020.

[152] D. Yuan, S. Xu, and J. Lu, “Gradient-free method for distributed multi-agent
optimization via push-sum algorithms,” International Journal of Robust and
Nonlinear Control, vol. 25, no. 10, pp. 1569–1580, 2015.

[153] Z. Yu, D. W. Ho, and D. Yuan, “Distributed randomized gradient-free mirror descent
algorithm for constrained optimization,” arXiv preprint arXiv:1903.04157, 2019.

[154] A. Beznosikov, E. Gorbunov, and A. Gasnikov, “Derivative-free method for
composite optimization with applications to decentralized distributed optimization,”
arXiv preprint arXiv:1911.10645v4, 2020.

[155] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order nonconvex
multiagent optimization over networks,” IEEE Transactions on Automatic Control,
vol. 64, no. 10, pp. 3995–4010, 2019.

[156] T. Yang, J. George, J. Qin, X. Yi, and J. Wu, “Distributed finite-time least squares
solver for network linear equations,” Automatica, vol. 113, 2020.

[157] S. Shalev-Shwartz et al., “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–194, 2012.

[158] X. Zhou, E. Dall’Anese, L. Chen, and A. Simonetto, “An incentive-based online
optimization framework for distribution grids,” IEEE Transactions on Automatic
Control, vol. 63, no. 7, pp. 2019–2031, 2017.

[159] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in dynamic
environments using mirror descent,” IEEE Transactions on Automatic Control,
vol. 63, no. 3, pp. 714–725, 2017.

[160] N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth, “Worst-case quadratic
loss bounds for prediction using linear functions and gradient descent,” IEEE
Transactions on Neural Networks, vol. 7, no. 3, pp. 604–619, 1996.

[161] C. Gentile and M. K. Warmuth, “Linear hinge loss and average margin,” in Advances
in Neural Information Processing Systems, 1999, pp. 225–231.

[162] G. J. Gordon, “Regret bounds for prediction problems,” in Conference on Learning
Theory, 1999, pp. 29–40.

[163] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient
ascent,” in International Conference on Machine Learning, 2003, pp. 928–936.

[164] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online convex
optimization with multi-point bandit feedback.” in Conference on Learning Theory,
2010, pp. 28–40.

346 Bibliography

[165] E. Hazan, “Introduction to online convex optimization,” Foundations and Trends in
Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[166] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for online
convex optimization,” Machine Learning, vol. 69, no. 2-3, pp. 169–192, 2007.

[167] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online optimization
in dynamic environments: Improved regret rates for strongly convex problems,” in
IEEE Conference on Decision and Control, 2016, pp. 7195–7201.

[168] L. Zhang, T. Yang, J. Yi, J. Rong, and Z.-H. Zhou, “Improved dynamic regret for
non-degenerate functions,” in Advances in Neural Information Processing Systems,
2017, pp. 732–741.

[169] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: Online convex
optimization with long term constraints,” Journal of Machine Learning Research,
vol. 13, no. Sep, pp. 2503–2528, 2012.

[170] R. Jenatton, J. Huang, and C. Archambeau, “Adaptive algorithms for online convex
optimization with long-term constraints,” in International Conference on Machine
Learning, 2016, pp. 402–411.

[171] H. Yu and M. J. Neely, “A low complexity algorithm with O(
√

T) regret and finite
constraint violations for online convex optimization with long term constraints,”
Journal of Machine Learning Research, vol. 21, no. 1, pp. 1–24, 2020.

[172] J. Yuan and A. Lamperski, “Online convex optimization for cumulative constraints,”
in Advances in Neural Information Processing Systems, 2018, pp. 6140–6149.

[173] W. Sun, D. Dey, and A. Kapoor, “Safety-aware algorithms for adversarial contextual
bandit,” in International Conference on Machine Learning, 2017, pp. 3280–3288.

[174] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization approach
to proactive network resource allocation,” IEEE Transactions on Signal Processing,
vol. 65, no. 24, pp. 6350–6364, 2017.

[175] M. J. Neely and H. Yu, “Online convex optimization with time-varying constraints,”
arXiv preprint arXiv:1702.04783, 2017.

[176] H. Yu, M. Neely, and X. Wei, “Online convex optimization with stochastic
constraints,” in Advances in Neural Information Processing Systems, 2017, pp.
1428–1438.

[177] D. Mateos-Núnez and J. Cortés, “Distributed online convex optimization
over jointly connected digraphs,” IEEE Transactions on Network Science and
Engineering, vol. 1, no. 1, pp. 23–37, 2014.

Bibliography 347

[178] M. Akbari, B. Gharesifard, and T. Linder, “Distributed online convex optimization
on time-varying directed graphs,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 3, pp. 417–428, 2017.

[179] A. Nedić, S. Lee, and M. Raginsky, “Decentralized online optimization with global
objectives and local communication,” in American Control Conference, 2015, pp.
4497–4503.

[180] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm for networked
online convex optimization,” IEEE Transactions on Signal Processing, vol. 63,
no. 19, pp. 5149–5164, 2015.

[181] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in dynamic
environments using mirror descent,” IEEE Transactions on Automatic Control,
vol. 63, no. 3, pp. 714–725, 2018.

[182] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed convex optimization
on dynamic networks.” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp.
3545–3550, 2016.

[183] S. Mannor, J. N. Tsitsiklis, and J. Y. Yu, “Online learning with sample path
constraints,” Journal of Machine Learning Research, vol. 10, pp. 569–590, 2009.

[184] S. Lee, A. Nedić, and M. Raginsky, “Stochastic dual averaging for decentralized
online optimization on time-varying communication graphs,” IEEE Transactions on
Automatic Control, vol. 62, no. 12, pp. 6407–6414, 2017.

[185] ——, “Coordinate dual averaging for decentralized online optimization with
nonseparable global objectives,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 1, pp. 34–44, 2018.

[186] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,” in
Annual Allerton Conference on Communication, Control, and Computing, 2012, pp.
593–600.

[187] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties,” IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–2493, 2013.

[188] D. Yuan, A. Proutiere, and G. Shi, “Distributed online linear regression,” arXiv
preprint arXiv:1902.04774, 2019.

[189] D. Yuan, D. W. Ho, and G.-P. Jiang, “An adaptive primal–dual subgradient algorithm
for online distributed constrained optimization,” IEEE Transactions on Cybernetics,
2017.

[190] S. Lee and M. M. Zavlanos, “On the sublinear regret of distributed primal–dual
algorithms for online constrained optimization,” arXiv preprint arXiv:1705.11128,
2017.

348 Bibliography

[191] Z. Li, Z. Ding, J. Sun, and Z. Li, “Distributed adaptive convex optimization on
directed graphs via continuous-time algorithms,” IEEE Transactions on Automatic
Control, vol. 63, no. 5, pp. 1434–1441, 2018.

[192] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and
Design. Courier Corporation, 2013.

[193] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered
control for multi-agent systems,” IEEE Transactions on Automatic Control, vol. 57,
no. 5, pp. 1291–1297, 2012.

[194] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decentralised event-
triggered cooperative control with limited communication,” International Journal
of Control, vol. 86, no. 9, pp. 1479–1488, 2013.

[195] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting
for multi-agent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252, 2013.

[196] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the regularization
of Zeno hybrid automata,” Systems & Control Letters, vol. 38, no. 3, pp. 141–150,
1999.

[197] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012.

[198] W. Lu and T. Chen, “New approach to synchronization analysis of linearly coupled
ordinary differential systems,” Physica D: Nonlinear Phenomena, vol. 213, no. 2,
pp. 214–230, 2006.

[199] ——, “A new approach to synchronization analysis of linearly coupled map
lattices,” Chinese Annals of Mathematics, Series B, vol. 28, no. 2, pp. 149–160,
2007.

[200] X. Yi, W. Lu, and T. Chen, “Pull-based distributed event-triggered consensus
for multi-agent systems with directed topologies,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 1, pp. 71–79, 2017.

[201] C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems.
World Scientific, 2007.

[202] Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graphical conditions
for formation control of unicycles,” IEEE Transactions on Automatic Control,
vol. 50, no. 1, pp. 121–127, 2005.

[203] C. W. Wu, “Synchronization in networks of nonlinear dynamical systems coupled
via a directed graph,” Nonlinearity, vol. 18, no. 3, pp. 1057–1064, 2005.

[204] X. Yi, L. Yao, T. Yang, J. George, and K. H. Johansson, “Distributed optimization for
second-order multi-agent systems with dynamic event-triggered communication,” in
IEEE Conference on Decision and Control, 2018, pp. 3397–3402.

Bibliography 349

[205] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[206] S. Boyd, J. Duchi, and L. Vandenberghe, “Subgradients,” https://stanford.edu/class/
ee364b/ lectures/subgradients notes.pdf , 2018.

[207] S. Bubeck, “Convex optimization: Algorithms and complexity,” Foundations and
Trends in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[208] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and
Complementarity Problems. Springer-Verlag, New York, 2007.

[209] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and
proximal-gradient methods under the Polyak–Łojasiewicz condition,” in Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, 2016, pp. 795–811.

[210] H. Zhang and L. Cheng, “Restricted strong convexity and its applications
to convergence analysis of gradient-type methods in convex optimization,”
Optimization Letters, vol. 9, no. 5, pp. 961–979, 2015.

[211] S. Shalev-Shwartz and Y. Singer, “Logarithmic regret algorithms for strongly
convex repeated games,” The Hebrew University, 2007.

[212] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in
the bandit setting: Gradient descent without a gradient,” in the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 385–394.

[213] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex
functions,” Foundations of Computational Mathematics, vol. 17, no. 2, pp. 527–566,
2017.

[214] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates
for zero-order convex optimization: The power of two function evaluations,” IEEE
Transactions on Information Theory, vol. 61, no. 5, pp. 2788–2806, 2015.

[215] X. Gao, B. Jiang, and S. Zhang, “On the information-adaptive variants of the
ADMM: An iteration complexity perspective,” Journal of Scientific Computing,
vol. 76, no. 1, pp. 327–363, 2018.

[216] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum of a regression
function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

[217] S. Kar, J. M. Moura, and K. Ramanan, “Distributed parameter estimation in sensor
networks: Nonlinear observation models and imperfect communication,” IEEE
Transactions on Information Theory, vol. 58, no. 6, pp. 3575–3605, 2012.

350 Bibliography

[218] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first order methods
for non-strongly convex optimization,” Mathematical Programming, vol. 175, no.
1-2, pp. 69–107, 2019.

[219] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm
for decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25,
no. 2, pp. 944–966, 2015.

[220] J. Zeng and W. Yin, “Extrapush for convex smooth decentralized optimization over
directed networks,” Journal of Computational Mathematics, vol. 35, no. 4, pp. 383–
396, 2017.

[221] C. Xi and U. A. Khan, “DEXTRA: A fast algorithm for optimization over directed
graphs,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 4980–4993,
2017.

[222] S. Liang, L. Y. Wang, and G. Yin, “Exponential convergence of distributed primal–
dual convex optimization algorithm without strong convexity,” Automatica, vol. 105,
pp. 298–306, 2019.

[223] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Exponential convergence
for distributed smooth optimization under the restricted secant inequality condition,”
in IFAC World Congress, 2020.

[224] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for consensus
optimization,” in International Conference on Machine Learning, 2014, pp. 1701–
1709.

[225] W. Deng and W. Yin, “On the global and linear convergence of the generalized
alternating direction method of multipliers,” Journal of Scientific Computing,
vol. 66, no. 3, pp. 889–916, 2016.

[226] C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, “Distributed robust
multicell coordinated beamforming with imperfect CSI: An ADMM approach,”
IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 2988–3003, 2012.

[227] V. Kekatos and G. B. Giannakis, “Distributed robust power system state estimation,”
IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1617–1626, 2012.

[228] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for optimal
control,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp.
2432–2442, 2013.

[229] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating
missing values in visual data,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 1, pp. 208–220, 2012.

Bibliography 351

[230] E. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,”
in IEEE Conference on Decision and Control, 2012, pp. 5445–5450.

[231] A. Makhdoumi and A. Ozdaglar, “Broadcast-based distributed alternating direction
method of multipliers,” in Annual Allerton Conference on Communication, Control,
and Computing, 2014, pp. 270–277.

[232] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence rate of
a distributed alternating direction method of multipliers,” IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 892–904, 2015.

[233] T.-H. Chang, “A proximal dual consensus ADMM method for multi-agent
constrained optimization,” IEEE Transactions on Signal Processing, vol. 64, no. 14,
pp. 3719–3734, 2016.

[234] N. S. Aybat, Z. Wang, T. Lin, and S. Ma, “Distributed linearized alternating
direction method of multipliers for composite convex consensus optimization,”
IEEE Transactions on Automatic Control, vol. 63, no. 1, pp. 5–20, 2017.

[235] Y. Liu, W. Xu, G. Wu, Z. Tian, and Q. Ling, “Communication-censored ADMM for
decentralized consensus optimization,” IEEE Transactions on Signal Processing,
vol. 67, no. 10, pp. 2565–2579, 2019.

[236] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, “Tracking-ADMM for
distributed constraint-coupled optimization,” Automatica, vol. 117, 2020.

[237] R. Carli and M. Dotoli, “Distributed alternating direction method of multipliers for
linearly constrained optimization over a network,” IEEE Control Systems Letters,
vol. 4, no. 1, pp. 247–252, 2019.

[238] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 337–364, 2016.

[239] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous distributed
ADMM for large-scale optimization—part I: Algorithm and convergence analysis,”
IEEE Transactions on Signal Processing, vol. 64, no. 12, pp. 3118–3130, 2016.

[240] M. Hong, “A distributed, asynchronous, and incremental algorithm for nonconvex
optimization: An ADMM approach,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 3, pp. 935–945, 2017.

[241] M. Schuresko and J. Cortés, “Distributed motion constraints for algebraic
connectivity of robotic networks,” Journal of Intelligent and Robotic Systems,
vol. 56, no. 1-2, pp. 99–126, 2009.

[242] T. M. D. Tran and A. Y. Kibangou, “Consensus-based distributed estimation of
laplacian eigenvalues of undirected graphs,” in European Control Conference, 2013,
pp. 227–232.

352 Bibliography

[243] Y. Tang and N. Li, “Distributed zero-order algorithms for nonconvex multi-agent
optimization,” in Annual Allerton Conference on Communication, Control, and
Computing, 2019, pp. 781–786.

[244] J. Langford, L. Li, and T. Zhang, “Sparse online learning via truncated gradient,”
Journal of Machine Learning Research, vol. 10, pp. 777–801, 2009.

[245] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to
parallelizing stochastic gradient descent,” in Advances in Neural Information
Processing Systems, 2011, pp. 693–701.

[246] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild: A
unified analysis of hogwild-style algorithms,” in Advances in Neural Information
Processing Systems, 2015, pp. 2674–2682.

[247] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gradient for
nonconvex optimization,” in Advances in Neural Information Processing Systems,
2015, pp. 2737–2745.

[248] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A comprehensive linear
speedup analysis for asynchronous stochastic parallel optimization from zeroth-
order to first-order,” in Advances in Neural Information Processing Systems, 2016,
pp. 3054–3062.

[249] Z. Zhou, P. Mertikopoulos, N. Bambos, P. Glynn, Y. Ye, L.-J. Li, and F.-F. Li,
“Distributed asynchronous optimization with unbounded delays: How slow can you
go?” in International Conference on Machine Learning, 2018, pp. 5970–5979.

[250] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signSGD:
Compressed optimisation for non-convex problems,” in International Conference
on Machine Learning, 2018, pp. 560–569.

[251] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep learning
with sparse and quantized communication,” in Advances in Neural Information
Processing Systems, 2018, pp. 2525–2536.

[252] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “FedPAQ:
A communication-efficient federated learning method with periodic averaging and
quantization,” in International Conference on Artificial Intelligence and Statistics,
2020, pp. 2021–2031.

[253] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD: Distributed
SGD with quantization, sparsification and local computations,” in Advances in
Neural Information Processing Systems, 2019, pp. 14 668–14 679.

[254] J. Wang and G. Joshi, “Adaptive communication strategies to achieve the best error-
runtime trade-off in local-update SGD,” in Conference on Machine Learning and
Systems, 2019.

Bibliography 353

[255] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster convergence and
less communication: Demystifying why model averaging works for deep learning,”
in AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5693–5700.

[256] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading redundancy
for communication: Speeding up distributed SGD for non-convex optimization,” in
International Conference on Machine Learning, 2019, pp. 2545–2554.

[257] ——, “Local SGD with periodic averaging: Tighter analysis and adaptive
synchronization,” in Advances in Neural Information Processing Systems, 2019, pp.
11 080–11 092.

[258] H. Yu and R. Jin, “On the computation and communication complexity of
parallel SGD with dynamic batch sizes for stochastic non-convex optimization,” in
International Conference on Machine Learning, 2019, pp. 7174–7183.

[259] S. U. Stich, “Local SGD converges fast and communicates little,” in International
Conference on Learning Representations, 2019.

[260] M. Rabbat, “Multi-agent mirror descent for decentralized stochastic optimization,”
in International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, 2015, pp. 517–520.

[261] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decentralized
and stochastic optimization,” Mathematical Programming, pp. 1–48, 2018.

[262] D. Yuan, Y. Hong, D. W. Ho, and G. Jiang, “Optimal distributed stochastic mirror
descent for strongly convex optimization,” Automatica, vol. 90, pp. 196–203, 2018.

[263] D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar, “Convergence rates for distributed
stochastic optimization over random networks,” in IEEE Conference on Decision
and Control, 2018, pp. 4238–4245.

[264] A. Fallah, M. Gurbuzbalaban, A. Ozdaglar, U. Simsekli, and L. Zhu, “Robust
distributed accelerated stochastic gradient methods for multi-agent networks,” arXiv
preprint arXiv:1910.08701, 2019.

[265] S. Pu and A. Garcia, “Swarming for faster convergence in stochastic optimization,”
SIAM Journal on Control and Optimization, vol. 56, no. 4, pp. 2997–3020, 2018.

[266] S. Pu and A. Nedić, “A distributed stochastic gradient tracking method,” in IEEE
Conference on Decision and Control, 2018, pp. 963–968.

[267] R. Xin, A. K. Sahu, U. A. Khan, and S. Kar, “Distributed stochastic optimization
with gradient tracking over strongly-connected networks,” in IEEE Conference on
Decision and Control, 2019, pp. 8353–8358.

[268] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,”
Available: http://yann. lecun. com/exdb/mnist, 2010.

354 Bibliography

[269] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of the
Trade. Springer, 2012, pp. 421–436.

[270] R. Hooke and T. A. Jeeves, ““Direct search” solution of numerical and statistical
problems,” Journal of the ACM, vol. 8, no. 2, pp. 212–229, 1961.

[271] J. Matyas, “Random optimization,” Automation and Remote Control, vol. 26, no. 2,
pp. 246–253, 1965.

[272] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[273] E. H. Bergou, E. Gorbunov, and P. Richtarik, “Stochastic three points method for
unconstrained smooth minimization,” arXiv preprint arXiv:1902.03591, 2019.

[274] A. Bibi, E. H. Bergou, O. Sener, B. Ghanem, and P. Richtarik, “A stochastic
derivative-free optimization method with importance sampling: Theory and learning
to control,” arXiv preprint arXiv:1902.01272, 2019.

[275] E. Gorbunov, A. Bibi, O. Sener, E. H. Bergou, and P. Richtárik, “A stochastic
derivative free optimization method with momentum,” in International Conference
on Learning Representations, 2020.

[276] D. Golovin, J. Karro, G. Kochanski, C. Lee, X. Song et al., “Gradientless descent:
High-dimensional zeroth-order optimization,” arXiv preprint arXiv:1911.06317,
2019.

[277] M. Marazzi and J. Nocedal, “Wedge trust region methods for derivative free
optimization,” Mathematical Programming, vol. 91, no. 2, pp. 289–305, 2002.

[278] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Global convergence of general
derivative-free trust-region algorithms to first- and second-order critical points,”
SIAM Journal on Optimization, vol. 20, no. 1, pp. 387–415, 2009.

[279] K. Scheinberg and P. L. Toint, “Self-correcting geometry in model-based algorithms
for derivative-free unconstrained optimization,” SIAM Journal on Optimization,
vol. 20, no. 6, pp. 3512–3532, 2010.

[280] O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization
with two-point feedback,” Journal of Machine Learning Research, vol. 18, no. 52,
pp. 1–11, 2017.

[281] ——, “On the complexity of bandit and derivative-free stochastic convex
optimization,” in Conference on Learning Theory, 2013, pp. 3–24.

[282] F. Bach and V. Perchet, “Highly-smooth zero-th order online optimization,” in
Conference on Learning Theory, 2016, pp. 257–283.

Bibliography 355

[283] H. Ye, Z. Huang, C. Fang, C. J. Li, and T. Zhang, “Hessian-aware zeroth-order
optimization for black-box adversarial attack,” arXiv preprint arXiv:1812.11377,
2018.

[284] E.-V. Vlatakis-Gkaragkounis, L. Flokas, and G. Piliouras, “Efficiently avoiding
saddle points with zero order methods: No gradients required,” in Advances in
Neural Information Processing Systems, 2019, pp. 10 066–10 077.

[285] D. Kozak, S. Becker, A. Doostan, and L. Tenorio, “A stochastic subspace approach
to gradient-free optimization in high dimensions,” arXiv preprint arXiv:2003.02684,
2020.

[286] S. Liu, X. Li, P.-Y. Chen, J. Haupt, and L. Amini, “Zeroth-order stochastic projected
gradient descent for nonconvex optimization,” in IEEE Global Conference on Signal
and Information Processing, 2018, pp. 1179–1183.

[287] S. Liu, P.-Y. Chen, X. Chen, and M. Hong, “signSGD via zeroth-order oracle,” in
International Conference on Learning Representations, 2019.

[288] Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “Improving the convergence rate
of one-point zeroth-order optimization using residual feedback,” arXiv preprint
arXiv:2006.10820, 2020.

[289] K. Balasubramanian and S. Ghadimi, “Zeroth-order (non)-convex stochastic
optimization via conditional gradient and gradient updates,” in Advances in Neural
Information Processing Systems, 2018, pp. 3455–3464.

[290] C. Jin, L. T. Liu, R. Ge, and M. I. Jordan, “On the local minima of the empirical
risk,” in Advances in Neural Information Processing Systems, 2018, pp. 4896–4905.

[291] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic approximation methods
for nonconvex stochastic composite optimization,” Mathematical Programming,
vol. 155, no. 1-2, pp. 267–305, 2016.

[292] E. Kazemi and L. Wang, “A proximal zeroth-order algorithm for nonconvex
nonsmooth problems,” in Annual Allerton Conference on Communication, Control,
and Computing, 2018, pp. 64–71.

[293] B. Gu, Z. Huo, C. Deng, and H. Huang, “Faster derivative-free stochastic algorithm
for shared memory machines,” in International Conference on Machine Learning,
2018, pp. 1812–1821.

[294] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator,” in Advances in
Neural Information Processing Systems, 2018, pp. 689–699.

[295] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini, “Zeroth-order
stochastic variance reduction for nonconvex optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 3727–3737.

356 Bibliography

[296] E. Gorbunov, P. Dvurechensky, and A. Gasnikov, “An accelerated method
for derivative-free smooth stochastic convex optimization,” arXiv preprint
arXiv:1802.09022, 2018.

[297] L. Liu, M. Cheng, C.-J. Hsieh, and D. Tao, “Stochastic zeroth-order optimization
via variance reduction method,” arXiv preprint arXiv:1805.11811, 2018.

[298] F. Huang, B. Gu, Z. Huo, S. Chen, and H. Huang, “Faster gradient-free proximal
stochastic methods for nonconvex nonsmooth optimization,” in AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 1503–1510.

[299] K. Ji, Z. Wang, Y. Zhou, and Y. Liang, “Improved zeroth-order variance reduced
algorithms and analysis for nonconvex optimization,” in International Conference
on Machine Learning, 2019, pp. 3100–3109.

[300] F. Huang, L. Tao, and S. Chen, “Accelerated stochastic gradient-free and projection-
free methods,” in International Conference on Machine Learning, 2020.

[301] Y. Chen, A. Orvieto, and A. Lucchi, “An accelerated DFO algorithm for finite-sum
convex functions,” in International Conference on Machine Learning, 2020.

[302] H. Gao and H. Huang, “Can stochastic zeroth-order Frank–Wolfe method
converge faster for non-convex problems?” in International Conference on Machine
Learning, 2020.

[303] H. Cai, D. Mckenzie, W. Yin, and Z. Zhang, “Zeroth-order regularized optimization
(ZORO): Approximately sparse gradients and adaptive sampling,” arXiv preprint
arXiv:2003.13001, 2020.

[304] P. Nazari, D. A. Tarzanagh, and G. Michailidis, “Adaptive first- and zeroth-order
methods for weakly convex stochastic optimization problems,” arXiv preprint
arXiv:2005.09261, 2020.

[305] A. K. Sahu, M. Zaheer, and S. Kar, “Towards gradient free and projection free
stochastic optimization,” in International Conference on Artificial Intelligence and
Statistics, 2019, pp. 3468–3477.

[306] Y. Wang, S. Du, S. Balakrishnan, and A. Singh, “Stochastic zeroth-order
optimization in high dimensions,” in International Conference on Artificial
Intelligence and Statistics, 2018, pp. 1356–1365.

[307] X. Chen, S. Liu, K. Xu, X. Li, X. Lin, M. Hong, and D. Cox, “ZO-AdaMM:
Zeroth-order adaptive momentum method for black-box optimization,” in Advances
in Neural Information Processing Systems, 2019, pp. 7204–7215.

[308] F. Huang, S. Gao, S. Chen, and H. Huang, “Zeroth-order stochastic alternating
direction method of multipliers for nonconvex nonsmooth optimization,” in
International Conference on Artificial Intelligence and Statistics, 2019, pp. 2549–
2555.

Bibliography 357

[309] F. Huang, S. Gao, J. Pei, and H. Huang, “Nonconvex zeroth-order stochastic ADMM
methods with lower function query complexity,” arXiv preprint arXiv:1907.13463,
2019.

[310] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[311] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable and dynamic
IoT management,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1276–1286,
2019.

[312] S. Paternain and A. Ribeiro, “Online learning of feasible strategies in unknown
environments,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2807–
2822, 2017.

[313] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 4,
pp. 647–662, 2015.

[314] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Information
and Computation, vol. 108, no. 2, pp. 212–261, 1994.

[315] S. Paternain, S. Lee, M. M. Zavlanos, and A. Ribeiro, “Distributed constrained
online learning,” IEEE Transactions on Signal Processing, vol. 68, pp. 3486–3499,
2020.

[316] J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari, “Composite objective
mirror descent.” in Conference on Learning Theory, 2010, pp. 14–26.

[317] V. Dani, S. M. Kakade, and T. P. Hayes, “The price of bandit information for online
optimization,” in Advances in Neural Information Processing Systems, 2008, pp.
345–352.

[318] J. D. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark: An efficient
algorithm for bandit linear optimization,” in Conference on Learning Theory, 2008,
pp. 263–273.

[319] ——, “Interior-point methods for full-information and bandit online learning,” IEEE
Transactions on Information Theory, vol. 58, no. 7, pp. 4164–4175, 2012.

[320] A. Saha and A. Tewari, “Improved regret guarantees for online smooth convex
optimization with bandit feedback,” in International Conference on Artificial
Intelligence and Statistics, 2011, pp. 636–642.

[321] E. Hazan and K. Levy, “Bandit convex optimization: Towards tight bounds,” in
Advances in Neural Information Processing Systems, 2014, pp. 784–792.

358 Bibliography

[322] S. Bubeck, O. Dekel, T. Koren, and Y. Peres, “Bandit convex optimization:
√

T
regret in one dimension,” in Conference on Learning Theory, 2015, pp. 266–278.

[323] S. Bubeck and R. Eldan, “Multi-scale exploration of convex functions and bandit
convex optimization,” in Conference on Learning Theory, 2016, pp. 583–589.

[324] E. Hazan and Y. Li, “An optimal algorithm for bandit convex optimization,” arXiv
preprint arXiv:1603.04350, 2016.

[325] T. Yang, L. Zhang, R. Jin, and J. Yi, “Tracking slowly moving clairvoyant: Optimal
dynamic regret of online learning with true and noisy gradient,” in International
Conference on Machine Learning, 2016, pp. 449–457.

[326] T. Tatarenko and M. Kamgarpour, “Minimizing regret in bandit online optimization
in unconstrained and constrained action spaces,” arXiv preprint arXiv:1806.05069,
2018.

[327] I. Shames, D. Selvaratnam, and J. H. Manton, “Online optimization using zeroth
order oracles,” IEEE Control Systems Letters, vol. 4, no. 1, pp. 31–36, 2019.

[328] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable and dynamic
IoT management,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1276–1286,
2018.

[329] X. Cao and K. R. Liu, “Online convex optimization with time-varying constraints
and bandit feedback,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp.
2665–2680, 2019.

[330] D. Yuan, D. W. Ho, Y. Hong, and G. Jiang, “Online bandit convex optimization over
a network,” in Chinese Control Conference, 2016, pp. 8090–8095.

[331] D. Yuan, A. Proutiere, and G. Shi, “Distributed online optimization with long-term
constraints,” arXiv preprint arXiv:1912.09705, 2019.

[332] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[333] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-
agent coordination,” in American Control Conference, 2005, pp. 1859–1864.

[334] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under
dynamically changing interaction topologies,” IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655–661, 2005.

[335] M. Cao, A. S. Morse, and B. D. Anderson, “Agreeing asynchronously,” IEEE
Transactions on Automatic Control, vol. 53, no. 8, pp. 1826–1838, 2008.

[336] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520–1533, 2004.

Bibliography 359

[337] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82,
2007.

[338] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and
synchronization of complex networks: A unified viewpoint,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010.

[339] W. Lu and T. Chen, “Synchronization analysis of linearly coupled networks of
discrete time systems,” Physica D: Nonlinear Phenomena, vol. 198, no. 1, pp. 148–
168, 2004.

[340] T. Yang, S. Roy, Y. Wan, and A. Saberi, “Constructing consensus controllers for
networks with identical general linear agents,” International Journal of Robust and
Nonlinear Control, vol. 21, no. 11, pp. 1237–1256, 2011.

[341] B. Liu, W. Lu, and T. Chen, “Consensus in networks of multiagents with switching
topologies modeled as adapted stochastic processes,” SIAM Journal on Control and
Optimization, vol. 49, no. 1, pp. 227–253, 2011.

[342] F. Xiao and L. Wang, “Asynchronous consensus in continuous-time multi-agent
systems with switching topology and time-varying delays,” IEEE Transactions on
Automatic Control, vol. 53, no. 8, pp. 1804–1816, 2008.

[343] K. You and L. Xie, “Network topology and communication data rate for
consensusability of discrete-time multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 56, no. 10, pp. 2262–2275, 2011.

[344] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized communication and actuation,” IEEE Transactions
on Control of Network Systems, vol. 6, no. 2, pp. 598–608, 2018.

[345] K. J. Åström and B. Bernhardsson, “Comparison of periodic and event based
sampling for first-order stochastic systems,” in IFAC World congress, vol. 11, 1999,
pp. 301–306.

[346] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[347] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in IEEE Conference on Decision and Control, 2012, pp.
3270–3285.

[348] A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE
Transactions on Automatic Control, vol. 60, no. 7, pp. 1992–1997, 2015.

[349] S. Hu, D. Yue, X. Yin, X. Xie, and Y. Ma, “Adaptive event-triggered control for
nonlinear discrete-time systems,” International Journal of Robust and Nonlinear
Control, vol. 26, no. 18, pp. 4104–4125, 2016.

360 Bibliography

[350] C. De Persis and P. Frasca, “Robust self-triggered coordination with ternary
controllers,” IEEE Transactions on Automatic Control, vol. 58, no. 12, pp. 3024–
3038, 2013.

[351] X. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent
systems using a dynamic event-triggered communication mechanism,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8118–8127, 2017.

[352] V. Dolk, D. P. Borgers, and W. Heemels, “Output-based and decentralized dynamic
event-triggered control with guaranteed Lp-gain performance and Zeno-freeness,”
IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 34–49, 2017.

[353] V. Dolk, P. Tesi, C. De Persis, and W. Heemels, “Event-triggered control systems
under denial-of-service attacks,” IEEE Transactions on Control of Network Systems,
vol. 4, no. 1, pp. 93–105, 2017.

[354] V. Dolk and M. Heemels, “Event-triggered control systems under packet losses,”
Automatica, vol. 80, pp. 143–155, 2017.

[355] X. Meng and T. Chen, “Event based agreement protocols for multi-agent networks,”
Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.

[356] W. Zhu, Z.-P. Jiang, and G. Feng, “Event-based consensus of multi-agent systems
with general linear models,” Automatica, vol. 50, no. 2, pp. 552–558, 2014.

[357] C. Nowzari and J. Cortés, “Distributed event-triggered coordination for average
consensus on weight-balanced digraphs,” Automatica, vol. 68, pp. 237–244, 2016.

[358] X. Yi, W. Lu, and T. Chen, “Distributed event-triggered consensus for multi-agent
systems with directed topologies,” in Chinese Control and Decision Conference,
2016, pp. 807–813.

[359] Z. Sun, N. Huang, B. D. Anderson, and Z. Duan, “A new distributed Zeno-
free event-triggered algorithm for multi-agent consensus,” in IEEE Conference on
Decision and Control, 2016, pp. 3444–3449.

[360] X. Meng, L. Xie, and Y. C. Soh, “Event-triggered output regulation of heterogeneous
multi-agent networks,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp.
4429–4434, 2018.

[361] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for real-time
control systems,” in Work-in-Progress Session of the 24th IEEE Real-Time Systems
Symposium, vol. 384, 2003, pp. 67–70.

[362] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems with finite-
gain L2 stability,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 452–
467, 2009.

Bibliography 361

[363] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 9, pp.
2030–2042, 2010.

[364] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Multi-agent
trajectory tracking with self-triggered cloud access,” in IEEE Conference on
Decision and Control, 2016, pp. 2207–2214.

[365] Y. Wang, W. X. Zheng, and H. Zhang, “Dynamic event-based control of nonlinear
stochastic systems,” IEEE Transactions on Automatic Control, vol. 62, no. 12, pp.
6544–6551, 2017.

[366] D. Yang, W. Ren, X. Liu, and W. Chen, “Decentralized event-triggered consensus
for linear multi-agent systems under general directed graphs,” Automatica, vol. 69,
pp. 242–249, 2016.

[367] Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-triggered control of
multi-agent systems with combinational measurements,” Automatica, vol. 49, no. 2,
pp. 671–675, 2013.

[368] Y. Fan, L. Liu, G. Feng, and Y. Wang, “Self-triggered consensus for multi-agent
systems with Zeno-free triggers,” IEEE Transactions on Automatic Control, vol. 60,
no. 10, pp. 2779–2784, 2015.

[369] W. Hu, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent
systems by distributed event-triggered/self-triggered strategy,” IEEE Transactions
on Cybernetics, vol. 47, no. 8, pp. 1914–1924, 2017.

[370] X. Meng, L. Xie, Y. C. Soh, C. Nowzari, and G. J. Pappas, “Periodic event-triggered
average consensus over directed graphs,” in IEEE Conference on Decision and
Control, 2015, pp. 4151–4156.

[371] Y. Li, J. Xiang, and W. Wei, “Consensus problems for linear time-invariant multi-
agent systems with saturation constraints,” IET Control Theory & Applications,
vol. 5, no. 6, pp. 823–829, 2011.

[372] Z. Meng, Z. Zhao, and Z. Lin, “On global leader-following consensus of identical
linear dynamic systems subject to actuator saturation,” Systems & Control Letters,
vol. 62, no. 2, pp. 132–142, 2013.

[373] T. Yang, Z. Meng, D. V. Dimarogonas, and K. H. Johansson, “Global consensus for
discrete-time multi-agent systems with input saturation constraints,” Automatica,
vol. 50, no. 2, pp. 499–506, 2014.

[374] Q. Wang and C. Sun, “Conditions for consensus in directed networks of agents
with heterogeneous output saturation,” IET Control Theory & Applications, vol. 10,
no. 16, pp. 2119–2127, 2016.

362 Bibliography

[375] Y.-H. Lim and H.-S. Ahn, “Consensus with output saturations,” IEEE Transactions
on Automatic Control, vol. 62, no. 10, pp. 5388–5395, 2017.

[376] J. Wei, A. R. Everts, M. K. Camlibel, and A. J. van der Schaft, “Consensus dynamics
with arbitrary sign-preserving nonlinearities,” Automatica, vol. 83, pp. 226–233,
2017.

[377] G. A. Kiener, D. Lehmann, and K. H. Johansson, “Actuator saturation and anti-
windup compensation in event-triggered control,” Discrete Event Dynamic Systems,
vol. 24, no. 2, pp. 173–197, 2014.

[378] Y. Xie and Z. Lin, “Event-triggered global stabilization of multiple integrator
systems with bounded controls,” in American Control Conference, 2017.

[379] X. Wu and T. Yang, “Distributed constrained event-triggered consensus: L2 gain
design result,” in Annual Conference of the IEEE Industrial Electronics Society,
2016, pp. 5420–5425.

[380] X. Wang, H. Su, X. Wang, and G. Chen, “Fully distributed event-triggered
semiglobal consensus of multi-agent systems with input saturation,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5055–5064, 2017.

[381] T. Chen, X. Liu, and W. Lu, “Pinning complex networks by a single controller,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6, pp.
1317–1326, 2007.

[382] H. K. Khalil, Nonlinear Systems, 3rd. Prentice-Hall, New Jersey, 2002.

[383] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,”
Automatica, vol. 53, pp. 424–440, 2015.

[384] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local
information exchange,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 10-11, pp. 1002–1033, 2007.

[385] W. Dong and J. A. Farrell, “Cooperative control of multiple nonholonomic mobile
agents,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1434–1448,
2008.

[386] T. H. Van den Broek, N. van de Wouw, and H. Nijmeijer, “Formation control
of unicycle mobile robots: A virtual structure approach,” in IEEE Conference on
Decision and Control, held jointly with Chinese Control Conference, 2009, pp.
8328–8333.

[387] J. Li, W. Ren, and S. Xu, “Distributed containment control with multiple dynamic
leaders for double-integrator dynamics using only position measurements,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1553–1559, 2012.

Bibliography 363

[388] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems
while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4,
pp. 693–703, 2007.

[389] K.-K. Oh and H.-S. Ahn, “Formation control of mobile agents based on inter-agent
distance dynamics,” Automatica, vol. 47, no. 10, pp. 2306–2312, 2011.

[390] G. Wen, Z. Duan, W. Ren, and G. Chen, “Distributed consensus of multi-agent
systems with general linear node dynamics and intermittent communications,”
International Journal of Robust and Nonlinear Control, vol. 24, no. 16, pp. 2438–
2457, 2014.

[391] D. V. Dimarogonas and K. J. Kyriakopoulos, “On the rendezvous problem for
multiple nonholonomic agents,” IEEE Transactions on Automatic Control, vol. 52,
no. 5, pp. 916–922, 2007.

[392] ——, “A connection between formation infeasibility and velocity alignment in
kinematic multi-agent systems,” Automatica, vol. 44, no. 10, pp. 2648–2654, 2008.

[393] D. V. Dimarogonas and K. H. Johansson, “On the stability of distance-based
formation control,” in IEEE Conference on Decision and Control, 2008, pp. 1200–
1205.

[394] ——, “Further results on the stability of distance-based multi-robot formations,” in
American Control Conference, 2009, pp. 2972–2977.

[395] ——, “Stability analysis for multi-agent systems using the incidence matrix:
Quantized communication and formation control,” Automatica, vol. 46, no. 4, pp.
695–700, 2010.

[396] K.-K. Oh and H.-S. Ahn, “Distance-based undirected formations of single-integrator
and double-integrator modeled agents in n-dimensional space,” International
Journal of Robust and Nonlinear Control, vol. 24, no. 12, pp. 1809–1820, 2014.

[397] D. P. Spanos and R. M. Murray, “Robust connectivity of networked vehicles,” in
IEEE Conference on Decision and Control, vol. 3, 2004, pp. 2893–2898.

[398] D. V. Dimarogonas and K. J. Kyriakopoulos, “Connectivity preserving state
agreement for multiple unicycles,” in American Control Conference, 2007, pp.
1179–1184.

[399] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity
of mobile networks,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 812–816,
2007.

[400] A. Ajorlou, A. Momeni, and A. G. Aghdam, “A class of bounded distributed control
strategies for connectivity preservation in multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 12, pp. 2828–2833, 2010.

364 Bibliography

[401] Z. Kan, A. P. Dani, J. M. Shea, and W. E. Dixon, “Network connectivity preserving
formation stabilization and obstacle avoidance via a decentralized controller,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1827–1832, 2012.

[402] D. Boskos and D. V. Dimarogonas, “Robust connectivity analysis for multi-agent
systems,” in IEEE Conference on Decision and Control, 2015, pp. 6767–6772.

[403] H. Yu and P. J. Antsaklis, “Formation control of multi-agent systems with connec-
tivity preservation by using both event-driven and time-driven communication,” in
IEEE Conference on Decision and Control, 2012, pp. 7218–7223.

[404] Y. Fan and G. Hu, “Connectivity-preserving rendezvous of multi-agent systems with
event-triggered controllers,” in IEEE Conference on Decision and Control, 2015, pp.
234–239.

[405] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” Graphs and
Combinatorics, vol. 7, no. 1, pp. 53–64, 1991.

[406] V. Kucera, “A contribution to matrix quadratic equations,” IEEE Transactions on
Automatic Control, vol. 17, no. 3, pp. 344–347, 1972.

[407] H. Li, X. Liao, T. Huang, and W. Zhu, “Event-triggering sampling based leader-
following consensus in second-order multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 60, no. 7, pp. 1998–2003, 2015.

[408] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication
and control for multi-agent average consensus,” in American Control Conference.
IEEE, 2014, pp. 2148–2153.

[409] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear
iterative strategies in the presence of malicious agents,” IEEE Transactions on
Automatic Control, vol. 56, no. 7, pp. 1495–1508, 2010.

[410] F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable
networks: A system theoretic approach,” IEEE Transactions on Automatic Control,
vol. 57, no. 1, pp. 90–104, 2011.

[411] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic
consensus in robust networks,” IEEE Journal on Selected Areas in Communications,
vol. 31, no. 4, pp. 766–781, 2013.

[412] L. Su and N. Vaidya, “Multi-agent optimization in the presence of Byzantine
adversaries: Fundamental limits,” in American Control Conference, 2016, pp. 7183–
7188.

[413] S. Sundaram and B. Gharesifard, “Distributed optimization under adversarial
nodes,” IEEE Transactions on Automatic Control, vol. 64, no. 3, pp. 1063–1076,
2018.

Bibliography 365

[414] C. Zhao, J. He, and Q.-G. Wang, “Resilient distributed optimization algorithm
against adversarial attacks,” IEEE Transactions on Automatic Control, 2019.

[415] X. Li, X. Yi, and L. Xie, “Distributed online convex optimization with an
aggregative variable,” arXiv preprint arXiv:2007.06844, 2020.

[416] P. Tallapragada and J. Cortés, “Event-triggered stabilization of linear systems under
bounded bit rates,” IEEE Transactions on Automatic Control, vol. 61, no. 6, pp.
1575–1589, 2015.

[417] J. Pearson, J. P. Hespanha, and D. Liberzon, “Control with minimal cost-per-symbol
encoding and quasi-optimality of event-based encoders,” IEEE Transactions on
Automatic Control, vol. 62, no. 5, pp. 2286–2301, 2016.

[418] Q. Ling, “Bit rate conditions to stabilize a continuous-time scalar linear system
based on event triggering,” IEEE Transactions on Automatic Control, vol. 62, no. 8,
pp. 4093–4100, 2017.

[419] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control under data
rate constraints: An overview,” Proceedings of the IEEE, vol. 95, no. 1, pp. 108–137,
2007.

[420] M. J. Khojasteh, P. Tallapragada, J. Cortés, and M. Franceschetti, “The value of
timing information in event-triggered control,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 925–940, 2019.

[421] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43,
no. 7, pp. 1192–1203, 2007.

[422] P. Yu and D. V. Dimarogonas, “Explicit computation of sampling period in periodic
event-triggered multi-agent control under limited data rate,” IEEE Transactions on
Control of Network Systems, vol. 6, no. 4, pp. 1366–1378, 2019.

