ahp

S,
EKTHY

VETENSKAP
39 OCH KONST 9%
S
S

Distributed Optimization and Control:
Primal-Dual, Online, and Event-Triggered Algorithms

XINLEI'Y1

Doctoral Thesis
Stockholm, Sweden 2020

KTH Royal Institute of Technology

School of Electrical Engineering and Computer Science

Division of Decision and Control Systems

TRITA-EECS-AVL-2020:45 SE-100 44 Stockholm
ISBN 978-91-7873-640-9 SWEDEN

Akademisk avhandling som med tillstand av Kungliga Tekniska hogskolan framligges
till offentlig granskning for avliggande av teknologie doktorsexamen i elektro- och
systemteknik onsdag den 14 oktober 2020 klockan 14.00 i sal F3, Lindstedtsvigen 26,
KTH Campus, Stockholm.

© Xinlei Yi, September 2020.

Tryck: Universitetsservice US AB

Abstract

In distributed optimization and control, each network node performs local computation
based on its own information and information received from its neighbors through
a communication network to achieve a global objective. Although many distributed
optimization and control algorithms have been proposed, core theoretical problems with
important practical relevance remain. For example, what convergence properties can
be obtained for nonconvex problems? How to tackle time-varying cost and constraint
functions? Can these algorithms work under limited communication resources? This
thesis contributes to answering these questions by providing new algorithms with better
convergence rates under less information exchange than existing algorithms. It consists of
three parts.

In the first part, we consider distributed nonconvex optimization problems. It is hard
to solve these problems and often only stationary points can be found. We propose
distributed primal-dual optimization algorithms under different information feedback
settings. Specifically, when full-information feedback or deterministic zeroth-order oracle
feedback is available, we show that the proposed algorithms converge sublinearly to a
stationary point if each local cost function is smooth. They converge linearly to a global
optimum if the global cost function also satisfies the Polyak—t.ojasiewicz condition. This
condition is weaker than strong convexity, which is a standard condition in the literature
for proving linear convergence of distributed optimization algorithms. When stochastic
gradient feedback or stochastic zeroth-order oracle feedback is available, we show that
the proposed algorithms achieve linear speedup convergence rates, meaning that the
convergence rates decrease linearly with the number of computing nodes.

In the second part, distributed online convex optimization problems are considered.
For such problems, the cost and constraint functions are revealed at the end of each time
slot. We focus on time-varying coupled inequality constraints and time-varying directed
communication networks. We propose one primal-dual dynamic mirror descent algorithm
and two bandit primal-dual algorithms. It is shown that these distributed algorithms
achieve the same sublinear regret and constraint violation bounds as existing centralized
algorithms.

In the third and final part, in order to achieve a common control objective for a
networked system, we propose distributed event-triggered algorithms to reduce the amount
of information exchanged. Specifically, we propose dynamic event-triggered control
algorithms to solve the average consensus problem for first-order systems, the global
consensus problem for systems with input saturation, and the formation control problem
with connectivity preservation for first- and second-order systems. We show that these
algorithms do not exhibit Zeno behavior and that they achieve exponential convergence
rates.

Sammanfattning

Vid distribuerad optimering och reglering utfor varje nétverksnod lokala berdkningar
baserat pa sin egen information och information som mottas fran sina grannar via ett
kommunikationsnitverk for att uppna ett globalt mal. Aven om manga distribuerade
optimerings- och regleralgoritmer har foreslagits kvarstar fundamentala teoretiska problem
av stor praktisk relevans. Till exempel, vilka konvergensegenskaper kan erhallas for icke-
konvexa problem? Hur hanterar man tidsvarierande kostnadsfunktioner och bivillkor? Kan
dessa algoritmer fungera under begrinsade kommunikationsresurser? Denna avhandling
bidrar till att svara pa dessa fragor genom att ge nya algoritmer med béttre konvergensegen-
skaper med mindre informationsutbyte én befintliga algoritmer. Avhandlingen bestar av tre
delar.

I den forsta delen studerar vi distribuerade icke-konvexa optimeringsproblem. Det
ar svart att 16sa dessa problem och ofta kan bara stationédra punkter hittas. Vi foreslar
distribuerade primal-duala optimeringsalgoritmer under olika forutsittningar for aterkop-
pling av information. Nir aterkoppling av fullstindig information eller aterkoppling
med hjdlp av ett deterministiskt nollte ordningens orakel &r tillgénglig, visar vi att de
foreslagna algoritmerna konvergerar sublinjért till en stationdr punkt om varje lokal
kostnadsfunktion &r sldt. De konvergerar linjért till ett globalt optimum om den globala
kostnadsfunktionen ocksé uppfyller Polyak- Lojasiewicz-villkoret. Detta villkor dr svagare
an stark konvexitet, vilket dr ett standardvillkor 1 litteraturen som anvinds for att bevisa
linjdr konvergens av distribuerade optimeringsalgoritmer. Nir aterkoppling baserad pa
stokastisk gradientinformation eller ett stokastiskt nollte ordningens orakel éar tillgidnglig
visar vi att de foreslagna algoritmerna uppnar linjdra konvergenshastigheter, vilket innebér
att konvergenshastigheterna minskar linjart med antalet berdkningsnoder.

I den andra delen av avhandlingen studerar vi distribuerad konvex optimering som
utfors i realtid (online). For saidana optimeringsproblem ges kostnadsfunktionen och bivil-
Ikoren i slutet av varje tidsperiod. Vi fokuserar pa tidsvarierande kommunikationsnétverk
med tidsvarierande kopplade bivillkor angivna som olikheter. Vi foreslar en primal-dual
dynamisk gradientalgoritm och tva primal-duala banditalgoritmer. Var analys visar att
dessa distribuerade algoritmer uppnar samma sublinjdra grinser for anger (eng: regret)
och overtrddelse av bivillkor som befintliga centraliserade algoritmer.

I den tredje och sista delen, for att uppna ett gemensamt reglermal for ett ndtverkssystem,
foreslar vi distribuerade héndelsestyrda algoritmer for att minska méngden information
som utbyts. Mer specifikt sa foreslar vi dynamiska hindelseutlosta regleralgoritmer for
att 16sa det genomsnittliga konsensusproblemet for forsta ordningens system, det globala
konsensusproblemet for system med styrsignalssaturation och formationsproblemet med
anslutningsbevaring for forsta och andra ordningens system. Vi visar att dessa algoritmer
inte uppvisar Zeno-beteende och att de uppnar en exponentiell konvergenshastighet.

Acknowledgments

I would like to use “things to be respected according to Confucian thought” to express
my deepest gratitude to my supervisor Professor Karl Henrik Johansson. Heartfelt thanks
to him for providing me the opportunity to study at KTH and the freedom to explore any
questions that I am interested in. He gives me insightful guidance when I am lost; he
provides me invaluable support when I meet problems; he gives me warm encouragement
when I have achievements no matter how small they are. It is really a great pleasure to
work with him and he is the perfect supervisor in my mind.

I wish to express my sincere gratitude to my co-supervisors Professor John S. Baras
for offering the inspiration and guidance to me, and Professor Dimos V. Dimarogonas
for giving me detailed support in research. I would like to thank Professor Lihua Xie
from Nanyang Technological University for being the opponent for my licentiate defense
and hosting me on a productive exchange trimester, and Professor Mikael Johansson for
being the advance reviewer for both my licentiate and doctoral theses as well as for
chairing the public defence. I also would like to thank Professor Antonis Papachristodoulou
from University of Oxford for being the opponent, and Professor Na Li from Harvard
University, Professor Maurice Heemels from Eindhoven University of Technology, and
Professor Anders Hansson from Link&ping University for being the committee members.
I am grateful to Professors Henrik Sandberg and Alexandre Proutiere for willing be the
substitute members.

Heartfelt thanks to my collaborators Wen Du, Jemin George, Matin Jafarian, Xiuxian
Li, Kun Liu, Mohammad Pirani, Jieqiang Wei, Junfeng Wu, Tao Yang, and Shengjun Zhang
for the fruitful discussions with them and their interesting ideas and careful attentions to
our work. Appreciation to Hao Chen for pointing out the mistakes in one proof. Special
thanks to Matin Jafarian, Yuchao Li, Jieqiang Wei, and Tao Yang for proof reading this
thesis, and Robert Mattila for translating the abstract of both my licentiate and doctoral
theses into Swedish.

I would also express my appreciation to all my colleagues (current and former) at
the Division of Decision and Control Systems for creating a friendly environment and an
active working atmosphere, and for their continuous support for everything that I needed.
I also want to thank the administrative staffs in our division Karin Karlsson Eklund,
Felicia Gustafsson, Hanna Holmgqvist, Tord Christer Magnusson, Anneli Strom, and Silvia
Cardenas Svensson for their assistance and support.

Last, but not least, I would like to thank my family and friends for their unconditional
love and constant support. I am deeply grateful to my partner, Zhengrong, for her
understanding, support, and love.

Xinlei Yi
Stockholm, September 2020

Contents

Abstract iii
Sammanfattning v
Acknowledgments vii
Contents ix
List of Acronyms xiii
Notations XV
1 Introduction 1
1.1 Motivatingexamples 1
1.2 Distributed optimization and control 12
1.3 Problem formulation, 20
1.4 Thesis outline and contributions 0oL, 23
2 Preliminaries 33
2.1 Directedgraphs 33
2.2 Undirected graphs L 36
23 Convex functions o 38
24 Projectionso e e 40
2.5 Smoothfunctions L o 41
2.6 Polyak-Lojasiewicz condition 42
2.7 Bregmandivergenceo 43
2.8 Random gradient estimators 45
2.9 Deterministic gradient estimators L. 47
2.10 Useful lemmasonseries 48

iX

X Contents
I Distributed Nonconvex Optimization 55
3 Distributed primal-dual first-order and ADMM algorithms 57
3.1 Introduction e 57
3.2 Distributed nonconvex optimization with full-information feedback . . . 60
3.3 Distributed primal-dual FO algorithm 62
3.4 Distributed ADMM algorithm 66
3.5 Distributed linearized ADMM algorithm 70
3.6 Simulations Lo 72
37 Summary ... e 74
38 Proofs 75
4 Distributed primal-dual SGD optimization algorithm 91
4.1 Introduction 91
4.2 Distributed nonconvex optimization with stochastic gradient feedback . 93
4.3 Distributed primal-dual SGD algorithm 96
4.4 Simulations 101
45 Summary e 106
4.6 Proofs 106
5 Distributed zeroth-order optimization algorithms 125
5.1 Introduction 126
5.2 Distributed nonconvex optimization with ZO oracle feedback 130
5.3 Distributed primal-dual DZO algorithm 131
5.4 Distributed primal-dual SZO algorithm 133
5.5 Distributed primal SZO algorithm 139
5.6 Simulations 143
5.7 Summary ... 146
5.8 Proofs 148
II Distributed Online Convex Optimization 181
6 Distributed online primal-dual optimization algorithm 183
6.1 Introduction 184
6.2 Distributed OCO with time-varying coupled inequality constraints . . . 186
6.3 Distributed online primal-dual dynamic mirror descent algorithm 189
6.4 Simulations oL 198
6.5 Summary 201
6.6 Proofs 201
7 Distributed bandit online primal-dual optimization algorithms 211
7.1 Introduction 212
7.2 Distributed bandit OCO with time-varying coupled inequality constraints 215

Contents Xi
7.3 Distributed bandit online primal—dual algorithm based on one-point
sampling 217
7.4 Distributed bandit online primal-dual algorithm based on two-point
sampling e 222
7.5 Simulations 225
7.6 Summary 227
7.7 Proofs 227
III Distributed Event-Triggered Control 239
8 Distributed dynamic event-triggered control algorithms 241
8.1 Introduction 241
8.2 Average consensus for first-order multi-agent systems 244
8.3 Distributed dynamic event-triggered control algorithms 245
8.4 Distributed self-triggered control algorithm 255
85 Simulations 260
8.6 Summary e 266
9 Distributed event-triggered saturation control algorithms 267
9.1 Imntroduction 267
9.2 Global consensus for multi-agent systems with input saturation 269
9.3 Distributed continuous-time saturation control algorithm 270
9.4 Distributed event-triggered saturation control algorithm 271
9.5 Distributed self-triggered saturation control algorithm 272
9.6 Simulations 274
9.7 Summary e e 277
9.8 Proofs 279
10 Distributed event-triggered formation control algorithms 291
10.1 Introduction 291
10.2 Formation control for multi-agent systems with connectivity preservation 293
10.3 Distributed event-triggered formation control for single integrators . . . 294
10.4 Distributed event-triggered formation control for double integrators 302
10.5 Simulations 310
10.6 Summary e e e e 312
10.7 Proofs 312
11 Conclusions and future research 327
I1.1 Summary e e e e 327
11.2 Future research directions 331
Bibliography 333

List of Acronyms

ADMM
CC
CNN
DERs
DNN
DZO
FO
K-b
L-ADMM
NN
NoSPPI
0OCO
P-L
RSI
ScC
SGD
SOS
SZ0
Z0

Alternating Direction Method of Multipliers
Connected Component

Convolutional Neural Network

Distributed Energy Resources

Deep Neural Network

Deterministic Zeroth-Order

First-Order

Kurdyka-t.ojasiewicz

Linearized Alternating Direction Method of Multipliers
Neural Networks

Number of Sampled Points Per Iteration
Online Convex Optimization
Polyak—}.ojasiewicz

Restricted Secant Inequality

Strongly Connected Component

Stochastic Gradient Descent

Second-Order Stationary

Stochastic Zeroth-Order

Zeroth-Order

Xiii

Notations

Real analysis
RP
R}
B?
sP

€m

Ny
N,

n!

[n]
O(ay)
o(a;)
Pr(-)
[']+
(x,)

the real Euclidean space of dimension p

the nonnegative subspace of R”

the unit ball centered around the origin in R”
the unit sphere centered around the origin in R”
the m-th element of the standard basis of R”
the set of nonnegative integers

the set of positive integers

the factorial of n

the set {1,...,n}

B: = O(a) if lim sup,_, . (B:/,) is bounded

B = O(ay) if limy (B /) = 0

the projection operator onto set K

the projection operator onto R”

the standard inner product of two vectors x and y
the ceiling function

the floor function

the indicator function

the absolute value of a real number or the magnitude of a complex

number
the global minimum value of function f

the global minimum point of function f

the optimal set of function f, i.e., the set of global minimum points of

function f
the (sub)gradient of function f
the set of all subgradients of function f

the one-point sampling based random gradient estimator

the two-point sampling based random gradient estimator

XV

XVi Notations
\% of the p-point sampling based deterministic gradient estimator

V2 f the Hessian matrix of function f

Dy (-, Bregman divergence associated with strongly convex function ¢

Linear algebra
Rnxm

Il

I

eIl

rank(M)
null(M)
det(M)
M >N
M>N
M®N
Diag(x)
col(zy, ...
[x];
[M];.
[M];;

2 k)

ci(x)
xLly
0

S|

Graph theory
G
G

the space of n-by-m real matrices

Euclidean norm for vectors or the induced 2-norm for matrices
absolute sum for vectors or the induced 1-norm for matrices
the value of x" Ax, where x is a vector and A is a matrix

a p-by-1 vector of all ones

a p-by-1 vector of all zeros

a n-by-n identity matrix

the spectral radius for matrices

the minimum positive eigenvalue for matrices having positive
eigenvalues

the transpose of real matrix M

the transpose of real vector x

the rank of matrix M

the null space of matrix M

the determinant of square matrix M

M — N is positive definite

M — N is positive semidefinite

the Kronecker product of two matrices M and N

a diagonal matrix with the vector x on its diagonal
the concatenated column vector of vectors z; € R”, i € [k]
the i-th element of vector x

the i-th rom of matrix M

the element of matrix M in the i-th row and j-th column; when
necessary, also denoted by M;; or m;;

[-th component of vector x

vector x is orthogonal to vector y, i.e., x'y =0
an empty set

the cardinality of set S

undirected graph or directed graph
time-varying undirected graph or directed graph

Notations

XVii

Other
a:=>b
asb
a=b

saty(-)
ti

i
)

the vertex set

the edge set; when necessary, also denoted by &(G)

the time-varying edge set; when necessary, also denoted by &,(G;)
the number of vertices

an edge in a graph, i.e., a directed link from vertex i to vertex j

neighbors of vertex i in an undirected graph; when necessary, also
denoted by Ni(G)

in-neighbors of vertex i in a directed graph; when necessary, also
denoted by N'"(G)

out-neighbors of vertex i in a directed graph; when necessary, also
denoted by N?'(G)

the (weighted) adjacency matrix of G

the (weighted) Laplacian matrix of G

K,=1,- %1,11; is the Laplacian matrix of a complete graph,
the mixing matrix of G

the time-varying mixing matrix of G;

the incidence matrix of G

the m-th strongly connected component of a directed graph
the m-th connected component of an undirected graph

a is defined as b

a and b are equivalent

a implies b

for all

the saturation function with saturation level 4 > 0

the k-th triggering time of agent i

the latest triggering time of agent i before time instant ¢

Chapter 1

Introduction

In recent years, rapid developments in digital systems, communication, and sensing
technologies have led to the emergence of networked systems. These systems consist of
a large number of interconnected subsystems (agents), which are required to cooperate in
order to achieve a desirable global objective through local interactions. Such networked
systems have been extensively studied in various disciplines over the past decades, and
they have broad applications in various areas, for instance, surveillance [1], monitoring
[2], manufacturing [3], data mining [4], learning [5, 6], software engineering [7], power
grid [8, 9], transportation [10], and logistics [11]. Due to their distributed nature, these
applications often require distributed optimization and control techniques. Traditional
centralized strategies are often not suitable since they are subject to single point of failure,
high communication requirement, substantial computation burden, and limited flexibility
and scalability. All of these have made imperative the need of developing new distributed
approaches to solve optimization and control problems in networked systems.

This chapter is organized as follows. Section 1.1 provides some applications that have
motivated the work presented in this thesis. Section 1.2 briefly introduces distributed
optimization, online convex optimization, and distributed event-triggered control. Sec-
tion 1.3 presents the problems studied in this thesis. Section 1.4 gives the thesis outline
and describes the contributions of the author.

1.1 Motivating examples

In this section, nine examples are provided to motivate the problems considered in this
thesis.

Motivating example 1: Distributed regularized logistic regression

Logistic regression is used to classify an observation into one of two classes. Unlike
linear regression which outputs continuous number values, logistic regression transforms
its output using the logistic sigmoid function to return a probability value which can then be
mapped to the two classes. The key question in logistic regression is how to fit the logistic

2 Introduction

i 0
x y—l

+

+ *

Figure 1.1: Illustration of logistic regression with labeled observations.

regression model using labeled observations. Figure 1.1 illustrates logistic regression with
two classes of labeled observations separated by an S-shaped curve.

To compute the regression coefficients of the model, the negative of the log likelihood
function, also called the objective function, is minimized:

1 m
Fx) = — > (ilog(l +exp(=x"z)) + (1 = y)) log(1 + exp(x"z))),
m i=1

where x € R” is the regression coefficient vector with p being the number of features, m
is the number of independent observations, and {z; € R”}?", are independent observations
with known labels {y; € {0, 1}}" .

Logistic regression is prone to overfitting if there are large number of features.
Regularization can be used to train models that generalize better to unseen data, by
preventing the algorithm from overfitting [12]. The objective function then normally has a
regularization term:

fx) = Z(Yi log(1 +exp(=x"z) + (1 — y) log(1 + exp(x"z))) + Ar(x), (1.1

1
S

1.1. Motivating examples 3

where 4 > 0 is a regularization parameter and r(x) is a regularization function. Various
convex and nonconvex regularization functions for logistic regression have been proposed
[13], for example,

Zp: ulx1?
1+u[x2’

where u > 0 is another parameter.

Traditionally, the above optimization problem is solved by a single machine using the
complete data set. However, it is sometimes necessary to solve it in a distributed manner.
For example, when the data set of labeled observations is very large and cannot fit the
memory of a single machine. Another motivating scenario is when data is collected from
multiple distributed data sources by a group of machines and is stored distributively due
to data ownership and privacy concerns. Thus, it is sometimes necessary to fit the logistic
regression model distributively. Specifically, suppose there are n computing nodes and each
node i has m; labeled observations satisfying }.", m; = m. All nodes collaborate to solve
the optimization problem

min f(x) = Zl i),

where each function f; is held privately by node i and is given by

s Zy o ulx)?
fin) = Z(y,llog(1+exp(X7 zi) + (1 = yi) log(1 + exp(xzy)) + Z T4 e

(1.2)

where z;; € R? is the /-th observation with label y; € {0, 1} owned by node i.

In Chapter 3, we show that the above distributed regularized logistic regression problem
can be solved by our new distributed primal—dual first-order (FO) algorithm with a faster
convergence rate than state-of-the-art distributed first-order algorithms.

Motivating example 2: Distributed phase retrieval

The classic linear inverse problem is to recover an unknown signal x € R” from m linear
measurements of the form Bx = y, where B € C™ is a known linear measurement
operator matrix, and y € C" is a noisy but known vector. In contrast, phase retrieval is to
recover the unknown signal x from the noisy squared magnitude of the linear measurements

= |b] x* + w;, Vi€ [m],

where b; € C7 is the i-th linear measurement operator and y; € R is the corresponding
noisy squared magnitude, | - | is the magnitude of a complex number, and w; € R is noise.
Phase retrieval has a long history and can be traced back at least to the 1970’s [14-16].

4 Introduction

Recently, it has gained increased interest from the optimization community, e.g., [17-21].
Phase retrieval can be reformulated as the nonconvex optimization problem

min /().
where f(x) = L 37 (y; — |b] x*)>.

In practice, sometimes the linear measurement operators and the corresponding noisy
squared magnitudes are recorded by different detectors [22]. It is then natural for large
data sets to split the cost function across detectors and thus reformulate the centralized
optimization problem as the distributed optimization problem

min f(x) = Z o),
i=1

xeRP

where
fix) = Z(y,,—w APy = Z(yl,—(beR - (B (1.3)

with m; being the number of data points recorded by detector i, b; = b§ + ib{l € CP being
the phase of the linear operator used in the /-th measurement by detector i, and y; € R
being the corresponding noisy squared magnitude.

In Chapter 3, we show that the above distributed phase retrieval problem can be solved
by our proposed distributed alternating direction method of multipliers (ADMM) algorithm
with a faster convergence rate than state-of-the-art distributed ADMM algorithms.

Motivating example 3: Distributed training of neural networks

In the deep learning literature, it has been observed that performance can be dramatically
improved when increasing the number of model parameters and/or the number of training
examples, e.g., [23-25]. However, training neural networks is very tedious. Many neural
networks have millions, even billions, model parameters and large amounts of data are
needed to learn these parameters. This is a computationally intensive process which takes
a lot of time. It can even take days to train a deep neural network [26]. Moreover,
sometimes the training data set is too large to be stored on a single machine. Therefore it
is important to come up with distributed algorithms to drastically reduce the training time.
Two novel methodologies, data and model parallelisms have been proposed, e.g., [27-30].
Specifically, data parallelism means the partition of the training data across multiple
machines and it allows each machine to read and update all model parameters. Model
parallelism means the partition of the model parameters across multiple machines and
it makes each machine responsible for updating only its assigned portion of parameters
(either using the full data set or a subset).

In this example, we focus on data parallelism as illustrated in Figure 1.2. In this
methodology we spawn n workers and assign a share of the data set to each worker. Using

1.1. Motivating examples 5

W41 =UPDATE(wg; Vf;(x))

Parameter server

orker i

Figure 1.2: Illustration of data parallelism. A parameter server is responsible for the
aggregation of model updates and parameter requests coming from workers. All workers
get a copy of the central model with parameters w;. The data is split into several
partitions, where a specific worker is responsible for the computation of its own partition.
Each worker samples mini-batches from its own data to produce the gradient V f;(x)
and then communicates it with the parameter server. The parameter server integrates
this gradient by applying a specific update procedure to produce w,;. This process
repeats itself until all workers have sampled all mini-batches from their shard. Source:
https://joerihermans.com/ramblings/distributed-deep-learning-part- 1 -an-introduction/

this data, worker i iterates through mini-batches of data to produce a gradient, V f;(x) for
every mini-batch x. Next, Vf;(x) is sent to the parameter server, which incorporates the
gradient using an update mechanism. Data parallelism is thus based on the master—worker
architecture.

Although numerous distributed training algorithms based on data parallelism have
been proposed, many of them are not truly distributed since they follow a master—worker
architecture and do not involve any peer-to-peer communication. These algorithms are not
always robust and they are useless if the server fails. In Chapter 4, we propose a distributed
primal—dual stochastic gradient descent (SGD) algorithm, suitable for arbitrarily connected
communication networks and any smooth (possibly nonconvex) cost functions. This
algorithm achieves linear speedup in the number of partitions (agents), which enables us
to scale up the computing capacity by adding more agents [31-33].

6 Introduction

Motivating example 4: Black-box adversarial attacks

As machine learning is being more widely used, security concerns are attracting more
attentions, especially for safety-critical applications [35, 36]. Many recent studies have
shown that neural networks are vulnerable to adversarial attacks, e.g., [34,37-41]. The
outputs of neural networks can be altered arbitrarily with slightly perturbed inputs. For
example, it has been shown in [34,37-39] that a slightly modified image can be easily
generated and misguide a well-trained image classifier into producing incorrect results.
Figure 1.3 gives four examples to illustrate how carefully crafted small perturbations of the
original inputs, often imperceptible to the human eye, misguide the network into producing
incorrect outputs. The original images are in the left column, while the corresponding
perturbed images produced by the algorithm proposed in [34] are shown in the right
column. The perturbed images are misclassified by the network proposed in [42].

Attacks on machine learning models can be divided into white-box and black-box
attacks. White-box attacks mean that the adversary has complete knowledge of the target
model, whereas for black-box attacks the adversary only queries the target model, which
may return complete or partial information [43]. Black-box attacks normally are more
relevant in many practical scenarios since in most applications internal configurations of
machine learning models, including the network structure and weights, are not released.

Designing adversarial attacks on a given network can be formulated as an optimization
problem with the objective to find the smallest perturbation that leads to misclassification,
e.g., [44,45]. Note that under black-box attacks the adversary only accesses the input and
output of a machine learning model. In other words, the adversary has to generate adver-
sarial perturbations without access to the target model to compute gradients. Therefore it is
intuitive to cast the problems of generating black-box attack examples as gradient-free op-
timization problems, e.g., [46—48]. Although various centralized and distributed gradient-
free optimization algorithms have been proposed to generate adversarial black-box attacks,
core theoretical questions remain. For instance, can distributed gradient-free optimization
algorithms achieve comparable convergence rates as their first-order counterparts? Can
they have similar convergence properties as their centralized counterparts? Can they even
achieve linear speedup? In Chapter 5, we provide positive answers to these questions.

Motivating example 5: Multi-target tracking

Consider a multi-target tracking problem in which n agents follow n targets. Figure 1.4
shows how each agent i tracks each target i from time ¢ to ¢ + 1. Let z;(s) and Z;(s) denote
the positions of agent i and target i at time s, respectively. To model agent and target paths,
we introduce a parameterization:

Di
zi(s) = Z[xi,r]kck,r(s),
k=1
Pi
2(5) =) [Eidkcal(s), s € [0+ 1),

k=1

1.1. Motivating examples

(d) A water ouzel misclassified as a redshank.

Figure 1.3: Examples to illustrate how carefully crafted small perturbations of the original
inputs can misguide the network into producing incorrect outputs. The left column
shows the original images and the right column shows the perturbed images. Source:

https://davidstutz.de/simple-black-box-adversarial-attacks-on-deep-neural-networks/ and
[34].

8 Introduction

@ Targets’ position at t @ Targets’ positionatt + 1
A Agents’ position at t A Agents’ position at t + 1
Target 1
e e @ Target 3
Agent 3
A A
Agent 1 Target 2
A o A
A o
Agent 2
A
L

Figure 1.4: Illustration of multi-target tracking.

where ¢y ,(s) are vector functions that parameterize the space of possible trajectories over
time [f,7 + 1) and satisfy

0, else.

1+1 1, .fk _ l
f (cri(s), cra(s))ds = { !

The action spaces of agent i and target i are given by x;; = col([x;]1,. .., [xi:]p) € X; S R”
and &;; = col([&ifl1, . .-, [&ir]p,) € RPY, respectively. At time ¢, agent i repositions itself by
selecting an action x;, such that it could stay as close as possible to target i during time
interval [¢,7 + 1). At the same time it wants the selection cost (r;,, x;,) to be as small as
possible, where 7;; € RY" is the price vector. This goal can be captured by defining a local
cost function

1+1
S a2
Fialt) = Gt i i) + G f lzi(s) - Z(9)IPds
t
2
= {i,1<7ri,za xi,t) + {i,z”xi,t - fi,t” s

where {;; and {;» are nonnegative constants to trade-off the two goals. Here, target i’s
action &;, and the price vector m;, are observed only after the selection. Agents need to
cooperatively take into account energy and communication constraints. In some cases, they
can be represented as linear local constraint functions g;,(x;;) = D;x;, — d;;, where D;, €
R™Pi and d;;, € R™ are time-varying and unknown at time z. These coupling constraints
determine the limits on the available resources to be shared among the agents. Chapter 6
shows how such a multi-target tracking problem can be solved by a novel distributed online
primal—dual dynamic mirror descent algorithm proposed in that chapter.

1.1. Motivating examples 9

Motivating example 6: Coordination of distributed energy resources

In the past decades, the power system has been undergoing a transition from a system with
conventional generation through few power plants and inflexible loads to a system with a
large number of distributed generators, energy storages, and flexible loads, e.g., [49-51].
The new distributed energy resources (DERs) are small and highly flexible compared with
conventional generators and can be aggregated to provide power necessary to meet varying
demands. As the electricity grid continues to modernize, DERs can facilitate the transition
to a smarter grid.

In order to achieve an effective and efficient deployment of DERs, one needs to
properly design their coordination scheme. Specifically, consider a power grid with n power
generation units. Each unit i has p; conventional and renewable power generators. The
units can communicate through a communication infrastructure. At stage ¢, let x;; € X;
and X; c R?” be the output and the set of feasible outputs of the generators in unit i,
respectively. To generate the output, each unit i suffers a cost f;,(x;,). This local cost
is described by a quadratic function [52], but is unknown in advance, since fossil fuel
price is fluctuating and renewable energy is uncertain and unpredictable. In addition to
the local generator constraints X;, all units need to cooperatively take into account global
constraints, such as power balance and emission constraints. The global constraints can be
modelled as })7, gi/(xi;) < 0,, where g;, is unit i’s local constraint function. Again, the
precise form of the constraint functions is typically unknown in advance. The goal of the
units is to reduce the global cost while satisfying the constraints. Chapter 7 shows how this
DERs coordination problem can be solved by the distributed bandit online primal—dual
optimization algorithms proposed in that chapter.

Motivating example 7: Satellite formation flying

Multiple satellites may work together to accomplish the objective of one larger, usually
more expensive, satellite. This reduces cost and adds flexibility to space programs [53].
An important component of such a strategy is satellite formation flying. Figure 1.5 shows
the PRISMA formation flying mission. PRISMA was a Swedish-led technology mission
to demonstrate formation flying and rendezvous technologies. The mission consisted of
two spacecrafts, a bigger one with advanced and highly maneuverable capability, called
MAIN, and a smaller one without a maneuvering capability, called TARGET. TARGET
simply followed the trajectory into which it was injected by the launch system. MAIN had
full translational capability, and performed a series of maneuvers around TARGET, on both
close and long range, using sensors provided [54].

The satellite formation flying problem of PRISMA is a resource-constrained two-agent
system. There are several constraints in this system, but here we only discuss two of them.
The first one is energy. MAIN has six thrusters arranged to provide torque-free translational
capability in all directions. Thus, the control input of MAIN should be optimized such
that the energy consumed to perform the maneuvers is saved. The second constraint is
communication. Although there are two deployable solar panels to power MAIN and
there is one body-mounted solar panel to power TARGET, energy used for communication

10 Introduction

Figure 1.5: Illustration of the PRISMA formation flying mission [55].

should be limited. One way to partially satisfy these two constraints is by using the event-
triggered control strategies investigated in Chapter 8.

Motivating example 8: Heavy-duty vehicle platooning

The formation of a group of heavy-duty vehicles at close intervehicular distances, similar to
cyclists in a race, reduces fuel consumption thanks to reduced air resistance. A platooning
with three vehicles is shown in Figure 1.6. In [56], the authors present an architecture
for heavy-duty vehicle platooning to improve the efficiency of freight transportation.
Experimental results show a significant decrease in fuel and energy consumption.

Vehicle platooning is a formation control problem with input saturation. The desired
formation is a line graph. The input saturation follows from that the vehicles have
limitations such as maximum acceleration and deceleration. Moreover, continuous com-
munication among vehicles is impossible. One way to model such a system is using event-
triggered multi-agent systems with input saturation as studied in Chapter 9.

Motivating example 9: Autonomous surface vehicle tracking

Autonomous surface vehicles can be used for target tracking, environmental sampling,
hydrographic or oceanographic surveys, water surface cleaning, etc. One specific example

1.1. Motivating examples 11

Figure 1.7: Illustration of autonomous surface vehicle tracking [57].

of autonomous surface vehicle tracking is collaborative tracking of fish [57], see Figure
1.7. The autonomous surface vehicles measure the location of the underwater target (the
fish) by using sonar. The vehicles create a formation around the target to keep the fish
within sensing range.

Fish tracking is a formation control problem of a resource-constrained multi-agent
system. There are several constraints in this system. The first one is that each vehicle has
limited energy since it is battery-powered. Motion and communication consume energy, so

12 Introduction

F—

Figure 1.8: An example of a network of four computing agents.

it is important to design a proper control law. The second constraint is that the transceiver in
each vehicle is simple and has limited communication range. The relative distance between
any two vehicles may change during operation, so the connectivity of the underlying
interaction graph cannot be guaranteed. One way to handle these constraints is to consider
event-triggered formation control with connectivity preservation using relative positions as
considered in Chapter 10.

1.2 Distributed optimization and control

The examples presented above motivate us to propose new distributed optimization
and control algorithms. In this section, we briefly review related studies of distributed
optimization and control in the literature, including distributed optimization, online convex
optimization, and distributed event-triggered control.

1.2.1 Distributed optimization

Consider a networked system of n agents, each of which has a local private cost function
fi(x), where x € R? is the decision variable and p is its dimension. The objective of
distributed optimization is to minimize a global cost function, which is a sum of the local
cost functions of all agents,

min~ > £o), (1.4)

in a distributed manner by local computation and communication. The underlying commu-
nication network is described by a (directed or undirected) graph G = (V, &) with the set
of vertices (or nodes) V' = [n] and the set of edges (links) & € V x V. Figure 1.8 shows
an example with four agents connected through an undirected ring graph.

When each local cost function is convex, the optimization problem (1.4) is called a
distributed convex optimization problem, which has a long history and can be traced back
at least to the 1980’s [58-60]. It has gained renewed interests in recent years due to its

1.2. Distributed optimization and control 13

wide applications in power systems, machine learning, and sensor networks, just to name a
few. Various distributed algorithms have been developed and their convergence rates have
also been analyzed. Here convergence rates mean how quickly the output sequence of the
algorithm approaches the global optimum. In these algorithms, each agent performs local
computation based on its own information and information received from its neighbors.
For example, the following distributed first-order (sub)gradient descent algorithm was
proposed in [61]:

Xijr1 = Z[Wk]ijxj,k =V fi(xip),

=1

where x;; € R” is agent i’s estimate of the optimal solution at time instant k, W; is the
mixing matrix of the underlying time-varying communication network, r; > 0 is the
stepsize, and V fi(x;) is the (sub)gradient of f;. It was shown in [61] that this algorithm
finds a global optimum with an O(In(k)/ Vk) convergence rate, i.e.,

(@) — f* = 0(n(k)/ Vk),

where x;, = %Zl’f:] Xix and f* = minyers f(x), which is a sublinear convergence rate.
Sublinear convergence rate is described in terms of a power function of the iteration
counter k [62]. Other sublinear convergence rates, such as O(1/ Vk), O(1/k), and O(1/k),
have also been achieved by other distributed algorithms, e.g., [63—67]. Linear convergence
rate, which is given in terms of an exponential function of the iteration counter, can be
established under more stringent strong convexity conditions. For instance, in [68—-87]
and [88-91], the authors assumed that each local cost function and the global cost function
are strongly convex, respectively, and showed that their proposed distributed algorithms
achieve a linear convergence rate, i.e.,

f&) - =0,

where ¢ is a constant in the interval (0, 1). For recent overviews we refer to the surveys
[92-99] and the books [100-103].

In many applications, such as optimal power flow [104], resource allocation [105],
and empirical risk minimization [106], the cost functions are usually nonconvex. Thus,
it is important to develop distributed algorithms to solve also nonconvex optimization
problems. These challenging yet important problems have drawn attention recently
from control, signal processing, and machine learning. For example, unconstrained and
constrained distributed nonconvex optimization problems were considered in [107-120]
and [121-128], respectively. In these studies, convergence results typically ensure that the
distributed algorithms find (first-order) stationary points

{(xeR?: Vf(x)=0,},

which could be local maxima or minima. Global optima are hard to find. In [111-116,124],
it was shown that when each local cost function is smooth, first-order stationary points can

14 Introduction

be found with an O(1/k) convergence rate, i.e.,
V&I = O(1/k).
Second-order stationary points
{x eRP: Vf(x) =0, and V*£(x) > 0}

can be found if additional assumptions are made, such as imposing the Kurdyka-
Lojasiewicz condition, assuming a Lipschitz-continuous Hessian, or making a suitably
initialization, e.g., [109,116-118,120].

There is a correspondence between the convergence rate and the iteration complexity.
The upper bound for the iterations to attain an e-accuracy, i.e., f(Xx) — f* < € for convex
problems or ||V f()"ck)||2 < € for nonconvex problems, where € > 0 is a constant, is
an inverse function of convergence rate. For example, if an algorithm has an O(1/ Vk)
convergence rate for an optimization problem, then it takes O(1/€?) iterations to attain an
e-accuracy. Similarly, if another algorithm has an O(1/ Vnk) convergence rate for the same
optimization problem, then it takes O(1/ (n€?)) iterations, which is n times smaller than
O(1/€%), to attain an e-accuracy. In this sense, the second algorithm is # times faster than
the first one, and thus achieves a linear speedup in the number of agents. Linear speedup
enables us to scale up the computing capacity by adding more agents.

Note that aforementioned algorithms use at least gradient information of the cost
functions, and sometimes even second- or higher-order information. However, in many
applications explicit expressions of the gradients are often unavailable or at least difficult to
obtain. For example, in empirical risk minimization, the actual gradient has to be calculated
from the entire data set, which results in a heavy computational burden. A stochastic
gradient can be calculated from a randomly selected subset of the data and is often an
efficient way to replace the actual gradient. Various distributed SGD algorithms have been
proposed, e.g., [31-33, 129-141]. Convergence properties of these algorithms have been
analyzed in detail. In particular, in [31-33, 132, 133, 135-137], an O(1/ \/E) convergence
rate has been established for SGD algorithms and smooth nonconvex cost functions. This
rate is n times faster than the well-known O(1/ Vk) convergence rate established by SGD
over a single agent [142], and thus a linear speedup in the number of agents is achieved.
Moreover, in [140, 141], an O(1/(nk)) convergence rate has been established for smooth
strongly convex cost functions. This rate is also n times faster than the optimal convergence
rate O(1/k) established for centralized SGD algorithms [143], and thus linear speedup
is also achieved. However, existing distributed SGD algorithms obtaining linear speedup
require restrictive assumptions on the cost functions or the communication network.

In many applications, even stochastic gradients are unavailable [144—146]. For exam-
ple, many cost functions of big data problems that deal with complex data-generating
processes cannot be explicitly defined [46]. Motivated by this, some recent works have
started to modify distributed gradient-based optimization algorithms to zeroth-order, e.g.,
[147-155]. However, it is unclear whether linear speedup can be achieved by these
algorithms.

Although many distributed optimization algorithms have been proposed, the study is
far from being complete. For example, it is interesting trying to achieve linear convergence

1.2. Distributed optimization and control 15

without the strong convexity assumption, since many practical applications do not have
strongly convex cost functions [156]. Another interesting direction is to develop distributed
SGD algorithms that not only achieve linear speedup convergence rates O(1/ Vnk) and
O(1/(nk)), but also do not require restrictive assumptions on the cost functions or the
communication networks. It is also revelant to develop distributed zeroth-order algorithms
to achieve linear speedup compared with centralized such algorithms.

1.2.2 Online convex optimization

Online convex optimization is a promising methodology for modeling sequential tasks
and has important applications in machine learning [157], smart grids [158], sensor
networks [159], and so on. It has been studied since the 1990’s [160-168]. Online convex
optimization can be understood as a repeated game between a learner and an adversary
[157]. At round ¢ of the game, the learner chooses a point x, from a known feasible region
X ¢ R?, which is a closed convex set. Then, the adversary observes x, and chooses a
convex loss function f; : X — R. After that, the loss function f; is revealed to the learner
who suffers a loss f;(x;). Note that at each round the loss function can be arbitrarily chosen
by the adversary, especially with no probabilistic model imposed on the choices. This
is the key difference between online and stochastic convex optimization. An adversary
with the power to arbitrarily choose the loss functions is said to be a completely adaptive
adversary [164]. The goal of the learner is to choose a sequence xr; = (xi,...,xr) such
that her regret

T
Reg(xpry, yiry) =) (fi(x) = fi(3) (1.5)
t=1

is minimized, where T is the total number of rounds and y;7} = (y1,...,yr) is a comparator
sequence. In the literature, there are two commonly used comparator sequences. One is
the opti.mal dynamic dfaci.siog sequence yir) = X = (x],...,x7) solving thg following
constrained convex optimization problem when the sequence of cost functions is known a
priori:

T
min Z f(x).
=1

X(7] ex? —

In this case Reg(x(r), X;7) is called the dynamic regret for x(7). Another comparator
sequence is y(r| = JfFT] = (X}, ..., X%;), where X} is the optimal static decision solving

T
min Zl f(x).

In this case Reg(x(ry, X[) is called the static regret. It is straightforward to see that
Reg(x(ry, yir)) < Reg(x(ry, X)), Yy € X7, and that Reg(x(ry, X7) < Reg(x(r), X))
In online convex optimization, we are usually interested in an upper bound on the worst

16 Introduction

case regret of an algorithm. Intuitively, an algorithm performs well if its static regret is
sublinear as a function of 7', since this implies that on the average the algorithm performs
as well as the best fixed strategy in hindsight as 7" goes to infinity [157, 165].

It is known that the simple and popular projection-based online gradient descent
algorithm

X1 = Pr(x — aV fi(x)), (1.6)

where Px(-) is the projection onto the closed convex set X and @ > 0 is the stepsize,
achieves an O(VT) static regret bound for loss functions with bounded subgradients [163],
ie.,

Reg(x(7, ¥77,) = O(NT).

As aresult, when the convex cost function is fixed, i.e., f; = f, the above result implies that
f(ZtT=1 x/T) - f* =0/ \T), where f* = minyx f(x). It was later shown that O(\T)
is a tight bound up to constant factors [166]. The static regret bound can be reduced under
more stringent strong convexity conditions on the objective functions [157,165-167] or by
allowing to sample the gradient of the objective function multiple times per round [168].

Despite the simplicity of the algorithm (1.6), its computational cost is crucial for its
applicability. The projection Px(-) is easy to compute and even has a closed form solution
when X is a simple set, e.g., a box or a ball. However, in practice, the constraint set X
is often complex. For example, if X is characterized by inequalities as X = {x : g(x) <
0,,, x € RP}, where g(x) = col(g((x),...,gn(x)) with each g; : R” — R being a convex
function, then the projection Px(-) yields a heavy computational burden. To tackle this
challenge, online convex optimization with long-term constraints was considered in [169].
In this case, instead of requiring g(x;) < 0,, at each round, the constraint should only be
satisfied in the long run. More specifically, the constraint violation

%6001 an

should grow sublinearly. In this case, Z,T: 1 X%/T € Xas T — oo. In other words, the learner
is allowed sometimes to make decisions that do not belong to X, but the overall sequence of
chosen decisions must obey the constraint at the end by a vanishing convergence rate. This
problem is normally solved by online primal—dual algorithms [169-172]. The problem can
be extended to the case when the constraint function is time-varying and revealed to the
learner after her decision is chosen [173-176].

Not only centralized, but also distributed online convex optimization problems have
been studied. For example, distributed unconstrained online optimization problems have
been considered in [177] by proposing an online subgradient descent algorithm with
proportional-integral disagreement and in [178] by designing a distributed online subgra-
dient push-sum algorithm. Some other variations of distributed online convex optimization
algorithms have also been proposed, e.g., the Nesterov based primal—dual algorithm [179],
variant of the Arrow—Hurwicz saddle point algorithm [180], the mirror descent algorithm

1.2. Distributed optimization and control 17

\ Xi(t) cvvsnnnnnnnnnnnn, . x; () (

[Sensor](__'_i """""""" i Channel :< """"""" >[Sensor]

...................

x(6) 5@ | 7 ' %(6) 0
[Control] [Control]

Agenti) _ Agentj

Figure 1.9: Illustration of how agents communicate when the control input is continuous.

[181], and the dual subgradient averaging algorithm [182]. For more studies on distributed
online convex optimization, we refer to [183—191]. There are open problems on distributed
online convex optimization. For instance, how to handle time-varying constraints. It is also
interesting to develop gradient-free online algorithms, such as bandit online algorithms.

1.2.3 Distributed event-triggered control

Consider the continuous-time multi-agent systems described by integral dynamics
Xi(1) = u;(?), i € [n], t > 1o, (1.8)

wi(r) = = > Lijx;(), (1.9)

=

where x; € R” is the state of agent i, which might represent physical variables such as
attitude, position, temperature, or voltage, u; is the control input, 7y is a common initial
time, and L;; is the element of the Laplacian matrix of the underlying communication
network G. Such a system with two agents is illustrated by Figure 1.9. Each agent has
a sensor component to measure and broadcast its state information, and to listen to and
receive its neighbors’ state information. Each agent also has a component to generate the
control input based on the information it receives from the sensor.

To implement the control (1.9), continuous-time state information from neighbors is
needed. In other words, each agent i has to continuously broadcast its own state x;(¢), and
continuously listen to and receive its neighbors’ states x;(z), j € N;. Moreover, each agent
i has to continuously update its control input u;(¢) = Zj;l L;jx;(t). It is in most applications
impractical to require continuous communications and updating of control inputs.

Reducing the frequency of information exchange among agents is essential. In order
to realize this, we introduce a model where each agent i € [n] prefers to only broadcast
its state at discrete time instants {tﬁ s té, ... }. In this case, the state information received by

agent i is {xj(t',i), J € Ni}2,- In other words, at any 7, agent i knows x,»(t',:(t)), j € N;, where
. - ; J

r]k,(5 = max{t,{ : t,{ < t} is the latest broadcasting time of agent j. Then, the control input is

18 Introduction

O R 20 (o

[Sensor L T Channel £ >[Sensor]

I R ——— T A —— - --.

...................

%;(t) x;(t) x;(t) %;(t)

[Control] [Control]

Agenti) _ Agentj

Figure 1.10: Illustration of how agents communicate when the control input is event-
triggered.

computed as
uilt) = =)" Lipxi(t]). (1.10)
j=1

For simplicity, let x;(f) = xi(t;;l(t)). Figure 1.10 shows that agent i broadcasts its state
x,'(tjc) at time instants {t;'{},‘f’:1 and receives its neighbors’ states {xj(t,{), Jj € N;} at time
instants {t,{, J € Ni}i2,. An essential question is how to determine the communication
instances {,, i € [n]};”, such that desired closed-loop system properties are maintained. In
the literature, researchers often consider time-triggered, event-triggered, and self-triggered
communications. We discuss each one of them next.

Time-triggered communication

The traditional way for agents to share information is to communicate equidistantly
(periodically), i.e.,

l‘i = Iy, t;wl = l‘;c + Ty, i € [n],

where Ty > 0 is the sampling period. This is called time-triggered or periodic sampling.
Note that the triggering sequence is the same for each agent. A nice feature of this approach
is that the analysis and design becomes rather straightforward and the vast literature on
sample-data control can be used [192]. Drawbacks are that agents need to take actions in a
synchronous manner (which is often hard to implement for large distributed systems) and
it is not energy-efficient to communicate even if the state has not changed.

Event-triggered communication

To make the sampling period 7 adaptive, we can let communication occur only when
a predefined condition is satisfied. This is called event-triggered communication and
the control input (1.10) with event-triggered communication is called distributed event-
triggered control. Triggering times {t’i,t;,...} are in this case different for different

1.2. Distributed optimization and control 19

agents. We call {t,i R t;;}zil the inter-event times of agent i. Advantages of event-
triggered approaches are that they can be implemented in a distributed manner and can
sometimes give better performance than periodic sampling. However, the analysis and
design methodologies are less developed.

One common choice of event-triggered communication is to use a triggering law
defined by

' =to, t,,, = min{t : Fi(x;(t), %), {xj(0), £/} jen,) 2 0, t > 11}, i € [n], (1.11)
where F;(-) is a function to be designed. We call (1.11) a static triggering law since it does

not involve any extra dynamic variables. There are two well-known ways to define the
function F;(-). The first one was introduced in [193]:

X ia(l = alNiD) <& 2
Fi() = Galt) — xi(1))% — %(;(xj(;) - x(0)) . (1.12)
and the second one in [194]:
A a(l=alNiD <~ .
Fie) = (00 = wo)? - T ;(w) -5, (1.13)

where 0 < o;<land0 <a < ﬁ are design parameters. The function F;(:) in (1.12) and
(1.13) do not involve any extra dynamic variables but the agent state variables x;(), x;(¢)
and x;(?), (1), j € Ni.

Another common form of event-triggered communication is
fy = to, i,y = minfr : Fi(xi(®), &0, (x;(0), £;(D}jen,) Z mi@), 12 1), i € [n], (1.14)

where 7;(¢) is an internal dynamic variable to be defined. We call (1.14) a dynamic
triggering law since it involves an extra dynamic variable. One well-known dynamic
triggering law introduced in [195] is

f=t, £, =min{t : |%(t) — x| = co + c1e™™, t > 11}, i € [n] (1.15)

with constants ¢y > 0, ¢y >0, co+c¢; > 0,and 0 < @ < pp(L), where p,(L) is the minimum
positive eigenvalue of the Laplacian matrix L of the underlying undirected graph G.

Self-triggered communication

For event-triggered communication, each agent needs to continuously monitor the trigger-
ing laws. However, agent i could instead at its current triggering time #; predict its next
triggering time £, , and broadcast it to its neighbors. In this case, agent i only needs to

00

listen and receive information at {tI{}k:I’ j € N; since it knows when these time instances
will happen in advance. Each agent broadcasts at its own triggering times, and listen to

20 Introduction

incoming information from its neighbors at their triggering times. This is called self-
triggered communication. Note that it is at the current triggering time instant that next
triggering time is determined.

One common form of self-triggered communication is to use a triggering law defined
by

i T DR S N I B j i _ i
£ =1y, £, = min {t. G,(t, xi(t), 1, {tk,-(ti.)’tkj(tj;)Jrl’xj(tk_,(t};))}jeN,) =0, 1> tk}, i€nl,
(1.16)

where G;(-) is a function to be designed, which is often chosen related to the function F;(-)
in the event-triggered communication.

Although there are numerous results on distributed event-triggered control in existing
literature, there still remain some key challenges. For example, one key challenge is to
exclude Zeno behavior when designing the triggering laws. Zeno is the behavior that there
are infinite number of triggers in a finite time interval [196], i.e., that for some i

lim # < oo. (1.17)

k—+00

In other words, the non-existence of Zeno behavior is equivalent to that in every finite time
interval there are only finite number of triggers. Thus, if Zeno behavior does not happen,
it is guaranteed that during every finite time interval, the inter-event times are greater
than a positive constant. Another challenge is to take into account resource constraints,
such as energy, communication, sensing, and control constraints, which normally appear
in applications. Resource constraints are essential for the control design of multi-agent
systems as a constrained system can have completely different behavior compared to the
unconstrained one. Therefore it is important to mathematically model resource-constrained
multi-agent systems and to properly design their control laws such that a common objective
is achieved while resource constraints are satisfied.

1.3 Problem formulation

In this section, we introduce the problems considered in this thesis, which can be
categorized into three topics.

Distributed nonconvex optimization

The first considered problem is distributed nonconvex optimization. Specifically, consider
a network of n agents, each of which has a local smooth (possibly nonconvex) cost function
fi : R? — R. All agents collaboratively solve the optimization problem

. IS
min f(x) = ~ " fi(x).
xeRP n <
i=1
Each agent i only has information about its local cost function f;. It can communicate

with its neighbors through the underlying communication network which is modeled by an
undirected graph. Different settings on the information feedback are investigated.

1.3. Problem formulation 21

We first consider the case where full-information feedback is available. The problem to
solve is to design (i) a distributed first-order algorithm such that linear convergence can be
achieved without the strong convexity assumption; and (ii) a distributed ADMM algorithm
that not only is suitable for arbitrarily connected communication networks, but also has
linear convergence without the strong convexity assumption on the cost function.

We then consider the case where stochastic gradient feedback is available. The problem
to solve is to design a distributed SGD algorithm that not only is suitable for arbitrarily
connected communication networks, but also achieves linear speedup.

We finally consider the case where zeroth-order (ZO) oracle feedback is available. The
problem to solve is to design (i) distributed algorithms based on deterministic zeroth-order
(DZO) oracle feedback such that it has the same convergence properties as its first-order
counterpart; and (ii) distributed algorithms based on stochastic zeroth-order (SZO) oracle
feedback such that they not only are suitable for arbitrarily connected communication
networks, but also achieve linear speedup.

Distributed online convex optimization

The second considered problem is distributed online convex optimization with time-
varying coupled inequality constraints under different settings on the information feedback.

We first consider the full-information feedback setting. Specifically, consider a network
of n agents indexed by i € [n]. For each i, let the local decision set X; C R”" be a closed
convex set with p; being a positive integer. Let {f;; : X; — R}, {r;; : X; —» R}, and
{gir : X; = R} be arbitrary sequences of local convex cost, regularization, and constraint
functions over time ¢ = 1,2,..., respectively, where m is a positive integer. At time ¢,
each agent 7 selects a decision x;, € X;. After the selection, the agent receives its cost
function f;, and regularization r;, together with its constraint function g;,, and obtains
the loss l;(xi;) = fi.(xis) + ris(x;,). At the same moment, the agents exchange data with
their neighbors over a time-varying directed graph G,. The problem to solve is to develop
distributed online optimization algorithms with guaranteed performance measured by the
regret and constraint violation.

We also consider the bandit feedback setting, i.e., only the values of cost and constraint
functions are revealed at the sampling instance. In this case, the problem can be defined
as a repeated game between a group of n learners indexed by i € [n] and an adversary.
At round ¢ of the game, the adversary first arbitrarily chooses n local loss functions {f;, :
X; = R, i € [n]} and n local constraint functions {g;, : X; — R™, i € [n]}, where each
X; € RP is a known closed convex set with p; and m being positive integers. Then, without
knowing {f;;, i € [n]} and {g;;, i € [n]}, all learners simultaneously choose their decisions
{xi; € X;, i € [n]}. Each learner i samples the values of f;, and g;, at the point x;, as well
as at other potential points, i.e., the learners receive bandit feedback from the adversary.
These values are held privately by each learner. At the same moment, the learners exchange
data with their neighbors over a time-varying directed graph G,. The problem to solve is
to develop distributed bandit online optimization algorithms with guaranteed performance
measured by expected regret and constraint violation.

22 Introduction

Distributed event-triggered control

The third and final problem is how to achieve consensus and formation control for multi-
agent systems under limited communication resource constraint.

We first consider the average consensus problem for first-order continuous-time multi-
agent systems with event-triggered control input over undirected graphs, i.e.,

xl(t) = Mi(t)7 l € [n]7 t> th
n

ui(t) = - Z Lijxj(t/j(f(t))
=1

The problem to solve is to distributively determine the triggering times such that average
consensus is reached, while continuous exchange of information, continuous update of
actuators, and Zeno behavior are avoided.

We then consider the global consensus problem for multi-agent systems with input
saturation over directed graphs, i.e.,

Xx;(1) = sat,(u;(1)), i € [n], t > 1o,
uit) = =)" Lipxei() or ui(t) = = > Ligxi(t]),
j=1 j=1

where sat;(-) is the saturation function with saturation level # > 0. For any s =
col(sy,...,s,) € RP, the saturation function sat,(s) is defined (with slight abuse of
notation) as

saty(s) = col(saty(sy), . .., sat;(sp)),
where
h, if s; > h,
saty(si) = ¢si, i [si| <h,
—h, ifs; <-h.

The problem to solve is to find sufficient and necessary connectivity conditions to guarantee
that global consensus is reached, again, under the assumption that there are no continuous
communication or system updates.

We finally consider formation control with connectivity preservation for both first-order
multi-agent systems

X)) = ui(t), i € [n], t > 1y,

and second-order multi-agent systems

{x,-m = ri(0),

7i(t) = ui(t), i € [n], t = ty.

1.4. Thesis outline and contributions 23

We assume that the communication network is undirected and all agents have limited
communication radius. The problem to solve is to design distributed event-triggered
controllers together with triggering laws such that a desired formation is achieved while
connectivity is preserved.

1.4 Thesis outline and contributions

In this section, we provide the outline of the thesis and indicate the contributions of each
chapter.

1.4.1 Outline and contributions

The main results of this thesis are presented in Chapters 3—10 and are categorized into three
parts according to their topics.

Part I focuses on distributed nonconvex optimization problems, which are known to
be hard in general. Normally only stationary points can be found, which could be local
maxima or minima. In this part, we propose algorithms to solve these problems under
different information feedback settings. Part I consists of Chapters 3—5 and an overview
of this part is provided in Table 1.1. The rows list the problem settings and convergence
results. Firstly, when full-information feedback is available, we show in Chapter 3 that
a stationary point can be found by the proposed primal—dual first-order and ADMM
algorithms with an O(1/T) convergence rate if each local cost function is smooth, and
that a global optimum can be found with a linear convergence rate under an additional
condition that the global cost function satisfies the Polyak-tf.ojasiewicz (P—L) condition.
This condition is weaker than strong convexity, which is a standard condition for proving
linear convergence of distributed optimization algorithms, and the global minimizer is
not necessarily unique. Secondly, when stochastic gradient feedback is available, we
show in Chapter 4 that the proposed primal-dual SGD algorithm achieves the linear
speedup convergence rates O(1/ VnT) and O(1/(nT)) without and with the P-E. condition,
respectively. Thirdly, when DZO oracle feedback is available, we show in Chapter 5 that
the proposed primal-dual DZO algorithm achieves the same convergence results as its first-
order counterpart in Chapter 3. Finally, when SZO oracle feedback is available, we show
in Chapter 5 that the proposed primal-dual and dual SZO algorithms achieve the linear
speedup convergence rates O(+/p/nT) and O(p/(nT)) without and with the P-£. condition,
respectively.

Part II focuses on online convex optimization problems, which view optimization as
a process or a repeated game. In this part, we propose algorithms to solve distributed
online convex optimization problems with time-varying coupled inequality constraints
under different settings on the information feedback. The main difference between Parts I
and II is that in Part I the cost functions are fixed, while in Part II the cost and constraint
functions are time-varying and revealed at the end of each time slot. In addition, Part II
deals with constrained problems and they have to be convex. Part II consists of Chapters 6—
7 and an overview of this part is provided in Table 1.2. The rows list the problem settings
and convergence results. Firstly, when full-information feedback is available, we show

24 Introduction

Table 1.1: Overview of Part I of this thesis.

Chapter 3 Chapter 4 Chapter 5 Chapter 5
(Algorithms 3.1-3.3) (Algorithm 4.1) (Algorithm 5.1) (Algorithms 5.2-5.3)

Considered problem Distributed nonconvex optimization
Communication network Undirected connected

Information feedback Full-information Stochastic gradient DZO oracle SZO oracle
Convergence rate with the ol

smooth assumption oasT O(1/NnT) oqa/T) O(+/p/(nT))
Convergence rate with the
smooth and P-L condition Linear O(1/(nT)) Linear O(p/(nT))

assumptions
Table 1.2: Overview of Part II of this thesis.
Chapter 6 (Algorithm 6.1) Chapter 7 (Algorithm 7.1) Chapter 7 (Algorithm 7.2)
Cg?sg(]i:ﬁd Distributed online convex optimization with time-varying coupled inequality constraints

Communication Time-varying, directed, uniformly jointly strongly connected

network
Information
feedback Full-information One-point bandit Two-point bandit
Dynamic regret O(max{T* Z,T:]] ey, = X7 1l O(max{T% Z;’;l I, =1l T}, | O(max{T* Z,T:_ll 1y, = 711,
bound TmaxI=xk1)y where « € (0, 1) where 6, € (3/4,5/6] Tmaxel-xl))
. O(T]—K/Z);
_ Constraint O(Tmx1=k41) if Slater’s OT+01y o112
violation bound .
condition holds

in Chapter 6 that sublinear dynamic regret and constraint violation can be achieved by
the proposed algorithm if the accumulated dynamic variation of the optimal sequence
ZtT:_ll |lx7,; — x;1| grows sublinearly, where {x;} is the optimal dynamic decision sequence.
Moreover, the constraint violation bound can be reduced when Slater’s condition holds.
Secondly, when one-point bandit feedback is available, we show in Chapter 7 that the
proposed algorithm achieves larger dynamic regret and constraint violation bounds than
the bounds achieved in Chapter 6, but they are still sublinear if the accumulated variation of
the comparator sequence also grows sublinearly. Finally, when two-point bandit feedback
is available, we show in Chapter 7 that the proposed algorithm achieves the same dynamic
regret and constraint violation bounds as its full-information counterpart in Chapter 6.
Part III focuses on distributed event-triggered control problems. In this part, we propose
distributed dynamic event-triggered control algorithms to solve consensus and formation
problems for multi-agent systems under limited communication resources. Part III consists
of Chapters 8-10 and an overview of this part is provided in Table 1.3. The rows list the
problem settings and convergence results. In Chapter 8, we consider the average consensus
problem for first-order multi-agent systems over undirected connected communication
networks. In Chapter 9, we consider the global consensus problem for first-order multi-
agent systems with input saturation over directed communication networks containing
directed spanning trees. In Chapter 10, we consider the formation control problem for

1.4. Thesis outline and contributions 25

Table 1.3: Overview of Part III of this thesis.

Chapter 8 Chapter 9 Chapter 10
Average consensus for Global consensus for Formation control for
Considered problem first-order multi-agent multi-agent systems with multi-agent systems with
systems input saturation connectivity preservation
Communication network Undirected connected Directed spanning tree Undirected connected
Information type Absolute Relative
Algorithm Distributed dynamic event-triggered control algorithms without Zeno behavior
Convergence rate Exponential

first- and second-order multi-agent systems with connectivity preservation over undirected
connected communication networks, and relative state information is used to design
the control input. Distributed dynamic event-triggered control algorithms without Zeno
behavior are proposed to solve these problems and exponential convergence rates are
established.

The overall outline of the remainder of this thesis and its technical contributions are
summarized in the following.

Chapter 2: Preliminaries

In Chapter 2, we list some essential elements of the background theory, including alge-
braic graph theory, convex functions, projections, smooth functions, Polyak—}t.ojasiewicz
condition, Bregman divergence, gradient approximation, and some useful lemmas related
to series, used in the thesis.

Chapter 3: Distributed primal-dual first-order and ADMM algorithms

In Chapter 3, we consider the distributed nonconvex optimization problem with full-
information feedback. We propose three algorithms: a distributed primal—dual first-order
algorithm, a distributed ADMM algorithm, and a distributed linearized ADMM algorithm.
We show that each algorithm converges to a stationary point with an O(1/T’) convergence
rate if each local cost function is smooth, where 7 is the total number of iterations, and to a
global optimum with a linear convergence rate under an additional condition that the global
cost function satisfies the P-L. condition. This condition is weaker than strong convexity,
which is a standard condition in the literature for proving linear convergence of distributed
optimization algorithms, and the global minimizer is not necessarily unique or finite.
The covered material is based on the following contributions.

[C1] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence for
distributed optimization without strong convexity,” in IEEE Conference on Decision
and Control, 2020.

[J1] X.Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of first-
and zeroth-order primal—dual algorithms for distributed nonconvex optimization,”

26 Introduction

submitted to IEEE Transactions on Automatic Control.

[MI1] X.Yi,S.Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of the
alternating direction method of multipliers for distributed nonconvex optimization,”
in preparation.

Chapter 4: Distributed primal-dual SGD optimization algorithm

In Chapter 4, we consider the distributed nonconvex optimization problem with stochastic
gradient feedback. We propose a distributed primal-dual SGD algorithm, suitable for
arbitrarily connected communication networks and any smooth cost functions. We show
that the proposed algorithm converges to a stationary point with the linear speedup
convergence rate O(1/ VnT) for smooth nonconvex cost functions, and to a global optimum
with the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies
the P-L. condition in addition, where n and T are the number of agents and the total number
of iterations, respectively. We also show that the output of the proposed algorithm with
constant parameters linearly converges to a neighborhood of a global optimum.
The covered material is based on the following contribution.

[J2] X. Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “A primal-dual SGD
algorithm for distributed nonconvex optimization,” submitted to SIAM Journal on
Control and Optimization.

Chapter 5: Distributed zeroth-order optimization algorithms

In Chapter 5, we consider the distributed nonconvex optimization problem with ZO oracle
feedback. We first consider the situation that DZO oracle feedback is available. We propose
a distributed primal-dual DZO algorithm and show that it converges to a stationary
point with an O(1/T) convergence rate for smooth nonconvex cost functions, and to a
global optimum with a linear convergence rate when the global cost function satisfies
the P-L. condition in addition, where T is the total number of iterations. In other words,
our proposed distributed DZO algorithm has the same convergence properties as its FO
counterpart under the same conditions. We then consider the situation that SZO oracle
feedback is available. We propose two distributed SZO algorithms: distributed primal—
dual and dual SZO algorithms. We show that both SZO algorithms converge to a stationary
point with the linear speedup convergence rate O(+/p/(nT)) for smooth nonconvex cost
functions, and to a global optimum with the linear speedup convergence rate O(p/(nT))
when the global cost function satisfies the P-L. condition in addition, where p is the
dimension of the decision variable. We also show that both SZO algorithms converge
linearly when considering deterministic centralized optimization problems under the P—
L condition.
The covered material is based on the following contribution.

[J1] X.Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Linear convergence of first-
and zeroth-order primal—dual algorithms for distributed nonconvex optimization,”
submitted to IEEE Transactions on Automatic Control.

1.4. Thesis outline and contributions 27

[M2] X.Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Zeroth-order algorithms
for stochastic distributed nonconvex optimization,” in preparation.

Chapter 6: Distributed online primal-dual optimization algorithm

In Chapter 6, we consider distributed online convex optimization with time-varying
coupled inequality constraints. The global objective function is composed of local convex
cost and regularization functions and the coupled constraint function is the sum of local
convex functions. A distributed online primal-dual dynamic mirror descent algorithm
is proposed to solve this problem, where the local cost, regularization, and constraint
functions are held privately and revealed only after each time slot. Without assuming
Slater’s condition, we first derive regret and constraint violation bounds for the proposed
algorithm and show how they depend on the stepsize sequences, the accumulated dynamic
variation of the comparator sequence, the number of agents, and the network connectivity.
As a result, under some natural decreasing stepsize sequences, we prove that the proposed
algorithm achieves sublinear dynamic regret and constraint violation if the accumulated
dynamic variation of the optimal sequence also grows sublinearly. In particular, we show
that it achieves Q(T™*!!1=%4)) static regret and O(T!~*/2) constraint violation bounds, where
k € (0,1) is a user-defined trade-off parameter. Assuming Slater’s condition, we show that
the dynamic regret bound is similar to the bound without assuming Slater’s condition, but
the constraint violation bound can be reduced to O(T™#*!1-%4)) Moreover, we show that
both static regret and constraint violation bounds grow as O(VT). In addition, smaller
bounds on the static regret are achieved when the objective function is strongly convex.
The covered material is based on the following contributions.

[C2] X.Yi, X.Li, L. Xie, and K. H. Johansson, “A distributed algorithm for online convex
optimization with time-varying coupled inequality constraints,” in IEEE Conference
on Decision and Control, 2019, pp. 555-560.

[J3] X.Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex optimization
with time-varying coupled inequality constraints,” in IEEE Transactions on Signal
Processing, vol. 68, no. 2, pp. 731-746, 2020.

Chapter 7: Distributed bandit online primal-dual optimization algorithms

In Chapter 7, we consider distributed bandit online convex optimization with time-varying
coupled inequality constraints, motivated by a repeated game between a group of learners
and an adversary. The learners attempt to minimize a sequence of global loss functions and
at the same time satisfy a sequence of coupled constraint functions, where the constraints
are coupled across the distributed learners at each round. The global loss and the coupled
constraint functions are the sum of local convex loss and constraint functions, respectively,
which are adaptively generated by the adversary. The local loss and constraint functions
are revealed in a bandit manner, i.e., only the values of loss and constraint functions are
revealed to the learners at the sampling instance, and the revealed function values are held
privately by each learner. Both one- and two-point bandit feedback are studied with the

28 Introduction

two corresponding distributed bandit online algorithms used by the learners. We show
that sublinear expected dynamic regret and constraint violation are achieved by these two
algorithms, if the accumulated variation of the comparator sequence also grows sublinearly.
In particular, we show that O(T?) expected static regret and O(T7/4~%) constraint violation
bounds are achieved in the one-point bandit feedback setting, and O(T™*:1-}) expected
static regret and O(T'~*/?) constraint violation bounds in the two-point bandit feedback
setting, where T is the total number of rounds and 6, € (3/4,5/6] and « € (0, 1) are
user-defined trade-off parameters.
The covered material is based on the following contributions.

[C3] X.Yi, X. Li, T. Yang, L. Xie, T. Chai, and K. H. Johansson, “A distributed primal—
dual algorithm for bandit online convex optimization with time-varying coupled
inequality constraints,” in American Control Conference, 2020, pp. 327-332.

[J4] X. Yi, X. Li, T. Yang, L. Xie, T. Chai, and K. H. Johansson, “Distributed
bandit online convex optimization with time-varying coupled inequality constraints,”
submitted to IEEE Transactions on Automatic Control.

Chapter 8: Distributed dynamic event-triggered control algorithms

In Chapter 8, we propose dynamic event-triggered approaches to solve the average con-
sensus problem for first-order continuous-time multi-agent systems over undirected graphs.
More specifically, two distributed dynamic triggering laws and one self-triggered algorithm
are proposed to determine the triggering times. Compared with existing triggering laws,
the proposed triggering laws involve internal dynamic variables which play an essential
role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior.
Moreover, our dynamic triggering laws include some existing triggering laws as special
cases. More importantly, continuous listening is avoided in our proposed self-triggered
algorithm. The main idea is that each agent predicts its next triggering time and broadcasts
it to its neighbors at the current triggering time. Thus each agent only needs to sense and
broadcast at its triggering times, and to listen to and receive incoming information from its
neighbors at their triggering times. It is proven that the proposed laws ensure that the state
of each agent converge exponentially to the average of the agents’ initial states if and only
if the underlying graph is connected.
The covered material is based on the following contributions.

[C4] X.Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Distributed dynamic event-
triggered control for multi-agent systems,” in IEEE Conference on Decision and
Control, 2017, pp. 6683—-6688.

[J5] X.Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Dynamic event-triggered
and self-triggered control for multi-agent systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 8, pp. 3300-3307, 2019.

1.4. Thesis outline and contributions 29

Chapter 9: Distributed event-triggered saturation control algorithms

In Chapter 9, we consider the global consensus problem for multi-agent systems with
input saturation over directed graphs. It is shown that the underlying directed graph
having a directed spanning tree is a necessary and sufficient condition for consensus; thus,
this condition for consensus without input saturation extends to the case with saturation
constraints. Moreover, in order to reduce the overall need of communication and system
updates, we then propose an event-triggered consensus protocol and a triggering law, which
do not require any a priori knowledge of global network parameters. Furthermore, in order
to avoid continuous listening, we also propose a self-triggered algorithm. It is shown that
Zeno behavior is excluded for these systems and that consensus is achieved, again, if and
only if the underlying directed graph has a directed spanning tree. We use a new Lyapunov
function to show the sufficient condition and it inspires the triggering law.
The covered material is based on the following contribution.

[J6] X.Yi, T. Yang, J. Wu, and K. H. Johansson, “Distributed event-triggered control for
global consensus of multi-agent systems with input saturation,” Automatica, vol 100,
no. 2, pp. 1-9, 2019.

Chapter 10: Distributed event-triggered formation control algorithms

In Chapter 10, event- and self-triggered control algorithms are proposed to establish
prespecified formations with connectivity preservation. Each agent only needs to update
its control input by sensing the relative state to its neighbors and to broadcast its triggering
information at its own triggering times. The agents listen to and receive neighbors’
triggering information at their triggering times. Two types of system dynamics, single
integrators and double integrators, are considered. It is shown that all agents converge
to the prespecified formation exponentially with connectivity preservation and exclusion
of Zeno behavior.
The covered material is based on the following contributions.

[C5] X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Formation control for

multi-agent systems with connectivity preservation and event-triggered controllers,”
in IFAC World Congress, 2017, pp. 9367-9373.

Chapter 11: Conclusions and future research

In Chapter 11, we present a summary of the results and discuss directions for future
research.

The results presented in Part III in this thesis have previously appeared in the following
thesis:

o X.Yi, Resource-constrained multi-agent control systems: Dynamic event-triggering,
input saturation, and connectivity preservation, Licentiate thesis, KTH Royal
Institute of Technology, 2017.

30 Introduction

1.4.2 Contributions not covered in this thesis

The following works by the author are not covered in this thesis, but contain related
material:

[J7] J. Wu, B. Mu, X. Yi, J. Wei, and K. H. Johansson, “Localizability with range-
difference measurements,” submitted to IEEE/ACM Transactions on Networking.

[J8] X.Li, X.Yi, and L. Xie, “Distributed online convex optimization with an aggregative
variable,” submitted to IEEE Transactions on Control of Network Systems.

[J9] X.Li, X. Yi, and L. Xie, “Distributed online optimization for multi-agent networks
with coupled inequality constraints,” IEEE Transactions on Automatic Control, to
appear.

[J10] T. Yang, J. George, J. Qin, X. Yi, and J. Wu, “Distributed least squares solver for
network linear equations,” Automatica, vol. 113, 2020.

[J11] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and
K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control,
vol. 47, pp. 278-305, 2019.

[J12] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized communication and actuation,” IEEE Transactions
on Control of Network Systems, vol. 6, no. 2, pp. 598-608, 2018.

[C6] X.Yi, S. Zhang, T. Yang, T. Chai, and K. H. Johansson, “Exponential convergence
for distributed optimization under the restricted secant inequality condition,” in IFAC
World Congress, 2020.

[C7] X.Yi, S. Zhang, T. Yang, J. Wu, and K. H. Johansson, “Event-triggered control for
consensus of multi-agent systems with nonlinear output and directed topologies,” in
Chinese Control Conference, 2019, pp. 5721-5726.

[C8] S. Zhang, X. Yi, J. George, and T. Yang, “Computational convergence analysis of
distributed optimization algorithms for directed graphs,” in International Conference
on Control and Automation, 2019, pp. 1096-1101.

[CI] X.Yi, L. Yao, T. Yang, J. George, and K. H. Johansson “Distributed optimization for
second-order multi-agent systems with dynamic event-triggered communication,” in
IEEE Conference on Decision and Control, 2018, pp. 3397-3402.

[C10] W. Du, X. Yi, J. George, K. H. Johansson, and T. Yang, “Distributed optimization
with dynamic event-triggered mechanisms,” in IEEE Conference on Decision and
Control, 2018, pp. 969-974.

[C11] J. George, X. Yi, and T. Yang, “Distributed robust dynamic average consensus with
dynamic event-triggered communication,” in IEEE Conference on Decision and
Control, 2018, pp. 434-4309.

1.4. Thesis outline and contributions 31

[C12] M. Jafarian, X. Yi, M. Pirani, H. Sandberg, and K. H. Johansson, “Synchronization
of Kuramoto oscillators in a bidirectional frequency-dependent tree network,” in
IEEE Conference on Decision and Control, 2018, pp. 4505-4510.

[C13] X.Yi, T. Yang, J. Wu, and K. H. Johansson, “Event-triggered control for multi-agent
systems with output saturation,” in Chinese Control Conference, 2017, pp. 8431-
8436.

[C14] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear consensus protocols
with applications to quantized systems,” in IFAC World Congress, 2017, pp. 15440-
15445.

[C15] X. Yi, J. Wei, and K. H. Johansson, “Self-triggered control for multi-agent systems
with quantized communication or sensing,” in IEEE Conference on Decision and
Control, 2016, pp. 2227-2232.

Contribution by the Author

The order of authors reflects their contribution to each paper. The first author has the most
important contribution, while the last author has taken a supervisory role. In all the listed
publications, all the authors were actively involved in formulating the problems, developing
the solutions, evaluating the results, and writing the paper.

Chapter 2

Preliminaries

This chapter gives some essential elements of the mathematical background to the results
developed in the thesis, including algebraic graph theory, convex functions, projections,
smooth functions, Polyak—t.ojasiewicz condition, Bregman divergence, gradient approxi-
mation, and some useful lemmas related to series, used in the thesis. The related studies
to each considered problem in this thesis are reviewed separately in the corresponding
chapter.

2.1 Directed graphs

Let G = (V,&, A) denote a weighted directed graph (digraph), where V = [n] is the set
of vertices (nodes), & C V x V is the set of edges (links), and A = (a;;) € R™" with
nonnegative elements a;; is the weighted adjacency matrix. An edge of G is denoted by
(i, j) € &1if there is a directed link from vertex i to vertex j with weight a;; > 0, i.e., vertex
i can send information to vertex j. The adjacency elements associated with the edges of the
graph are positive, i.e., (i, j) € &if and only if a;; > 0. It is assumed that a; = 0, Vi € [n].

The in-degree of vertex i is defined as deg%“ = ZI a;j. The in-degree matrix of G is defined
j=

as Deg™" = Diag([degiln, ...,deg"]). The (weighted) Laplacian matrix associated with G is
defined as L = Degi“—A. Let Nii“ ={j€[n]|a;>0}and N,.Ollt ={j € [n] | a;; > 0} denote
the in- and out-neighbors of vertex i, respectively. The mixing matrix W € R™" associated
with a digraph G fulfills [W];; > 01if (j,i) € Sori = j, and [W];; = 0 otherwise. When
necessary, we use (@), L(G), Nl.i“(g), and N?"(G) to highlight their connections with G.

If a digraph is time-varying, then we use G, to denote this time-varying digraph at time
t. Similarly, let &, A,, L, W,, Nl.i“(g,), and Niout(g,) denote the edge set, the weighted
adjacency matrix, the Laplacian matrix, the mixing matrix, the in-neighbors of vertex i,
and out-neighbors of vertex i at time 7, respectively.

A directed path from vertex i to vertex j is a directed subgraph of G with distinct
vertices i, iy, ..., i, j and edges (i, 1), (i1, 12), - - . , (ix—1, ix), (ik, J)-

Definition 2.1 (Strongly connected digraph). A digraph G is strongly connected if there is

33

34 Preliminaries

at least one directed path from any vertex to any other vertex in the graph.

G is strongly connected is equivalent to L is irreducible. Strong connectivity requires
that any vertex is accessible to all other vertices, while the following weaker connectivity
condition only requires that one vertex can access all other vertices.

Definition 2.2 (Directed spanning tree). A digraph G has a directed spanning tree if there
exists one vertex such that there exists a directed path from this vertex to any other vertices.

By Perron—Frobenius Theorem in [197], we have the following result (see [198] or
[199] for a proof) for digraphs.

Lemma 2.1. If L is the Laplacian matrix associated with a digraph G that has a directed
spanning tree, then rank(L) = n — 1, and zero is an algebraically simple eigenvalue of L,
and there is a nonnegative vector & = col(¢y,...,&,) such that 'L = 0 and Y} & = 1.
Moreover, if G is strongly connected, then & > 0, Vi € [n].

The following result from [200] is also useful for our analysis.

Lemma 2.2. Suppose that L is the Laplacian matrix associated with a digraph G that is
strongly connected and & is the vector defined in Lemma 2.1. Let E = Diag(¢), U = E—&£7,
and R = 3(EL + LTE). Then,

p2(U)
p(LTL)

p2(R)
pU)

L'L>0,R>

1
R=§(UL+LTU), U > U>0. 2.1)
By proper row and column permutations, any Laplacian matrix L can be written in

Perron—Frobenius form (see Definition 2.3 in [201]):

Ll,l L1’2 . LI,M
0 L2,2 . LZ,M

L=1| .) . R 2.2)
0 0 ... [MM

where L™ is a n,,-by-n,, matrix associated with the m-th strongly connected component
(SCC) of G, denoted by SCC,,, m = 1,..., M. Hence, a digraph G is strongly connected if
and only if M = 1. In the following, without loss of generality, we assume that L has the
form (2.2).

SCC,, is called closed if and only if there are no edges from vertices outside SCC,, to
vertices inside SCC,,, i.e., L™? = 0, Yq > m. The following result, which follows from
Lemma 1 in [202], gives an equivalent description of a digraph that has a directed spanning
tree.

Lemma 2.3. The digraph G contains a directed spanning tree if and only if for each
m=1,...,M -1, SCC,, is not closed.

Let us illustrate this construction with an example.

2.1. Directed graphs 35

: 9
v 8.7

Figure 2.1: An example of a digraph which contains directed spanning trees.

Example 2.1. Figure 2.1 shows a digraph of 7 vertices having multiple directed span-
ning trees. For example, edges (7,5),(5,6),(6,3),(3,4),(4,2),(2,1) describe a directed
spanning tree. This digraph can be divided into two strongly connected components.
Specifically, the subgraph inside the dashed blue lines is the first strongly connected
component, and the subgraph inside the dotted red lines is the second strongly connected
component. The corresponding Laplacian matrix

[122 -32 0 -41]-49 0 0]

-1.5 95 0 -26 0 0 -54

0 -27 101 -58 0 -1.6 0

0 —-44 10.7|-63 0 01,
0 0 0] 26 0 -26
0 0 0|-53 53 0

0 0 0|-87 -7 157]

S O OO

has the form (2.2).

36 Preliminaries

For SCC,, with m < M, define an auxiliary matrix mm = Z,:'J%’m]nm as

ij=1
m,m . .
frm _ {Ll.j 1#],
ij T) _ ym m,m P
DIy e

Example 2.2. In Example 2.1,

73 =32 0 -41
su_| 715 41 0 <26
0 -27 85 -58
0 0 —44 44

Similar to Lemma 2.2, we have the following lemma.

Lemma 2.4. Let &" = [£],...,&" 17 be the positive left eigenvector of the irreducible
L™ corresponding to the eigenvalue zero and the sum of its components is 1. Denote
=m = Dlag(f’"), Qm — %[EmLm,m + (EmLm,m)T]’ Vm € [M], and UM — :M —fM(fM)T.
Then

. p2(0")
Q">0,Vme[M—-1], 0" 20, UM 20, Q" > pz(UM) ut.

Proof. For the proof of Q™ > 0 for all m < M, see Lemma 3.1 in [203].

QM > 0 is straightforward since we can regard Q” as the Laplacian matrix of a
connected undirected graph.

UM > 0 is also straightforward since we can regard UM as the Laplacian matrix of a
complete graph.

The idea of the proof of QM > %LMA?U M follows a similar trend as the proof of (2.1),

and it can be found in [200]. We thus omit the proof here. O

2.3)

Let n, denotes the number of edges in G, i.e., n, = |E(G)| and label the edges in G as
el,...,e,,. Define Q(G) = Diag([w(e), - -+, w(e,,)]), where w(ex) = a;; with e; being the
label of edge (i, j).

Definition 2.3 (Incidence matrix). The n-by-n, incidence matrix B(G) = (B;j) is defined as
=1 ifvertexiis the tail of edge e},

Bij =41 ifvertexiis the head of edge e;,
0 otherwise.

2.2 Undirected graphs
A digraph G = (V, &, A) is undirected if A = AT, In an undirected graph, a path of length

k between vertex i and vertex j is a subgraph with distinct vertices iy = i,...,iy = j €V
and edges (ij,ijs1) €6, j=0,...,k—-1.

2.2. Undirected graphs 37

Definition 2.4 (Connected undirected graph). An undirected graph is connected if there
exists at least one path between any two vertices. An undirected graph is complete if any
two distinct vertices are connected by an edge.

Similar to the definition of SCC in digraphs, by proper row and column permutations,
we can rewrite any Laplacian matrix L associated with undirected graphs in the following
form

L 0 0
0 L*? ... 0

L=| _ o , (2.4)
0 0 MM

where L™™ is a n,-by-n,, matrix associated with the m-th connected component (CC) of
G, denoted by CC,,, m = 1,..., M. Hence, a disconnected graph has more than one CC
and L™" is the Laplacian matrix of CC,,.

Obviously, there is a one-to-one correspondence between a graph and its adjacency
matrix or its Laplacian matrix. Denote K, = I, — %1,, 1], then we can treat K, as the
Laplacian matrix of a complete graph with n vertices and edge weight %

For a connected graph we have the following results.

Lemma 2.5. (Lemmas I and 2 in [204]) Let L be the Laplacian matrix of a connected
undirected graph G and K, = I, — %1,,1;. Then L and K, are positive semi-definite,
null(L) = null(K,,) = 1,, L < p()I,, p(K,) = 1,

K,L=LK, =L, 2.5)
0 < pa(L)K, < L < p(L)K,. 2.6)
Moreover, there exists an orthogonal matrix [r R] € R™" with r = \/Lﬁln and R € R™>(=D
such that
RAT'RTL = LRA'R™ = K,,, 2.7)
1 1
—K, <RA]'RT < ——K,, (2.8)

p(L) pa(L)

where A\ = Diag([13,...,4,]) with 0 < A, < --- £ A, being the eigenvalues of the
Laplacian matrix L.

For undirected graphs, the incidence matrix can be defined after arbitrarily assigning a
direction to each edge. The following results from [205] are also useful for our analysis.

Lemma 2.6. For any undirected graph G, B(G)B(G)" is independent of the labels and
orientations given to G, and B(G)QU(G)B(G)" = L.

38 Preliminaries

e
| 1 2
és es (%)
P—9
ey

(b) An example of assigning a direction to each
edge of G.

(a) An example of an undirected graph G.

Figure 2.2: Illustration of assigning directions to an undirected graph.

Example 2.3. Figure 2.2 (a) shows an undirected graph G and Figure 2.2 (b) shows an
example of assigning a direction to each edge of G. Then

34 -34 0 0 -1 0 0 0 1
-34 98 -21 -43 1 -1 -1 0 0
L: 3B(g)= ’
0 -21 32 -1.1 0 1 0 -1 0
0 -43 -1.1 54 0o 0 1 1 -1
34 0 0 0 O
021 00 O
Q&= 0 0 1.1 0 0
0 0 01 O
0 0 0 0 43

Moreover, one can easily verify that B(G)Q(G)B(G)" = L.

2.3 Convex functions

Definition 2.5 (Convex set). A set K C R? is called convex if for any x,y € Kand a € [0, 1]
we have

ax+ (1 —a)yek.

Definition 2.6 (Convex function). A function f : R? — R is called convex on a convex set
K C R? iffor any x,y € K and a € [0, 1] we have

flax+ (1 - a)y) < af(x) + (1 -a)f(y).

2.3. Convex functions 39

From Theorems 2.1.2 and 2.1.3 in [62], we have the following results for convex
functions.

Lemma 2.7. Suppose function f : RP — R is differentiable on K with K C R? being a
convex set, then the following statements are equivalent.

(i) The function f is convex on K.

(ii) Forany x,y € K, it holds that
JO) = f(0) +(Vf(x),y - x).

(iii) For any x,y € K, it holds that
(V) =Vf(),x=y) 2 0.

Definition 2.7 (Strong convexity). A function f : R? — R is called strongly convex with
convexity parameter u > 0 on a convex set K C RP if the function f(x) — %,ull)cll2 is convex
on K.

From Theorems 2.1.9 and 2.1.10 in [62], we have the following results for strongly
convex functions.

Lemma 2.8. Suppose function f : RP — R is differentiable on K with K C R? being a
convex set, then the following statements are equivalent.

(i) The function f is strongly convex with convexity parameter > 0 on K.

(ii) Forany x,y € K, it holds that
1) 2 £+ (V10,3 = 0 + zally ~
(iii) For any x,y € K, it holds that
(V) = V) x = y) 2 llx =yl
(iv) For any x,y € Kand a € [0, 1], it holds that

1
af()+ 1 -a)f(y) = flax+ (1 -a)y) + 50(1 — aullx -y

Lemma 2.9. Suppose f : R? — R is a differentiable and strongly convex function with
convexity parameter u > 0, then for any x,y € R” we have

1
JO) < f) +(Vf(x),y - x) + ZIIVJ'(X) - VIOIP,

1
(VF(x) = VF), x —y) < ;qu(x) - VI,
pllx = yI? < IVFx) = VI

40 Preliminaries

Definition 2.8 (Subgradient). Let f : D — R be a function with D C RP. A vector g € R?
is called a subgradient of f at x € D if

JO) = f(x) +{gy—x), VyeD. (2.9)
The set of all subgradients of f at x, denoted 0f(x), is called the subdifferential of f at x.

If the function f is convex and differentiable, then from Lemma 2.7 we know that
its gradient at x is a subgradient, and from [206] we know that Jf(x) is a singleton. If f
is a closed convex function, then df(x) is nonempty for any x € D [207]. With a slight
abuse of the notation, we use Vf(x) to denote the subgradient of f at x also when f is
not differentiable. Similarly, for a vector function f = col(fi,..., f,) : D — R, its
subgradient at x € D is denoted as

(VAT
(VAT

IS Rmx P

Vf(x) =
(Vfin()"

2.4 Projections
For a set K C R?, let Px(-) denotes the projection operator, i.e.,
Pr(y) € argmin|lx — y|*, ¥y € R”.
xeK
For simplicity, we use [-]; to denote Px(-) when K = R”.
The projection operator has the following properties.

Lemma 2.10. Let K be a nonempty closed convex subset of R? and let a, b, c be three
vectors in RP. The following statements hold.

(i) Foreach x € R?, Px(x) exists and is unique.

(ii) Px(x) is nonexpansive, i.e.,

1Pr(x) = POl < llx = yll, Yx,y € R (2.10)

(iii) Ifa < b, then
lilal+1l < Il (2.11a)
[al+ <[] (2.11b)

@iv) If x; = Px(c — a), then

2x; —y,a) < lly = el* = lly = xill* = llxg = cll*, Vy e K. (2.12)

2.5. Smooth functions 4

Proof. The first two parts are from Theorem 1.5.5 in [208].
Substituting x = @ and y = a — b into (2.10) with K = R gives (2.11a). If a < b, then it
is straightforward to see [a]; < [b]; since all inequalities are understood componentwise.
Denote i(y) = |lc = yII*> + 2{a, y). Then, x; = argminyEK h(y). This optimality condition
implies that
(x1 —y,Vh(x1)) <0, Yy e K.

Substituting VA(x1) = 2x; — 2¢ + 2a into above inequality yields (2.12). |

2.5 Smooth functions

Definition 2.9 (Smooth function). A function f : RP +— R is called smooth with constant
Ly > 0 ifit is differentiable and

IVF(x) = VDI < Lyllx = yll, Yx,y € R, (2.13)

From Lemma 1.2.3 in [62], we know that (2.13) implies

lfO) = f(x) = =0TVl < %Ily - P, Vx,y € R?, (2.14)
which further implies
V@I < 2L (f(x) = f*), Vx,y € R?, (2.15)
where f* = min,g» f(x). Moreover, we have the following lemma.

Lemma 2.11. If f : R” — R is smooth with constant Ly > O, then, for any a > Ly, the
function g(x) = f(x) + %‘lellz is strongly convex with convex parameter a — Ly.

Proof. From (2.13), we have
(VF(x) = VI x =) = =lIVF(x) = VFOlllx = yll > =Lyllx = ylP>.
Then,

(Vg(x) = V), x — y) = (VF(x) + ax — VF(y) — ay, x — y)
= (VF(x) = VL), x = y) + allx = yIP
> (a—Lplx -yl

Then, from Lemma 2.8, we know that this lemma holds. m]

42 Preliminaries

2.6 Polyak-f.ojasiewicz condition

Let f(x) : R?” +— R be a differentiable function. Let X* = argmin ., f(x) and f* =
min,cgrr f(x). Moreover, we assume that f* > —oo.

Definition 2.10 (Polyak—t.ojasiewicz condition). The function f satisfies the Polyak—
Lojasiewicz (P-1L.) condition with constant v > 0 if

1
EIIVJ‘(X)II2 2 v(f(x) - f), YxeR”. (2.16)

From Lemma 2.9, it is straightforward to see that every strongly convex function
satisfies the P-L condition. The P—L condition implies that every stationary point is a
global minimizer, i.e., X* = {x € R : Vf(x) = 0,}. But unlike strong convexity, the P-L.
condition (2.16) alone does not even imply the convexity of f. Moreover, it does not imply
that X* is a singleton or finite either.

Many practical applications, such as least squares, do not always have strongly convex
cost functions. The cost function in least squares problems has the form

£00 = 5llAx - b,

where A € R™? and b € R™. Note that if A has full column rank, then f(x) is strongly
convex. However, if A is rank deficient, then f(x) is not strongly convex, but it is convex
and satisfies the P-E. condition. The function f(x) = x*> + 3 sin?(x) is an example of a
nonconvex function satisfying the P-t. condition with v = 1/32 [209]. More examples of
nonconvex functions which satisfy the P-L condition can be found in [209,210].
Although it is difficult to precisely characterize the general class of functions for which
the P-L condition is satisfied, in [209], one important special case was given as follows:

Lemma 2.12. Let f(x) = g(Ax), where g : R? — R is a strongly convex function and
A € RP*P is a matrix, then f satisfies the P-£. condition.

In the literature, there are some conditions that are weaker than strong convexity but
stronger than the P-L. condition.

Definition 2.11 (Essential strong convexity). The function f is said to be essentially
strongly convex with constant u > 0 if for all x,y € RP such that Px-(x) = Px-(y), it
holds that

FO) 2 f() + (VAR y - x) + gnx — P

Definition 2.12 (Weak strong convexity). The function f is said to be weakly strongly
convex with constant u > 0 if for all x € RP, it holds that

72 f) +(Vf(x), Pre (%) = x) + gllx - Px .

2.7. Bregman divergence 43

Definition 2.13 (Restricted secant inequality condition). The function f satisfies the
restricted secant inequality (RSI) condition with constant v > 0 if for all x € R?, it holds
that

(V) = VI Pr ()T (x = Px=(x)) 2 Vllx = P 0.
If the function f is also convex it is called restricted strong convexity.

The following lemma summarizes the relations between the function classes discussed
above.

Lemma 2.13. (Theorem 2 in [209]) Let f(x) : R? +— R be a differentiable function.
Then, (Strong convexity) = (Essential strong convexity) = (Weak strong convexity) =
(RSI condition). Moreover, (RSI condition) = (P-L condition) if f is smooth.

2.7 Bregman divergence
Let K C R” be a convex set. The Bregman divergence

Dy (x,y) = p(x) = (y) = (VY (), x = y), (2.17)

is to measure the distance between x,y € K, where 4 : R” — R is a function which
is differentiable and strongly convex with convexity parameter o > 0 on K. Then, from
Lemma 2.8, we have y/(x) > (y) + (V¢/(y), x —y) + £llx — y|I>. Thus,

(oa
Dy(x,y) 2 Zllx =i (2.18)

Hence, Dy (-,) is strongly convex with convexity parameter o- on K for all fixed y € K.
Additionally, (2.17) implies that for all x,y, z € K,

O =X V(@) = V() = Dy(x,2) = Dy (x,) = Dy (v, 2)- (2.19)

Two well-known examples of Bregman divergence are Euclidean distance Dy (x,y) =
lx = y|I*> (with K being an arbitrary convex and compact set in R”) generated from y(x) =
lxl2, and the Kullback-Leibler divergence Dy (x,y) = — 2?:1 x;log)yT, between two p-
dimensional standard unit vectors (with K being the p-dimensional prot;ability simplex in
RP) generated from (x) = Zle(xj log x; — x;).

We have the following results on the regularized Bregman projection.

Lemma 2.14. Suppose function : RP — RP is differentiable and strongly convex with
convexity parameter o > 0 on K, and function h : RP — R is convex on K, where K C RP
is a convex and closed set. Moreover, assume that Vh(x), Yx € K, exists and there exists
Gy, > 0 such that ||[Vh(x)|| < Gy, Vx € K. Given z € K, the regularized Bregman projection

y = argmin{h(x) + Dy (x, 2)}, (2.20)
xekK

44 Preliminaries

satisfies the following inequalities

G =xVhy) < Dy(x,2) = Dy(x,y) — Dy(y,2), Yx € K, (2.21)
G

lly -2l < =2 (2.22)
o

Proof. (i) Denote A(x) = h(x) + Dy(x,z2). Then h is convex on K. Thus the optimality
condition (2.20), i.e., y = argmin A(x), implies (y — x, Vi(y)) < 0, Vx € K. Substituting
Vh(y) = Vh(y) + Viu(y) — Vig(z) into the above inequality yields

= x Vh(y)) <y = x, Vi(2) = Vi (y)
= DI,//(X’ Z) - Z)Lﬁ(x,y) - Dl//(y7z)’ Yx € K’

where the equality holds due to (2.19). Hence, (2.21) holds.

(i) A(x) is strongly convex with convexity parameter o on K since D, is strongly convex
on K. It is known that if 7 : K — R is a strongly convex function and is minimized at the
point XM e K then

RO < (x) = Z e = xR, Vx € K
Thus the optimality condition of (2.20) implies

hO) + Dy(3,2) < @)+ Doz, - Tz =P

Noting that Dy (y,z) = Fllz - y|[> and Dy(z,z) = 0, and rearranging the above inequality
gives

ollz =P < %IIZ — P + Dy (3, 2) < h(z) = h(y). (2.23)

From (2.9) and ||VA(x)|| < G, Vx € K, we have
h(z) = h(y) < (Vh(z),z = y) < Gpllz = yll. (2.24)
Thus, combining (2.23) and (2.24) yields (2.22).]

Note that (2.21) extends Lemma 6 in [181] and (2.22) presents an upper bound on the
deviation of the optimal point from a fixed point for the regularized Bregman projection.

To end this section, we introduce a generalized definition of strong convexity, which is
Definition 2 in [211].

Definition 2.14 (Generalized strong convexity). Let u > 0 be a constant and K C R? be a
convex set. Let f : R? — R and ¢ : R? — R be two functions. Suppose that f is convex on
K, and ¢ is differentiable and strongly convex on K. The function f is said to be u-strongly
convex on K with respect to if for all x,y € K,

JO) 2 f) + (x =y, V) + Dy (x,).

This definition generalizes the usual definition of strong convexity by replacing the
Euclidean distance with the Bregman divergence.

2.8. Random gradient estimators 45

2.8 Random gradient estimators

In this section, we introduce one- and two-point sampling gradient estimators.

Let f : K — R be a function with K C R”. We assume that K is convex and closed,
and has a nonempty interior. Specifically, we assume that K contains the ball of radius
r(K) centered at the origin, i.e., r(K)B?” C K. The authors of [212] proposed the following
gradient estimator:

Vifx) =Vif(x,6,u) = 15) f(x+ 6w, Vx e (1 - K, (2.25)

where u € S” is a uniformly distributed random vector, 6 € (0, 7(K)&] is an smooth-
ing/exploration parameter, and & € (0, 1) is a shrinkage coefficient. The estimator V; f only
requires to sample the function value at one point, so it is a one-point sampling gradient
estimator. The intuition for this estimator can be found in [212]. Different from [213],
uniform distribution rather than Gaussian distribution is used to generate u in (2.25) since
the later may generate unbounded u. The estimator 2 f is defined over the set (1 — &K
instead of K, since otherwise the perturbations may move points outside K. The feasibility
of the perturbations is guaranteed by the following lemma.

Lemma 2.15. (Observation 2 in [212]) For any x € (1 — &)X and u € S?, it holds that
x +ou € K for any 6 € (0, (K)&].

The two-point sampling gradient estimator is defined as
Vaf(x) = Vaf (x,6,u) = g(f(x+6u) — f())u, Vx € (1 - HK. (2.26)

The intuition follows from directional derivatives [214].
Both estimators V, f and V, f are unbiased gradient estimators of f*, where f* is the
uniformly smoothed version of f defined as

) = f(x,0) = Ewepr [f(x + V)], Vx e (1 - K,

where the expectation is taken with respect to uniform distribution. Some properties of f*,
Vif,and V, f are presented in the following lemma.

Lemma 2.16. (i) The uniform smoothing f*° is differentiable on (1 — £)K even when f is
not, and for all x € (1 — &K,

V(%) = Euesr [V1 f(0)] = Euesr [V2 ()], 227
(ii) If f is convex on K, then f* is convex on (1 — £)K and
f) < ffx), Yxe (1 -HK. (2.28)

(iii) If f is Lipschitz-continuous on K with constant Lyo(f) > 0, then f° and Vf* are
Lipschitz-continuous on (1 — &)K with constants Ly(f) and pLo(f)/0, respectively.
Moreover,

1f*(0) = f(0l < 6Lo(f), Vx € (1 - K. (2.29)

46 Preliminaries

(iv) If f is bounded on K, i.e., there exists Fo(f) > 0 such that |f(x)| < Fo(f), Vx € K,
then

PFo(f)
0

£ < Fo(f), IV1f)ll < » Yx el -9HK. (2.30)

(v) If f is Lipschitz-continuous on K with constant Lo(f) > 0O, then
V2 fOll < pLo(f). Vx € (1 - HK. (2.31)

(vi) If f is smooth with constant Ly > 0O, then
IVf*(x,0) = Vf(0)ll < 0Ly, (2.32a)

. 1
Euesr [IV2f 0IP) < 2pIVFCOI + 5p76° L] (2.32b)

Proof. (i) From Lemma 1 in [212], we have Vf*(x) = E,csr [V, f(x)]. Moreover, we have
V(%) = Euesr [V2 ()] due t0 Eyeso [f()u] = f()Eyesr[u] = 0,,.
(ii) It is straightforward to see that (1 — £)K is convex since K is convex.

For any x,y € (1 —¢é)K and a € [0, 1], then ax + (1 — @)y € (1 — &K since (1 — &)K is
convex and ax + (1 — @)y + 6v € K due to Lemma 2.15. Moreover,

flax+ (1 -a)y) = Exgr[f(ax + (1 —a)y + 6v)]
<E,aprlaf(x+ov)+ (1 —a)f(y+ ov)]
=af')+ -a)f'O.

Hence, f* is convex on (1 — &)K.
From Lemma 2.15, we know that (1 —&)K is a subset of the interior of K. Then, for any
x € (1 = 9K, from Theorem 3.1.15 in [62], we know that V f(x) exists. Moreover,

1) = Eveme[f(x + 6V)] 2 Eyeme[f(X) + KV f(X), V)] = f(x).
(iii) For any x,y € (1 - &K,
£ () = O = [Everr [f(x + 6v) = f(y + V)]l

< Eyerllf(x +6v) — f(y + ov)l]
< Eyesr [Lo(Hllx = Yl = Lo(Dllx = yll.

Hence, f* is Lipschitz-continuous on (1 — &)K with constant Ly(f).
Similarly,

IVF£5(x) = VI = §||Euegp Lf(x + Suyu — f(y + Suul

< %Euegp[l FOx+ 6u) — £y + Swllull]

< PR, o [Lo(f)llx - yi] =

PLo(f)”x_ !
5 5 T

2.9. Deterministic gradient estimators 47

Hence, V f* is Lipschitz-continuous on (1 — &)K with constant pLy(f)/¢.
For any x € (1 - &)X,

[F7(x) = fOO| = [Eyer [f(x + V)] = Epepr [f(0)]]
< Eyer[lf(x +6v) = (O] < Eyer [6Lo(N)IVI
< Evepr [0Lo(f)] = 6Lo(f).

(iv) Forany x e (1 -é)Kand u € S?,
120l = [Evezr [f(x + V)] < Evesr [If (x + V)] < Fo(f),

and

19170l = 12 £+ Gl < 217+ sy < 2258 °<f).
(v) Forany x € (1 - &K and u € S?,

192£COll = I15(fGx + 6w = fopul
- PLo(f)
)

llx + 6u — xlll|ull = pLo(f).

(vi) From Lemma 5 in [151], we have (2.32a). From Proposition 7.6 in [215], we have
(2.32b). O

Intuitively, the key idea of gradient-free optimization methods is using the smoothed
function f* to replace the original function f since they are close when ¢ is small as
shown in (c) of Lemma 2.16. Moreover, the gradient of f* can be estimated by the gradient
estimators V; for v, f as shown in (2.27). The main difference between these two gradient
estimators is that the norm of @1 f is large when ¢ is small, while @2 f has a bounded norm,
as shown in (2.30) and (2.31), respectively. This difference leads to improved results for
the two-point sampling based algorithms.

2.9 Deterministic gradient estimators

Let f(x) : R?” — R be a differentiable function. The authors of [164] proposed the
following deterministic gradient estimator:

. 1<
V,f(x,0) = 5 Z(f(x + dep) — f(x))ey, (2.33)
=1

where 6 > 0 is an exploration parameter. This gradient estimator can be calculated by
querying the function values of f at p + 1 points. Another commonly used deterministic
gradient estimator is

. 1 &
Vo, f(x,06) = % Z(f(x +doep) — f(x — bep)e;. (2.34)
=1

48 Preliminaries

This gradient estimator can be viewed as a noise-free version of the classical Kiefer—
Wolfowitz type method [216], and can be calculated by querylng the function values of
f at 2p points. Thus, when p is large, V,, f is more favorable than Vzp f.

From equation (16) in [164] we know that fo(x 0) and Vgpf(x 0) are close to Vf(x)
when ¢ is small, which is summarized in the following lemma.

Lemma 2.17. Suppose that f is smooth with constant Ly > 0, then

. Lo
IV, /(x,8) - V@)l < ‘/1_72 /= VxeRP, V5> 0, (2.35a)
. L6
192, (x,6) = V@I < ‘/’_’2 1= VxeRP, VY5> 0. (2.35b)

2.10 Useful lemmas on series

Lemma 2.18. Let a,b € (0, 1) be two constants, then

k+1

k Z—b s ifCl > b,
Dlah < ’;f_ ifa <b, (2.36)
=0 f-—b’ ifa =)
where c is any constant in (a, 1).
Proof. If a > b, then
k k k+1
bkt a
T1k-T _ k e
Zab —aZ(a) Sa—b
=0 =0
Similarly, when a < b, we have
k k k+1
T1k—T _ 1.k g T b
D@ =b Z(b) S
=0 =0
If a = b, then for any ¢ € (a, 1), we have
k k+1
bkt c
‘rbk T < T k—T — k e
> Z =y (2)
=0 =0
Hence, this lemma holds. m]

Lemma 2.19. Let k and T be two integers and 6 be a constant. Suppose k > T > 1, then

5+1
]

Z P <{nk), ifo=-1, (2.37)

S fs < —land Tz 2,

2.10. Useful lemmas on series 49

Proof. If 6 > 0, then A(f) = ° is an increasing function in the interval [1, +oc0). Hence,

k k+1 5+1 6+1 o+1

k+ 1) - k41
§1‘33f P Gl P Ui (2.38)
I=T T

0+1 -0 +1

If § < 0, then h(¢) = #° is a decreasing function in the interval [1, +co0). Hence,

k es
" In(-%), if6 =-1,

k
. S+l 110+ .

Zl‘ssf Pdr = {20 i 1 <65 <0,

— —1 S+1_ (o 1\0+1 .

=t ! RI-@ D™ ifs5 < —land 7> 2,

o+1
In(k), if § = -1,
<& i _1<6<0, (2.39)
7(7‘71)5” .
= ifo<-land72>2.

Finally, (2.38) and (2.39) yield (2.37). O
Lemma 2.20. Let {z), {ri4}, and {rax} be sequences. Suppose there exists t; € N, such
that

2% 20, (2.40a)
et < (= roze + rog, (2.40b)
ai
1 > — 2.40
> k2 T (2.40¢)

a
< —, Vke Ny, 2.40d
kS € Ny ()

where a; > 0, a, > 0, 6; € [0, 1], and 6, > 6, are constants.

(i) If 6, € (0, 1), then

2w < d1(k,t,a1,a2,01,02,20), Yk € Ny, 2.41)
where
(62 — 1 —11]e51(t) + Day
k11, a1, a2, 81,82, 20) = ————(s1(t1)z0 +
ik 1. a1, 02, 61, 02,) s1(k+t1)(sl(l)zo t‘fz)
a 1(k+t1—lzz2)(%)§2a262

. ea
Tlhrn-1r T @eik) (2:42)

s1k) = e™i* " and 1, = f(g—f)ﬁl
(i) Ifo, = 1, then

2k < ¢o(k, ty,a1,a2,02,20), Yk € Ny, (2.43)

50 Preliminaries

where

tllllZO + ar
(k+1)n k+1 - 1)‘52

t + 1o
$alk.11,a1,a2,62.2) = () @k, @44

and
e fa—6> -1,
salk) = {2, ifay -6, =1,
_a]—52+1)
(a]—llézw’ ifa; — 6, < —1.
(iii) If o, =0, then
2 < 3k, ty,a1,a2,02,20), Yk € Ny, (2.45)

where

¢3(ka tl ,ay,dz, 62a ZO)
= ay(1 = a7 ([t3 = nless(0) + ([t — 1], = [13 = 1])s3(84)

1(k+t, -1 214)2112

+ (1 —a)z+ , 2.46
(I =a) e)+) —an) (2.46)

53(k) = maye B = [y b and ty = [es]

Proof. This proof is inspired by the proof of Lemma 25 in [217].
From (2.40a)—(2.40c), for any k € N, it holds that

k=2 k-1
k<ﬂ<1—m>zO+r2k v [Ta=rnon. 2.47)

1=0 7=1+1

For any ¢ € [0, 1], it holds that 1 — r < ™" since s4(f) = 1 — ¢t — ¢™" is a nonincreasing
function in the interval [0, 1] and s4(0) = 0. Thus, for any k > [> 0, it holds that

k-1
k-1
[Ta-rosen, 2.48)
7=l
We also have
k-1 k- k-1+1 K+,
i Z 5=
1 1 1
7=1 (T+ tl) =14 T t=l+1, té

)T =+ 1)), if 61 € (0, 1),

2.49
{a In(4e), it =1, 249)

2.10. Useful lemmas on series

51

where the first inequality holds due to (2.40c) and the second inequality holds since s5(f) =
a; /" is a decreasing function in the interval [1, +00).

Hence, (2.48) and (2.49) yield

k=1

k—1
[[a-rn<e =< {
7=l

s1(l+1))
sy(k+11)°
(l41;)M
(k+t1)1 2

if 6, € (0, 1),

2.50
ifo = 1. (230)

(i) When 6; € (0, 1), from (2.50) and (2.40d), we have

k

2,

=0 7

(S
>~

1]
~

+1

<
Sl(k +1)

k=2

(I =7y < Z

sil+t+1) an
Sl(k+[1) (l+[1)62

=0

S1(l+ Hh+1)

a k-2
si(k+ 1) IZ(;

k-2

(l+t])62

as

Z sil+H+1)
= Gipl+n)®
(%)52612 S+ +1)

T skt) LT+ e

T sk+1)

T ositk+1)

n+1iNG, okt -1
()@ " 51D

15>
I=t;+1

k+t;—1
s1(D)
62 + Z

I=t,

-1

(2

I=t;+1

(5)%a
! (2.51)

S1(1))_

%

We know that s¢(f) = s1(£)/ is a decreasing function in the interval [1,#, — 1] due to

dse(f) 02\ S6(F) 02\ 57
- = 1——t176]) 5 <0, Vte(O,(a_l) .
Thus, for any k € [1,#, — 1], we have
-1
s1(D) s1(k)
- < (tr — k) o (2.52)

1=k

Noting that s(f) = s1(£)/#°? is an increasing function in the interval [, +00), for any

k > t,, we have

k

2

=1,

We have

s _
%

(2.53)

k+1
s1(f
[2y,
15 12

k+1 k+1
si(t 1
f 1(5(2)(1: = f ——dsi(0)
f t n ait

52 Preliminaries

sik+ D) sw) (TG00
T ayk + 1% altéz 61 a, 150141
1 k+1 _
< sk +1) +f (62 61)sl(t)dt
aj(k+ 120 ©) apl-or g%
sitk+1) .\ 8, — 6 f"“ sl(t)dt
Tan(k+ 1) gl 192
sitk+1) 5> — & f"“ s1(0)
+ dt, 2.54
= ay(k + 1)%o & J, @ (259

where the second inequality holds since s7(f) = 1/t'™% is a decreasing function in the
interval [1, +00); and the last inequality holds due to t;_é‘ > Z—:
From (2.53) and (2.54), for any k > t,, we have

i f"” 90, Gsk+ D)

= 192 T a6k + 1)62_61 ’

1)

(2.55)

From (2.51), (2.52), and (2.55), we have

ST (1 =ri)ry < (ﬂ)ﬁzaz([h —1-tlesiti + 1) gy -13n)0251(k + t1))
o R A D) (1 + 1)% @161 (k + 1)
(2.56)
Then, (2.47), (2.50), and (2.56) yield (2.41).
(ii) When 6; = 1, from (2.50) and (2.40d), we have
k=2 k-1 k=2
(+H+DY a
1- <
=0 ‘r=l+1()2 IZ:o: (k) (4 n)>
<k2(l+t1+1)”' a,
- ya (k + t)a (LD+ 1p)%
(n+l)‘52(12 k=2 (L+1+ 1)
(k+t1)‘11 i (I+1 +1)»
(%)aza k+T1—l
=1 1702 2.57
(k +t)a Z ()

I=t;+1

where the first inequality holds due to (2.50) and (2.40d).
From (2.47), (2.50), (2.57), and (2.37), we have (2.43).

(iii) Denote @ = 1 —a;. From (2.40c¢) and §; = 0, we know that a; € (0, 1). Thus, a € (0, 1).
From (2.40a2)—(2.40d) and 6; = 0, for any k € N,, it holds that

1

2 < (1—apfz + Z(l —) Ty, < dfzo + agdt! Z T @)
p 1

)52a‘r+t1 .

2.10. Useful lemmas on series 53

We have
k-1 1 k+t;—1 1 -1 t4—1 k+t—-1
Z W = Z W = Z S3(T) + Z S3(T) + Z S3(T). (259)
=0 =1 =M T=I3 T=1ly

We know that s3(f) = 1/(%2d") is decreasing and increasing in the intervals [1,#; — 1]
and [f3, +00), respectively, since

dsy(1) 55)
- = —s_g(r)(7 +1In(a)) < 0, ¥t € (0, m]
ds3(1) 02)
= _S3(t)(7 +1In(a)) 2 0, Vr € [m +00).
Thus, we have
-1
D s3(1) < (15— k)satk), Vky € [1,1 = 11, (2.60)
T=k1
141
Z 53(1) < (t4 — ko)s3(ts), Yk € [t3,14 — 1], (2.60b)
T=k2
k3 k3+1
Z 53(7) < f sy(0)dt, Vs > 1. (2.60c)
T=14 2

Denote b = 1/a. We have

k3 +1 k3+1 bl k3+1 1 .
Ndt = —dt = db
L 53(1) L 192 ft; ln(b)téz

bk3 +1 bl4 k3+1 62bt
= - - ———dt
@)k + " @y f In(b)+1

bk3+1 k3+1
D — 1)dt
S+ D2 f,4) 2"

bk3+l 52 k3 +1
< tdt
=)l + D | b, fm 53(0)

pka+l k3 +1
< — 4+ — 1dt, 2.61
< T +2£ 53(0) @.61)

where the last inequality holds due to 4 = [-26,/In(1 — a;)] = -262/In(1l — a;) =
26,/ In(b).
From (2.60c) and (2.61), we have

k3

2
) Vs 2 ta. 2.62
;4 53(7) < —In(a)(ks + 1)%2gks+1 321 ()

From (2.58), (2.59), (2.60a), (2.60b), and (2.62), we get (2.45). O

54 Preliminaries

Lemma 2.21. Let a € (0, 1) be a constant, then

(1-a) <

< G YR T €M (2.63)

Proof. For any constant a € (0, 1), we have In(1 — a) < —a. Thus,

(1-a) <e VT e N,. (2.64)

For any constant x > 0, we have e* > %, Vk € Ny. This result together with (2.64)
yields (2.63). O

Lemma 2.22. For any constants 6 € [0, 1] and « € [0, 1), it holds that

1 1 1
(t+1) (F - m) < ?, Vte N,. (2.65)

Proof. Denote h,(6) = % — —L=. Then, for any fixed ¢ € N, maxge(o,1{h(6)} = h,(1) due

@+

to 49 > 0, Vo € [0,1]. Hence, (f + 1)*h,(6) < (t + D¥hy(1) = 5;;11); < 1ie., (2.65)

holds. O

Part I

Distributed Nonconvex Optimization

55

Chapter 3

Distributed primal—dual first-order and
ADMM algorithms

This and the following two chapters consider the distributed nonconvex optimization
problem under different information feedback settings. In this chapter, we consider the full-
information feedback setting, i.e., each agent knows the true gradient and even the explicit
expression of its local cost function. We propose three algorithms: a distributed primal—
dual first-order (FO) algorithm, a distributed alternating direction method of multipliers
(ADMM) algorithm, and a distributed linearized ADMM (L-ADMM) algorithm. We show
that each algorithm converges to a stationary point with an O(1/T) convergence rate if
each local cost function is smooth, where T is the total number of iterations, and to a
global optimum with a linear convergence rate under an additional condition that the global
cost function satisfies the P-L. condition. This condition is weaker than strong convexity,
which is a standard condition in the literature for proving linear convergence of distributed
optimization algorithms, and the global minimizer is not necessarily unique or finite. The
theoretical results are illustrated by numerical simulations.

This chapter is organized as follows. Section 3.1 gives the background. Section 3.2
presents problem formulation and assumptions. Sections 3.3-3.5 provide the distributed
primal—dual FO algorithm, the distributed ADMM algorithm, and the distributed linearized
ADMM algorithm, respectively, and analyze their convergence properties. Simulations
are given in Section 3.6. Concluding remarks are offered in Section 3.7. To improve the
readability, all the proofs can be found in Section 3.8

3.1 Introduction

In the study of distributed optimization, a standard assumption for proving linear conver-
gence of existing algorithms, such as [68-91], is strong convexity of the cost functions.
Unfortunately, some practical applications, such as least squares, do not have strongly
convex cost functions [156]. This situation has motivated researchers to consider alterna-
tives to strong convexity. There are some results in centralized optimization. For instance,
in [218], the authors derived linear convergence of several centralized first-order algorithms

57

58 Distributed primal—dual first-order and ADMM algorithms

for smooth and constrained optimization problems when cost functions are convex and
satisfy the quadratic functional growth condition; and in [209], the authors showed linear
convergence of centralized gradient algorithms for smooth optimization problems when
cost functions satisfy the P-L condition which is weaker than the conditions assumed
in [218].

There also are some results in distributed optimization [204, 219-223]. Specifically,
in [219], the authors proposed the distributed exact first-order algorithm (EXTRA) to solve
the smooth convex optimization and proved linear convergence under the conditions that
the global cost function is restricted strongly convex and the optimal set is a singleton,
which are stronger than the P-L. condition. The authors of [220, 221] later extended the
results in [219] to directed graphes. In [204], the authors proposed a continuous-time
distributed heavy-ball algorithm with event-triggered communication to solve the smooth
convex optimization and proved exponential convergence under the same conditions as that
assumed in [219]. In [222], the authors established linear convergence of the distributed
primal—dual gradient descent algorithm for solving the smooth convex optimization under
the condition that the primal—dual gradient map is metrically subregular, which is different
from the P-L condition but weaker than strong convexity. In [223], the authors proposed
a distributed primal-dual gradient descent algorithm to solve the smooth optimization
problem and established linear convergence under the assumptions that the global cost
function satisfies the restricted secant inequality (RSI) condition and the gradients of each
local cost function at optimal points are the same, which are also stronger than the P-L.
condition.

Among existing optimization algorithms, ADMM is very effective at numerically
solving many practical convex and nonconvex optimization problems [93,224,225] and has
wide applications in areas such as signal processing [226], power systems [227], optimal
control [228], and computer version [229]. This has motivated researchers to consider
distributed ADMM algorithms. If cost functions are convex, many distributed ADMM
algorithms have been proposed, e.g., [71-73,76,90,230-237]. The convergence property of
these algorithms has also been analyzed, for instance, the O(1/T) and linear convergence
rates were established in [230,231,234] and [71-73,76,90, 232], respectively, where T is
the total number of iterations.

However, when cost functions are nonconvex, existing distributed ADMM algorithms
with provable convergence analysis normally require that the communication network is
a star graph, i.e., hub-leaf topology. For instance, the authors of [238-240] proposed
star graph based distributed ADMM algorithms and proved that first-order stationary
points can be found with an O(1/T) convergence rate when each local cost function is
smooth. One advantage of these algorithms is that they are asynchronous. However, in
addition to the star graph restriction, the algorithms proposed in [238, 239] require that
each leaf agent communicates both primal and dual variables to the hub agent. Moreover,
the algorithm proposed in [240] is based on the standard master—worker architecture.
Specifically, the master (hub agent) executes all of the updatings, while each worker (leaf
agent) only computes the gradient of its own local cost function and sends it to the master.
In other words, all decisions are made by a single agent, the master, which suffers from a
single point of failure, high communication and computation cost, etc. To the best of our

3.1. Introduction 59

knowledge, the distributed proximal primal—dual algorithm (Prox-PDA) proposed in [112],
which is a generalization of the distributed ADMM algorithms proposed in [71, 90],
is the only distributed ADMM algorithm with provable convergence analysis to solve
nonconvex optimization problem when communication network is arbitrarily connected.
Through a lower bounded potential function, it was shown that the Prox-PDA algorithm
finds a first-order stationary point with an O(1/T) convergence rate when each local cost
function is smooth. To the best of our knowledge, there are no results to guarantee a global
optimum can be linearly found by distributed ADMM algorithms when cost functions are
nonconvex.
Noting above, two core theoretical questions with important practical relevance arise.

(Q3.1) As shown in [209], when strong convexity is replaced by the P-L condition,
centralized FO algorithms still can linearly find a global optimum. Does this hold
for distributed FO algorithms?

(Q3.2) Are there any distributed ADMM algorithms that not only are suitable for arbitrarily
connected communication networks, but also linearly find a global optimum when
the P—L condition holds in addition?

This chapter provides positive answers to the above two questions. We first propose
a distributed primal-dual FO algorithm (Algorithm 3.1) and have the following contribu-
tions.

(C3.1) When each local cost function is smooth, we appropriately chose the algorithm
parameters and construct a Lyapunov function for the proposed algorithm. With
this Lyapunov function, we show in Theorem 3.1 that the proposed distributed FO
algorithm finds a first-order stationary point with an O(1/T) convergence rate and
that the cost difference between the global optimum and the resulting stationary point
is bounded.

(C3.2) With the same Lyapunov function, we show in Theorem 3.2 that not only the
proposed algorithm can find a global optimum but also the convergence rate is
linear under an additional assumption that the global cost function satisfies the P-L.
condition, thus (Q3.1) is answered. The P-L condition is weaker than the (restrict)
strong convexity condition assumed in [68-74,76-91, 204, 219-221, 223] since it
does not require convexity and the global minimizer is not necessarily unique. This
condition is also different from the metric subregularity criterion assumed in [222].
In other words, we show that for a larger class of cost functions than strongly convex
functions, the global optimum can be founded linearly by the proposed distributed
algorithm.

Motivated from the classic ADMM algorithm, we then propose a distributed ADMM
algorithm (Algorithm 3.2). We have the following contributions.

(C3.3) The proposed distributed ADMM algorithm is suitable for arbitrarily connected
communication networks, not necessarily a star graph.

60 Distributed primal—dual first-order and ADMM algorithms

(C3.4) With another Lyapunov function, we show that it has the same theoretical con-
vergence properties as our distributed FO algorithm under the same conditions.
Specifically, we show in Theorems 3.3 and 3.4 that the proposed distributed ADMM
algorithm converges to a first-order stationary point with an O(1/T') convergence rate
if each local cost function is smooth and to a global optimum with linear convergence
rate when the global cost function satisfies the P-L. condition in addition, thus (Q3.2)
is answered.

(C3.5) In order to reduce computation burden on each agent from solving an local
optimization problem at each iteration, we also propose a distributed L-ADMM
algorithm (Algorithm 3.3), derived from the proposed distributed ADMM algorithm
by linearizing the local cost function at each iteration. We show in Theorems 3.5
and 3.6 that the proposed distributed L-ADMM algorithm has the same theoretical
convergence properties as the proposed distributed ADMM algorithm under the
same conditions.

Table 3.1 compares this chapter with other algorithms that obtain linear convergence for
distributed optimization. Table 3.2 summarizes the comparison on distributed nonconvex
optimization.

3.2 Distributed nonconvex optimization with full-information
feedback

Consider a network of n agents, each of which has a local cost function f; : R? — R. All
agents collaborate to solve the optimization problem

1 n
min f(x) = ~ Z F(x). (3.1)
i=1

xeRP

In this chapter, we consider the full-information feedback setting. In other words, each
agent i knows the true gradient V f;(x) and even the explicit expression of f;(x).
Based on the definitions introduced in Chapter 2, the following assumptions are made.

Assumption 3.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 3.2. The set X* is nonempty and f* > —oo, where X* and f* denote the
optimal set and the minimum function value of the optimization problem (3.1), respectively.

Assumption 3.3. Each local cost function fi(x) is smooth with constant Ly > 0.

Assumption 3.4. The global cost function f(x) satisfies the P-L condition with constant
v>0.

Remark 3.1. Assumptions 3.1-3.3 are common in the literature, e.g., [71,219]. Assump-
tion 3.4 is weaker than the assumption that the global or each local cost function is

3.2. Distributed nonconvex optimization with full-information feedback

61

Table 3.1: Comparison of Chapter 3 to some related distributed optimization algorithms
obtaining linear convergence.

Reference Cost function Communication strategy Communication type
[68] Strongly convex f;, locally Lipschitz V2 f Connected undirected, one variable Continuous-time
[69] Strongly convex and smooth f; Connected undirected, one variable Event-triggered

[70-75] Strongly convex and smooth f; Connected undirected, one variable Discrete-time
[76] Strongly convex andzsmoolh 5 Connected undirected, one variable Discrete-time
Lipschitz V= f
[77] Strongly convex and smooth f; Uniformly jointly st'r ongly connected, Discrete-time
two variables
[78,79] Strongly convex and smooth f; Connected undirected, three variables Discrete-time
[80-82] Strongly convex and smooth f; Connected undirected, two variables Discrete-time
[83-86] Strongly convex and smooth f; Strongly connected, three variables Discrete-time
. Undirected stochastic graphs with . .
[87] Strongly convex and smooth f; random failures, two variables Discrete-time
[88] Convex and smooth f;, strongly convex f Connected undirected, four variables Discrete-time
[89] Convex and smooth f;, strongly convex f Uniformly jointly str ongly connected, Discrete-time
two variables
[90] Convex and smooth f;, strongly convex f Connected undirected, one variable Discrete-time
Uniformly jointly strongly connected . .
[91] Smooth f;, strongly convex f with delays, five variables Discrete-time
[219] Convex and smooth f;, r'esmcted strongly Connected undirected, one variable Discrete-time
convex f, unique x
[220,221] Convex and smooth f;, r'estrlcted strongly Strongly connected, two variables Discrete-time
convex f, unique x
[204] Convex and smooth f;, r'estrlcl*ed strongly Connected undirected, one variable Event-triggered
convex f, unique x
[222] Conve'x and smpoth fi ; the prlmal—('iual Connected undirected, two variables Discrete-time
gradient map is metric subregularity
[223] Smooth f;, f sa*nsf:‘les ll“!e RSI condition, Connected undirected, one variable Discrete-time
{Vfi(x*)} is a singleton
[232] Convex f;, unique x*, V2 f(x)>0 Connected undirected, one variable Discrete-time
cl}ja ll)ltser Smooth f;, f satisfies the P-L. condition Connected undirected, one variable Discrete-time

strongly convex. It should be highlighted that the convexity of the cost functions and the
boundedness of their gradients are not assumed. Moreover, we do not assume that X* is a
singleton or finite set either.

Our goal in this chapter is to answer (Q3.1) and (Q3.2), i.e., solve the following

problem.

Problem 3.1. Propose distributed FO and ADMM algorithms for the nonconvex optimiza-
tion problem (3.1) such that the global optimum can be linearly found.

62 Distributed primal—dual first-order and ADMM algorithms

Table 3.2: Comparison of Chapter 3 to some related distributed nonconvex optimization
algorithms.

Reference Cost function Communication strategy Convergence rate
LIP.SChl.t z and .SmOOth‘ f” the set of stationary Uniformly jointly strongly O(1/T) to a local
[111] points is a union of finitely many connected . ‘ .
. connected, two variables optimum
components, no saddle points
[110] Lipschitz f; Connected undirected, one variable Asymptotic
[111152]7 Smooth f; Connected undirected, one variable o1/T)
[117] Smooth f;, Llpbchll‘Z‘V f, fjaugﬁes the K-L Connected undirected, one variable Almost svurel)_/ to an
condition, p = 1 SOS solution
Smooth f; Strongly connected, two variables o1/T)
(116] Connected undirected or strongly
TP . R Almost surely to an
Smooth f;, special initialization connected with p = 1, special 4
. . it SOS solution
weight matrices, two variables
Smooth f; o(/T)
This . . ——
C ted undirected, abl inez : z
chapter Smooth f;, f satisfies the P-£ condition onnected undirected, one variable Lme“;giﬁ u‘i Ifl‘)b“l

3.3 Distributed primal-dual FO algorithm

In this section, we consider the situation that agent i knows the true gradient Vf;(x). We
propose a distributed primal-dual FO algorithm to solve the optimization problem (3.1)
and analyze its convergence rates under different conditions.

3.3.1 Algorithm description

In this section, we present the derivation of our proposed algorithm.

For simplicity, denote x = col(xy, ..., x,), f(x) =", filxi),and L = L® I, where L
is the Laplacian matrix of the communication graph G. The optimization problem (3.1) is
equivalent to the constrained optimization problem

X €

min,,)= 2, fitw) (3.2)

S.t. x; =x;j, Vi, j € [n].
Noting that the Laplacian matrix L is positive semi-definite and null(L) = {1,,} when G is

connected, we know that the optimization problem (3.2) is equivalent to the constrained
optimization problem

min f(x)
x eR" (3.3)
S.t. L'?x = 0,,.

Here, we use L'/2x = 0,, rather than Lx = 0,, as the constraint since they are both
equivalent to x = 1,, ® x but the first has a particular property which will be discussed in
Remark 3.6.

3.3. Distributed primal—-dual FO algorithm 63

Let u € R" denote the dual variable, then the augmented Lagrangian function
associated with (3.3) is

Ax,u) = f(x) + %xTLx +BuT L' x, (3.4)

where @ > 0 and 8 > 0 are the regularization parameters.
Based on the primal—-dual gradient method, a distributed FO algorithm to solve (3.3) is

Xpa1 = Xy = n(aLxy + BL"uy + Vf(xy), (3.52)
et = u +nBL?xy, Vxo, ug € R, (3.5b)
where 7 > 0 is a fixed stepsize. Denote vy = col(vik, ..., Vi) = L%y, then the algorithm

(3.5) can be rewritten as

Xpe1 = X = n(aLxy + By + Vf(x0), (3.62)
Vit = Vi + BLxG, VX €R™,) vjp =0, (3.6b)
j=1

The initialization condition Z;fz 1 Vjo = 0, is derived from vy = L'uy, and it is easy to be
satisfied, for example v;o = 0, Vi € [n] orv;o = Z?:] Lijxip, Vi € [n]. Itis straightforward
to verify that the algorithm (3.6) is equivalent to the EXTRA algorithm proposed in [219]
with mixing matrices W = I,,, —naL and W = I,,, —na L+ 1°* L. Note that the distributed
algorithm (3.6) can also be written agent-wise as

Xijr1 = Xik — 77(0/ Z Lijxjx + Bvix + Vﬁ‘(xi,k))» (3.7a)
=1
Vikel = Vik + 1B) Lijtjg Va0 €RP, Y vjg =0, Vi€ [n]. (3.7b)
=1 j=1

We present the distributed primal-dual FO algorithm (3.7) in pseudo-code as Algo-
rithm 3.1.

Remark 3.2. In the literature, various distributed first-order algorithms have been
proposed to solve the nonconvex optimization problem (3.1). For example, the distributed
gradient descent algorithm was proposed in [110, 116]; the distributed gradient track-
ing algorithm was proposed in [116]; and a distributed algorithm based on a novel
approximate filtering-then-predict and tracking (xFILTER) strategy was proposed in [114].
Compared with the proposed distributed algorithm (3.7), these algorithms have some
potential drawbacks. For the distributed gradient algorithm, existing studies, such as
[110, 116], only showed that the output of the algorithm converges to a neighborhood of a
stationary point unless additional assumptions, such as the boundedness of the gradients
of cost functions, are assumed. In the distributed gradient tracking algorithm [116], at

64 Distributed primal—dual first-order and ADMM algorithms

Algorithm 3.1 Distributed Primal-Dual FO Algorithm

1: Input: parameters @ > 0, 8 > 0, and n > 0.

2: Initialize: x;o € R and v;p = 0,, ¥i € [n].

3: fork=0,1,... do

4. fori=1,...,nin parallel do

5: Broadcast x;; to NV; and receive x;; from j € Nj;
6: Update x;x+1 by (3.7a);

7: Update v; x4 by (3.7b).

8: end for

9: end for

10: Output: {x;}.

each iteration each agent i needs to communicate one additional p-dimensional variables
besides the communication of x;; with its neighbors. The xFILTER algorithm proposed in
[114] is a double-loop algorithm and thus at each iteration it requires more communication
and computation than the proposed distributed algorithm (3.7).

3.3.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.1.

Find stationary points

Let us consider the case when Algorithm 5.1 is able to find stationary points. We have the
following convergence results.

Theorem 3.1. Suppose that Assumptions 3.1-3.3 hold. Let {x;} be the sequence generated
by Algorithm 3.1 with a € (B + k1, k2], B > cg, and 17 € (0, ¢;)), where k1, k2, cg, and ¢, are
constants given in Section 3.8.1. Then, for any T € N,

IS S = ok 38

Tkzon;xz,k X" = (T’ (3.8)

1= 1

T IVFEIP = O(T)’ (3.9)
k=0

fGr) = f =0, (3.10)

= _ 1 n
where X = XLy Xij-

Proof. The explicit expressions of the right-hand sides of (3.8)—(3.10) and the proof are
given in Section 3.8.1. O

Remark 3.3. This same convergence rate as stated in (3.9) has also been achieved by the
distributed gradient tracking algorithm proposed in [116] and the xFILTER algorithm

3.3. Distributed primal—-dual FO algorithm 65

proposed in [114] under the same assumptions on the cost functions. However, as
discussed in Remark 3.2, at each iteration, the distributed gradient tracking algorithm
requires double amount of communication and the xFILTER algorithm requires more
communication as well as more computation.

Find global optima

Let us next consider the case when Algorithm 3.1 finds global optima. We have the
following convergence results.

Theorem 3.2. Suppose that Assumptions 3.1-3.4 hold. Let {x;} be the sequence generated
by Algorithm 3.1 with the same «, 3, and 1 used in Theorem 3.1, then

1< .
= 3 lbwie = P + f(F) - f* < @, Yk €Ny, 3.1
n

i=1
where €y > 0 and € € (0, 1) given in Section 3.8.2.
Proof. The proof is given in Section 3.8.2. O

Remark 3.4. The proofs of Theorems 3.1 and 3.2 are based on the same appropriately
designed Lyapunov function given in Lemma 3.1 in Section 3.8.1. In the literature that
considered distributed nonconvex optimization, e.g., [112-115, 117], the lower bounded
potential functions (which may be negative) are commonly used to analyze the convergence
properties of the proposed algorithms. So the analysis in those studies cannot be extended
to show linear convergence when the P—L. condition holds since the lower bounded
potential functions may not be Lyapunov functions. In the literature that obtained linear
convergence for distributed optimization, e.g., [68-91, 204, 219-223, 232], the convexity
andfor the uniqueness of the global minimizer are the key in the analysis. So the analysis
in those studies cannot be extended to show linear convergence when strong convexity is
relaxed by the P-L. condition since the later does not imply convexity of cost functions and
uniqueness of global minimizers.

Remark 3.5. The distributed first-order algorithms proposed in [68-91, 204, 219-223]
also established linear convergence. However, in [68-87], it was assumed that each local
cost function is strongly convex. In [88-90], it was assumed that each local cost function
is convex and the global cost function is strongly convex. In [91], it was assumed that
the global cost function is strongly convex. In [204, 219], it was assumed that each local
cost function is convex, the global cost function is restricted strongly convex, and X* is a
singleton. In [220,221], it was assumed that each local cost function is restricted strongly
convex and the optimal set X* is a singleton. In [222], it was assumed that each local cost
function is convex and the primal-dual gradient map is metrically subregular. In [223],
it was assumed that the global cost function satisfies the restricted secant inequality
condition and the gradients of each local cost function at optimal points are the same.
In contrast, the linear convergence result established in Theorem 3.2 only requires that

66 Distributed primal—dual first-order and ADMM algorithms

the global cost function satisfies the P—L condition, but the convexity assumption on cost
functions and the singleton assumption on the optimal set and the set of the gradients
of each local cost function at optimal points are not required. Moreover, it should be
highlighted that when executing Algorithm 3.1 the P-L. constant v is not needed. Compared
with some of the aforementioned studies, one potential drawback is that we assume the
communication graph is static and undirected. We leave the extension to time-varying
directed graph for future work.

Remark 3.6. If we use Lx = 0,, as the constraint in (3.3), then we could construct an
alternative distributed primal-dual FO algorithm

Xijsl = Xig — 77(Z Lij(axjr +Bvjp) + Vfi(xi,k)), (3.12a)

j=1
Vijsl = Vig + 18 Z Lijxjk, Yxi0, vio € R?. (3.12b)

j=1
Similar results as shown in Theorems 3.1 and 3.2 can be obtained. We omit the details due
to the similarity. Different from the requirement that vy = 0, in the algorithm (3.7), v;
can be arbitrarily chosen in the algorithm (3.12). In other words, the algorithm (3.12) is

robust to the initial condition v;g. However, it requires additional communication of v i in
(3.12a), compared to (3.7).

3.4 Distributed ADMM algorithm

In this section, we consider the situation that each agent i knows the explicit expression of
fi(x). We propose a distributed ADMM algorithm and analyze its convergence properties
under different conditions.

3.4.1 Algorithm description

Note that the optimization problem (3.1) is equivalent to the constrained problem

min Si(x:)
Xi, Xo € RP ; (3.13)
s.t. Bxi = Bxo, Vi € [n],

where 8 > 0 is a constant.

If there exists a virtual agent, denoted as agent 0, which can communicate with all of
the n agents', then the optimization problem (3.13) can be efficiently solved by the classic
ADMM algorithm [93, 224]. Specifically, the classic ADMM algorithm to solve (3.13) is

1 n
Xoks1 = Z(xj,k + évj,k), (3.14a)
i=1

IThis corresponds to that the communication graph G of the n agents is a star graph.

3.4. Distributed ADMM algorithm 67

Xik+1 = argmin fi(x) + Bvig, x) + %HX - xogs1ll% (3.14b)
XERP
Vik+l = Vi + %(xi,kﬂ — Xok+1), Yi € [n], (3.14¢)

where y > 0 is the penalty parameter. It has been shown in [238-240] that the classic
ADMM algorithm (3.14) can find first-order stationary points of the optimization problem
(3.13) with an O(1/k) convergence rate if 7y is large enough, 8 = 1, and Assumptions 3.2
and 3.3 hold. If the communication graph G is a general connected graph, then each agent i
cannot execute (3.14b) and (3.14c¢) since xgx+; is not available in this case. Thus, the classic
ADMM algorithm (3.14) is restricted to a star graph. In order to remove this restriction,
we modify the classic ADMM algorithm (3.14) as follows

n
. a 2
xiger = argmin £(0) + B 1)+ L[xig+ 23 L] (3.15a)
X€RP 2 Y j=1
ﬁ n n
Videt = Viao+ S D Ljeens Vo €R7 D vio = 0y, Vi€ [l (3.15b)
= =

where a > 0 is a constant.

Remark 3.7. The intuition of the modification from (3.14) to (3.15) is as follows. When y
is large enough, then from (3.14a), we know xo+1 = % 2y Xjk. In multi-agent systems, for
each agent i, % 2iiy Xjk can be estimated by x;x — b Yi_| Lijx;i with some positive gains b.
Thus, replacing xox+1 in (3.14b) by its estimation x;; — % Z;:I Lijx;i gives (3.15a). Then,
each x;.1 is available to each agent i and through communication it is also available to
agent jif j € N;. Thus, replacing xo x+1 in (3.14c) by its estimation X; 41 — 5—2 Z;le LijX e

2
gives (3.15b). Here, we used different gains % and /;—2 since such a setting facilitates

the convergence analysis. Moreover, the extra initialization condition ¥ _vjo = 0, is
also used to facilitate the convergence analysis. This initialization condition is easy to be
satisfied, for example, vig = 0, Vi € [n], or vig = Z’}zl Lijxjg, Yi € [n].

Remark 3.8. The objective function in subproblem (3.15a) may be not convex since
each f; is possibly nonconvex. However, if Assumption 3.3 holds and y > Ly, then
Jfrom Lemma 2.11, we know that the objective function is strongly convex with convexity
parameter y — Ly > 0. Hence, the subproblem (3.15a) is solvable.

We write the distributed ADMM algorithm (3.15) in pseudo-code as Algorithm 3.2.

3.4.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.2.

Find stationary points

Let us consider the case when Algorithm 3.2 is able to find stationary points. We have the
following convergence results.

68 Distributed primal—dual first-order and ADMM algorithms

Algorithm 3.2 Distributed ADMM Algorithm

1: Input: constants @ > 0, 8> 0, and y > 0.

2: Initialize: x;o € R” and v;p = 0, ¥i € [n].

3: Broadcast x; to N; and receive x ;o from j € Nj;
4: fork=0,1,... do

5 fori=1,...,nin parallel do

6: Update x; 441 by (3.15a);

7 Broadcast x; 4 to N; and receive x4 from j € Nj;
8 Update v; 11 by (3.15b).

9: end for

10: end for

11: Output: {x}.

Theorem 3.3. Suppose Assumptions 3.1-3.3 hold. Let {x;} be the sequence generated by
Algorithm 3.2 with a € (lﬁ(p(L),B +Xx1),x261, B > g, and y > ¢, where x1, x2, Cp, and
¢, are constants given in Section 3.8.3. Then, forany T € N,,

1=
Z;Z”xzk_xk” o= =), (3.16)
k=0
15 1
IVFEI = (), (3.17)
k 0
fG&r) = f=0Q0), (3.18)

= _ 1 n
where X = YLy Xij-

Proof. The explicit expressions of the right-hand sides of (3.16)—(3.18) and the proof are
given in Section 3.8.3. o

Remark 3.9. This same convergence rate as stated in (3.17) has also been achieved by the
Prox-PDA proposed in [112] under the same conditions. Same convergence rate has also
achieved by ADMM algorithms proposed in [117, 238-240]. However, these algorithms
are restricted to a star graph. Moreover, the algorithms proposed in [117,238,239] require
that each leaf agent has to communicate both primal and dual variables to the hub agent,
and the algorithm proposed in [240] is based on the standard master—worker architecture.
Compared with these algorithms, the advantages of Algorithm 3.2 are that it is suitable for
general connected graphs and each agent only needs to communicate the primal variable
with its neighbors, while one potential drawback is that our algorithm is synchronous. It is
unclear how to analyze the convergence rate for the proposed distributed ADMM algorithm
under the asynchronous communication, so we leave this for future studies.

Remark 3.10. The settings on a, B, and vy in Theorem 3.3 are instrumental in the
convergence analysis of Algorithm 3.2. They are just sufficient conditions. In other words,

3.4. Distributed ADMM algorithm 69

the lower bounds for «, B, and y are not tight. We numerically observed that smaller «,
B, and vy still guarantee the same convergence rate and even lead to faster convergence in
some simulation examples. It remains an open question to analyze the convergence rate
under smaller «, B, and vy.

Find global optima

Let us next consider the case when Algorithm 3.2 finds global optima. We have the
following convergence results.

Theorem 3.4. Suppose Assumptions 3.1-3.4 hold. Let {x;} be the sequence generated by
Algorithm 3.2 with the same «, 3, and 'y used in Theorem 3.3, then

1 n
= 3 Mg = B + £ - f* < 88", Yk €Ny, (3.19)
n

i=1
where gy > 0 and € € (0, 1) given in Section 3.8.4.
Proof. The proof is given in Section 3.8.4. O

Remark 3.11. Among existing literature, to the best of our knowledge, the Prox-PDA
algorithm proposed in [112] is the only distributed ADMM algorithm with provable
convergence analysis when cost functions are nonconvex and the communication network
is arbitrarily connected. The proposed distributed ADMM algorithm (3.15) is closely
related to the Prox-PDA algorithm. The key differences between them is on the stepsize
for the dual variable updating, which facilitate us to show explicit convergence rates for
our distributed ADMM algorithm by a appropriately designed Lyapunov function given
in Lemma 3.2, which is modified from the one used in the proofs of Theorems 3.1 and
3.2 given in Lemma 3.1. With this Lyapunov function, we prove Theorems 3.3 and 3.4. In
contrast, a lower bounded potential functions (wWhich may be negative) was used in [112]
to analyze the convergence properties of the Prox-PDA algorithm. So the analysis in [112]
cannot be extended to show linear convergence when the P-L. condition holds since the
lower bounded potential functions may not be Lyapunov functions.

Remark 3.12. Linear convergence was also established by the distributed ADMM
algorithms proposed in [71, 73, 90, 232]. However, they all assumed that each local cost
function is convex. Moreover, in [71, 73], it was assumed that each local cost function is
strongly convex. In [232], it was assumed that the optimal set X* is a singleton and the
global cost function is locally strongly convex. In [90], it was assumed that the global
cost function is strongly convex. In contrast, the linear convergence result established in
Theorem 3.4 only requires that assumption that the global cost function satisfies the P-£.
condition, but the convexity assumption on cost functions and the singleton assumption on
the optimal set are not required. Compared with the results established in [71,73,90,232],
one potential drawback of our results is that we need to use some global information, such
as the eigenvalues of the Laplacian matrix associated with the communication graph. It is

70 Distributed primal—dual first-order and ADMM algorithms

unclear how to overcome this drawback. This drawback may be overcome with the studies
on estimating the second smallest eigenvalue (the connectivity) of the Laplacian matrix
associated with the communication graph [241, 242].

3.5 Distributed linearized ADMM algorithm

Same as existing distributed ADMM algorithms, such as [71,73,90,230-233,235-240],
one potential limitation of Algorithm 3.2 is the requirement that at each iteration each
subproblem (3.15a) needs to be solved exactly, which normally has no explicit solution,
and thus results in high computation burden to each agent. To over come this, in this
section, we propose a distributed linearized ADMM (L-ADMM) algorithm and analyze
its convergence rate under different conditions.

3.5.1 Algorithm description

In this section, we present the modification of (3.15a). The main idea is that instead
of minimizing exactly with respect to x we take an inexact minimization in which the
function f;(x) is replaced by a linearized approximation centered at the current iteration.
Specifically, replacing the function f;(x) with f;j(x;x) + (Vfi(xix), x — x;x) in (3.15a) gives
the inexact update for x; ;4 as follows

xeRP

: @\ 2
Xigr1 = argmin fi(xix) + (Vilxin), X = xig) + Bvig, x) + Zﬂx = Xk + — Z Lijxj,k” :
2 Y 45
(3.20)

Noting that the objective function in the subproblem (3.20) is strongly convex, from
the first-order optimality conditions for convex optimization problems, we can compute
the explicit expression of x; ;.. Hence, we get the distributed L-ADMM algorithm

1 n
Xijel = Xig — ;(a’ Z Lijxjx + Bvig + Vfi(xi,k))s (3.21a)
=
_ B Z b Ny o i
Vigel = Vik + = D> LijXjie1, Yxip € RP, Z vio =0, Vie[n], (3.21b)
Y < -
j=1 Jj=1

We write the distributed L-ADMM algorithm (3.21) in pseudo-code as Algorithm 3.3.

Remark 3.13. It is straightforward to see that the distributed L-ADMM algorithm (3.21)
is similar to the distributed primal-dual FO algorithm (3.7). The main difference between
them is the updating of the local dual variable v;y, 1. In (3.21b), {x 1} are used, while in
(3.7b), {x;x} are used. This difference results in different designs of algorithm parameters
and Lyapunov functions to analyze convergence rates, although they have the same
convergence properties.

3.5. Distributed linearized ADMM algorithm 71

Algorithm 3.3 Distributed L-ADMM Algorithm

1: Input: constants @ > 0, 8> 0, and y > 0.

2: Initialize: x;o € R” and v;p = 0, ¥i € [n].

3: Broadcast x; to N; and receive x ;o from j € Nj;
4: fork=0,1,... do

5 fori=1,...,nin parallel do

6: Update x; 441 by (3.21a);

7 Broadcast x; 4 to N; and receive x4 from j € Nj;
8 Update v; 41 by (3.21b).

9: end for

10: end for

11: Output: {x}.

3.5.2 Convergence analysis

In this section, we provide convergence analysis for Algorithm 3.3.

Find stationary points

Similar to Theorems 3.1 and 3.3, we have the following convergence result.

Theorem 3.5. Suppose Assumptions 3.1-3.3 hold. Let {x;} be the sequence generated by
Algorithm 3.3 with a € (ﬁ(p(L),B +¥1).x2B1, B > &, andy > &, where ¥, &, and &,
and y, are constants given in Sections 3.8.5 and 3.8.3, respectively. Then, for any T € N,,

N S it = ok 32
T 2in Xig — X" = (T)’ (3.22)
= . |

T 24 IV f(xll™ = 0(;), (3.23)
fGr) = fF=0Q0). (3.24)

Proof. The explicit expressions of the right-hand sides of (3.22)—(3.24) and the proof are
given in Section 3.8.5. o

Remark 3.14. The same convergence rate as stated in (3.23) has also been achieved by the
linearized version of the Prox-PDA algorithm, the distributed proximal gradient primal—
dual algorithm (Prox-GPDA), proposed in [112] under the same conditions.

Find global optima

When Assumption 3.4 also holds, similar to Theorems 3.2 and 3.4 we have the following
results.

72 Distributed primal—dual first-order and ADMM algorithms

Theorem 3.6. Suppose Assumptions 3.1-3.4 hold. Let {x;} be the sequence generated by
Algorithm 3.3 with the same «, B, and y used in Theorem 3.5, then

1< f o w s
= D i = TP+ fE) ~ 7 < 80, Yk e N, (3.25)

where &) > 0 and & € (0, 1) given in Section 3.8.4.
Proof. The proof is given in Section 3.8.6. O

Remark 3.15. Linear convergence was also established by the distributed L-ADMM
algorithm proposed in [72]. However, in [72], it was assumed that each local cost
function is strongly convex, while we assume that the global cost function satisfies the
P—L condition, which is much weaker. Same as the analysis in Remark 3.12, compared
with the results established in [72], one potential drawback of our results is that we need
to use some global information, such as the eigenvalues of the Laplacian matrix associated
with the communication graph.

Remark 3.16. By comparing Theorems 3.3 and 3.4 with Theorems 3.5 and 3.6, respec-
tively, we see that, in theory, under the same conditions the distributed L-ADMM algorithm
(3.21) has the same convergence properties as the distributed ADMM algorithm (3.15).
However, in numerical simulations, the distributed ADMM algorithm (3.15) normally
requires less iterations than the distributed L-ADMM algorithm (3.21) to reach the same
error bound at a cost of more computation resource being needed by each agent to solve
the local optimization problem.

3.6 Simulations

3.6.1 Distributed regularized logistic regression

This section evaluates the performance of Algorithm 3.1 in solving the nonconvex
distributed regularized logistic regression problem with each component function f;
described in (1.2), i.e.,

s Ey o ulx)?
fi0) = ZO’:I log(1 + exp(=x"zi)) + (1 = yi) log(1 + exp(x"z))) + Z 1+l

In this simulation, all settings for cost functions and the communication graph are the same
as those described in [114]. Specifically, n = 20, p = 50, m; = 200, 2 = 0.001, and x = 1.
The graph used in the simulation is the random geometric graph and the graph parameter
is set to be 0.5. We independently and randomly generate nm data points with dimension p
and each agent contains m data points.

We compare Algorithm 3.1 with state-of-the-art algorithms: distributed gradient de-
scent (DGD) with diminishing stepsizes [110, 116], distributed gradient tracking algorithm
(DGTA) [80, 116], xFILTER [114], Prox-GPDA [112], and D-GPDA [113]. Figure 3.1

3.6. Simulations 73

~ 10°
o
e
IR
| 105 F
It
% 10_10 r Y Y tean]
sl i T
M 1015 F T,
e
+
=102f N 1
= s
" — Algorithm 3.1
r; 1025 F [DGD . 8
= DGTA S N
€ a0 | |- FILTER N 1
v - - - -Prox-GPDA S
k= D-GPDA S
E 10-35 I I I I I L I I I

0 100 200 300 400 500 600 700 800 900 1000
Communication rounds

Figure 3.1: Performance of distributed FO optimization algorithms in the nonconvex
distributed regularized logistic regression problem: Evolutions of minger){||V FEOI?> +
}l 2y ik — I} with respect to the number of communication rounds.

illustrates the evolutions of minger {lIIV/(XI* + £ 37, [lxix — %I[*} with respect to the
number of communication rounds for these algorithms with the same initial condition. It
can be seen that our primal-dual FO algorithm (Algorithm 3.1) gives the best performance
in general.

3.6.2 Distributed phase retrieval

This section evaluates the performance of Algorithms 3.2 and 3.3 in solving the distributed
phase retrieval problem with each component function f; described in (1.3), i.e.,

m;

n < n
fi@) = — 05 = 0Py = — 307~ B ~ B,
=1 =1

In this simulation, all settings for cost functions and the communication graph are the same
as those described in [243]. Specifically, n = 50, p = 64, and m; = 30. We independently
and randomly generate the vectors bf and b/, such that (b%, b)) ~ N(0,,,, 3 I,,). The scalars
yir are generated by y; = |b]yol + &;;, where yo = (1,0,...,0)T and &;; ~ N(0, 0.01%) are
independent Gaussian noise. The graph used in the simulation is generated by uniformly
randomly sampling n points on S2, and then connecting pairs of points with spherical
distances less than 7/4.

74 Distributed primal—dual first-order and ADMM algorithms

~ 10°
@
=
) e
| .
It
& 10°
—ls o
+ 10
a
8
r; 15 | |[— Algorithm 3.2
= 10 —— Algorithm 3.3
= DGTA
E Prox-PDA
= Prox-GPDA
E 10-20 I I I I I I I
0 50 100 150 200 250 300 350 400

Iterations

Figure 3.2: Performance of distributed ADMM optimization algorithms in the distributed
phase retrieval problem: Evolutions of minge7i{[IV f(X)I* + 1 | llx;x — Xl|?} with respect
to the number of iterations.

We compare Algorithms 3.2 and 3.3 with state-of-the-art algorithms: distributed
gradient tracking algorithm (DGTA) [80,243], Prox-PDA (which is a distributed ADMM
algorithm) and its linearized version (Prox-GPDA) [112]. Figure 3.2 illustrates the
evolutions of minger ||V f()"ck)||2 + %Zl’.'zl lxix — X} with respect to the number of
iterations for these algorithms with the same initial condition. It can be seen that, in this
numerical example, both distributed ADMM algorithms (Algorithms 3.2 and Prox-PDA)
give almost the same performance and are better than the rest algorithms. By comparing
the two distributed L-ADMM algorithms (Algorithm 3.3 and Prox-GPDA), we see that
Algorithm 3.3 converges faster. Moreover, Algorithm 3.3 also converges faster than DGTA.

3.7 Summary

In this chapter, we studied distributed nonconvex optimization with full-information feed-
back. We proposed three distributed algorithms: a distributed primal-dual FO algorithm, a
distributed ADMM algorithm, and a distributed L-ADMM algorithm. We derived their
convergence properties under different conditions. Particularly, linear convergence was
established when the global cost function satisfies the Pt condition. This relaxes the
standard strong convexity condition in the literature. Interesting directions for future work
include proving linear convergence rate for larger stepsizes, considering time-varying
graphs, and studying constraints.

3.8. Proofs 75

3.8 Proofs

3.8.1 Proof of Theorem 3.1

Denote K, = I, - 11,17, K = K, ®I,,, H = 1(1 17®l,), & = 147 @ L)x, % = 1,8 %,

gk =Vf(x0), g = Hgk, g = V(%) and g0 = Hg) = 1(1, ® Vf(X)).
We also denote the following notations.

_ K1 €1 € €& 1
g = max{KZ—_l, K3, K4}, = II]]Il{E2 64’ 6—6}, K 2 (L)(2+ 3Lf) Ky >]
1 ; 3 1 5 5 3
K3 = 4(1 + (1 + 8Ky + (L))) (K2 + p_z(L))Lf + ((K2 + (L)) Ly + 2) Ly,
e =(@-pp(l) - §<2 +3L7)., & =p(L) + (207 + f)p*(L) + ELZ-,

1 «a 1 1 11,1 1 a
G=f-—=-———-————, =28+, 6=———(=+—+-)L3,
=By Ty = e =i Y

1 1 @\, Lf(1+Ly)) 1
€ = E(l + m + E)Lf + — 5 € = Umln{ﬂ —ne&, €3 — 1€, € — 1, Z}’
1 1 -
€ = ﬂ + € = min{—, O’_ﬁ}
28 2p(L) 20(L)’ 2«

To prove Theorem 3.1, the following lemma is used, which presents the general
relations of two consecutive outputs of Algorithm 3.1.

Lemma 3.1. Suppose Assumptions 3.1-3.3 hold. Let {x;} be the sequence generated by
Algorithm 3.1 with a > B. Then,

1 o112) 2
Vieer < Vie= Il i = ||+ GO o~ 0 el i,
(3.26)
where
4 1)
— . = — 2 —
Vi = ,21: Viks Vik 2||xk||K, Vox = ZHVk + gk 0+5K’

1 ~ ~
Vi = X[K(v; + Bgz), Vg = n(f (&) = f*) = f&®) - J°,

and Q = RAI‘RT ® I, with matrices R and Al‘l given in Lemma 2.5.

Proof. We first note that V4 is well defined due to f* > —oco as assumed in Assump-
tion 3.2. Thus, V; is well defined.
Denote 7 = 1 (1] ® I,,)v. Then, from (3.7b), we know that

Vitl = V. 3.27)

76 Distributed primal—dual first-order and ADMM algorithms

Then, from (3.27) and }}?_, v;o = 0,, we know that
Ve =0, (3.28)
Then, from (3.28) and (3.7a), we know that
Xps1 = X — 08k (3.29)

Noting that V£ is Lipschitz-continuous with constant L r > 0 as assumed in Assump-
tion 3.3, we have

gy — gl = IV /(&) = VAP < L% — x4l = L7 llxel - (3.30)
Then, from (3.30) and p(H) = 1, we have
12, — &> = IH(g] — goI* < llgp — gull® < Lllxall- (3.31)
From V f is Lipschitz-continuous and (3.29), we have
gk, — &l < L% — &ll® = L7l (3.32)

We have

1
Viger = znxmni = 5l = maLxy + Bre + gollx

1 2 2 n’a’ 2 T 1
= Sl = malleeliy + Tz - nBx] (In,,—naL>K(vk+ng)
202
Tl 5l
— T 1 LK 1 0 1 1 0
= Vix — Il oL 2 - nBx, (I, —naL) (Vk"'[_ggk"'légk ,ng)
222
) 1
Hvk _gk ng_ _gk”
1 1 1
Vil e~ B K+ ng) + 3l + 3 llge — gl
20,2 202 2
+ Dot + T+ gl + T 2, + Ll - P
+7’p |\vk+ el + g~ 0P

= Vi = Il + 201+ 3n)lgi - g

032 1o
L-3K-=5—L
2

1 1
T 1,0 150
npx, K(vk + ﬁgk) + ”vk + ﬁgk S22 g (3.33)
2

(3.34)

1

2 0
< Vig = x| — 8
na. B

1
—nBx, K(v; + Hv +
L-1K-2C2 [2 1 (143 2K npx; (k ﬁg") k

3.8. Proofs 77

where the second equality holds due to (3.6a); the third equality holds due toe (2.5); the
first inequality holds due to the Cauchy-Schwarz inequality and p(K) = 1; and the last
inequality holds due to (3.30).

We have
2 L.
Voke1 = 2”"'k+1 ﬁgk+l 042K 2||"k+ _gk +nB xk+ﬁ(gk+l gk) 0+2K
= —Hvk + —gOH2 +nx, (BK + aL)(vk + lgo) + [l
2 kllg+ax k Bk L (BL+aL?)
1 1 T a

02 0 0 0

2ﬁ2 ||gk+1 gkIIQ+%K + B(Vk + ng + Tlﬁka) (Q + ’EK)(ngr] - gk)
<

1
Vau + 15 (BK + aL)(ve + zgi) + ||xk||qzm .

012
2ﬁznm &on + ﬁHvk el 2ﬂ||gk+] sk

Ui 02
+ _”ka”Q+HK + 2,82”gk+1 gk”QJr%K

Q+”K

1
= Vo + nx;!(ﬁK +aL)(vi+ z80) + logprrar

+ Hvk +

0112
ng U(Q+aK) (,32 2 ﬂ)||gk+1 gk”Q+%K

1
< Vo +nx] (BK + aL)(vi + ﬁgk) el oy

1, 11 1 ay o2
+|vx + 5 =zt)l—<+3 - 3.35
e+ 5 s (5 * 2l *)k — il 33

1
< Voy + nx] (BK + aL)(vi + ﬁgk) + el

2

nB(BL+aL?)

|

Tt

where the second equality holds due to (3.6b); the third equality holds due to (2.5) and
(2.7); the first inequality holds due to the Cauchy-Schwarz inequality; the last equality
holds due to (2.5) and (2.7); the second inequality holds due to p(Q + %K) < p(@Q)+ %p(K),
(2.8), p(K) = 1; and the last inequality holds due to (3.32).

We have

noo Iy L ey
LQ+5K) + n(ﬁz + Zﬁ)(pz(L) + B)Lf”gk” > (3.36)

e

1
Vike1 = x,;,K(ka + ngﬂ)

1
(&) - &)

1
—g2 + nBLx; + B

B
1
x] (K = n(a +nB*L)(vi + Egg) el oty

(xi = n(aLx; +Bri + g + g — g0) K (ve +

78 Distributed primal—dual first-order and ADMM algorithms

1 1 2 I T
+ g% (K~ naL)(g;. - g0 By + BginK — (v + ng) K(g},, - &)

1 1
—n(gi— g K(vi + 581 IBLX+ (81—)
2 2 1 2
< 5[(K = oLy + 580) + T2 g+ T + pTz| PR

2.2
n 2 1 o, @ 2 l ol
+ gl + (5 + 2ﬁz)ugk+1 17+ 5l = g+

§ 1 0 2 0 0 2 2 1 0
e R + 3lg, — g7 + g - g + e+ 54l
2
+ Lllge - gl + ”ﬁ ||ka||2+—||gk—gk||2 2I,J,zugkﬂ &P
1 2 2
= x[(K - naL)(vk+ ﬁgk)+ S+ 2llge = gl Il

1 0 02 L g2
+tl—=+=+= — — + = 2 3.37
(e * e+ = [el e (337)
1
T 2
< Vi —nax; L(Vk + ’ng) + [l (BL+L K)+772("‘2 —aB L (152K
I 7
(ﬁ + ﬁ_z + 2) ”gk” ”Vk + = gk“ _l_ﬂ_’b”z)K’ (338)

where the second equality holds due to (3.6); the third equality holds due to (2.5); the first
inequality holds due to the Cauchy-Schwarz inequality, (2.5), and p(K) = 1; and the last
inequality holds due to (3.32) and (3.30).

We have

Vi1 = n(f(%) — 1) = f@&) = F* + F&e) — F&)
2 2
x _ n°Ly _ _ n°Ly
<f®) -7 -nglgd+ Tfngkn2 = Vax -8, 80+ Tfngku2
2
1. . -0 - n._ o o0 MLf _
= Vi SB1(@+ B0 - 80— 5 (& - B+ 8DTR) + L llgdlP

2
-+

2
_ 0 - 0 - nLy _
< Vi - §||gk||2 + anﬁ —mlP - —||gk —||g2 - &l + L Ig?

n _ n
= Vag— (- 2nLp)lIgkl* + —||gk &l - —||gk||2 (3.39)

< Vi - —(1 = 2nLp)ligkl? + ”xk”szK - —IngII2 (3.40)

where the first inequality holds since that f is smooth, (2.14) and (3.29); the third equality
ST o0 _

holds due to g/ g/ = g/ H gk g HH gk gl gg; the second inequality holds due to the
Cauchy-Schwarz inequality; and the last inequality holds due to (3.31).

3.8. Proofs 79
From (3.34), (3.36), (3.38), and (3.40), we have
1 2
2
Ver <Vl une i + e+ 5800
1 n A Y PATIT)
SI A A Eg" . ([)T @)(p o g
2 2
” k”n(ﬁLJr K)+n2(” aﬁ+ﬁ2)L2+”(1+2q)L2 + 77() ”g ”
1
= lve + ﬁgknz g (1 — 2nLo)lIgl* + ||xk||,,L2 - —||gk
= Vie = By, oars — [+ 2 gk|| g, e g =~ JIEIP, (4D
where
1
M, =(a-pB)L - 5(2 +3L)K, My = °L + (22" + BL* + gLf,K,
1« 1 , 1
MS:(B_E_ﬁ) —%Q,M4=<2B +§)K
From a > B, (2.6), and (2.8), we have
1 1
M, =(a-B)L - 5(2 +3L)K 2 (@ - B)pa(LK - 5(2 +3L)K = 6 K (3.42)
M, = B*L + (2 + BH)L* + %LzK < ek, (3.43)
1 @ 1 a 1
M;=(B8-- - — - = K- — K =&K. 3.44
=65 5K 5502 (B3 -) g K = G4
From (3.41) and (3.42)—(3.44), we know that (3.26) holds.
O
We are now ready to prove Theorem 3.1.
Denote
.) 1 ol) .
k= [IXkllg Kkt =8k k) — . .
Vi = el + [+ 580 + a0 - (3.45)
We know
1 1 g2 1
Vi = 2||xk||K 2“vk + —g?” s + x,jK(vk + ng) + Vi
1 2 1 0 2
> Sl + 5 (L) 2l —ng - 2 il - 2l g+ v
> eg(llkuIK + Hvk + ngHK + V4,k (346)

80 Distributed primal—dual first-order and ADMM algorithms

> eV >0, (3.47)

where the first inequality holds due to (2.8) and the Cauchy-Schwarz inequality; and the
last inequality holds due to 0 < e < 1. Similarly, we have

Vi < ES‘A/](. (3.43)
From B + «k; < @ and k; = g7 (L)(Z + 3L) we have
1
€ = (a - B)pa(L) - 5(2 +3L7) > 0. (3.49)
From a < k8 and 8 > k3, we have
1 K2 1
a>f---=—=)- — >0 (3.50)
237 %) " 0
From a < k8 and 8 > k4, we have
| | 1 ay ., 1 1,1 1
6=—-——-+——+—= > - - + k2)L2 > 0. (3.51)
=1 5B e B 21 B e
From (3.49)-(3.51),and 0 < 5 < mln{E , f, o =1, we have
n(er —ne) >0, (3.52)
n(e —ng) >0, (3.53)
n(es — neg) > 0. (3.54)
Then, rom (3.52)—(3.54), we have
€ >0 (3.55)
From (3.26), we have
T T T T 1 2
2 0
; Vigr < kZ:(; Vi — kZ(; ”xk”n(fl_,,Q)K - Z “Vk + Egk| Her—nen K
T T
= > n(es — nes)lzdl® - Z 1821 (3.56)
k=0 k=0
Hence, from (3.56), we have
T 1 w2
Vst 3 (b =2l + e+ el + g +1glF) < vo. 357
k=0
From (3.57), (3.55), and (3.47), we know that
Sieo(llxe = Zll? + vy + ég,‘illi +ll2ell® + 118711 Vo

< VYT € N, 3.58
T Soainy (TN G39)

3.8. Proofs 81
which yields (3.8) and (3.9).
From (3.57), (3.55), and (3.46), we know that
- . _ Y
fGre) - f7 < —» YT €No, (3.59)

which gives (3.10).

3.8.2 Proof of Theorem 3.2

In addition to the notations defined in Section 3.8.1, we also denote the following notations.

Vo €10 . v
€@=—,€=1——, o= nmln{el - ne, € — e, —}.
€9 €3 2

From (3.47), we have

N Vi
lloex = ®ell> + n(f () — £5) = el + n(f(%) =) < Ve < 6—;

From Assumptions 3.2 and 3.4 as well as (2.16), we have that
I8P = nlIVFEOIP = 2va(f () -).
From (3.52) and (3.53), we have

€10
€10 > 0, — > 0.
€8

28 5 1, we have

Noting that €3 < 3, €4 > 2/3%, and & > 55

2
€ € — 7M€ €
o _ 1€ — nés) < 5
€3 €3 46463

Then, from (3.26), (3.54), and (3.61), we have

1
0< < —.
8

N . %
Vis1 < Vi = Vi min {51 — k€2, €3 — NkEs, —}.

2
From (3.64), (3.62), and (3.48), we have
A €10
Vielr S Vi — €10V < Vi — E—SVk-
From (3.65) and (3.63), we have
€10 €10 \k+1
Vi < (1- E—g)vk <(1- 6—8) Vo.
Hence, (3.66) and (3.60) give
_ _ . Vi €10 \K
Il = Bl + n(f () - f7) < —(1- =), Yk € No,
€ €3

which yields (3.11).

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

82 Distributed primal—dual first-order and ADMM algorithms

3.8.3 Proof of Theorem 3.3

In addition to the notations introduced in Section 3.8.1, we also denote the following
notations.

P =max{ X1 } —max{84 &6 gg+ &9+ £ L}
s x202(L) = p(L)’ A3 Aap &3 85 &7 &5
X1 =2L; +2, X2>p2((l,))’X3:411(1+(1+8X2+)5)
1 1 3
xa =02+ (L)) +((r2+ (L)) Lj+2L3)°, &1 = 5 + 2L + (L),

—

& =2 +,0(L2))3L]2¢ +B2p(L) + aBp(L?), &3 = aps(L) — 5 e

_é i 2 _ _l_&_;
&4 = 2(3 + p(L))a"p(L7) + &, &5 = 2 2B ZﬁPZ(L)’
g6 = %(a2+(7+3p(L2))[>’2), &7 = 1 (: = 1) 7

1728\ B
&5 = (% + %(,ﬁ + %)Lf')Lf’ £ = 3L}, e10 = 32+ p(L)LG. o1 = % B %81) %82’
12 = %(;% + %) g3 = %(511 —en+((en—en) + 1)%)’ e14 = %3 " 2,021(14)’
&5 = 2%2(—&at (8% +2- silz)%) &16 = %min{% N %84’ & %86’ ‘l_‘}

To prove Theorem 3.3, the following lemma is used, which presents the general
relations of two consecutive outputs of Algorithm 3.2.

Lemma 3.2. Let {x;} be the sequence generated by Algorithm 3.2. If Assumptions 3.1-3.3
hold and y > Ly, then

Voot T liell = [t gl 35 0P
- %(87 - %58 - }%89 - }%810)||§k+1|| » Yk € N, (3.68)
where
_ § 1 1 L o
Vie=Vi = ||xk||2%(gl+$82),{, Vi = le Viks Vi = §||xk||%<» Vak = 5”"1« + /—382 05K’

1 ~ ~
Vi = X[K(vi + Bg,?), Vg = n(f (&) = f*) = f&®) - J°,

and Q = RAIIR-r ® I, with matrices R and Al_1 given in Lemma 2.5.

3.8. Proofs 83

Proof. Noting y > Ly, from Remark 3.8, we know that the subproblem (3.15a) is solvable
and x; 4 is unique. Then noting first order optimality conditions for convex optimization
problems, we know that the algorithm (3.15) can be rewritten as

n
Xifsl = Xif — U(CY Z Lijxjr + Bvix + Vfi(xi,kﬂ)), (3.69a)
A
n n
Vigsrl = Vig + 18 Z LijXjk+1, Yxip €R?, Z vio = 0p, (3.69b)
= A

where 1 = }Y We write (3.69) in a compact form

X1 = X — n(@Lxy + Bvi + 1), (3.70a)
Vil = Vi + 7],8ka+1, Vxgo € Rnp, Z Vio = Op. (370b)
=1

From (3.70), similar to the way to get (3.29), we know that
Xis1 = Xt — 81 (3.71)
We have
gk — &I = IVf (i) = VAEOIP < Lil%eer — %l = L3 lIgea P, (3.72)

where the first inequality holds since V£ is Lipschitz-continuous; and the last equality
holds due to (3.71). Then, we have

Ig? - gell® = llg) — g0y, + &by, — ginl* < 2llg) — gb, I +2llgd,, — gesll?
< 27 L3N8k I + 2L e Ik, (3.73)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (3.30) and (3.72). Then, we have

18} — Betl? = 1H(g) - grs)IP < lig) — gearl? < 27 LGkt IP + 2L xe g, (3.74)

where the first inequality holds due to p(H) = 1; and the last inequality holds due to (3.73).
Then, we have

ki1 — xelly = PPllaLxy + By + grilly = mPllaLxy + Bvy + g5 + g — gollk
< 37 (laLxl + 11Bvi + I + llgksr — g1
< 3@ pU)Ixillg + 1Bvi + gl + 277 LI Zen IP + 2L7 1k %)

1 2
2 0
= ||xk||37]2a/2p(L2)K + HVk + _gk’

472 2 2
580 67 BRI + I B75)

84 Distributed primal—dual first-order and ADMM algorithms

where the first equality holds due to (3.70a); the first inequality holds due to the Cauchy-
Schwarz inequality, (2.5), and p(K) = 1; and the last inequality holds due to (2.6) and
(3.73).

From (3.70a), similar to the way to get (3.33), we have

Viket < Vig — el + g(l +30)lgrer — gUIP

1
B
Then, from (3.76), the Cauchy-Schwarz inequality, (2.6), and (3.73), we have

L—%K—@LZ
2
3262 o
==K

— nBx] K(vi + é g)) + “vk +-g0 (3.76)

Viker < Vig — ||xk|| —<1 +30)lgr — gLl

1
B
px A+ 3mLIgen I

~1K- 3,, a2
2
3,721,2 X

= nB(xk — Xpe1 + xk+1)TK(Vk + ég/?) + “Vk +—g}

< Vig = P + [l

nap2(LK- 1K~ *”“ p(LK n(1+3n)

(3.77)

1 2
-8

1, 2
—], K(vi + 'ggk) + 5”"“1 = Xl + HV" " B8 bppx

From (3.70b), similar to the way to get (3.35), we have

1
Vaket < Vo +nx, (BK + CYL)(Vk + ﬁg") + |11 ||77 p(ELraL?)
1, I Iy 1 av o o
= +|l=+— + = - . 3.78
,ng 2Q+EK) (BZ 277,3)(,02(14) ,3)”ng gl ()

Then, from (3.78), (2.6), (2.8), and (3.72), we have

2

+ ”Vk +

1
V2 k+1 < V2k + nkar](ﬁK + Q’L)(Vk + ﬂgk) + ||xk+]|| 2ﬁ(ﬁp(L)+0p(L2))K

1 o|1? n 1 LAY 2
— + —)—— + =)L|| [|°. (3.79)
Ing E(m(Lf“Z)K n(ﬁz 2:8)(PZ(L) ﬁ) 718k

+ Hvk +

We have

1
~(gh1 — &)

1 1
Vage1 = x2+1K(Vk+1 + ngﬁ) =x. K + ng + nBLxy 1 + F

|
-gY)

= (xx — n(@Lxy + Pvi + g0 + get — g0)) Ky + 3

1
E(g,‘;l - g)

égﬁf) — i+ égﬁni —ngre — g K(vi + égi)

1
Bxl-crHK(ggH - gg)

+x[, K(npLxy1 +
= x{ (K —naL)(v; +

T
+ nﬁkakaH +

3.8. Proofs 85

1 1 2 n 1 2
TR _ L oy Lo _ O 4 Lo
< [(K - neL)(v + ng) B+ g8l + Sl — 8l + S+ el
+nBxg L + 5 ||xk+1||K 5 ﬂzugk+1 o
1 1 I o2
<x K@ + ﬁgk) —Na(Xg — Xpy1 + Xpy1) L(Vk + ,ng) Hvk + ,Eg"“n(ﬁ—%)K
2
2 2 2 2
+ 7 L3118t IP + L x|l + ||xk+1||vK+nﬁL 2ﬁ2 gl
L ol s L o p(L?) 2
< Vi — “Vk + Engn(ﬂ—%)K + T“ k+ Eg ”K + lex — xrs1llx

1
T 0 3 2
— nax [, Lve + Egk) +(n’ + ﬁ)L @l + 0ty o

= Vi — r]ax,lr]L(Vk + ’égg) H _ng KPR
p(L?)

T

2 2 = 2 2
leer = xelly + (7 +2ﬂz) L3z P + Wl o g G80)

where the second equality holds due to (3.70b); the third equality holds due to (3.70a);
the forth equality holds due to (2.5); the first inequality holds due to the Cauchy-Schwarz
inequality, (2.5), and p(K) = 1; the second inequality holds due to (3.72) and (3.73); the
third inequality holds due to the Cauchy-Schwarz inequality; and the last inequality holds
due to (2.6).

From f is smooth and (3.71), similar to the way to get (3.39), we have

Vager < Vag — Z(l —2nLp)lIgisi I + g“gk ginll - —Ing||2 (3.81)
Then, from (3.81) and (3.74), we have
Vaget € Vag = 201 = 20L; = 4P LDlgen I + Wkl = g (3.82)
Then, we have
Vier < Vi = llxil?

stz + (L 3L g P

napa(L)K— 'IK 3'12"2 (LZ)K n(1+3n)

1 2 1 0 2 2
e =+ e 2l B sk
n 1 1 ay\ o~ o
vk+—g1| (s 4 52—+) gkl
H k 2/3(;72(1)K+(’K) (Bz 2:8)(PZ(L) ﬂ) s ’
P(Lz) 2 3 _ 2
~ [l —gk“ g g e = w07+ g
n
L AP Z“ = 0Ly = 4P LGP+ i — BN

86 Distributed primal—dual first-order and ADMM algorithms

Vil 2
Tk ”xk”q(apz(L)—%)K—r;Z%,)(LZ)K+”xk“||nslK+n2(3L2,+ﬁ2p(L)+wﬁp(L2))K
L o2 1+p(L?) 2 Mo
—|vk + =) + — w1 — Xl — 118
R L L1

272 5 2
—n(e7 —neg = 3" Ly(1 + m)||8x+1
2 2 n5012
< — — =
- Vk ”xk”n(a/pz(L)—%)K—r]2¥p(L2)K + ||xk+1||1]8|K+I]2(3L§,+ﬁ2p(L)+(1ﬁp(L2))K 4||gk||

1+p(L?) 2 L ol 412115 2 2
g+ [+ 580 67 LRI + Bt)
N = (e = nes = 3PLA(L +)i P (3.83)

¢ B k nesK—n2 (% +28)K e es TEy g kil ’

where the first inequality holds due to (3.77), (3.79), (3.79), and (3.82); and the second
inequality holds due to (3.75).
Combining and rearranging terms in (3.83) gives (3.68). O

We are now ready to prove Theorem 3.3.
p(L)

1 1
From m(p(L)ﬁ + x1) < a, we have % > D 2 1. Then, we know &12 > 3. Thus,

2 - 8+2 > (. Hence,
g5 > 0. (3.84)

Then, from 0 < n = % < £15, we have 4g;,e1, > 1. Hence,

1
5 > g1 —€e13> 0. (3.85)

From ﬁ(p(L)ﬁ +x1) < a, we have

&3 = apy(L) = Bo(L) = 2L7 =2 > 1 = 2L; -2 =0. (3.86)
Hence, from 0 < 5 < Z—: and (3.86), we have
n(es —neg) > 0. (3.87)

From a < y»B and 8 > y3, we have

1 X2 1
es2(B->-52)- 00> (3.88)

Hence, from 0 < 7 < i—; and (3.88), we have
n(es — nee) > 0. (3.89)
From (3.87) and (3.89), we have
g16 > 0. (3.90)

3.8. Proofs 87

From a < y»f and 8 > y4, we have
>1 1(1+ 1
e > —(=+ ——
T4 BB,

From Xz > 1, we have y3 > 1. Thus, 8 > 1. Thus, n < i—i < =< % Hence, from

+x2)L7 > 0. (3.91)

O<np< 88+6 +80 and (3.91), we have
n(e7 — &s1 — &o11° — £101°) > (&7 — &87 — £o1 — E1077) > 0. (3.92)
Noting that 8 > y4 > V2L; and 0 < &5 < 3, we know y > %> ;"’ >E 7‘fo > Ly.

Thus, the conditions needed in Lemma 3.2 are all satisfied. Thus (3.68) holds
We know

7, = (% —em- 827]2)||xk||%< + %”vk + égiH;gK + x,:K(vk + [%gﬁ) + Vax
B

> &yllxllk + 812||Vk + égi’ni — ensllxlly - %ank + égini + Vi
= (e11 - 813)(||xk||%(+ Hvk + égiwi) + Vi (3.93)
> (&1 — 13)Vi 2 0, (3.94)

where V. is defined in (3.45); the first inequality holds due to (2. 8) and the Cauchy-Schwarz
inequality; the second equality holds due to 11 — &3 = & — and the last inequality

48 ;
holds due to (3.85). Similarly, we have
Vi < Vi < g4V (3.95)
From (3.68), (3.92) and K > 0, we know that
Vicer < Ve = 1000, oy enseonic — 6 + ngﬂ(e~ B
s 1 or
< Vi = eno(lwalc + e+ [+ 1gIP) (3.96)

Then, (3.96) yields
T T _ T 1 P
Z 1< 2 Viem e 3 (el + o+ g+ gdie). (3.97)
k=0 k=0 k=0
Then, (3.97) yields

T
Ve + 16y (Il + e + égi”i +IZIP) < Vo, (3.98)
k=0

88 Distributed primal—dual first-order and ADMM algorithms

From (3.98), (3.90), and (3.94) we know that

ol + [vic + };ggllﬁg + 12217 Vo
< , YT € Ny, 3.99
T+1 e +1) S0 (3.99)
which yields (3.16) and (3.17).
From (3.98), (3.85), (3.90), and (3.93) we know that

i} .V
SGra) = f < —, VT € Ny, (3.100)

n

which gives (3.18).

3.8.4 Proof of Theorem 3.4

In addition to the notations defined in Sections 3.8.1 and 3.8.3, we also denote the following
notations.

Vo £17 . 1 1 y
EpH=—, E= 1- —, €17 = —mln{83 — —&4, & — —&g, —}.
11 — €13 €14 Y Y Y 2
From (3.87) and (3.89), we have
eg17 > 0. (3.101)

Then, from (3.92), (3.45), (3.61), (3.101), and (3.95) we have

Ve <Vi—enV < V- 277, (3.102)
E14
Noting that &5 < B, £ > 247, and &14 > % > 1, we have
0 5 1 3.103
< - <5 < .
< é&17 < nes —neg) < Jee <1 ()

From (3.102), (3.94), and (3.103), we have

~ ~ k+1 .
Veer < (1 - E—Z)Vk <(1- Z—Z) . (3.104)

Hence, from (3.94) and (3.85), we have

* = * {/ V
Il = Ell® + n(f () = £5) = lbeellx +n(fGa) = £ < Vi < ﬁ (3.105)
Hence, (3.104) and (3.105) give
- _ . Vo E17\k
e — P + n(f () —) < ———(1-22Y, vk e Ny, (3.106)
€11 — €13 €14

which yields (3.19).

3.8. Proofs 89

3.8.5 Proof of Theorem 3.5

In addition to the notations defined in Sections 3.8.1 and 3.8.3, we also denote the following
notations.

¢ =max{/%—1 X3 X4} Z =max{é—4 g6 &8 L}
g xo2(L) - p(L)” ¥ A 5 5 & Bl
1 1 1
Y= EL.?“JF Lén=75- ;él -)752, &3 = —(511 —en+ (@ —en) + 1)%),
o 1 . o2 1\3\ o 1 . 1. 1 1
E15 = 2 —8]+8+2—— , €16 = —MIN\E3 — —&4, E5 — —&g, — (-
282((! 812)) Y { Y Y 4}

Similar to Lemma 3.2, we have the following lemma, which presents the general
relations of two consecutive outputs of Algorithm 3.3.

Lemma 3.3. Let {x;} be the sequence generated by Algorithm 3.3. If Assumptions 3.1-3.3
hold, then

2 1 1 1
—I8Y12 - (&7 — —e&s)llgill
k 7< y)

1 0
| i(ES_%E())K - 4y
(3.107)

y y)
< — — —
Vier < Vi ||xk||$(és_%54)K ”Vk + 58

where
y .1 3
Vi = Vie= Il 2 0 81 = 5 +BP(D); & = Fp(L) + afp(L?),
.1 . . 3 y
& = 5Qapa(L) =1 =3L)) = &, &4 = 52 +p(L))@’p(LY) + L)) + &>.

Proof. This proof is similar to the proof of Lemma 3.2 with some modifications.
We rewrite the distributed linearized ADMM algorithm (3.21) into the compact form

Xi+1 = X — naLxy + By + gi), (3.1082)
Virt = Vi + IBLX1, Vxg € R, D v =0, (3.108b)
j=1
From (3.108), we know that (3.29)—(3.31) still hold. Thus, (3.40) also holds.
From (3.30) and p(H) = 1, similar to the way to get (3.75), we have

1
2 2 0

kst =0 < 10 s+ [P+ 5880 (3.109)

From (3.108a) and (3.30), similar to the way to get (3.77), we have

< _ 2
Vl,k+l = Vl,k ”xk”%(ZQpZ(L)—l—LJZc)K_%(QZP(LZ)'FL;)K
1 1 1 .12
T 0 2 0

—], K(vi + ng) + 5 Iker = xull + Hvk + Egk‘ - (3.110)

90 Distributed primal—dual first-order and ADMM algorithms

From (3.108b) and (3.32), similar to the way to get (3.79), we have

1
Vagar < Vag +nx, (BK + aL)(vy + ng) + ”xk+1”2Zﬁ(ﬁp(L)+ap(Lz))K

l 2 YA Q 2015 (12
+||vk+18gk”2pm(“+ﬁ)K 77(132 2/5')((L) ﬁ)LfIng||~ (3.111)

From (3.108), (3.29), (3.30), and (3.32), similar to the way to get (3.80), we have

1 0 1 2
Vi1 < Vag —naxy, Lvi + ng) = |lvx + ngll NN
2
P(Lz) 2 2
+ 2 ||xk+l xk”K + ”-xk“'lLZK + ||xk+1||g(]+2BP(L))K 2ﬁ2 ”gk” (3112)

From (3.109)—(3.112) and (3.40), similar to the way to get (3.68), we know that (3.107)
holds. =

Finally, similar to the way to get (3.99) and (3.100), we have

Si_oUlall® + v + 28015 +12°1%) V.
LK PO PH 7 0 yTeN,, (3.113)
T+1 816(T +1)
_ . W
fGra) = ' < =L VT €N, (3.114)

From (3.113), we have (3.22) and (3.23).
From (3.114), we have (3.24).
3.8.6 Proof of Theorem 3.6

In addition to the notations defined in Sections 3.8.1, 3.8.3, and 3.8.5, we also denote the
following notations.

o Vo . &7 1 1 v
go=g—F &=1-—, 8= —mm{s; — —&4, & — —&, —}.
&1 — &3 €14 Y Y Yy 2
Similar to they way to get (3.106), we have
o - . Vo &17\k
e = 24l + n(f(R) =) < ——5—(1 - =)', Yk e Ny, (3.115)

&1 — &3 £14

which yields (3.25)

Chapter 4

Distributed primal—dual SGD optimization
algorithm

In this chapter, we consider the distributed nonconvex optimization problem with stochastic
gradient feedback, i.e., each agent is only able to collect stochastic gradients of its local
cost function. We propose a distributed primal-dual stochastic gradient descent (SGD)
algorithm, suitable for arbitrarily connected communication networks and any smooth cost
functions. We show that the proposed algorithm converges to a stationary point with the
linear speedup convergence rate O(1/ VnT) for smooth nonconvex cost functions, and to
a global optimum with the linear speedup convergence rate O(1/(nT)) when the global
cost function satisfies the P-t£ condition in addition, where n and 7 are the number of
agents and the total number of iterations, respectively. We also show that the output of
the proposed algorithm with constant parameters linearly converges to a neighborhood of
a global optimum. We finally demonstrate through numerical simulations the efficiency
of our algorithm in comparison with the baseline centralized SGD and recently proposed
distributed SGD algorithms.

This chapter is organized as follows. Section 4.1 gives the background. Section 4.2
introduces the problem formulation and assumptions. Section 4.3 presents the distributed
primal—dual SGD algorithm and analyzes its convergence properties. Simulations are given
in Section 4.4. Concluding remarks are offered in Section 4.5. To improve the readability,
all the proofs can be found in Section 4.6

4.1 Introduction

In general, SGD algorithms are suitable for scenarios where explicit expressions of the
gradients are unavailable or at least difficult to obtain. For example, in empirical risk
minimization, the actual gradient hass to be calculated from the entire data set, which
results in a heavy computational burden. A stochastic gradient can be calculated from a
randomly selected subset of the data and is often an efficient way to replace the actual
gradient. Other examples when SGD algorithms are suitable include scenarios where data
are arriving sequentially such as in online learning [244].

91

92 Distributed primal-dual SGD optimization algorithm

When the communication network is a star graph, various parallel SGD algorithms
have been proposed. A potential performance bottleneck of such algorithms lies on the
communication burden of the master. To overcome this issue, a promising strand of
research is combining parallel SGD algorithms with communication reduction approaches,
e.g., asynchronous parallel SGD algorithms [245-249], gradient compression based
parallel SGD algorithms [246,250-253], periodic averaging based parallel SGD algorithms
[33, 251, 252, 254-257], and parallel SGD algorithm with dynamic batch sizes [258].
Convergence properties of these algorithms have been analyzed in detail. In particular,
in [33,251,255,258], the linear speedup convergence rate O(1/ nT) has been established
for smooth nonconvex cost functions, where n and T are the number of agents and the total
number of iterations, respectively. In [257,258], the convergence rate has been improved to
O(1/(nT)) when the global cost function satisfies the P-t. condition, which also achieves a
linear speedup. In addition to the star architecture restriction, aforementioned parallel SGD
algorithms require certain restrictions on the cost functions, such as bounded gradients of
the local cost functions or bounded difference between the gradients of the local and global
cost functions.

Distributed algorithms executed over arbitrarily connected communication networks
have been suggested to overcome communication bottlenecks for parallel SGD algorithms.
Various distributed SGD algorithms have been proposed, e.g., synchronous distributed
SGD algorithms [31, 33, 129, 130], asynchronous distributed SGD algorithms [131, 132],
compression based distributed SGD algorithms [133-136], and periodic averaging based
distributed SGD algorithm [137]. Convergence properties of these algorithms have been
analyzed and the linear speedup convergence rate O(1/ VnT) has been established for
smooth nonconvex cost functions in [31, 33, 132, 133, 135-137]. However, similar to
aforementioned parallel SGD algorithms, these distributed algorithms require restrictive
assumptions on the cost functions. In order to remove these restrictions, the authors of [32]
proposed a variant of the distributed SGD algorithm proposed in [31], named D?, in which
each agent stores the stochastic gradient and its local model in last iteration and linearly
combines them with the current stochastic gradient and local model. For this algorithm
the authors established the linear speedup convergence rate O(1/ VnT), but they required
that the eigenvalues of the mixing matrix associated with the communication network
are strictly greater than —1/3. The authors of [138, 139] proposed distributed stochastic
gradient tracking algorithms suitable for arbitrarily connected communication networks.
However, these algorithms only achieve an O(1/ VT) convergence rate, which is not a
speedup. Moreover, gradient tracking algorithms have the common potential drawback that
in order to track the global gradient, at each iteration each agent needs to communicate one
additional p-dimensional variable with its neighbors. This results in heavy communication
burden when p is large. Note that all aforementioned distributed SGD algorithms converge
to stationary points, which may be local or global optima, or saddle points. None of existing
studies on distributed SGD algorithms consider finding global optima when the global cost
function satisfies some additional properties, such as the P-L. condition studied for the
parallel algorithms in [257,258].

Noting above, two core theoretical questions with important practical relevance arise.

4.2. Distributed nonconvex optimization with stochastic gradient feedback 93

(Q4.1) Are there any distributed SGD algorithms that not only are suitable for arbitrarily
connected communication networks and any smooth cost functions, but also find
stationary points with the linear speedup convergence rate O(1/ VnT)?

(Q4.2) If the P-L condition holds in addition, can the above SGD algorithms find global
optima with the linear speedup convergence rate O(1/(nT))?

This chapter provides positive answers to the above two questions. More specifically,
the contributions of this chapter are summarized as follows.

(C4.1) We propose a distributed primal-dual SGD algorithm (Algorithm 4.1), which is
suitable for arbitrarily connected communication networks and any smooth (possibly
nonconvex) cost functions.

(C4.2) We show in Corollary 4.1 that our algorithm finds a stationary point with the linear
speedup convergence rate O(1/ VnT) for smooth nonconvex cost functions, thus
(Q5.1) is answered. Compared with [31-33, 132, 133, 135-137, 251, 255, 258], we
achieve the same convergence rate but under weaker assumptions related to network
architectures and/or cost functions, and compared with [138, 139], we not only
achieve linear speedup but also just use half communication in each iteration.

(C4.3) We show in Theorem 4.3 that our algorithm finds a global optimum with the linear
speedup convergence rate O(1/(nT)) when the global cost function satisfies the P—
L condition, thus (Q5.2) is answered. Compared with [136, 140, 141, 257-259] ,
we achieve the same convergence rate but under weaker assumptions related to
network architectures and/or cost functions, and compared with [129,252,260-264],
we not only establish linear speedup but also relax the strong convexity by the P-L.
condition.

(C4.4) We show in Theorems 4.4 and 4.5 that the output of our algorithm with constant
parameters linearly converges to a neighborhood of a global optimum when the
global cost function satisfies the P-L. condition. Compared with [129, 264-267],
which used the strong convexity assumption, we achieve the similar convergence
result under weaker assumptions on the cost function.

Table 4.1 compares this chapter with other SGD optimization algorithms.

4.2 Distributed nonconvex optimization with stochastic gradient
feedback

Consider a network of n agents, each of which has a local cost function f; : R? — R. All
agents collaborate to solve the optimization problem

. 1<
min f(x) = - ; fi(x). @.1)

94

Distributed primal-dual SGD optimization algorithm

Table 4.1: Comparison of Chapter 4 to some related SGD optimization algorithms.

Reference Problem type Extra assumption Communication strategy Com:gz:ldcsatlon Convergence rate
[251] Nonconvex Bounded ||Vf; — V|| Star graph, one quantized variable Om>AT3/%) O(1/NnT)
Nonconvex O(1/NT)
252 Identical V Star graph, one quantized variable or
(2521 Strongly convex g rap g @ o(1/T)
[255] Nonconvex Bounded [IV£]| Star graph, one variable Om34131%) O(1/NnT)
Nonconvex Star graph, two variables O3 4T3/%)
33 Bounded [V f; — Vf]| O(1/NnT
1331 v Al Connected graph, two variables o(T) A/ ~nT)
[257] P-L. condition Identical Vf; Star graph, one variable o((nT)'?) O(1/(nT))
Nonconvex Identical Vf;, O(VnT log(T /n)) O(1/ VnT)
[258] — exponentially Star graph, one variable
P-L. condition increasing batch size O(log(T)) O(1/(nT))
Nonconvex o(1/T?), ¥6 € (0,0.5)
[129] Strongly convex Bounded ||V fi| Connected graph, one variable o) . O(I/T);.
linearly to a neighbor
[31] Nonconvex Bounded ||V f; — V]| Connected graph, one variable o) O(1/VnT)
. oy Uniformly jointly strongly
[132] Nonconvex Bounded [IVf; — V£l connected digraph, one variable o) O(1/VnT)
. ur Connected graph,
[133] Nonconvex Bounded [IVf; = VfIl one compressed variable o) O(1/VnT)
. Strongly connected digraph,
[135] Nonconvex Bounded ||V £l one quantized variable o) O(1/VnT)
Nonconvex Connected graph. O(1/VnT)
[136] Bounded ||V ;| L Event-triggered
Strongly convex one compressed variable O(1/(nT))
[137] Nonconvex Identical Vf; Connected graph, one variable O > \NT) O(1/ VnT)
The eigenvalues of
N the mixing matrix N . .
[32] Nonconvex are strictly greater Connected graph, one variable o) O(1/ VnT)
than —1/3
[138,139] Nonconvex No Connected graph, two variables o) o1/ \/T)
[259] Strongly convex Bounded ||Vl Star graph, one variable O(NT/n) O(1/(nT))
. Connected graph,
[140] Strongly convex Bounded ||V £l one compressed variable o) O(1/(nT))
[141] Strongly convex No Connected graph, two variables o(T) O(1/(nT))
[260] Strongly convex Identical Vf; Connected graph, one variable o(T) o(1/T)
[261] Strongly convex No Connected graph, one variable ONT) o(1/T)
3 Uniformly jointly strongly
[262] Strongly convex Bounded ||V ;]| connected digraph, one variable o) o1/T)
5 Connected graph in expectation,
[263] Strongly convex No one variable o) oQ1/T)
[264] Strongly convex No Connected graph, one variable o(T) o/T;
e ’ linearly to a neighbor
[265] Strongly convex No Connected graph, one variable o) Linearly to a neighbor
[266] Strongly convex No Connected graph, two variables o) Linearly to a neighbor
Strongly connected digraph, . .
[267] Strongly convex No two variables o(T) Linearly to a neighbor
Nonconvex O(1/ VnT)
This) . o(1/(T?), Vo € (0,1);
chapter Pt condition No Connected graph, one variable o(T) lincarly to a neighbor

O(1/(nT))

4.2. Distributed nonconvex optimization with stochastic gradient feedback 95

This is the same as the distributed nonconvex optimization problem (3.1). However, in
this chapter, we consider the case where each agent is only able to collect the stochastic
gradients rather than the actual gradient of its local cost function. Specifically, at each
iteration k and given any x € RP, each agent i knows g;(x,&;x) which is a stochastic
estimation of Vf;(x), where &; is a random variable.

Based on the definitions introduced in Chapter 2, the following assumptions are made.

Assumption 4.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 4.2. The set X* is nonempty and f* > —oo, where X* and f* denote the
optimal set and the minimum function value of the optimization problem (4.1), respectively.

Assumption 4.3. Each local cost function fi(x) is smooth with constant Ly > 0.

Assumption 4.4. The global cost function f(x) satisfies the P—L. condition with constant
v > 0.

Assumption 4.5. The random variables {&;y, i € [n], k € Ny} are independent of each
other.

Assumption 4.6. The stochastic gradient g;(x, &) is unbiased, i.e., for all i € [n], k € Ny,
and x € R?,

Eg [gi(x, &)l = V fi(x). 4.2)

Assumption 4.7. The stochastic gradient g;(x,&;) has bounded variance, i.e., there exists
a constant o such that for all i € [n], k € Ny, and x € R?,

Eg, [llgi(x, &) — VAWIP < 0. 4.3)

Remark 4.1. Assumptions 4.5 and 4.6 are standard in the study of using SGD methods
to solve optimization problems. The bounded variance assumption (Assumption 4.7) is
weaker than the bounded second moment (or bounded gradient) assumption made in [129,
130, 135, 136, 140, 143, 245-247, 249, 253, 255, 259, 262]. Moreover, note that we make
no assumption on the boundedness of the deviation between the gradients of local cost
functions. In other words, we do not assume that i SEIVEAG) = VAOI? is uniformly
bounded, which is commonly done in studies of deep learning, e.g., [31, 33, 131-133,251,
255]. Also, we do not assume that the mean of each local stochastic gradient is the gradient
of the global cost function, i.e., Eg[gi(x,&)] = Vf(x), Vx € RP, Vi € [n], which is commonly
assumed in studies of empirical risk minimization and stochastic optimization, e.g., [134,
137,248, 250,252,254, 256-258, 260].

Our goal in this chapter is to answer (Q4.1) and (Q4.2), i.e., solve the following
problem.

Problem 4.1. Propose a distributed SGD algorithm for the nonconvex optimization
problem (4.1) such that stationary points or global optima can be found at linear speedup
convergence rates.

96 Distributed primal-dual SGD optimization algorithm

Algorithm 4.1 Distributed Primal-Dual SGD Algorithm
1: Input: parameters {ay}, {8k}, {nmx} € (0, +00).
2: Initialize: x;0 € R” and v;p = 0,, ¥i € [n].
3: fork=0,1,... do
4. fori=1,...,nin parallel do

5 Broadcast x;; to NV; and receive x;; from j € Nj;
6: Sample stochastic gradient g;(x;«, & x);

7: Update x;x+1 by (4.4a);

8: Update v; x4 by (4.4b).

9: end for

10: end for

11: Output: {x}.

4.3 Distributed primal-dual SGD algorithm

In this section, we propose a distributed SGD algorithm and analyze its convergence
properties.

4.3.1 Algorithm description

Based on the distributed primal-dual FO algorithm (3.7), we propose the distributed
primal-dual SGD algorithm

n
Xik+l = Xif — Uk(ak Z Lijxjx + Brvik + gﬁfk), (4.4a)
=

Viksl = Vi + MiBr Z Lijxjk, Yxip € RP, vip =0,, Vi€ [n], (4.4b)
=

where 17, > 0 is the stepsize at iteration k, @ > 0 and 8; > 0 are the values of the parameters
a and S at iteration k, respectively, gl”.fk = gi(xik. &ix) 1s the stochastic gradient of f; at x;x,
and &; is a random variable.

We present the distributed stochastic gradient primal—dual algorithm (4.4) in pseudo-
code as Algorithm 4.1.

It should be pointed out that {ax}, {Bx}, (), Xi0, Vi, and v;; in Algorithm 4.1 are
deterministic, while {x; ¢ }x>1 and {v;}i>2 are random variables generated by Algorithm 4.1.
Let % denote the o-algebra generated by the random variables &y, ..., &, and let 7 =
UI;:1 &s. It is straightforward to see that x;; and v;x41, i € [p] depend on F_; and are
independent of §; for all s > k.

4.3.2 Convergence analysis

In this section, we analyze the convergence rate of Algorithm 4.1.

4.3. Distributed primal—dual SGD algorithm 97

Find stationary points

Let us consider the case when Algorithm 4.1 is able to find stationary points. We have the
following convergence results.

Theorem 4.1. Suppose Assumptions 4.1-4.3 and 4.5-4.7 hold. Let {x;} be the sequence
generated by Algorithm 4.1 with

P
= KiPr, P =B, mk = /?i, Vk € Ny, 4.5)

where k1 > ¢y, k» € (0, ca(ky)), and B > co(ky, k2) with co(k1,k2), 1, c2(k1) > 0 defined in
Appendix 4.6.2. Then, for any T € N,

Ly 1E =0 ! (@) ! 4.6

72 - an,k—xku () + Oz, (4.6a)
1 T-1 ,8

7 2 IV G0IF) = 06 70 + O ﬁ>+0< >+0<ﬁ> (4.6b)
B[] - £ = O + O(-) + (), (4.60)

np’ B’

where X, = % D Xike

Proof. The explicit expressions of the right-hand sides of (4.6a)—(4.6c) and the proof are
given in Appendix 4.6.2. It should be highlighted that the omitted constants in the first

two terms in the right-hand side of (4.6b) do not depend on any parameters related to the
communication network. O

Noting the right-hand side of (4.6b), the linear speedup in the number of agents can be
established if we set 8 = «; \NT / \/n, as shown in the following.

Corollary 4.1 (Linear speedup). Under the same assumptions as in Theorem 4.1, let B =
K2 \/T/ \n. Then, for any T > max{n(co(ki, k2)/x2)?, 13},

»\J

-1

1 n

= E Il — Xkll =0(3), 4.7a)
T = Z T

1S 1

= > E[IVAEIP] = O()+ O(ﬁ), (4.7b)
T = VnT T

E[f(xp)] - f* = O(D). (4.7¢)

Remark 4.2. It should be highlighted that the omitted constants in the first term in the
right-hand side of (4.7b) do not depend on any parameters related to the communication
network. The same linear speedup result as in (4.7b) was also established by the
SGD algorithms proposed in [31-33, 132, 133, 135-137, 251, 255, 258]. However, in

98 Distributed primal-dual SGD optimization algorithm

[31,33,132,133,251], the additional assumption that the deviation between the gradients
of local cost functions is bounded was made; in [135, 136,255], it was required that each
local stochastic gradient has bounded second moment; in [137,258], it was assumed that
the mean of each local stochastic gradient is the gradient of the global cost function;
and in [32], it was required that the eigenvalues of the mixing matrix are strictly greater
than —1/3. Moreover, the algorithms proposed in [251, 258] are restricted to a star
graph; the distributed momentum SGD algorithm proposed in [33] requires each agent i
to communicate one additional p-dimensional variable besides the communication of
Xix with its neighbors at each iteration; and the algorithm proposed in [258] requires
an exponentially increasing batch size, which is not favorable in practice. Under the
same conditions, the well-known O(1/ NT) convergence rate, which is not a speedup,
was achieved by the distributed stochastic gradient tracking algorithm proposed in
[138, 139]. Moreover, similar to the distributed momentum SGD algorithm proposed in
[33], one potential drawback of the distributed stochastic gradient tracking algorithms
is that at each iteration each agent needs to communicate one additional variable. The
potential drawbacks of the results stated in Corollary 4.1 are that (i) we do not consider
communication efficiency, which was considered in [133, 135-137, 251, 255, 258]; and
(ii) we use time-invariant undirected graphs rather than directed graphs as considered in
[132,135]. We leave the extension to the time-varying directed graphs with communication
efficiency as future research directions.

Find global optima

Let us next consider cases when Algorithm 4.1 finds global optima. We have the following
global convergence results.

Theorem 4.2. Suppose Assumptions 4.1-4.7 hold. For any given T > (co(k1, k2)/k2)"?, let
{xk, k € [T]} be the output generated by Algorithm 4.1 with

K
ar = k1B P = k(T + D, iy = ﬁ—i Vk<T, (4.8)

where 6 € (0,1), k1 > ¢1, k2 € (0, ca(ky)). Then,
Z llxir — %] (T29> (4.92)

E[f(xr) - f7] —0(73) T Olgg)- (4.9b)

T2(-)
Proof. The explicit expressions of the right-hand sides of (4.9a) and (4.9b), and the proof
are given in Appendix 4.6.3. It should be highlighted that the omitted constants in the
first term in the right-hand side of (4.9b) do not depend on any parameters related to the
communication network. O

From Theorem 4.2, we see that the convergence rate is strictly greater than O(1/(nT)).
In the following we show that the linear speedup convergence rate O(1/(nT)) can be

4.3. Distributed primal—dual SGD algorithm 99

achieved if the P-E constant v is known in advance and each f > —oo, where f =
min,ery fi(x). The total number of iterations 7 is not needed.

Theorem 4.3 (Linear speedup). Suppose Assumptions 4.1-4.7 hold, and the P—L. constant
v is known in advance, and each f! > —oo. Let {x;} be the sequence generated by
Algorithm 4.1 with

K
@ = k1B, Br = Kok +11), 1y = /3_1’ Yk € Ny, (4.10)

where ky € [Covka [4,VvKr[4), K1 > ¢y, k2 € (0, C2(ky)), and t; > ¢3(ko, K1, k2) with &g € (0, 1)
being a constant, ¢;(k1) and ¢3(kg, k1, k2) defined in Appendix 4.6.4. Then, for any T € N,,

1< _ 1
B[le ki = %l = O, (4.11a)
_ . 1 1
EIf(%1) = 1= O(~) + O(5). (4.11b)

Proof. The explicit expressions of the right-hand sides of (4.11a) and (4.11b), and the
proof are given in Appendix 4.6.4. It should be highlighted that the omitted constants in
the first term in the right-hand side of (4.11b) do not depend on any parameters related to
the communication network. O

Remark 4.3. It has been shown in [143] that O(1/T) convergence rate is optimal
for centralized strongly convex optimization. This rate has been established by various
distributed SGD algorithms when each local cost function is strongly convex, e.g., [129,
252,260-264]. In contrast, the linear speedup convergence rate O(1/(nT)) established in
Theorem 4.3 only requires that the global cost function satisfies the P—L. condition, but
no convexity assumption is required neither on the global cost function nor on the local
cost functions. The SGD algorithms in [136, 140, 141, 257-259] also achieved this linear
speedup convergence rate. However, the algorithms in [257-259] are restricted to a star
graph, while our algorithm is applicable to an arbitrarily connected graph. Moreover,
[257, 258] assumed that the mean of each local stochastic gradient is the gradient of the
global cost function, and T has to be known to choose the algorithm parameters. The
algorithm in [258] furthermore required an exponentially increasing batch size, which is
not favorable in practice. In [259], it was assumed that the global cost function is strongly
convex. In [136, 259], it was assumed that each local stochastic gradient has bounded
second moment. In [136, 140, 141], it was assumed that each local cost function is strongly
convex. It is one of our future research directions to achieve linear speedup with reduced
communication rounds and communication efficiency for an arbitrarily connected graph.

Theorem 4.3 show that the convergence rate to a global optimum is sublinear when
we allow the algorithm parameters to be time-varying. The following theorem establishes
that the output of Algorithm 4.1 with constant algorithm parameters linearly converges to
a neighborhood of a global optimum.

100 Distributed primal-dual SGD optimization algorithm

Theorem 4.4. Suppose Assumptions 4.1-4.7 hold. Let {x;} be the sequence generated by
Algorithm 4.1 with

K

a =a=kKpB, B =P nk=n=§, Vk € Ny, (4.12)
where k| > ¢y, kp € (0, c2(k1)), and B > co(ky, k2) with co(k1, k2), c1, c2(k1) > 0 defined in
Appendix 4.6.2. Then,

1< y
B[~ D s = %l + () — f*] < (=) es + esno, Yk € N, (4.13)
i=1

where € € (0, 1/n), ca4, cs > 0 are constants defined in Appendix 4.6.5.
Proof. The proof is given in Appendix 4.6.5. m|

Remark 4.4. It should be highlighted that we do not need to know the P-£. constant v
in advance. Similar convergence result as stated in (4.13) was achieved by the distributed
SGD algorithms proposed in [129, 264-267] when each local cost function is strongly
convex, which obviously is stronger than the P—L. condition assumed in Theorem 4.4. In
addition to the strong convexity condition, in [129], it was also assumed that each local
cost function is Lipschitz-continuous. Some information related to the Lyapunov function
and global parameters, which may be difficult to get, were furthermore needed to design
the stepsize. Moreover, in [264-267], the strong convexity constant was needed to design
the stepsize and in [266, 267], a p-dimensional auxiliary variable, which is used to track
the global gradient, was communicated between agents. The potential drawbacks of the
results stated in Theorem 4.4 are that (i) we use undirected graphs rather than directed
graphs as considered in [267]; and (ii) we do not analyze the robustness level to gradient
noise as [264] did. We leave the extension to the (time-varying) directed graphs and the
robustness level analysis as future research directions.

The unbiased assumption, i.e., Assumption 4.6, can be removed, as shown in the
following.

Theorem 4.5 (Biased SGD). Suppose Assumptions 4.1-4.5 and 4.7 hold. Let {x;} be the
sequence generated by Algorithm 4.1 with

K
ar = a=kiB, B =B, 7]k=’7=EZ’ Vk € N, (4.14)

where k1 > ci, ky € (0,c2(k1)), and B > Co(ky, ko) with Co(ky, k) > 0 and ¢y, c(ky) > 0
defined in Appendices 4.6.6 and 4.6.2, respectively. Then,

1 v . "
E[= 3 lhvix = Bl + (5 - £ < (1= neles + Es0%, VEEN,, (4.15)
ni:l

where € € (0, 1/n), c4 > 0 and ¢s > 0 are constants defined in Appendices 4.6.5 and 4.6.6,
respectively.

4.4. Simulations 101

Figure 4.1: Communication network in NN experiment.

Proof. The proof is given in Appendix 4.6.6. O

Remark 4.5. By comparing (4.13) with (4.15), we can see that no matter the unbiased
assumption holds or not, the output of Algorithm 4.1 with constant algorithm parameters
linearly converges to a neighborhood of a global optimum, but the size of neighborhood is
different. Specifically, in (4.13) the size of neighborhood is in an order of O(n), while it is
O(1) in (4.15).

4.4 Simulations

In this section, we evaluate the performance of the proposed distributed primal-dual SGD
algorithm through numerical simulations.

4.4.1 Training of neural networks

We consider the training of neural networks (NN) for image classification tasks of the
database MNIST [268]. The same NN is adopted as in [130] for each agent and the
communication graph is generated randomly. The communication network is shown in
Figure 4.1 and the corresponding Laplacian matrix L is given in (4.16). The corresponding
mixing matrix W is constructed by metropolis weight, which is given in (4.17).

We compare our proposed distributed primal-dual SGD algorithm with time-varying
and fixed parameters (DPD-SGD-T and DPD-SGD-F) with state-of-the-art algorithms:
distributed momentum SGD algorithm (DM-SGD) [33], distributed SGD algorithm (D-
SGD-1) [31, 129], distributed SGD algorithm (D-SGD-2) [130], D? [32], distributed
stochastic gradient tracking algorithm (D-SGT-1) [138,267], distributed stochastic gradient
tracking algorithm (D-SGT-2) [139,266], and the baseline centralized SGD algorithm (C-
SGD). We list all the parameters' we choose in the NN experiment for each algorithm in
Table 4.2.

Note: the parameter names are different in each reference.

102 Distributed primal-dual SGD optimization algorithm
1 -1 0 0 0 0 0 0 0 O]
-1 3 -1 -1 0 0 O O 0 O
o -1 3 -1t 0 0 -1 0 0 O
o -1 -1 4 -1 -1 0 0 0 O
I o o o0 -1 2 -1 0 O 0 O @.16)
o o 0 -1 -1 2 0 0 0 O
o 0 -1t 0o 0 O 2 -1 0 O
o 0o o0 o O O -1 2 -1 0
o o o o o O o0 -1 2 -1
lo 0 o o0 o o0 O o0 -1 1]
[3/4 1/4 0 0 0 0 0 0 0 0]
1/4 3/10 1/4 1/5 0 0 0 0 0 0
0O 1/4 3/10 1/5 O 0 1/4 0 0 0
o 1/5 1/5 1/5 1/5 1/5 0 0 0 0
W = 0 0 0 1/5 7/15 1/3 0 0 0 0 @.17)
0 0 0 1/5 1/3 7/15 0 0 0 0
0 0 1/4 0 0 0 5/12 1/3 0 0
0 0 0 0 0 0 /3 1/3 1/3 0
0 0 0 0 0 0 0 1/3 1/3 1/3
| 0 0 0 0 0 0 0 0 1/3 2/3]

Table 4.2: Parameters in each algorithm in the NN experiment.

Algorithm Mk @ B
DPD-SGD-T 0.08/K107 45107 34107
DPD-SGD-F 0.03 5 20

DM-SGD [33] 0.1 X 0.8
D-SGD-1 [31,129] 0.1 X X
D-SGD-2 [130] X 0.1/(107k + 1) 0.2/(107k + 1)°3
D? [32] 0.01 X X
D-SGT-1 [138,267] 0.01 b X
D-SGT-2 [139,266] 0.01 X X
C-SGD 0.1 b X

4.4. Simulations 103

102 T T T T T

=

o
=]
T

DPD-SGD-T
- - - -DPD-SGD-F
DM-SGD

Empirical risk function
=
o
N
:

=
S,
S
T
g
T

! ! !

10° 10t 10? 10° 10* 10° 10°
Iterations

Figure 4.2: Performance of SGD optimization algorithms in the NN experiment:
Evolutions of empirical risk.

We demonstrate the result in terms of the empirical risk loss [269], which is given as

R(z) = -~ Z Z Z(rk Inye(x, 2) + (1 =) In(l = yi(x, 2)))

n]—lkO

where m, indicates the size of data set for each agent, 7, denotes the target (ground truth)
of digit k corresponding to a single image, x is a single image input, z = (z(V, z®) with
71 and z® being the weights in the 2 layers separately, and y; € [0, 1] is the output which
expresses the probability of digit k = 0,...,9. The mapping from input to output is given
as:

28x28
Yi(x,2) = [Z z(z) (Z z(l)xz]]

where o (s) = #p(_s) is the sigmoid function.

Figure 4.2 shows that the proposed distributed primal-dual SGD algorithm with time-
varying parameters converges almost as fast as the distributed SGD algorithm in [31, 129]
and faster than the distributed SGD algorithms in [32, 130, 138, 139, 266, 267] and the
centralized SGD algorithm. Note that our algorithm converges slower than the distributed
momentum SGD algorithm [33]. This is reasonable since that algorithm is an accelerated
algorithm with extra requirement on the cost functions, i.e., the deviations between the

104 Distributed primal-dual SGD optimization algorithm

gradients of local cost functions is bounded, and it requires each agent to communicate
two p-dimensional variables with its neighbors at each iteration. The slope of the curves
are however almost the same. The accuracy of each algorithm is given in Table 4.3. We can
see that the proposed distributed primal-dual SGD algorithm with time-varying parameters
has almost the same accuracy as the distributed momentum SGD algorithm [33], which is
better than other algorithms.

Table 4.3: Accuracy of each algorithm in the NN experiment.

Algorithm Accuracy
DPD-SGD-T 93.04%
DPD-SGD-F 92.76%

DM-SGD [33] 93.44%
D-SGD-1 [31,129] 92.96%
D-SGD-2 [130] 92.88%
D? [32] 90.44%
D-SGT-1 [138,267] 92.88%
D-SGT-2 [139,266] 92.96%
C-SGD 93%

4.4.2 Training of convolutional neural networks

Let us consider the training of convolutional neural networks (CNNs). We build a CNN
model for each agent with five 3x3 convolutional layers using ReL.U as activation function,
one average pooling layer with filters of size 2x2, one sigmoid layer with dimension 360,
another sigmoid layer with dimension 60, one softmax layer with dimension 10. In this
experiment, we use the whole MNIST data set. We use the same communication graph as
in above NN experiment. Each agent is assigned 6000 data points randomly. We set the
batch size as 20, which means at each iteration, 20 data points are chosen by the agent to
update the gradient, which is also following a uniform distribution. For each algorithm, we
do 10 epochs to train the CNN model.

We compare our algorithms DPD-SGD-T and DPD-SGD-F with the fastest one above:
DM-SGD, D-SGD-1, and C-SGD. We list all the parameters we choose in the CNN
experiment for each algorithm in Table 4.4.

We demonstrate the training loss and the test accuracy of each algorithm in Fig-
ures 4.3 (a) and (b), respective. Here we use Categorical Cross-Entropy loss, which is
a softmax activation plus a Cross-Entropy loss. We can see that our algorithms perform
almost the same as the DM-SGD algorithm and better than the D-SGD-1 and the
centralized C-SGD algorithms. The accuracy of each algorithm is given in Table 4.5.
We can see that the proposed distributed primal-dual SGD algorithm with time-varying
parameters has the best accuracy than other algorithms.

4.4. Simulations

105

25
X
2 5\‘
‘\
‘I
\
o 15
— \
a0 N\
I
\
CES kN N,
— 1r ".} N,
\ \
H kY \

..... @ DPD-SGD-T
- ©- -DPD-SGD-F
DM-SGD
—-#---D-SGD-1
—meme.C-SGD

o o
(o] ~

Accuracy
o
[6;]

0.4 il
L L @--DPD-SGD-T| |
02 - ©- .DPD-SGD-F | |
: DM-SGD
01 —---D-SGD-1
' —— C-SGD
O 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Figure 4.3: Performance of SGD optimization algorithms in the CNN experiment.

Epochs

(b) Evolutions of accuracy.

106 Distributed primal-dual SGD optimization algorithm

Table 4.4: Parameters in each algorithm in the CNN experiment.

Algorithm Mk a B
DPD-SGD-T 0.5/k'07 0.5k107° 0.1£107°
DPD-SGD-F 0.5 05 0.1

DM-SGD [33] 0.1 X 0.8
D-SGD [31,129] 0.1
C-SGD 0.1

Table 4.5: Accuracy of each algorithm in the CNN experiment.

Algorithm Accuracy
DPD-SGD-T 94.75%
DPD-SGD-F 93.17%

DM-SGD [33] 94.29%
D-SGD [31,129] 92.96%
C-SGD 89.91%

4.5 Summary

In this chapter, we studied the distributed nonconvex optimization problem with stochastic
gradient information feedback. We proposed a distributed primal-dual SGD algorithm
and derived its convergence rate. More specifically, the linear speedup convergence
rate O(1/ VnT) was established for smooth nonconvex cost functions under arbitrarily
connected communication networks. The convergence rate was improved to the linear
speedup convergence rate O(1/(nT)) when the global cost function additionally satisfies
the P-L condition. It was also shown that the output of the proposed algorithm with
constant parameters linearly converges to a neighborhood of a global optimum. Interesting
directions for future work include achieving linear speedup under the P-t. condition while
considering communication reduction.

4.6 Proofs

4.6.1 Notations and useful lemmas

Denote K, = I, - 11,17, K = K, ®1,, H = 11,17 ®I,), X = 117 @ I,)xy, ¥ = 1, ® Xy,

g = V(0. g = Hgi, g0 = Vi(E), 80 = Hg = 11,0V f(0). g¢ = col(gl.....8").
and g/ = Hg,.
The distributed SGD algorithm can be rewritten as

X1 = X, — mi(arLxy + Bivi + g0, (4.18a)

4.6. Proofs 107

n

Vil = Vi + T]kﬁkak, Vxgy € Rnp, Z Vio = Op. (4.18b)
=1

Lemma 4.1. Suppose Assumptions 4.1, 4.3, and 4.5-4.7 hold. Then the following holds
for Algorithm 4.1

2
Eg Wikl < Wik — ||xk||ﬂkaL*%ﬂkK*%'I%(1;%L2*%'Ik(1+5'Ik)L§K

2

SmBK

1
v+ —gb +2no?, (4.19)

B

1
- leﬁkx/;rK<Vk + E/{é’?) +

I
where W = §||xk||%(.

Proof. Noting that V f is Lipschitz-continuous with constant L > 0 since Assumption 4.3
is satisfied, we have that

gl — gll® < L% — xill” = LIl (4.20)
From Assumptions 4.5-4.7, we know that

Ez [g{] = & (4.21a)
Eg [llg; — gll*] < no?. (4.21b)

From (4.20), (4.21b), and the Cauchy-Schwarz inequality, we have

E;[llg} — g1 = Eg,[llg) — g + g — g} II"]
<2lg} - gul* + 2By, [llge — g{I°] < 2L}l +2n0”. (4.22)

We have
1 2 1 uy[12
E5 (W] = B[5 weali] = Ea[5 e - Lo + B + gl
1 2 2 1 2 2 2 1 202 1 u 2
= B, 5 el = medbally + ymadibot + S oo+ g

1
— miBuxy (L — mar LK vy + B—gz)]
k
1
2 T EﬂiﬁiE&[

u

e o+ ot - il

I 2
= §||xk||K = [Ixll

marL-3ntal B B
— niBix] (L — nkakL)K(vk + igo + igk _ igo)
& Uny AL B %
1 2
2 202 0 5 " 02
< Wy — IkaII,,k(,kL_%ngaiLz + nkﬁkHvk + EkngK + g, [llg} — gl

1 Mk Mk
- TK(vie + —8°) + = llxelx + =llgr — g0
niBix] K(ve ,Bkgk) 5 el + - lig — &l

108 Distributed primal-dual SGD optimization algorithm

1
+ ket + 5 nkﬁkva Zalfl + SRl + sl ~ gl

= Wi — el tles gl sk - g
Lk Yk marL—3% mK—fr]kakLZ k ,Bk k %ﬂfﬁfK KBk k k
1
+ 21+ mollge - gl mBx K(vi + 58) 4.23)

where the second equality holds due to (4.18a); the third equality holds due to (2.5) in
Lemma 2.5; the fourth equality holds since x; and v; are independent of & and (4.21a);
and the inequality holds due to the Cauchy-Schwarz inequality and p(K) = 1.

Then, from (4.20), (4.22), and (4.23), we have (4.19). m|

Lemma 4.2. Suppose Assumptions 4.1 and 4.3 hold, and {B;} is nondecreasing. Then the
following holds for Algorithm 4.1

1 1
Wkt < Wa + (1 + wmiex] (K + ki L)(ve + — ﬁ —g))+ (p ot k1 (@i + wllgy, I
1 1
+ —(77k + wy + Ukwk)(—(L) + KI)H ng |xk”(1+wk)ﬂkﬁk(L+KIL2)
+ Bt 5 (1 + W) —= + 1) LIIZIP, (4.24)
/3 (L) /
k
where Wy = Lve + 012 , = RAT'R™ ® I, with matrices R and A7' given in
2 g ok k 1 P 1 8
Lemma 2.5, wy = ﬁll\ — [ﬁ and k; > 0 is a constant.

Proof. Denote v, = %(1; ® I,,)vi. Then, from (4.18b), we know that
Vi1 = Ve 4.25)
Then, from (4.25) and }}?_, v;o = 0,, we know that
V=0, (4.26)
Then, from (4.26) and (4.18a), we know that
Xie1 = X — M8y (4.27)
Since Vf is Lipschitz-continuous and (4.27), we have
gl — &I < L%t — %l = m{LlIg{I1. (4.28)
We know that w; > 0 since {8} is nondecreasing. We have

2 0 2

1 1 1 1
pon = 2l o (5 -)k

1 0
Viel T - 81

Woks1 = =
’ ,8k+1

i

0+x K

4.6. Proofs 109

1 2

1 0 1 2 0 2
< 50+ ol + 58y, 5@+ DBk (429)

0+x1 K

where the inequality holds due to the Cauchy-Schwarz inequality.
For the first term in the right-hand side of (4.29), we have

gk+77k,Bkak+ (g2+1 gk)

1 +1 o |2 ”
Vi+1 8i+1 Q+/<K 2

2” ,8 B

1
e (K + L) v+ -gl) + Wl e 1o

O+x1 K

_gk

2” 0+ K

1 1
"o ||gk+1 &Gk + ﬁ—k(vk + ﬁ—kgi FmBLx) (@ + ki K)(gl,, — &)

1
< Woy + T]kﬁkxk (K + KlL)(Vk + ’B—gk) + ”xk”l 2B L+ LZ) 2,82 ”ngrl gg”éﬂ,x

Mk 202 2 012

+ + — = L +

> HVk ﬁk Q+ K 2T]kﬂk|| xk”Q+K1K (277k,3k Zﬁk)||gk+1 gk”Q-H(]K
1

T l 0 —~ 50 2
< Wi + mifixy (K + KIL)(Vk T3 gk) + Ve + 8
k k

3M(Q+x1 K)
0 | |2

1 1yl .
+ [l AL L) ﬂ—i(l + 2_771()(@ + K1)||gk+1 — &

2

1 1
< Was + miBix] (K + i D)(vi+ Egi) i+ 58t

1
+ ||xk|| zﬁz(L‘i-K]Lz) Z_g(nk)((L) + K])L2|| ||2, (4.30)

where the first equality holds due to (4.18b); the second equality holds due to (2.5) and

(2.7) in Lemma 2.5; the first inequality holds due to the Cauchy-Schwarz inequality; the

last equality holds due to (2.5) and (2.7) in Lemma 2.5; the second inequality holds due to

(0 + k1K) < p(Q) + k1p(K), (2.8), p(K) = 1; and the last inequality holds due to (4.28).
For the second term in the right-hand side of (4.29), we have

3m(Q+x1 K)

g1k < (—— (ot k1)lgl I (431
Also note that
1 R 1 R
e+ 580 g < (pZ(L) x|+ ﬁ—kngK. (4.32)
Then, from (4.29)—(4.32), we have (4.24). |

Lemma 4.3. Suppose Assumptions 4.1, 4.3, and 4.5—4.7 hold, and {8} in nondecreasing.
Then the following holds for Algorithm 4.1

1
Eg [Wasn] < Wy — (1 + wmeenx] L(ve + ﬁ—gk) + ﬁ(l + 3 L3, (112417
k

110 Distributed primal-dual SGD optimization algorithm

2.2
+ ||xk||7]kka+ K)+7]k(za]‘—akﬁk+,8k)L2+ wki]kka2+217k(1+3m)L2 +no M
o + LB Wi + gl P, @33)
,Bk k B~ —mBi—swra)K 2 B e fer T
where W3 = x, TK(vi + g)

Proof. We have
1 1
Wit = x/j+1K(Vk+1 + mg&l) = x/-<r+1K(Vk+1 + IB_ngH) — wxg, Kgp.
1 1
<LK (et + 2 glr) + Senllxeall + gl (4.34)

For the first term in the right-hand side of (4.34), we have

B[+ K (i + 60,

i1 ~ &)

1
—g0 +miBeLlxy +
Br

Br

= 3] (K - e + DD + ~) + il — ey i L °H2
=X M@k + 1y k /J’kgk K B (Lo L) — TPk |[Vk ﬂkgk K

1 1 T
+ ,B_kx;(K - maxL)Eg, (g7, — 81 - le(Vk + Egi) KEg (g}, -]

1
- mi(gk — gi)TK(vk + ﬁ—gg + Uk,Bkak) -
k

= E‘&[(xk — milaxLxy + Bivi + 8¢ + g} — gg))TK(vk +

1
ﬁ—kEgk (g —) K(g),, — gD

1 1 1 2
< o[(K = man L) + 5-g) + SBE e+ —g21| zrzkﬁ,{anku2 IR g oty

1 2 1 1 1
—nkﬁkuvwagiﬂf—nknxkn%ﬁ(z AT B gl — glIP + oLl
k
1 202 1 0 2 2
+§nkﬁk1|vk+—gk1|K 2ﬁzl«:~gk[||gk+l g1+ (5 nk+2nk)||gk—gk||
" r]kHvk+ ng + 3B + S, g - g)IP]+§E&[ngk+1 gl
k
1 1 2
_ 4T _ o0\ —~ 50
= x; (K — oy L) v + & I | IR LU AP
1 1
2 0112 0112
+ (nk+nk)||gk—gk|| + o miEsllgi - gl 1+(2nkﬁk 2ﬁk)E«;k gy, — &2I°]
(4.35)
< xTK(Vk + igo) -1+ wk)’]kakxTL<Vk + igo) + wknka'kxTL(vk + lgo)
k ﬁk k k Bk k k ﬁk k
[+~ + el
g Bk 8k wBi— 5 -mBHK Y B L+ K)+nt (Lo _ﬂ//\ﬁk“'ﬁf)laz*'%ﬂk(l+3nk)L§K

4.6. Proofs 111

U »
+ 571+ 3MOLEs EIP + nor, (436)
k

where the first equality holds due to (4.18); the second equality holds since (2.5) in
Lemma 2.5, x; and v; are independent of &, and (4.21a); the first inequality holds due
to the Cauchy-Schwarz inequality, (2.5), p(K) = 1, and the Jensen’s inequality; and the
last inequality holds due to (4.20), (4.22), and (4.28). For the third term in the right-hand
side of (4.36), we have

1 1
wknkakx,:L(vk + —gg) = wknkakx,:LK(vk + ,[3_kg§‘))

B
< Il + Hv + Lol 4.37)
= Itk Lo L2 K B k %wmkakK.)
Then, from (4.34)—(4.37), we have (4.33). |

Lemma 4.4. Suppose Assumptions 4.2, 4.3, 4.5, and 4.6 hold. Then the following holds
for Algorithm 4.1

M, M, 1 _
Eg [Waki] < Wag = <@gl + el o — 1807 + Smi LB lIgHIP], (4.38)
4 > Ly 4 2

where Way = n(f(%) — f) = f(®0) — f*.

Proof. We first note that Wy, is well defined due to f* > —oco as assumed in Assump-
tion 4.2.
From (4.20) and p(H) = 1, we have that

12} — &l = IH(g) — goll” < llgf — gull® < Lillxillx. (4.39)
From (4.21a), we have
Ey (8] = Eg, [Hg;] = HEy [g;] = 8. (4.40)

We have
Eg [Wags1] = Eg [f(%ra1) = 1= Eg [f&0) — F* + f(Fe1) — f(&]

7 P Sl 1 ol
<Eglf®0 = " = ne(@)" & + SmiLA1ZI]

. - _ 1 .
= f@) - F" ~m&i gl + 5mLyEg 1%
- . L 1 »
= f@) - F" ~m&i &+ 5mLy B 1%
Mk 7o 20 o Mk 0 0To0,) 5
= Wai— 8l (B+ B0~ 80— 5 (8~ 80+ 8D 8] + 5 LEs 1)

1
< Wiy — %ugrkuz + %ugi —mlP - %ng‘;nz + oML ERIEIP). (“4D)

112 Distributed primal-dual SGD optimization algorithm

where the first inequality holds since that f is smooth, (2.14) and (4.27); the third equality
holds since x; and v, are independent of & and (4.40); the fourth equality holds due to
g gk =g/H gk = g/HH gk =g gg; and the last inequality holds due to the Cauchy-
Schwarz inequality.

Then, from (4.39) and (4.41), we have (4.38). O

4.6.2 Proof of Theorem 4.1

We denote the following notations

. &1 1
s = 4 s s = ——+]3 = s [+ + 1
co(k1, ko) = max{dkaes, &), €1 o) ca(k1) mm{gz 5} K3 = o2 K1
1 + + 3 k1 +1 + 1 . { 1 K| — 1}
K4 = Kl + =, Ks = —— , Kg = miny=—-—,
pa(L) 2 2 2;(L) 20(L)" 2K

g1 = (k1 — Dpa(L) = 1, &2 = p(L) + (23 + Dp(LH) + 1, &3 = &1k2 — 265,

1 2 1 2 2 2 1 2
&4 = E(Kg -5k3), & = Ly + a/qu + g—é/qu, &6 = max{5(2 + 3Lf), K3}.

To prove Theorem 4.1, we need the following lemma.

Lemma 4.5. Suppose Assumptions 4.1-4.3 and 4.5-4.7 hold. Suppose o, = a = ki,
Br =B = colk,k2), and ny = n = k2/B, where k; > ¢1 and ky € (0, ca(k1)). Then, for any
k € Ny the following holds for Algorithm 4.1

Eg [Wicet] < Wi — el - |ivk+ Sl I e+ 3w, a2

Eg [Wiert] < W = el = e + 2 ng + 2e518)I°
+2L5es lxilly + (&5 + 3m)a (4.42b)

1
B [Wair] < Wag = ZnllZll + il 2 + Ly, (4.42¢)
270

where Wy, = Z?:l Wi and W, = Zle Wik

Proof. (i) Noting that ay = @ = «18, Bx = B, x = 17, and wy, = ,B_k ﬁm = 0, from (4.19),
(4.24), (4.33), and (4.38), we have

1 o
RL §”2ﬁ2K+2ncr 7 = lxdl
2

1 1
g * 370 +K1)Hvk+ el

<
Eg, [Wir1] < Wi + “vk + naL—3nK-3Pa? L2~ 1n(1+5n)L; K

« Lo Ve — 5 B g

+ [l
n(BL+ 3 K)+n? (2az—aﬂ+ﬁ2)L2+%n(l+37])L2fK

4.6. Proofs 113

1 .12
2 2.2 (]
s+ LT IR 4 non = s el

2ﬁ2

. 1 »
= &P+ lxilly, o - —nng,(n2 + 31 LB 1) (4.43)

Note that
E;, 121171 = Eg, 118} — &« + &l1*] < 2Eg, (118} — 21 + 2llgll*

1 < u) -2 2 - u 2 5. 112
= 20k, ;@i,k — ginlP1 + 20zl = ;Egk[n;(g,-,k — inlP1+ 20l

2 n
= Z Eg [lg — gixll’] + 2012l < 207 + 212l (4.44)
i=1

where the first inequality holds due to the Cauchy-Schwarz inequality; the last equality
holds since {g} ‘o i € [n]} are independent of each other as assumed in Assumption 4.5, x;,
and v are 1ndependent of &, and Eg, [g] = gix as assumed in Assumption 4.6; and the
last inequality holds due to (4.21b).

From (4.43), (4.44), and « = k83, we have

I 2
Eg (Wil < We = Iy _opr, ||V1< + ng' o
— bynllgill® - —nllgkI|2 + by o + 3noy?, (4.45)

where
1
M, = (a—-pB)L - —(2 +3L)K, My = B°L + (207 + B)L? + 413K,

—K3 Lf + K4L2

Bn iz

From (2.6), @ = k18, k1 > ¢1 > 1,11 = k2 /B, and B > co(k1, k) = €6 = (2 + 3LJ%)/2, we
have

1
by = —(Zﬂ—K3)77——,377 by = Z—b3k77, bsx=Ls+

nM, > g1 koK. (4.46)
From (2.6), a = k13, and 8 > %(2 + 3LJ%) > 2L¢, we have
n2M2 < 52K§K. (4.47)
From 8 > k3, we have
b1y >&a. (4.48)
From k; > ¢; = 1/pa2(L) + 1, we have

e > 0. (4.49)

114 Distributed primal-dual SGD optimization algorithm

From (4.49) and k; € (O,min{i—;, %}), we have

83>O,

S4>0.

From (4.50a), (4.50b), and 8 > 4k,&5, we have

_ 1 2, 2
b3y = Ly+ lgz—ng,Lf + ,3_2 K4Lf < é&s,
1 K2
bog =~ —ban > ~ — a5 >0,
2.k 4 341 2 4 ﬁ &5 2

From (4.45)—(4.48), (4.51a), and (4.51b), we have (4.42a).
(ii) Similar to the way to get (4.42a), we have

B Wit] < Wi — el = e + ég‘k’H;K + o5 llgull + (e + 3morir,
We have
gl = llge — &0 + 2I° < 2llgx — &I + 2018017 < 2L7 leell + 2112711,
where the last inequality holds due to (4.39).
From (4.52) and (4.53), we have (4.42b).

(iii) From (4.38) and (4.44), we have

2
I

L 2 L 27 (2 s R
Eg [Waser] < Wase = 2llgll” + ||xk||%,]szK = 7 MEI" +m Lo + 11gll%),

From i = ko /B and 8 > 4kr&5 > 4k2 Ly, we have

1
Ly < —.
nLy 4

From (4.54) and (4.55), we have (4.42c¢).

Now we are ready to prove Theorem 4.1.
Denote

N) L o2 - «
Ve =l + [+ -2l + 070 - 1),
Similar to the way to get (3.46)—(3.48),we have

Wi sl + [+ i) + s - 1)

> Kf,Vk > 0,

(4.50a)
(4.50b)

(4.51a)

(4.51b)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

4.57)

4.6. Proofs 115

and

Wi < k5 V. (4.58)

From (4.42a) and (4.50b), we have

2.2
(&5 + 3n)ky0

Eg [Wiii] < Wi — ssllxilly - 4ﬁngknz 7 (4.59)
Then, taking expectation in 7 and summing (4.59) over k € [0, T'] yield
T 2.2
(T + 1)(&5 + 3n)k50
E[Wrail+ > Eleslxdly + 2= 12007] < Wo + — (4.60)
k=0 B B
From (4.60), (4.57), and (4.50a), we have
T n T 2.2
W, (&5 + 3n)kso
_ =2 — E 2 < 0 + 2
| n(T +1) k; el < 2T+ nesB>
(4.61)
Noting that Wy = O(n), from (4.61), we have (4.6a).
Taking expectation in 7 and summing (4.42c) over k € [0, T] yield
1 & 1 & Wio 1 T
2 2 2
Z ZOE IV£GOIPT = 5 ZO [IgLIP] < —= + iLkaO]E[uxkuK] +(I'+ DLyon.
(4.62)

From (4.62), n = k2/B8 = \n/ VT, and (4.61), we have

T- 48 4L;0%kr
- 2 = s f
Z:(‘; UV AGIP) < 25 G0 =)+ — 3 0()+ O~ 7

’ﬂ I

which gives (4.6b).
Taking expectation in 7 and summing (4.42c) over k € [0, T'] yield

T
. 1
nELfFra)] = f*) = EWarai] < Wao + 50L; 3 Elllxl] + Lo (T + 1), (4.63)
k=0
Noting that W0 = O(n) and = «2 /B, from (4.60) and (4.63), we have (4.6c¢).

4.6.3 Proof of Theorem 4.2
In addition to the notations defined in Appendix 4.6.2, we also denote

& = 1min{8 P> Y }
T ks P T 1)

116 Distributed primal-dual SGD optimization algorithm

From the conditions in Theorem 4.2, we know that all conditions needed in Lemma 4.5
are satisfied, so (4.42a)—(4.42c) still hold.
From (4.57), we have

N/
llellz + Wag < Vi < K—: (4.64)

From (2.16) and Assumption 4.4, we have that
I821F = nllV fFGOIP 2 2va(f () = f*) = 2vWag. (4.65)
From (4.42a), (4.65), (4.57), (4.58), and (4.8), we have

2 Lo 1 2.2
Eg [Weet] < Wi = aallxally = x|y + 88| = 5mWas + (o5 + 3man
Bk 2
1 . vn 2.2
< Wy — — min {83, &4, ?}Wk + (&5 + 3n)on”. (4.66)
Ks

From (4.66) and (4.8), we have

2
(& 300 o7, (4.67)

Eg [Wist]l < Wy — ;Wi + T ks

From «; > 1, we have k5 > 1. From 0 < x, < 1/5, we have g4 = (k, — 5K§)/2 < 1/40.
Thus,

1
0<‘97<K_:SE (4.68)

Then, from (4.67), (4.57), and (4.68), we have

3
E[Wei] < (1 -)" Wy + (85+ n)); Z(l &7

(&5 + 3n)o>

< 1 - k+1W 4=
(1-¢&7) (R T

Vk<T. (4.69)

Then, noting that &7 = O(1/(T + 1)?) and 6 € (0, 1), from (4.69), (2.63), and (4.64), we
have

E[|lxcll% + Wizl = O(%), Vk<T. (4.70)
Thus, there exists a constant ¢y > 0 such that
Elllxil% + Waxl < nes, Yk < T. 4.71)
From (4.56) and (4.58), we have

0 < 2k6(Wyg + Way) < Wi < 265(Wi g + Way). 4.72)

4.6. Proofs 117
From (2.15), we have
18P = nllVfGOIP < 2Lpn(f(F) — f*) = 2L Wiy 4.73)
Denote %, = E[W;]. From (4.42b) and (4.71)—(4.73), we have
Z1 < (1= a4+ am’, Yk < T, (4.74)
where
1
ay = —min{es, &4}, ay = n(desLycy + 2&sLicy + (&5 +3)a”). (4.75)
Ks :
From (4.68), we have
a <2< —. (4.76)
Ks 40
From (4.74) and (4.76), we have
k+1 ay’
i < —a)MH+ —, Yk<T,
ai
which yields (4.9a).
From (4.42¢) and (4.65), we have
% 1
Eg [Wapn] < (1 - 7)7>W4,k + EUL;kaH%(+ Lyo?
v k+1 1
<(1-2D" Wi+ (Ll +2Lgo). (4.77)

2
Noting 1 = 1/(T + 1), from (4.77), (2.63), and (4.9a), we have (4.9b).

4.6.4 Proof of Theorem 4.3

In addition to the notations defined in Appendix 4.6.2, we also denote

- £10) . (&1 & 1
Co(k, k2) = max{4s”, &6, —} Ca(ky) = mm{—, —, —},
&a & &9 5
. Co(k1,k2) 8Lyks 16Ls(k3 — 1)
&3(Ko, K1, k2) = max { : , }
Ko VK VKoK2

PR o !
0% = 2L f 2Ly 3 i e = kipaL) = 1 ey = 5Bkt + Dap(L) +p(L) + 1,

i=1

£10 = ka(ks — 1) + K1ka + k3 — 1 + 343, &11 = kaLs + (2k3 — 1 + x2(10k3 — 4))L3,

+ 2),

L2 2LE 2+26LE (k- DI2 (k- DL
: : - : :

Ep = 3+ Ls+
P okat Kétf Kotf K%thf K%t‘l‘

(

118 Distributed primal-dual SGD optimization algorithm

KoK3 K3 — 1

_ 2 ~2 1 (&Kol Egkoly vV
14 = €120 +E1307, €15 = —mln{) },

2 2.2 °)
K5 K51 Ks K2 2kp 8
4Lf0'21<§
6= 5 —-
20V _
Ko(ze =D

To prove Theorem 4.3, we need the following lemma.

Lemma 4.6. Suppose Assumptions 4.1-4.3 and 4.5-4.7 hold. Suppose ay = k1Bx, Br =
Ko(k + 1), and mi = K2 /By, where kg > Co(k1,k2)/11, ki > 1, k2 € (0,82(k1)), and 11 > 1.
Then, for any k € Ny the following holds for Algorithm 4.1

1 1 2
Eg [Wiii] < Wi — &3z — _54”Vk + ﬁ—ngHK

2
1

- anngﬁjnz + 2L b kg Wa g + neamy, (4.78a)

E- Vi < 2 1 L ol 2

5 [Wit1] £ Wi — &s3llxillx — 584“‘% + [?kgk”K + nen;
+ 2eLimlxill + 22812 + £13) L Wa, (4.78b)

Nk (-

Eg [Wagr] < Way — an;:nz - ||xk||2%L3UkK +PLso?, (4.78¢)

2
wy

where bgy = k3 —‘;’é‘ + (k3 — 1)—772‘.
k k

Proof. (i) We have
g1 = D VAP < 2L, (f(%) = £7) = 2Ln(f(%0) = f) + 16, (4.79)
i=1 i=1

where the inequality holds due to (2.15).
From the Cauchy-Schwarz inequality, (4.28), and (4.79), we have

gl 1P =110, — &%+ %> < 2(l1g2,, — %P + gl
< 2 LHEKIP + 2L Wi + nd™). (4.80)

From (4.19), (4.24), (4.33), (4.38), (4.44), (4.80), ax = 18k, and n; = ko /Bk, we have

1 2 1
3 2 B Ty Lo
Eg‘k[WkH] < Wi ”xk”'lkMak*'],EM.«.r%KlszkﬂlkwkMs,k*']fwkMs,k Hvk + B 8k bgﬁkK 477k”gk||
— mebs I8l + 7 (b n + by x)a* + ibs g QL Wiy + nd?), (4.81)

where

1
My = (e =L - 52 + 3L)K, My = BiL + Qa; +Bp)L” + 4LIK,

4.6. Proofs 119

1 3 5
Msi = oL = S(1+ LDK, Mgy = Eagﬁ +BUL + ki L*) + 5L}K,

1 5 1 1
bﬁi,k = znk(zﬁk —K3) — zﬂiﬁi - E‘Uknk(KS -1~ Ewk(nkak +&3 — 1+ 308D,

1
bsy = 1 Mibs x> begx =3 + 2wy,

1 2 1 2
b7,k = Lf + Z—T]kK:;L?- + —2K4L§- + 2K3L§¢wk + wk(z—k + - + 2wk)(/<3 - l)szc
k k k k

From (2.6), ax = €18k, k1 > 1, Br = Koty = Co(k1,k2) = &6 = (2+3szc)/2, and i, = k2 /Bx,
we have

mMzy > e1k0K. (4.82)
From (2.6), ay = k18, B = (2 + 3LJ2,)/2 > 2Ly, and ;. = k2/Bx, we have

MMy < e25K. (4.83)
From (2.6), ay = k18, Br > (2 + 3L§)/2 >(1+ Li.)/2, and n; = k2/Bx, we have

mMsy > g3k K. (4.84)
From (2.6), @x = k1fk, Bx > 2Ls > V10Ls/2, and 1 = k2 /By, we have

Mgy < e9i3K. (4.85)
From a; = k18, Br = k3, and i = k2 /Bk, we have

by, > buy, (4.86)

where by = &4 — %wknk(/q -1 - %a)k(Kle +k3—1+ 3K§).
From k; > ¢y = 1/pa2(L) + 1, we have

g1 >0, g >0. (4.87)
From (4.87) and «, € (0, min{Z—;, i—i, %}), we have
g3 >0, (4.88a)
&8k — £9k3 > 0, (4.88b)
g4 > 0. (4.88¢c)
From Sy = ko(k + t1), we have
1 1 1 1 1 1
wp = 4 - - —(_)= <X (4389
Br Pr+1 Kok + 1 k+t+1 kotk+t)k+t+1) ﬁi

120 Distributed primal-dual SGD optimization algorithm

From (4.88a)—(4.89), and «y > max{4f”, g't }, we have

£10 1
b43k284— T > —g4 >0,
2K()t1 2Kot) 2

1 &
b5k_4 o >0

Kot1

From (4.89) and B¢ = ko(k + 1) > kot;, we have

bey + b1x < €12,

bg,k < é&13.

From (4.81)—(4.86), (4.88a)—(4.88¢), and (4.90a)—(4.91b), we have (4.78a).
(ii) Similarly to the way to get (4.78a), we have

. . 1 1 2 _
Eq, [Wii1] < Wi — esllxcllk — —84“Vk + —g2'| + el gl
2 Bk K

+ 2Lf8137]]%W4,k + I”l8147’]%, Yk € Ny,

From (4.92), (4.53), and (4.73), we have (4.78b).
(iii) From (4.38) and (4.44), we have

2
[

Eg [Wike1] < Way - —Ing||2 + Il 3 Lk T —Ing + L0 + 11glP).

From 0 < i < k2/(kot1) and kot > Co(k1,k2) = 4&11 > 4k Ly, we have

1
2L <
e 477

From (4.93) and (4.94), we have (4.78c).

Now we are ready to prove Theorem 4.3.
From #; > ¢3(ko, k1, k2) = Co(k1, k2)/Ko, We have

Co(ky, K
S o(k1 2).

Ko
h

Thus, all conditions needed in Lemma 4.6 are satisfied, so (4.78a)—(4.78c) hold.

From (4.78a) and (4.65), we have

nkv

B Wil < Wi = esllxilli - 5

o el -

Wi - el - 5ol + 2 gl + newn?
= —&3lx, — —&|lvik + — ne
k 31Xkl g) 4|[Vi ,Bkgk X 1477y

I 1
- 2(4—1 - ;Lfbg,knk)vnkWAt,k’ Vk € No.

(4.90a)

(4.90b)

(4.91a)
(4.91b)

(4.92)

(4.93)

(4.94)

— Wy +2Lsbg, kUkW4k + n81477k

(4.95)

4.6. Proofs 121

From t; > &3(ko, k1, k2) = 8Lyk3/(vk2), we have

1 Lk 1
-——— 2> 4.96
4 vty 8 ()
From (4.89), (4.96), and ko > ¢o(k1,k2)/t1 = 16Lf(K3 — 1)/(vkyt1), we have
1 1 1 Lskok Lek(kz — 1
L AL fKoks Ly 0(33)
4 vy 4 VKB VKzﬁ}(
1 L L -1 1 L -1 1
Sl s Lis-D 1 L= 1 (4.97)
4 vty VK2 KQ t? 8 VK2Kot1 16
From (4.95), (4.57), and (4.58), we have
Nk . (€3 & V
Eg [Wis1] < Wi - p mln{a, e g}Wk + neqn;
< Wy —eismWe + n81477]%, Yk € Ny. (4.98)
Denote 7z = E[Wi], rix = €151, and ryy = nslmi, then from (4.98), we have
Zrr1 < (1 — rl,k)zk + ra, Yk € Ny. (4.99)
From (4.10), we have
as
= = , 4.100
Pk = Me1s = 5 tl (a)
Fap = E1sno? = — 3 (4.100b)
’ k+1)2
where
K2E15 nK; €14
3 = > a4 - 2
Ko KO
From (4.68), we have
&q 1
< = < —, 4.101
"= ks T 80 (101
Then, from (4.99)—(4.101) and (2.43), we have
7k < (k. 1y, a3,a4,2,20), Yk € Ny, (4.102)
where the function ¢, is defined in (2.44).
From «y > ¢gvk, /4, we have
o), ifas > 1,
p1(k, 11, a3, a4,2,20) = 0D, if gz = 1, (4.103)

O(&), ifas <1,

122 Distributed primal-dual SGD optimization algorithm

From (4.102), (4.103), and (4.64), we know that there exists a constant ¢y > 0 such that

Efllxgllk + Wayl < ncy.

From (4.78b), (4.104), (4.72), and (4.10), we have

as
Zeel < (1 —as)fpy + ——,
Zr1 < (1 —as) ZETRY
where
2
_ . 4 _K 2
das = — min {83, —}, ae = —Zn(2812Lfo +2Q2ep + 813)Lfo + £14).
K5 2 KO .
From (4.68), we have
< F> < 1
as < — < —.
> = 25~ 80

From (4.88a) and (4.88c), we know that
as > 0and ag > 0.

From (4.105)—(4.107) and (2.45), we have
L < @3k, t1,as,a6,2,%0) = 0(:—2), Yk € N,

where the function ¢3 is defined in (2.46).
From (2.46), (4.72), and (4.108), we have

1. 1 . n
E[llxllx] < —% < —¢s(k.11,a5, a6, 2. %) = O(—3).
K¢ K6 k

From (4.109), we have (4.11a).
From (4.78c) and (4.65), we have

Y
E[Wanl < (1- zﬂk)E[W4,k] + ||xk||2%szmK + Lyo ;.

From k¢ < vk, /4, we have

VK
— >12.
2K0

Similar to the way to prove (2.43), from (4.109)—(4.111), we have

_ " € 1
Emm<ﬂs§+aﬁx

where €4 is determined by the last terms in (2.44) and (4.110).
From ko > ¢gvk, /4, we have

4L,0%k3 . 4L’ 16L;o7Ky B 64L 0>

€16 = <
2 vk _ 20K _ vk
kGe =D ae — 5 VKo

From (4.112) and (4.113), we have (4.11b).

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

A.111)

4.112)

4.113)

4.6. Proofs 123

4.6.5 Proof of Theorem 4.4
In addition to the notations defined in Appendices 4.6.2 and 4.6.3, we also denote

Wy g5 +3n
}’ C4=—,0C = .
NKg NEKe

&3 & V

1 . {
£= —min y —» =
Ks n n 2

From the conditions in Theorem 4.4, we know that (4.66) holds. Thus,
Ez [Wiii] < Wi — neW; + (&5 + 3n)on’. (4.114)
Similar to the way to get (4.68), we have
0<ne<l. (4.115)
From (4.114) and (4.115), we have

E[Wii1] < (1 = ne)E[Wi] + (&5 + 3n)an’

k
< (1 =ne) Wy + (s + 3mon® Y (1 - ne)’
=0

n(es + 3n)o>

< (1 -nef'wy + (4.116)

Hence, (4.116) and (4.64) give (4.13).

4.6.6 Proof of Theorem 4.5
In addition to the notations defined in Appendices 4.6.3, 4.6.2, and (4.6.5), we also denote

3+5
Eolki, k2) = max{diass, &), & = max(1+3L2, K3}, & = ——

EKe

Without unbiased assumption, we know that (4.30) still holds. Similar to the way to get
(4.19), (4.36), and (4.38), we have

1
2 T 0
B Wiier] S Woa =il s, n = PR K+ 280)
Lol 1 + 3n)no? 4.11
+ ”vk + ng 4% +n(1 + 3n)no=, (4.117a)

1
E < —nax] L(vi + = g%) + |lxi]?
5[W1l < Wiy — nax) (vk ,Bg") ||xk||q(ﬁL+%K)+q2(§_aﬂ+ﬁ2)L2+n(l+2q)L§K

L 2 —u2 2 _ l 0 :
+ 5 ST EIP)+ 1+ 2 = [ol

(4.117b)
B [Wasi1] € Was = (1= 20L B, IEIPT+ el = TIEP +non. (@.117)

124 Distributed primal-dual SGD optimization algorithm

Then, similar to the way to get (4.42a), from (4.30) and (4.117a)—(4.117¢c), we have
_ 2 l of> l ~0)12 2
Eg [Wi1] < Wi — llxell;, g — ||ve + ,ng X 477||gk|| +n(3 + Spno”. (4.118)
3 e

Then, similar to the way to get (4.13), from (4.118) and (4.65), we have (4.15).

Chapter 5

Distributed zeroth-order optimization
algorithms

In this chapter, we consider the distributed nonconvex optimization problem with zeroth-
order (ZO) oracle feedback, i.e., each agent is only able to sample ZO oracles (the values
of its local cost function). We first consider the situation that deterministic zeroth-order
(DZO) oracle feedback is available. We propose a distributed primal-dual DZO algorithm.
In this algorithm, at each iteration each agent samples its local DZO oracles at p + 1
different points with an adaptive smoothing parameter, where p is the dimension of the
decision variable. We show that the proposed algorithm converges to a stationary point
with an O(1/T) convergence rate for smooth nonconvex cost functions, where 7T is the
total number of iterations, and to a global optimum with a linear convergence rate when the
global cost function satisfies the P-L. condition in addition. In other words, our proposed
distributed DZO algorithm has the same convergence properties as its FO counterpart in
Chapter 3 under the same conditions. We then consider the situation that stochastic zeroth-
order (SZO) oracle feedback is available. We propose two distributed SZO algorithms:
distributed primal—dual and dual SZO algorithms. In both algorithms, at each iteration
each agent samples its local SZO oracles at two different points with an adaptive smoothing
parameter. We show that the proposed algorithms converge to a stationary point with the
linear speedup convergence rate O(+/p/(nT)) for smooth nonconvex cost functions, and to
a global optimum with the linear speedup convergence rate O(p/(nT)) when the global cost
function satisfies the P-£ condition in addition, where n is the number of agents. To the
best of our knowledge, this is the first linear speedup result for distributed SZO algorithms.
We also show that the proposed algorithms converge linearly when considering centralized
optimization problems with DZO oracle feedback under the P-L condition. We finally
demonstrate through numerical simulations the efficiency of our algorithms in comparison
with the baseline and recently proposed centralized and distributed ZO algorithms.

This chapter is organized as follows. Section 5.1 gives the background. Section 5.2
introduces problem formulation and assumptions. Section 5.3-5.5 provide the distributed
primal-dual DZO algorithm, the distributed primal-dual SZO algorithm, and the dis-
tributed primal SZO algorithm, and analyze their convergence properties. Simulations

125

126 Distributed zeroth-order optimization algorithms

are given in Section 5.6. Concluding remarks are offered in Section 5.7. To improve the
readability, all the proofs can be found in Section 5.8.

5.1 Introduction

Many existing optimization algorithms and the algorithms proposed in the previous
two chapters use at least (stochastic) gradient information of the cost functions, and
sometimes even the second or higher order information. However, in many applications,
the (stochastic) gradients are unavailable [144—146]. For example, many cost functions of
big data problems that deal with complex data-generating processes cannot be explicitly
defined [46]. Thus, gradient-free (derivative-free) optimization algorithms are needed. The
study of gradient-free optimization problems has a long history, which can be traced back
at least to the 1960’s [270-272], and has recently gained renewed attention in machine
learning community. Generally speaking, traditional gradient-free optimization methods
can be classified into direct-search and model-based methods. For example, stochastic
direct-search and model-based trust-region algorithms have been proposed in [273-276]
and [277-279], respectively. In recent years, the more popular gradient-free optimization
methods are ZO optimization methods, which are gradient-free counterparts of first-order
optimization methods and thus are easy to implement. In ZO optimization methods, the full
or stochastic gradients are approximated by directional derivatives which can be calculated
through the sampled function values. The commonly used method to calculate directional
derivatives is using the function difference at two different points [213,214,280].

Via modification of gradient-based optimization algorithms, various ZO optimization
methods have been proposed, e.g., ZO (stochastic) gradient descent algorithms [142,213,
281-290], ZO stochastic coordinate descent algorithms [248], ZO (stochastic) variance
reduction algorithms [215, 286, 287, 289-302], ZO (stochastic) proximal algorithms
[291,298,303, 304], ZO Frank—Wolfe algorithms [289, 300, 302, 305], ZO mirror descent
algorithms [214, 296, 306], ZO adaptive momentum methods [304, 307], ZO methods
of multipliers [215, 292, 308, 309], ZO stochastic path-integrated differential estimator
[294,299, 309]. Convergence properties of these algorithms have been analyzed in detail.
For instance, the typical convergence results for two-point sampling based centralized DZO
algorithms is that first-order stationary points can be found at an O(p/T) convergence
rate [213, 285], while for two-point sampling based centralized SZO algorithms the
convergence rate is reduced to O(\/m) [142,248], where p and T are the dimension
of the decision variable and the total number of iterations, respectively.

Aforementioned ZO optimization algorithms are all centralized and thus are not
suitable to solve distributed optimization problems. Some recent works have started
to modify distributed gradient-based optimization algorithms to ZO, e.g., distributed
ZO gradient descent algorithms [147-151], distributed ZO push-sum algorithm [152],
distributed ZO mirror descent algorithm [153], distributed ZO gradient tracking algorithm
[151], distributed ZO primal-dual algorithms [155], distributed ZO sliding algorithm
[154]. Convergence properties of these algorithms have been analyzed in detail. For
example, in [151] it was established that the output of the 2p-point sampling based

5.1. Introduction 127

distributed DZO algorithm achieves an O(1/T') convergence rate for smooth cost functions
and a linear convergence rate when the global cost function satisfies the P-L. condition in
addition; and in [155] it was established that the output of the two-point sampling based
distributed SZO algorithm achieves an O(p*n/T) convergence rate for smooth nonconvex
cost functions, where 7 is the number of agents. However, the algorithm in [151] requires
each agent to communicate three p-dimensional variables with its neighbors, which results
in a heavy communication burden when p is large, and uses the P-L constant, which is
normally difficult to determine, to design algorithm parameters. The algorithm in [155]
requires each agent to sample O(T') times per iteration, which is not favorable in practice.

Noting above, four core theoretical questions with important practical relevance arise
when considering distributed ZO optimization problems.

(Q5.1) Are there any distributed DZO algorithms that have the same convergence properties
as the 2p-point sampling based distributed DZO algorithm in [151] under the same
conditions, but require less communication and do not use the P-L. constant?

(Q5.2) Can distributed SZO algorithms have similar convergence properties as centralized
such algorithms? For instance, can two-point sampling based distributed SZO
algorithms also have an O(W) convergence rate as their centralized counterparts
did in [142,248]?

(Q5.3) As shown in Chapter 4, distributed SGD algorithms can achieve linear speedup in
the number of agents n, compared with centralized SGD algorithms. Can distributed
SZO algorithms also achieve linear speedup? In particular, can two-point sampling
based distributed SZO algorithms achieve the linear speedup convergence rate

O(y/p/nT)?

(Q5.4) Centralized and distributed DZO algorithms can achieve faster convergence rates
under more stringent conditions such as the strong convexity and P-L conditions, as
shown in [213,283,285,299,301,303] and [151], respectively. Can SZO algorithms
also achieve faster convergence rates under such conditions?

This chapter provides positive answers to the above four questions. We first consider
the situation that DZO oracle feedback is available and have the following contributions.

(C5.1) We propose a distributed DZO primal—dual algorithm (Algorithm 5.1), by integrat-
ing the distributed FO primal—dual algorithm (3.7) with the deterministic gradient
estimator (2.33). In this algorithm, at each iteration each agent samples its local
DZO oracles at p + 1 different points.

(C5.2) We show in Theorems 5.1 and 5.2 that the proposed algorithm achieves an O(1/T)
convergence rate for smooth nonconvex cost functions and a linear convergence rate
when the global cost function satisfies the P-L. condition in addition. In other words,
our proposed distributed DZO algorithm has the same convergence properties as
its FO counterpart and the 2p-point sampling based distributed DZO algorithm in
[151] under the same conditions. Two potential advantages of our distributed DZO

128 Distributed zeroth-order optimization algorithms

algorithm are that it only requires each agent to communicate one p-dimensional
variable with its neighbors at each iteration and does not use the P-L. constant, thus
(Q5.1) is answered.

We then consider the situation that SZO oracle feedback is available and have the following
contributions.

(C5.3) We propose two distributed SZO algorithms (Algorithms 5.2 and 5.3). In both
algorithms, at each iteration each agent samples its local SZO oracles at two different
points with an adaptive smoothing parameter. This is different from many existing
Z0 algorithms and is favorable in practice.

(C5.4) We show in Theorems 5.4 and 5.10 that our SZO algorithms find a stationary point
with the linear speedup convergence rate O(+/p/(nT)) for smooth nonconvex cost
functions, and thus are faster than the centralized ZO algorithms in [142,248,286—
289, 307] and the distributed DZO primal algorithm in [151]. To the best of our
knowledge, this is the first linear speedup result for distributed SZO algorithms, thus
(Q5.2) and (Q5.3) are answered.

(C5.5) We show in Theorems 5.6, 5.7, 5.12, and 5.13 that our SZO algorithms find a global
optimum with an O(p/(nT)) convergence rate when the global cost function satisfies
the P-L condition, which is faster than the centralized ZO algorithms in [281, 282]
and the distributed ZO primal algorithms in [148, 151], even though [148,281,282]
assumed strongly convex cost functions and only considered additive sampling
noise, and [151] considered the DZO oracle feedback setting. To the best of our
knowledge, this is the first analysis for the performance of SZO algorithms under
the P-L. condition or the strong convexity assumption, thus (Q5.4) is answered.

(C5.6) When considering centralized optimization problems with DZO oracle feedback, we
show in Theorems 5.8 and 5.14 that above two SZO algorithms linearly find a global
optimum under the P-L. condition. Compared with [213, 283, 285, 299, 301, 303]
which also achieved linear convergence, we use weaker assumptions on the cost
function and/or less samplings per iteration.

The detailed comparison between this chapter and other ZO optimization algorithms is
summarized in Table 5.1. In this table, NoSPPI denotes the number of sampled points per
iteration, and the sampling complexity is the total number of function samplings needed to
attain an e-accuracy, i.e., E[||Vf(x7)|?] < € for nonconvex problems or E[f(x7) — f*] < €
for (strongly) convex problems or problems satisfying the P-t. condition, where € > O is a
constant.

5.1. Introduction

129

Table 5.1: Comparison of Chapter 5 to some related ZO optimization algorithms.

Reference Problem settings NoSPPI Con\:‘:tience Sampling complexity
DZO, centralized, nonconvex, smooth O(p/T) O(p/e)
[213] Two
Strongly convex in addition Linear O(plog(1/e€))
[283] DZO, centralized, strongly convex, smooth, Lipschitz Hessian P Linear O(plog(1/€))
DZO, centralized, nonconvex, smooth O(p/T) O(p/e)
[285] Two
P-L. condition in addition Linear O(plog(1/€))
(303 DZO, centralized, reslriclec:;;i(;:ily convex, smooth, s-sparse 4slog(p/s) Linear O(slog(p/s)log(1/€))
[281] DZO, centralized, quadratic, additive sampling noise One oWp*/T) o(p*/e)
[282] DZO, centralized, strongly c;)(r;ivsecx, smooth, additive sampling Two O(p/NT) 0(p*/e)
(28] DZO, centralized, nonconvex, Lipschitz, smooth One O(p*T?3) o(p’/e¥?)
SZO0, centralized, nonconvex, Lipschitz, smooth op*3|T'3) op*/e)
[142,248] SZO, centralized, nonconvex, smooth Two O(W) O(p/e®)
[289] SZO, centralized, nonconvex, smooth, s-sparse gradient Two O(slog(p)/ NT) O((slog(p))*/€?)
[291] SZO, centralized, constrained, nonconvex, Lipschitz, smooth Oo(pT) o\1/T) O(p/e®)
[307] SZO, centralized, constrained, nonconvex, Lipschitz, smooth Two O(p/ NT) O(p*/€?)
[286] DZO, finite-sum, nonconvex, constrained, Lipschitz, smooth O(NT) O(p/NT) o /e
[287] DZO, finite-sum, nonconvex, Lipschitz, smooth Oo(pT) o(W) O /e
[293] DZO, finite-sum, ng(;r;fl(i):[:/lcsxz;rsexll])csgsl,rgocn?{iginal and mixture 2% o(pn® JbT)) O(pn?/e), Vo € (0, 1)
[294] DZO, finite-sum, nonconvex, smooth O(pn'’?) o(1/T) O(pn'’/e)
[295] DZO, finite-sum, nonconvex, smooth, similar f; 2n O(p/T) O(pn/e)
[298] DZO, finite-sum, nonconvex, Lipschitz, smooth O(pn*3) O(p/T) Oo(p*n*3/e)
DZO, finite-sum, nonconvex, smooth, similar f; " o(1/T) O(pn'?/e)
2991 P-E condition in addition oo™ Linear O(pn'? log(1/€))
[301] DZO, finite-sum, strongly convex, smooth Four Linear O(pnlog(p/e))
[292] SZO0, finite-sum, nonconvex, constrained, Lipschitz, smooth O(nT) O(p/T) O(p*n/e®)
[297] SZ0, finite-sum, nonconvex, smooth Four O(p'Pn3T) O(p' P2l e)
[147] DZ0, distributed, convex, constrained, Lipschitz 2n Asymptotic —
[152] DZO, distributed, convex, Lipschitz 2n O(p*n?/NT) o’ [€%)
(1531 DZO, distributed, convex, compact constrained, Lipschitz " O(p\n/T) O(p*n®/e?)
DZO, distributed, strongly convex, constrained, Lipschitz O(p*n®|T) O(p*n’/e)
[148] DZO, distributed, strongly c:g\i/;x, smooth, additive sampling o O/ T 0P’ e
[149] DZO, dislribuled,ﬂ((:j(:lri)t\;sz,sc;;rr;[l)i:a:gl i?’?::ained, Lipschitz, o oy \/T) 0(”/62)
[154] SZO0, distributed, convex, compact constrained, Lipschitz O(pnT) o\1/T) O(pn/e*)
DZO, distributed, nonconvex, Lipschitz, smooth O(W) O(pn/€*)
DZO, distributed, nonconvex, smooth, P-£. condition n O(p/T) O(pn/e)
11 DZO, distributed, nonconvex, smooth o(1/T) O(pn/e)
P-L condition in addition 2pn Linear O(pnlog(1/€))
[155] SZ0, distributed, nonconvex, Lipschitz, smooth Oo(nT) o(p*n/T) o(p*n®/e®)
DZO, distributed, nonconvex, smooth o(1/T) O(pn/e)
P-L condition in addition (without using the P-L constant) (D Linear O(pnlog(1/€))
c};l;lkglser SZO, distributed, nonconvex, smooth, similar f; o O(W) O(p/e?)
SZ0, distributed, nonconvex, smooth, P-E£ condition O(p/(nT)) O(p/e)
DZO0, centralized, nonconvex, smooth, O(p/T) O(p/e)
P-L condition in addition (without using the P-E£ constant) Two Linear O(plog(1/e))

130 Distributed zeroth-order optimization algorithms

5.2 Distributed nonconvex optimization with ZO oracle feedback

Consider a network of n agents, each of which has a local cost function f; : R? — R. All
agents collaborate to solve the optimization problem

. 1 v
min f(x) = ~ Zl f(). (5.1)

This is the same as the distributed nonconvex optimization problem (3.1). However, in this
chapter, we consider the case where each agent is only able to collect ZO oracles, i.e., the
values of its local cost function, rather than FO oracles, i.e., the true or stochastic gradients
of its local cost function.

Both DZO and SZO oracle feedback settings are considered. Under the DZO oracle
feedback setting, each agent can sample the true values of its local cost function. In this
setting, based on the definitions introduced in Chapter 2, the following assumptions are
made.

Assumption 5.1. The communication among agents is described by a weighted undirected
connected graph G.

Assumption 5.2. The optimal set X* is nonempty and f* > —oco, where X* and f* are the
optimal set and the minimum function value of the optimization problem (5.1), respectively.

Assumption 5.3. Each local cost function fi(x) is smooth with constant Ly > 0.

Assumption 5.4. The global cost function f(x) satisfies the P—L. condition with constant
v> 0.

Under the SZO oracle feedback setting, each agent can sample stochastic approxima-
tions of the true local cost function values. Let F;(x, &;) be a stochastic approximation of
the true local cost function value f;(x) that can be sampled by agent i, where &; is a random
variable. In addition to Assumptions 5.1-5.4, we also make the following assumptions.

Assumption 5.5. The SZO oracle Fi(x,&;) is unbiased, i.e., E;[Fi(x,&)] = fi(x), Vi €
[n], Yx € RP.

Assumption 5.6. For almost all &;, the SZO oracle Fi(-,&;) is smooth with constant Ly > 0.

Assumption 5.7. The stochastic gradient V. Fi(x,&;) has bounded variance, i.e., there
exists o1 € R such that E¢[||V. Fi(x, &) — V@)l] < 0'%, Vi€ [n], Vx € RP.

Assumption 5.8. Local cost functions are similar, i.e., there exists oy € R such that
IVfi(x) = VF@IP? < 03, Vi€ [n], Yx € RP.

Remark 5.1. It should be highlighted that no convexity assumptions are made. As-
sumptions 5.5-5.7 are standard when considering the SZO oracle feedback setting, e.g.,
[142, 155, 215, 248, 289, 291, 292, 296, 297, 304, 305]. Assumption 5.8 is slightly weaker
than the assumption that each Vf; is bounded, which is normally used in the literature

5.3. Distributed primal-dual DZO algorithm 131

studying finite-sum ZO optimization, e.g., [147, 151, 152, 154, 155, 214, 215, 286, 287,
292, 293, 298, 305, 308, 309]. Bounded gradient is not the case for many unconstrained
optimization problems, e.g., quadratic optimization problems. Assumption 5.8 is not needed
when Assumption 5.4 holds.

Our goal in this chapter is to answer (Q5.1)—(Q5.4), i.e., solve the following problem.

Problem 5.1. Propose distributed DZO and SZO algorithms for the nonconvex optimiza-
tion problem (5.1) such that stationary points or global optima can be found.

5.3 Distributed primal-dual DZO algorithm

In this section, we consider the situation that DZO oracle feedback is available. We propose
a distributed primal-dual DZO algorithm based on the deterministic gradient estimator
introduced in Section 2.9 and analyze its convergence rate.

5.3.1 Algorithm description

Inspired by the deterministic gradient estimator (2.33), based on the distributed primal—
dual FO algorithm (3.7), we propose the distributed primal-dual DZO algorithm

n
Xik+l = Xig — 77(0’ Z Lijx g + Bvig + Vp filxig, 5:',1()), (5.2a)
=
n n
Vigrl = Vig + Uﬂz Lijxjr,Vxio € RP, Z vio =0, (5.2b)
= =

where @p Jfi(xix,0ix) is the deterministic estimator of Vf;(x;) as defined in (2.33) and ;
is the exploration parameter. Recall that

. 1 &
V, fi(Xik, 6ig) = 5 Z(fi(x + oixer) — fi(x)e.
=1

ik =

Note that the gradient estimator @p Jfi(Xik, 0ix) can be calculated by querying the true
function values of f; at p + 1 points.

We present the distributed primal-dual DZO algorithm (5.2) in pseudo-code as
Algorithm 5.1.

Remark 5.2. In [243], the authors proposed the distributed DZO gradient tracking algo-
rithm. However, in that algorithm, at each iteration each agent i needs to communicate two
additional p-dimensional variables besides the communication of x;j with its neighbors,
which results in a heavy burden on the communication channel when p is large. Moreover,
the deterministic gradient estimator used in [243] requires that at each iteration each agent
queries its local cost function values at 2p points compared with p + 1 points used in our
algorithm.

132 Distributed zeroth-order optimization algorithms

Algorithm 5.1 Distributed Primal-Dual DZO Algorithm
1: Input: parameters @ > 0,8 > 0, 7 > 0, and {6, > 0}.
2: Initialize: x;0 € R” and v;p = 0, ¥i € [n].

3: fork=0,1,... do
4. fori=1,...,nin parallel do

5 Broadcast x;; to NV; and receive x;; from j € Nj;
6: Sample fi(xi) and {fi(xix + 6ixeD)}]. 5

7: Update x;x+1 by (5.2a);

8: Update v; x4 by (5.2b).

9: end for

10: end for

11: Output: {x}.

5.3.2 Convergence analysis

In this section, we analyze convergence rate of Algorithm 5.1.

Find stationary points

Let us consider the case when Algorithm 5.1 is able to find stationary points. We have the
following convergence results.

Theorem 5.1. Suppose that Assumptions 5.1-5.3 hold. Let {x;} be the sequence generated
by Algorithm 5.1 with a € (B + k1, k2], B > ¢, 17 € (0, ¢cyy), and 6 > 0 such that

Zélk < 400, (5.3)

where ki, k2, cg, and ¢, are constants given in Section 5.8.1. Then, for any T € N.,

T-1

1 1
Z;an,k—xku -0) (54)
k=0 i=
-1
ZHVfock)n2 oG) (5.5)
fGr) = fF=0(Q), (5.6)

= _ 1 n
where X = XLy Xij-

Proof. The explicit expressions of the right-hand sides of (5.4)—(5.6) and the proof are
given in Section 5.8.1. O

5.4. Distributed primal—dual SZO algorithm 133

Find global optima

Let us next consider the case when Algorithm 5.1 finds global optima. We have the
following convergence results.

Theorem 5.2. Suppose that Assumptions 5.1-5.4 hold. Let {x;} be the sequence generated
by Algorithm 5.1 with the same «, B, and nj given in Theorem 5.1, and J; € (0, K];/z), where
ks € (0, 1) is a constant, then

1 n
= D s = TP + () — £ < ol V€ N, (5.7)
i=1

where {y > 0 and { € (0, 1) given in Section 5.8.2.
Proof. The proof is given in Section 5.8.2. O

Remark 5.3. By comparing Theorems 3.1 and 3.2 with Theorems 5.1 and 5.2, respectively,
we see that the proposed distributed FO and ZO algorithms have the same convergence
properties under the same assumptions. Similar convergence results as stated in Theo-
rems 5.1 and 5.2 were also achieved by the distributed DZO gradient tracking algorithm
proposed in [243] under the same assumptions. Compared with [243], in addition to the
advantages discussed in Remark 5.2, one more advantage of Theorem 5.2 is that the P-£
constant v is not needed to be known in advance.

5.4 Distributed primal-dual SZO algorithm

In this and the next sections, we consider the situation that SZO oracle feedback is
available. In this section, we propose a distributed primal-dual SZO algorithm based on
the two-point sampling random gradient estimator introduced in Section 2.8 and analyze
its convergence rate.

5.4.1 Algorithm description

Inspired by the two-point sampling random gradient estimator (2.26), based on the
distributed primal—dual FO algorithm (3.7), we propose the distributed primal-dual SZO
algorithm

n
Xijr1 = Xig — Uk(a/k Z Lijxjx + Brvig + gf,k), (5.82)
J=1

=

n
Vikrl = Vig + B Z Lijxjx, Yxip € RP, vio=0,, Vi€ [n], (5.8b)
= =1

where

8ix = 6£(F i(Xik + Oigcttif, §ik) — FiXiges Eige) Ui (5.9)
ik

134 Distributed zeroth-order optimization algorithms

Algorithm 5.2 Distributed Primal-Dual SZO Algorithm

1: Input: positive sequences {ax}, {8}, {mx}, and {04}

2: Initialize: x;o € R” and v;p = 0,, ¥i € [n].

3: fork=0,1,... do

4. fori=1,...,nin parallel do

5 Broadcast x;; to NV; and receive x;; from j € Nj;

6: Select vector u; € SP independently and uniformly at random;
7: Select &;x independently;
8
9

Sample Fi(x;, & x) and Fi(xix + 0ixltix, Eix);
: Update x; x4 by (5.8a);
10: Update v; x4 by (5.8b).

11: end for
12: end for

13: Output: {x;}.

with 6;; > O being an adaptive smoothing parameter and u;; € S” being a uniformly
distributed random vector chosen by agent i at iteration k, &;x being a random variable
chosen by agent i according to the distribution of &;, and F;(x;x+0; Uik, &ix) and Fi(X;x, Eix)
being the values sampled by agent i.

Here, we assume that u;; and &, Vi € [n],k > 1 are mutually independent, which is
commonly used when considering the SZO oracle feedback setting, e.g., [142, 148, 149,
155, 214, 215, 248, 289, 291, 292, 296, 297, 304, 305, 307]. Let & denote the o-algebra
generated by the independent random variables w1k, ..., Uk, E1k, - .. Enk and let L =
Uf:() 2. It is straightforward to see that x;; and v;x1, { € [p] depend on L;_; and are
independent of £, for all 7 > k.

We write the distributed primal-dual SZO algorithm (5.8) in pseudo-code as Algo-
rithm 5.2.

Remark 5.4. In Algorithm 5.2, at each iteration each agent samples its local SZO oracles
at two different points to estimate the gradient of its local cost function. It should be
highlighted that the agent-wise smoothing parameter is adaptive, which is normally larger
than the fixed smoothing parameter used in many of existing ZO algorithms, and thus is
favorable in practice. For example, in the following we use O(1/k'/*) smoothing parameter,
which is larger than the O(1/T'/?) smoothing parameter used in [142].

5.4.2 Convergence analysis
Find stationary points

Let us consider the case when Algorithm 5.2 is able to find stationary points. We have the
following convergence result for Algorithm 5.2 with time-varying parameters.

5.4. Distributed primal—dual SZO algorithm 135

Theorem 5.3. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Let {x;} be the sequence
generated by Algorithm 5.2 with

K
ax = ki B = kolk + 1), i = [72 Six < ks k. Yk € Ny, (5.10)
k
where Ky > c¢1, k2 € (0,¢2(k1)), 0 € (0.5, 1), 11 > (\pes(ki, k)Y, ko = co(ky, k2)/1], and
ks > 0 with co(ky, k2), c1, ca(ky), and c3(k1, ky) defined in Appendix 5.8.3. Then, for any
T € Ny,

T-1 =12
Lz mEUVS GO _ o P it
Zk:() Mk T
E[f(xr)] - f* =0(), (5.11b)
1 < _ 1
E[;;um = 31l] = O(5). (5.11c)
lim E[IVAEDIPT =0, (5.11d)

= _ 1 n
where X = o YL Xi-

Proof. The explicit expressions of the right-hand sides of (5.11a)—(5.11c) and the proof
are given in Appendix 5.8.3. O

If the total number of iterations 7 and the number of agents n are known in advance,
then, as shown in the following, Algorithm 5.2 can solve (5.1) with an O(+/p/ \nT)
convergence rate, and thus achieves linear speedup in the number of agents compared to
the O(+/p/ VT) convergence rate achieved by the stochastic gradient-free algorithms for
solving centralized stochastic nonconvex optimization in [142,248].

Theorem 5.4 (Linear speedup). Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. For any
given T > max{n(o(k1,&2)/k2)%, n3}/p, let {xy, k € [T]} be the output generated by
Algorithm 5.2 with
kK \pT K K,
= kiBo Br=B= 2 g =2 s 0 Vk<T, (5.12)
Vn Br pini(k+ 1)t

where Cy(k1, k2) is defined in Appendix 5.8.4, ki > c1, ko € (0, ca(ky)), and ks > 0 with ¢y
and c;(ky) defined in Appendix 5.8.3. Then,

7 2 BV AGOIP) = O + O (5.13a)
k=0 n

E[f(Gr)] - f=0Q), (5.13b)

1 T-1 1 n n

= > E[=) lxix— %l = O(zx), (5.13¢)

7 24Pl 2~ wP| =07

Jdim E{IV£GEIP] =0, (5.13d)

136 Distributed zeroth-order optimization algorithms

Proof. The explicit expressions of the right-hand sides of (5.13a)—(5.13b) and the proof
are given in Appendix 5.8.4. It should be highlighted that the omitted constants in the
first term in the right-hand side of (5.13a) do not depend on any parameters related to the
communication network. O

Remark 5.5. To the best of our knowledge, Theorem 5.4 is the first to establish linear
speedup result for distributed SZO algorithms. This rate is faster than the rates achieved
by centralized ZO algorithms in [142, 248, 286-289, 307] and the distributed primal
ZO algorithm in [151]. This rate is slower than rates achieved by centralized ZO
algorithms in [291-295,297-299], which is reasonable since these algorithms not only are
centralized but also use variance reduction techniques. However, in [293-295, 298, 299],
the considered problems are deterministic; and in [155, 291, 292], the sampling size of
each agent at each iteration is O(T), which is difficult to execute in practice. It is one
of our future research directions to establish faster convergence with reduced sampling
complexity by using variance reduction techniques.

Find global optima

Let us next consider cases when Algorithm 5.2 finds global optima.

Theorem 5.5. Suppose Assumptions 5.1-5.8 hold. Let {x;} be the sequence generated by
Algorithm 5.2 with

K
ar = k1B Br = kotk +11)%, i = [?2, Oix < Ksk, Yk € No, (5.14)
X

where ki > c1, k2 € (0,c2(k1)), @ € (0,1), 11 € [(pes(kr, k), (peacs (i, k) VO], ko >
C()(K],Kz)/t(f, and ks > 0 with ¢4 > 1 being a constant, co(ky, k), c1, c2(k1), and c3(k, k2)
defined in Appendix 5.8.3. Then, for any T € N,

Z Iz = %r1P] = O(5). (5.152)

E[f(xr) - f'] —0()+O((5.15b)

7207
Proof. The explicit expressions of the right-hand sides of (5.15a) and (5.15b), and the
proof are given in Appendix 5.8.5. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.15b) do not depend on any parameters related to
the communication network. O

From Theorem 5.5, we see that the convergence rate is strictly greater than O(p/(nT)).
In the following we show that the linear speedup convergence rate O(p/(nT)) can be
achieved if the P-t. constant v is known in advance. The total number of iterations 7 is
not needed.

5.4. Distributed primal—dual SZO algorithm 137

Theorem 5.6 (Linear speedup). Suppose Assumptions 5.1-5.8 hold and the P-L. constant
v is known in advance. Let {x}.} be the sequence generated by Algorithm 5.2 with

K
@ = k1B Br = Kok +17), i = ﬂ—z, Six < kst Yk € N, (5.16)
k

where k1 > c1, kp € (0,c2(k1)), ko € [3Covkr/16,3vk2/16), t; > ¢3(ko, K1,K2), and ks > 0
with &y € (0, 1) being a constant, c; and c,(k1) defined in Appendix 5.8.3, and ¢3(ko, k1, k2)
defined in Appendix 5.8.6. Then, for any T € N,

1 n
E[= D" i - #l] = 0G5). (5.17a)

i=1
ELf() - 1= OCE) + O(F). (5.17b)

Proof. The explicit expressions of the right-hand sides of (5.17a) and (5.17b), and the
proof are given in Appendix 5.8.6. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.17b) do not depend on any parameters related to
the communication network. O

Although Assumption 5.8 is weaker than the bounded gradient assumption, it can
be further relaxed by a mild assumption. Specifically, if each f* > —oo, where f* =
min,ery fi(x), then without Assumption 5.8, the convergence results stated in (5.17a) and
(5.17b) still hold, as shown in the following.

Theorem 5.7 (Linear speedup). Suppose Assumptions 5.1-5.7 hold, and the P-L. constant
v is known in advance, and each f! > —oo. Let {x;} be the sequence generated by
Algorithm 5.2 with

K
i = K1k, Br = kolk +11), 7x = ﬁ_z’ Oik < Kstk, Yk € No, (5.18)
k

where k1 > ¢, ko € (0,c2(ky1)), ko € [3Covka/16,3vky/16), t; > C3(ko, K1, k2), and ks > 0
with ¢y € (0, 1) being a constant, c| and c,(k1) defined in Appendix 5.8.3, and ¢3(ko, k1, k2)
defined in Appendix 5.8.7. Then, for any T € N,

1 & . p
E[Z;‘ i = %7IP] = O(5). (5.192)
- . P p
E[fGr) - f]1= O(ﬁ) + O(ﬁ . (5.19b)

Proof. The explicit expressions of the right-hand sides of (5.19a) and (5.19b), and the
proof are given in Appendix 5.8.7. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.19b) do not depend on any parameters related to
the communication network. O

138 Distributed zeroth-order optimization algorithms

Remark 5.6. To the best of our knowledge, Theorems 5.5-5.7 are the first analysis of ZO
algorithms to solve stochastic optimization problems under the P-L. condition or the strong
convexity assumption. In [281], a centralized ZO algorithm based on one-point sampling
with additive sampling noise was proposed and an O(p*|T) convergence rate was achieved
for deterministic optimization problems strongly convex quadratic cost functions. In [282],
a centralized ZO algorithm based on two-point sampling with additive noise was proposed
and an O(p/ NT) convergence rate was achieved for deterministic strongly convex and
smooth optimization problems. In [148], a distributed primal ZO algorithm based on 2p-
point sampling with additive noise was proposed and an O(pn®] NT) convergence rate was
achieved for deterministic strongly convex and smooth optimization problems. In [151],
a distributed primal DZO algorithm based on two-point sampling was proposed and an
O(p/T) convergence rate was achieved for deterministic smooth optimization problems
under the P—{£. condition. It is straightforward to see that aforementioned convergence
rates achieved in [148, 151, 281, 282] are slower than the convergence rate achieved by
our distributed primal-dual SZO algorithm as stated in Theorem 5.7, although we consider
the SZO oracle feedback setting which is more general than these studies, and use the P-L.
condition which is weaker than the strong convexity condition.

As shown in Theorems 5.5-5.7, in expectation, the convergence rate of Algorithm 5.2
with diminishing stepsizes is sublinear. The following theorem establishes that, in expec-
tation, the output of Algorithm 5.2 with constant algorithm parameters linearly converges
to a neighborhood of a global optimum.

Theorem 5.8. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Let {x;} be the sequence
generated by Algorithm 5.2 with
k

@ = K1, B = Bo e = 2. Sk < kst Yk € Ny, (5.20)

B

where k1 > c1, k2 € (0,c2(k1)), B = Colk1, k2), € € (0, 1), and ks > 0 with &o(ky, ko) defined
in Appendix 5.8.4, and c| and c,(ky) defined in Appendix 5.8.3. Then, for any T € N,

T-1 n
1 ! 2Pl < & 4 202 2
T 2, E[; ; ik — Xl] < (o7 + 303)ce, (5.212)
1 T-1 pe
T E[IVA(EOIP] < U_T7 + (0 + 3nod)cs, (5.21b)

k=

(=]

where cs, cg, ¢7, and cg are positive constants defined in Appendix 5.8.8. Moreover, if
Assumption 5.4 also holds, then

1< i
E[- Dl =%l + £ = '] < eheo + (o + 30%)cr0, Ve eNL, (5.22)
i=1

where € € (0, 1), co, and cyg are positive constants defined in Appendix 5.8.8.

5.5. Distributed primal SZO algorithm 139

Proof. The proof is given in Appendix 5.8.8. O

Remark 5.7. When considering centralized nonconvex smooth optimization with DZO
oracle feedback, i.e., oy = 0 = 0, the result stated in (5.21b) shows that a stationary can
be found with a rate O(p/T). This rate is the same as that achieved by the ZO algorithms
in [213,285,293,295,298]. Although the ZO variance reduced algorithms in [294,299] and
the stochastic direct-search algorithms in [273-275] achieved a faster rate O(1/T), these
algorithms require three or more samplings at each iteration, while our proposed algorithm
requires only two samplings at each iteration. Moreover, the result stated in (5.22) shows
that a global optimum can be found linearly. The ZO algorithms in [213, 283, 285, 299,
301, 303] and the stochastic direct-search algorithms in [273-276] also achieved linear
convergence. However, the algorithms in [273-276, 283, 299, 301] require three or more
samplings at each iteration, the P—{. constant needs to be known in advance in [285,299],
which is not needed in Theorem 5.8; and the cost functions in [213, 273-276, 283, 301,
303] are (restricted) strongly convex, which is stronger than the P-L condition used in
Theorem 5.8.

5.5 Distributed primal SZO algorithm

Same as Section 5.4, in this section, we also consider the situation that SZO oracle feedback
is available. We propose a distributed primal SZO algorithm based on the two-point
sampling random gradient estimator introduced in Section 2.8 and analyze its convergence
rate.

5.5.1 Algorithm description

Inspired by distributed first-order (sub)gradient descent algorithm proposed in [310], we
propose the distributed primal SZO algorithm

Xige1 = Xik =Y) LijXjx — &> (5.23)

n
Jj=1

where vy is a positive constant and {r;} is a positive sequence to be specified later and g7,
is the stochastic gradient estimator defined in (5.9).
We write the distributed primal SZO algorithm (5.23) in pseudo-code as Algorithm 5.3.

5.5.2 Convergence analysis

Find stationary points

Theorem 5.9. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Let {x;} be the sequence
generated by Algorithm 5.3 with

v€(0,dy), m = ik < Ks Ve, Yk € No, (5.24)

Ky P
(k+1)?’

140 Distributed zeroth-order optimization algorithms

Algorithm 5.3 Distributed Primal SZO Algorithm

1: Input: positive constant y and positive sequences {7;} and {J; s}
2: Initialize: x;o € R?, Vi € [n].

3: fork=0,1,... do

4. fori=1,...,nin parallel do

Broadcast x;; to NV; and receive x;; from j € Nj;

Select vector u;x € S? independently and uniformly at random;
Select &;x independently;

Sample Fi(x;, & x) and Fi(xix + 0ixltix, Eix);

Update x;x4; by (5.23).

10: end for

11: end for

12: Output: {x;}.

A A A

where ks > 0, k, € (0, dg(y)t‘l’], 0 € (0.5,1), and t; > p"/® with d, and d,(y) defined in
Appendix 5.8.9. Then, for any T € N,,

T-1 =\[12
Lz mEUVS GO _ o VP 5250
Zk:o Mk T
E[f()] - f* = O(1), (5.25b)
1 v _ 1
E[Z:‘ iz = 371P] = O, (5.25¢)
lim E[IVA@E)IP] = 0. (5.25d)

Proof. The explicit expressions of the right-hand sides of (5.25a)—(5.25c) and the proof
are given in Appendix 5.8.9. O

If the total number of iterations 7 and the number of agents n are known in
advance, then, as shown in the following, Algorithm 5.3 can solve (5.1) with O(+/p/ VnT)
convergence rate, and thus achieves the linear speedup with respect to the number of agents.

Theorem 5.10 (Linear speedup). Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. For any
given T > max{n/d%()/), n3}/p, let {x; k € [T1} be the output generated by Algorithm 5.3
with

N Sip < ———2 NK<T, (5.26)
vpT pini(k+ 1)a
where ks > 0 and dy and d,(y) are defined in Appendix 5.8.9, then

vy €(0,d), m =

1 T-1)) \/1_7 n
T 2 E[IVfxOl'T = O(W) + 0(7), (5.27a)

5.5. Distributed primal SZO algorithm 141

E[f(xr)] - f* =0(), (5.27b)

1 T-1 1 n

= 2= D b= 5P| = 0. (5.27)
k=0 i=1

lim E[IV/GpIP] =0, (5.27d)

Proof. The explicit expressions of the right-hand sides of (5.27a)—(5.27¢) and the proof
are given in Appendix 5.8.10. It should be highlighted that the omitted constants in the
first term in the right-hand side of (5.27a) do not depend on any parameters related to the
communication network. O

Find global optima

Theorem 5.11. Suppose Assumptions 5.1-5.8 hold. Let {x;} be the sequence generated by
Algorithm 5.3 with

Y € (O’ dl)’ Mk = 6[,/{ < KsMks Vk S N09 (528)

Ky
(k+1)?
where ks > 0, ky, € (0,do()1]], 0 € (0,1), and t; > p'? with dy and dy(y) defined in
Appendix 5.8.9. Then, for any T € N,

Z Iz = %] = O(55). (5.292)

E[f(xr) - f]1= O() + O(ng (5.29b)

Proof. The explicit expressions of the right—hand sides of (5.29a) and (5.29b), and the
proof are given in Appendix 5.8.11. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.29b) do not depend on any parameters related to
the communication network. O

From Theorem 5.11, we see that the convergence rate is strictly greater than O(p/(nT)).
In the following we show that the linear speedup convergence rate O(p/(nT)) can be
achieved if the P-L. constant v is known in advance. The total number of iterations 7 is
not needed.

Theorem 5.12 (Linear speedup). Suppose Assumptions 5.1-5.8 hold and the P—L. constant
v is known in advance. Let {x;} be the sequence generated by Algorithm 5.3 with

K
¥ €0.d1), e = 1", Sik < ko, Yk € Ny, (5.30)
1

where ks > 0, k, > 4/v, and t; > ﬁg(y) with dy and 5?2(7) defined in Appendices 5.8.9 and
5.8.12, respectively. Then, for any T € N,

E[% ; I =%l = 0. (531a)

142 Distributed zeroth-order optimization algorithms

E[f(xr) - f1= O(%) +O(% : (5.31b)

Proof. The explicit expressions of the right-hand sides of (5.31a) and (5.31b), and the
proof are given in Appendix 5.8.12. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.31b) do not depend on any parameters related to
the communication network. O

Although Assumption 5.8 is weaker than the bounded gradient assumption, it can
be further relaxed by a mild assumption. Specifically, if each f* > —oo, where f* =
min,ery fi(x), then without Assumption 5.8, the convergence results stated in (5.31a) and
(5.31b) still hold, as shown in the following.

Theorem 5.13 (Linear speedup). Suppose Assumptions 5.1-5.7 hold, and the P—L. constant
v is known in advance, and each f > —oo. Let {xi} be the sequence generated by
Algorithm 5.3 with

Y€ O.d), i = —2—, Gix < kot Yk € No, (532)
k+1

where ks > 0, k, > 4/v, and t| > 672()/) with d, and c?z(y) defined in Appendices 5.8.9 and
5.8.13, respectively. Then, for any T € N,

1 n
E[= D i - #l] = 0G5). (5.332)

i=1
Elf(%r) - f'] = O(%) + O(% : (5.33b)

Proof. The explicit expressions of the right-hand sides of (5.33a) and (5.33b), and the
proof are given in Appendix 5.8.13. It should be highlighted that the omitted constants in
the first term in the right-hand side of (5.33b) do not depend on any parameters related to
the communication network. m]

As shown in Theorems 5.11-5.13, in expectation, the convergence rate of Algo-
rithm 5.3 with diminishing stepsizes is sublinear. The following theorem establishes that,
in expectation, the output of Algorithm 5.3 with constant algorithm parameters linearly
converges to a neighborhood of a global optimum.

Theorem 5.14. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Let {x;} be the sequence
generated by Algorithm 5.3 with

k
ALK

Yy €(0.d)), m =1, 6ix < &, Yk € Ny, (5.34)

where n € (0,dr(y) and € € (0, 1) with d| and d,(y) defined in Appendix 5.8.9. Then, for
any T € N,

T-1 n

1 1 -2 d3 2, 2 2
- ; E[; i = 5P| < = + 707 + 303)da, (5.35a)

5.6. Simulations 143

~

d
E[IVf(EI] < % + (o +303)de, (5.35b)

N =
o~
Ii
1)

where ds, dy, ds, and dg are positive constants defined in Appendix 5.8.14. Moreover, if
Assumption 5.4 also holds, then

1 ¢ .
E[Z Z lxix = Tl + F(5) = £°] < €ds +n(o} +303)ds, Yk €N, (5.36)
i=1

where € € (0, 1), d7, and dg are positive constants defined in Appendix 5.8.14.

Proof. The proof is given in Appendix 5.8.14. m|

5.6 Simulations

In this section, we verify the theoretical results through numerical examples.

5.6.1 Distributed regularized logistic regression

This section evaluates the performance of Algorithm 5.1 in solving the nonconvex
distributed regularized logistic regression problem considered in Section 3.6.1. In this
simulation, all settings for cost functions and the communication graph are the same as
those described in Section 3.6.1.

We compare Algorithm 5.1 with its FO counterpart (Algorithm 3.1) and state-of-the-
art algorithms: distributed gradient descent (DGD) with diminishing stepsizes [110, 116],
distributed gradient tracking algorithm (DGTA) [80, 116], distributed ZO gradient tracking
algorithm (ZO-GTA) [243], xFILTER [114], Prox-GPDA [112], and D-GPDA [113].

Figure 5.1 illustrates the evolutions of minke[T]{||Vf()"ck)||2 + % 2y ik — Tll?} with
respect to the number of communication rounds for these algorithms with the same initial
condition. It can be seen that both zeroth-order algorithms (Algorithm 5.1 and ZO-GTA
[243]) exhibit almost identical behavior as their first-order counterparts (Algorithm 3.1 and
DGTA [80, 116]) during the early stage, but then slow down and converge at a sublinear
rate.

In order to compare the performance of the two DZO algorithms (Algorithm 5.1 and
ZO-GTA [243]), we plot the evolutions of minger {IIV/(XI* + 2 3, llxix — %I} with
respect to the number of samplings in Figure 5.2. It can be seen that Algorithm 5.1 gives
better performance.

5.6.2 Generating adversarial examples from black-box deep neural
networks

This section evaluates the performance of Algorithms 5.2 and 5.3 in generating adversarial
examples from black-box deep neural networks (DNNs).

144 Distributed zeroth-order optimization algorithms

o) 10° g T
= LN
IR
| 10°r b
LRI -
é 100 | T Yvean,]
IS E h - e
N 1088 [T
= N - N m e m e e
+ LN N Tt e
A 10720 | [— Algorithm 3.1 e
2 - - = - Algorithm 5.1
& DGD
> 10%° [| ——DGTA 1
= - --:Z0-GTA
& 100 ————— xFILTER 1
v Prox-GPDA
= I i — D-GPDA N—]
E 10-35 I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
Communication rounds

Figure 5.1: Performance of distributed FO and DZO optimization algorithms in
the nonconvex distributed regularized logistic regression problem: Evolutions of
minge) {IVAEOI* + 1 37 Ilxix — Xl*} with respect to the number of communication
rounds.

In image classification tasks, CNNs are vunlberable to adversarial examples [38]
even under small perturbations, which leads misclassifications. Considering the setting of
zeroth-order attacks [40,295], the model is hidden and no gradient information is available.
We treat this task of generating adversarial examples as an zeroth-order optimization
problem. The the black-box attack loss function [40,295] is given as

fi(x) = max {Fyi(% tanh(tanh_l 2a; + x)) - m}kax {Fj(% tanh(tanh_1 2a; + x))}, O}
JFYi

+ c”% tanh(tanh™' 24, + x) — a,“i,

where ¢ is a constant, (a;,y;) denotes the pair of the ith natural image ; and its original
class label y;. The output of function F(z) = col(F(2), ..., Fu(z)) is the well-trained model
prediction of the input z in all m image classes.

The well-trained DNN model' on MNIST handwritten has 99.4% test accuracy on
natural examples [295]. We compare the proposed distributed primal-dual SZO algorithm
(Algorithm 5.2) and distributed primal SZO algorithm (Algorithm 5.3) with state-of-the-
art centralized and distributed SZO algorithms: RSGF [142], SZVR-G [297], ZO-SVRG
[295], distributed ZO gradient descent algorithm (ZO-GDA) [151], and ZONE-M [155].

1https ://github.com/carlini/nn_robust_attacks

5.6. Simulations 145

10° w
——— Algorithm 5.1
- - --ZO-GTA

i — Zil*}

2

1
n

minger {[|V £ (zi)|* +

Samplings x10*

Figure 5.2: Performance of distributed DZO optimization algorithms in the nonconvex
distributed regularized logistic regression problem: Evolutions of minger){||V FEOI?> +
}l 2y ik — I} with respect to the number of samplings.

The communication network of 10 agents is generated randomely following the Erdés -
Rényi model with probability of 0.4. All the hyper-parameters that used in the experiments
are given in Table 5.2. We set the iteration number as 2500.

Table 5.2: Parameters in each algorithm.

Algorithm Decentralized Parameters
Algorithm 5.2 v 7=0.5/k0" @ =05k, =01k
Algorithm 5.3 v y =001, 7 =0.08/k'0"
ZO-GDA v 7= 0.08/k'07
ZONE-M v p=0.1vVk
RSGF X u =001
SZVR-G X u=001
Z0-SVRG X u=001

We show the black-box attack loss of each SZO algorithms in Figure 5.3 and list the
least ¢, distortion of the successful adversarial perturbations in Table 5.3. We can see
that our proposed distributed SZO algorithms converge almost as fast as the ZO-GDA
[151], and they all are faster than the other algorithms. However, the adversarial examples
generated by these distributed algorithms have slightly larger ¢, distortions than those

146 Distributed zeroth-order optimization algorithms

——— Algorithm 5.2
- = = -Algorithm 5.3

Loss

0 500 1000 1500 2000 2500
Iterations

Figure 5.3: Performance of SZO optimization algorithms in generating adversarial
examples: Evolutions of the black-box attack loss.

Table 5.3: Distortion

Algorithm ¢, distortion
Algorithm 5.2 6.44
Algorithm 5.3 5.77

Z0O-GDA 7.23

RSGF 5.69
SZVR-G 5.16
Z0O-SVRG 4.76

generated by the centralized algorithms. Table 5.4 provides the comparison of generated
adversarial examples from a black-box DNN on MNIST: digit class “4”.

5.7 Summary

In this chapter, we studied distributed nonconvex optimization with ZO information
feedback. We first considered the case that DZO is available and proposed a distributed
primal—-dual DZO algorithm. We derived its convergence properties, which are the same as
its FO counterpart. We then considered the case that SZO is available and proposed two
distributed SZO algorithms: distributed primal-dual and primal SZO algorithms. We also

5.7. Summary 147

Table 5.4: Comparison of generated adversarial examples from a black-box DNN on
MNIST: digit class “4”.

Image ID 4 6 19 24 27 33 42 48 49 56
] ! F
. J- ol ot P ¥ ' . q £-;
Algorithm 5.2 ; i £ f
9 8 2 7 2 2 9 9 9 9

Classified as
) R - o I F - : q q
Algorithm 5.2 Lz’ '
Classified as 9 9 7 9 9 2 9 9 9 9
, , o oy » , , L{ q
70-GDA 4
Classified as 9 9 2 2 2 2 9 9 9 3
Classified as 4 4 4 4 4 4 4 4 4 4
U Il BN B BN I § L‘i E’I‘
RSGF ¥ : & G !
|44
Classified as 9 9 2 9 9 2 9 9 9 9
S . f g 3]
SZVR-G : © J ‘_f q E-{
Classified as 9 8 2 2 2 2 9 9 9 9
I A T P f ¢ L{', i'f
Z0O-SVRG -
Classified as 9 8 2 9 9 2 9 9 9 9

analyzed their convergence properties. More specifically, the linear speedup convergence
rate O(+/p/(nT)) was established for smooth nonconvex cost functions under arbitrarily
connected communication networks. The convergence rate was improved to O(p/(nT))
when the global cost function satisfies the P—E. condition in addition. It was also shown
that the output of the proposed algorithms linearly converges to a neighborhood of a
global optimum. Interesting directions for future work include considering asynchronous,
periodic, or compressed communication, investigating an adaptive choice of the number of

148 Distributed zeroth-order optimization algorithms

samplings at each iteration by different agents, and studying the trade-off between sampling
complexity and convergence rate.

5.8 Proofs

5.8.1 Proof of Theorem 5.1

Denote K, =1, - 11,17, K = K, ®I,, H = 11,17 ®I,), &% = 1 (1] ® I)x\, ¥ = 1, ® Xy,
g = Vf(xp), 8 = Hgr, g) = V(X0). 8) = Hg) = 1(1, ® VF(X)), hix = Vp filxis Si)-

hy = col(hiy,. .., nk) hi = Hhy, 6 = maXiq{Six}, 64 = Ti% 5,2k, h», =V, fi(Zx, 60,

h) = col(h) ..., h0,), and k) = HH.
We also denote the followmg notatlons.
cp = max{KZK—il, K3, K4} cy = mln{g Z Z} = m(+9Lf) K > 1,
1 1 L
K = 4(1+(1 + 8Ky + (L)))» ks = 6(ky + (L)>L2+2(9(K2+M) 1 +3L3)°,
15
4= (@-ppa(L) - 5(2 +L)). & = Bp(l) + 2a” + F)p (L) + = L,
gl b e L 3 ey
G283 0p i Y= T2 675 5 o Y
3 1 Le(1+3L¢ . 1
g6 = ﬁ_z(l + o2 D) + %)L} + y &= Umln{§1 =42, §}’
., lSan?. gl 1 1 ay 111 3an§.
a=(Ger) e oG e Erd)
_a+p 1 _ 1 a—-pB
=5 gy g e

The proof of Theorem 5.1 is similar to the proof of Theorem 3.1 with some
modifications. Lemma 3.1 is replaced by the following lemma

Lemma 5.1. Let {x;} be the sequence generated by Algorithm 5.1. If Assumptions 5.1-5.3
hold with « > 3. Then,

1o

Uker < Ug = el ok — [+ 3 “n@}-w — 1 — 1)l
- U + G0} + L0k, (5.37)
where
. 1 1 1,
U = ; Uik, Urp = §||xk||K, Uy = 2“Vk + Bh Q+ﬁK’

5.8. Proofs 149

1 ~ ~
Usi = x K(vi + Bhi), Usge = n(f(x0) = f*) = f(xo) - 17,

and Q = RAIIRT ® I, with matrices R and A]’1 given in Lemma 2.5.
Proof. The distributed deterministic zeroth-order algorithm (5.2) can be rewritten as
Xi+1 = X — n(aLxy + Bvi + hy), (5.38a)
Vie1 = Vi + BLxg, Yxo € R™, vy = 0p),. (5.38b)
We know that (3.30) still holds. Similar to the way to get (3.32), we have
lghsr — &P = IVf(Eir) = VAEOIP < Lill%er — &ll> = LRl . (5.39)
From (2.35a), we have
L35, 160

T I - gl <

s — gill* <

_— 5.40
; (5.40)
We have
B — BIP = IIRY,) — g0,y + 800y — &4 + 80— BIP
< 3IIhY,, — gpall* +3lgl, — &I +3lig; — BIP
20 20
B 3anf6k+1 2L2||hk||2 3anf6k
- 4 4
3npL (5k+1 + 62)
B 4

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (5.40) and (5.39). Similarly, from the Cauchy-Schwarz inequality,
(5.40), and (3.30), we have

+ 377 Ly, (5.41)

0 2 3an12’6% 2 2
llhy — hill” < — 3L [lxk[k- (5.42)
Then, from (5.42) and p(H) = 1, we have
70 _ 712 0 2 0 2 3an§’5/% 2
1B, = RillP = | H(R = ROl < 1B = hilP < ——=— + 3L7 |l (5.43)

2
We have
IR = 1B — 27 + g0I”° = Ik} — gLI”* + 2(hY — 27 &) + 112717

zM&@W—MW—ﬁW—w&WﬂmW —|lR) - gYI”* + w&w
anzéz 1
> —|In) - gl + |muﬁ :'-+?@%R (5.44)

150 Distributed zeroth-order optimization algorithms

where the first inequality holds due to the Cauchy-Schwarz inequality; the second
inequality holds due to p(H) = 1; and the last inequality holds due to (5.40).
Similar to the way to get (3.33), from (5.38a) and (2.5), we have

Urier < Unic= bl 3L+ 30y~ B

”K MHZL

0
— nBx] K(vi + Bhk) + e+ ﬁh WK' (5.45)
Then, from (5.45) and (5.42), we have
1
T 0
U1 < Usp - ||xk|| K- Rk — 1Bx; K(Vk + Bhk)
1 2 3an?6%17(1 + 31n)
+| e - . (5.46)
Similar to the way to get (3.35), from (5.38b), (2.5), and (2.7), we have
Uss1 < Upg +nx; (BK + CYL)(Vk + Bh()) + el PBL+al?)

1 2 1 1 1 a
+|vi + =h? (= + —)(—— + =)1k’ — B2 5.47
H”" B Hizw+ek (,82 217,8)(,02(L) ﬁ)” e~ Iyl (547)

Then, from (5.47) and (5.41), we have
Uz < U+ 1x] (BK + aL)(ve + ﬂh") + el et o)
1. 4112 n 1 -
+ v + =h? +43n(= + =)(—— + =)Ll
I 540050+ 35 +) *)R

1 1 1 3an (62 el +6z)

+(+ 5=) —) s . (5.48)
B 2B pa(L) B 4

Similar to the way to get (3.37), from (5.38) and (2.5), we have

1.0 _ 3012
Usket < %[(K = naL)(v + ﬂh)+ SO+ 2l = WP + el e
+(—+ 1
2np? ﬁ2

Then, from (5.49), (5.41), and (5.42), we have

)Ilhk+1 h)P - Hvk+ h"” (5.49)

Uspr1 < Usp — Ule;L(Vk + ho) + el

B L+ K)i2(% —ap)L2+ 3 (142 2K
252
3anf6k77(l +21) 1 n 5
+ 3155 + 5 + 3) Ll
4 2B B 2

151

5.8. Proofs
2052 2
+ (ﬁ +[% + %)w - ”vk + éhg"iw—%—ﬂ—”ﬂ " (5.50)

Similar to the way to get (3.39), we have
Uspe1 = f(Fra1) = f = f(&x) - f* + f(Fr) — F&)

< f&) - —nhi g + —||h I?

= fe0) ~ J* ~ nh{ B + Tfnizknz -y (g) ~)

< U = (0= 2Ll + 218 = Rl = LRI - (g B (551

Then, from (5.51), the Cauchy-Schwarz inequality, (5.40), (5.43), and (5.44), we have

Usir < Usy — ga — L)l + gnizz — Rl - Zuiz‘znz + gnizknz + 2nllg? — ROIP

_ pLiSn
< Usy = g0 = AnL iR + === + Il
262
anffdi 7 2 ”2 anerkn
16 8 2

n . 21an25217 5
= Ussc= 201 = dnLpllhell + ——== + il ., — 2120 (5.52)

8 16 LiK

Hence, from (5.46), (5.48), (5.50), and(5.52), we have

Lo
< _ —
U1 < Uy ”xk”,]M M, Hvk+ﬁ k”nM3—772M4

- (s = L)ll® - gugzuz + {36, + {06}, (5.53)
where
M, =(a-B)L - %(2 +9LDK, My = B°L + (22" + HL* + ?LJ%K,
M; = (8- % - 2%Z)K— %Q, My = (28 + %)K.

Similar to the way to get (3.26), we have (5.37).

We are now ready to prove Theorem 5.1.
Denote

0 = sl + e+ 5[] + s - £,

152 Distributed zeroth-order optimization algorithms

Similar to the way to get (3.46)—(3.48), we have

1,12 ’
Us 2 il + o+ 2] + s = £ (5.54)
>0 >0, (5.55)
and
U < GHoUr. (5.56)
Similar to the way to get (3.49)-(3.51), we have
01 >0, >0, and &5 > 0. (5.57)
From (5.57) and 0 < i < min{ ? s ? s ?} we have
(&1 —nd2) >0, (5.58a)
(&3 —nds) > 0, (5.58b)
n(¢s —nde) > 0, (5.58¢)
&> 0. (5.58d)
From (5.37), (5.58a)—(5.58d), and K > 0, we have
Usst < Ui = &(Ixll + 18I + Zs6; + Lo, (5.59)
Hence, summing (5.59) over k = 0,..., T yields
T+1
Ura + Z(MxkuK +11g01%) < Uo + (s + &) Z 5. (5.60)
We know
P n
2 _ A 2
52 = (52%{5,,,(}) < le & (5.61)
From (5.3) and (5.61), we have
T+1
Z(sz < Za VT € Np. (5.62)
From (5.60), (5.62), (5.55), and (5.58d), we have
7 Up + ({5 +
Siolllex = 2el? + 112011) Do (&3 + Lo) Xiey O VT e, (5.63)
T+1 H(T+1)
which yields (5.4) and (5.5).
From (5.60), (5.62), and (5.58d), we have
_ . Uo+ L+ o) X, o
f@Era) - f < == VT e N, (5.64)

which gives (5.6).

5.8. Proofs

153

5.8.2 Proof of Theorem 5.2

In addition to the notations defined in Section 5.8.1, we also denote the following notations.

1 1
¢ = nmin{§1 = nd2, {3 = N4, 2} fi3 = %, =5+ zmax{l =, &,
(% 1 _J
§l4 = (1 _4,13 +§9)§—K§, §O = _né,ll(U()+§14).

From (5.58a) and (5.58b), we have

{12 >0, §13—%>0

10

Similar to the way to get (363), we have
0< § < —1
13 g

From (2.16) and Assumption 4.4, we have that
18U = nllVFEIP = 2vn(f (%) = f7) = 2vUsy.
From (5.37), (5.58¢), and (5.67), we have
Uist < Up = 80U + 0167 + (1267,
From (5.68), (5.56), and (5.65), we have
Ukt < Uy - %Uk + 50+ 8%, = (1= Uy + Gs6 + Lodhs.

From (5.69), (5.66), and (5.55), we have
k k
Ukt < (=00 0o + 85) (1= 80)'67 +do (1= 01376,
=0 =0

From 6 € (0,«'*) and (5.70), we have

k+1

+ &y Z(l —513)T5k+1 T

k+1

Z(l _4/13)7 k+l—r.

From «;5 € (0, 1), (5.65), (5.66), and (2.36), we have

U1 < (1 = 031U +(

&
1-4s

< (1-43)U, +

Ust < (1= 03 U + ' ¢

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

154 Distributed zeroth-order optimization algorithms

From (5.54), we have
Il = &> + n(f () =) = Ixllg +n(fGo) - 5 < U < % (5.73)
Hence, (5.72) and (5.73) give
i = Bl + n(f (i) =) < é%«1 = 03)" Uo + £ 0), Yk € Ny, (5.74)
which yields (5.7).

5.8.3 Proof of Theorem 5.3

Denote g = col(g},,...,8%,) & = +(Ly ® I,)g;, 8, = 1, ® g = Hg{, f7(x,6x) =
EMEBP' [ﬁ(x + 6i,ku)]s g:’k = Vf;‘s(-xi,k’ 6[,/{)9 g;{ = COl(gik7 e ’g;,k)’ and g;{ = Hg/i
We also denote the following notations.

2es5 (2pe7\y & 24Ky 1
s = ma s T s s A~ s s 96 s = + 19
coky, K2) X{Sl o (o) 2 x PK2810} 1 oo D)
(k1) = min {2 1} (k1 10) = 223 +hp+ 1 +
k) = =, =L ek, k)= —, k3 = —— + & , Ky = —— + K,
2 gy’ 51 TN T @ e
1 + +3 K1+1+ 1 m.n{ 1 K1—1}
K5 = K =, Ko = , K7 = mi 5
T YT 2 Ty 20(L) 2k

g1 =max{1+3L3, (8 +12p(3 + 0.5L))* Ly, s}, &2 = (k1 = Dpa(L) - 1,
g3 = p(L) + (23 + Dp(LY) + 1, &4 = 0.5(82k2 — £343),
&5 = 0.5 — kikapa(L) + 13p(L) + 0.5(1 + 3k1k2 + 26)K1k2p(L?), €6 = 0.25(k2 — 543),

1 5
&7 = 6(1 + 6Ky + 2k4 + 10Kkoka ko L} + 5 2Lk + (1_3 +24)L343,

3K0

&8 = K4 + K1Ky + 3/<§ + KKy, €9 = F(Z/q +1),
K
2

— 1 2 2 _ 72 1 1
g0 =10 + Lf + P (2K4 + l)Lf + (10K4 + 6)Lf, &1 = Lf(384 + p(13K2 + 4)),

% N 29p(511/<§ + 812)K§

1 1
2 2 2
En = 28100’1 + ;890’2 + 68100’2, E13 = ;89 + 6810, E14 =

2
20— D2
2
| 2 K3
a = minf{ey, &6}, ar = pn(eyks + €12 + 2Lf813814)z-
6
0

To prove Theorem 5.3, the following three lemmas are used.

Lemma 5.2. Suppose Assumption 5.6 holds. Let {x;} be the sequence generated by
Algorithm 5.2, then

g, = E¢lg;], (5.75a)

5.8. Proofs 155

llgf — gill* < 2L3IIxlly + 2nL767, (5.75b)

g - &I° < 2L}y + 2nL35;. (5.75¢)

Eq, [112¢I1%] < %Egk[ngzuﬁ + Iz, (5.75d)
Eq,[llg) — g{IP] < 4L3l|xell + 4nL367 + 2Eq [l g{IP]. (5.75¢)
lgd,, - &I < mLIgIP < LI, (5.75f)
1821 < 2nLy(f(x0) = f*). (5.75g)

If Assumptions 5.7 and 5.8 also hold, then
Eq [lg;I’] < 12plIgQI° + 12pLilIxcliy + 4npos + 12npos +0.5np’ L35, (5.76a)
g IP < 30RL7lIgIP + nos + 1g21P). (5.76b)

Proof. (i) From u;; and &;; are mutually independent, x;; is independent of u;; and &;z,
and (2.27), we have

Ee,[gi;] = Ey, [Egi‘k[L(F i(Xig + Oiptig, Eix — F i(xi,k,fi,k))ui,k”
E,, (f(xlk + Oiklhif) — f(xi,k))”i,k]

E,, [szi(xi,k, ik Wi)] = VI (Xiks 0ik) = &

which gives (5.75a).
(ii) From Assumption 5.3, we know that (3.30) still holds.
From Assumption 5.3 and (2.32a), we have

llg: — ikl < Lybik-
Thus,
lg; — gll* = Z g} — il < nLjoy. (5.77)
i=1

Noting that

lig) — gill* < 2ligy — gill* + 2llge — g}l

from (3.30) and (5. 77) we know (5.75b) holds.
(iii) Noting ||g2 ||2 ||H(gk ,i)||2, from p(H) = 1 and (5.75b), we have (5.75c).
(iv) We have

1 e

n
;gi,k ELA Z||g,kn2+2 Z (851 850)]

i=1 i=1 j=1,j#i

Eq [IIZ{IP] = Eg|

156 Distributed zeroth-order optimization algorithms

1 e2 1 c C e e
= —EullgiPl+ — ;Flzjﬂmﬁk g5,). Be, [,)

n n

1 e 1 s s
= SEullgiPl+ = >0 > (gl g

i=1 j=I,j#i
1 1
= ;Eﬁk[”gi”z] +11gI° - ;“g}Z”z» (5.78)

where the third equality holds since u; and &;x, Vi € [n], k > 1 are mutually independent;
and the fourth equality holds due to (5.75a).

From (5.78), Egk[||g;||2] = nEgk[IIgZIIZ] and ||g,§||2 = nllgzllz, we know that (5.75d)
holds.
(v) We have

Eglllg) - g0l11 < 2llg) - gil* + 2E¢, [llg; - gll”]
=2llg? - giI* + 2Eq, [Ilg¢I1 - 2llgiIP%, (5.79)

where the inequality holds due to the Cauchy-Schwarz inequality; and the equality holds
since (5.75a) and xy, is independent of £;.

From (5.79) and (5.75b), we know (5.75¢) holds.
(vi) The distributed ZO algorithm (5.8) can be rewritten as

X1 = X — qilagLxg + Brvi + g1, (5.80a)
Vil = Vi + miBrLxy, Yxo € R"P, i vig =0,. (5.80b)
i=1
From (5.80b), we know that
Virl = Vi (5.81)
Then, from (5.81), 2,7, vio = 0,, and (5.80a), we know that ¥, = 0, and
Xiv1 = X — M8y (5.82)
Then, similar to the way to get (3.32), we have
lghet — &P = IV f(Eer) = VAEOIP < L% — &> = ;LA < mpL7llgil,

which yields (5.75f).
(vii) From (2.15), we have

18P = IV f(ROIP < 2nLe(f () — f5), (5.83)

which yields (5.75g).

5.8. Proofs 157

(viii) From Assumption 5.6, x; and &; are independent of u;, and (2.32b), we know that
for almost every &; it holds that

E,,, gl P < 2plIV FiCxi, &I +0.5p° L3657, (5.84)
Then,

Eq, [llgf "] < 2pEe, [V Fi(xix, £l + 0.5p° L3657,
= 2pE¢ IV Fi(Xik,) = Vfilxix) + VA0 + 0.5p° L3567,
< 4pEg, [V Fi(Xiks £12) = VoI + IV fi(xi0lIP1+0.5p*Lio7,
< 4plIVfixi)lP +4poi +0.5p° L3653, (5.85)
where the first inequality holds due to (5.84); the second inequality holds due to the
Cauchy-Schwarz inequality; and the last inequality holds since Assumption 5.7 and x;

is independent of &; .
From Assumption 5.3, we have

1 n
1970 = VIO = ||+ Vi - Vo
n i=1
1 n
<~ D IVA@ = VEOIF < Lille— I, Yxy e R (5.86)
i=1

Then, we have

IV fixil = 19 i) = V(i) + Vf (xig) = V() + V@I
< 3(IV i) = VLol + IV f(xig) = VAEIE + VAP
< 3(05 + Lillxix = %l + IVFEIP), (5.87)
where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to Assumption 5.8 and (5.86).

From (5.85) and (5.87), we know (5.76a) holds.
(ix) From the Cauchy-Schwarz inequality, we have

gl P =llgd,, — g+ g0 — 20+ 8% <30lgd,, — g2 +llgd — &Y +11g21P). (5.88)

From Assumption 5.8, we have
lg? = &I = D A — FEROIP < nos. (5.89)
i=1

From (5.88), (5.89), and (5.75f), we know (5.76b) holds. |

158 Distributed zeroth-order optimization algorithms

Lemma 5.3. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Suppose {By} is nondecreas-
ing, ar = k1, and n; = ;—i where k1 > 1 and ko, > 0 are constants. Moreover, suppose
Br > €1. Let {x;} be the sequence generated by Algorithm 5.2, then

Eo [Wis] < W, — 2 - i ol 2(b 6pby)n?
o (Wil £ Wy ||xk||(254—55wk—b1k)K Vi + gk + no5(bax + 6pba i),
+2pnoiba g — mi(0.25 — (bs +6pb4k)nk>||gk||2 +bsgdy, (5.90a)

Eq [Wii1] < Wi - ||xk||(2284_85mk_hlvk)1(- Hvk + ﬂ—kgiub” + (b3 x + 6pbanilIgYIP

+2pnariby g + no3(by i + 6pba N + bs i, (5.90b)
where
2
Wi = Z Wik, Wy = z; Wik, Wig = —||xk||K, Wog = 2Hvk + —gk Or K
Wa . = TK(i 0 _ SN R F(e) fF
= XK+ o g))s Wax = n(f(%) - f*) = f®0) - £,
2
Nk 77 4 Mk Wi
by = 6pK3Lf;ﬁ—2 + 12psLy— 5 + (0.5 + L)y + 6pKaL s
k k
ntwy
+ (5 +24p + 18pks L) Lympey + 12pks L} ;k + 18 prs Limjurp,

2
Wy 3 wk

K3 + Sk
2 T2
K3 o1 2) 2 1 4 K2k
b4!k:6+L + =L —+(4+3K3L)a)k+3/<4La) +2K5Lv L 24L ,
f K2 f,Bk f 7k fﬂk ﬁ le]%

bz,k = 286 - O.SU)k(K] + K4 + K1Ky + 3K%) - 0.Sa)k7]kK4, b3,k =

bS,k = nL?-(O.25p2b4,knk +3+ wi + 87]k + Snkwk).

Proof. Note that Wy is well defined due to f* > —oco as assumed in Assumption 5.2. Thus,
Wi is well defined.

(i) Similar to the way to get (4.23), from (5.80a), (5.75a), and that x;; and v;; are
independent of £;, we have

1 2 2 e 0112
B W] < Wi = Wl e+t o8l B D] - €01
1 1
+ oL+ mollgy = gl = mioc] K(ve + ﬁ—kgg). (5.91)

Then, from (5.91), (5.75b), and (5.75¢), we have

0

B (Wit] < Wi = W0l oy sk spansoassmozn ~ WK (v + ﬁkgk)

+H +1 ol
Vi + — 8,

B "H3me K

+nLimi(1 + 5mi)0; + 2 Ee, [l ggI7]. (5.92)

5.8. Proofs 159

(ii) Similar to the way to get (4.24), from (5.80b) and (5.75f), we have

2
+ k1 (@ + W)l |

1 1
Waks1 € Wag + (1 + wp)mBex, (K + KIL)(Vk + B gk) ((L)

1 1
+ 5O+ i+ lewk)(m + Kl)HVk + [?kgl?HK + ”xk”(zlmk)niﬁi(LHle)

T (e +)(1 + w)(— + k1) LFIIZEIP (5.93)

ﬁz (L)
(iii) Similar to the way to get (4.35), from (5.80), (5.75a), and that x;; and v;; are
independent of £;, we have
2

(B3 -mBHK

Eﬂk[x,;r+1K(Vk+l + éggﬂ)] < x; (K- nka’kL)(vk + Iglkgg) B Hvk * IBLkgg

2
+ ||x,
Iell,, BLA K2 (L2 rYk,BA+Bk)L2

2,
2P+

1
+ 30+ mllg; — znkELA[ngk g1

1
+ o lllgy,, — &1 (5.94)
<277kﬁk zﬁk) k k+1 k
Then, from (5.94), (5.75b), (5.75e), and (5.75f), we have
1 1 1
Egk [x,L]K(ka + —g2+1)] < x,jK(vk + —gg) -1+ wk)nkakx,jL(vk + —gg)
B B B
1

+ wkr]ka'kx,:L(vk + ﬂlkg,?) - “vk + Ek

Me(BeL+ 3 K)+m2 (3 i +B) L2+ (143m) L2 K

2

0
g
k mBr—3-mBHK

+ [l

Tk 2 = 2 2

+ ﬁ(l + 370 L3 E e, [I1ZIP] + nLim(1 + 35
k

+1¢Eg, [lIgiI]- (5.95)
Then, from (5.95), (4.34), and (4.37), we have

1
Eg, [Wai1] < Wi —(1+ wk)nka/kkaL(Vk + B gk) + 7}((1 + 377k)L120EHk[||gi”2]

(B Lt § K)+p (3 g —auBit B L2+ e L2+ (14+3m) LT K

+nLime(1 + 3n0)0; + n;Ee,llIg5I1]
2

+ [lxell?

1
Bl -~ LK + Ea)kEﬁk[ZWl,kH +lgl, 1P (5.96)
e (Br— 5 —MkB— 3 Wik

(iv) Similar to the way to get (4.41), from (5.82), (5.75a), and that x;; and v;; are
independent of £, we have

ot

1 iy 1 B iy 1
Eg, [Wags1] < Wi — annguﬁ + znkngﬁi 7 —nkngkn2 + 2nkaExk[ngkn 1. (5.97)

160 Distributed zeroth-order optimization algorithms

Then, from (5.97) and (5.75c), we have

1 =€
17 + =i LEe, 1251,

E¢, [Waji1] < Way — —nkug,(u2 Il 2+ nL7O; —nkngk 5
(5.98)

(v) We have

1
E¢ [Win]l < Wi+ 2wk||xk||K I+ wk)||x/<||,7 oL K- L2y (1+5m) 12K

1 0 2 2 2
(14 e+ 580+ (L @ORLiCL+ 5000}
1, 1
+2(1 + W) Ee, g1 + (— + ki1 (@i + WDEg, [11gY, 1]

2(L)

1 1 1 e ,
+ —(Uk +wi + Ukwk)(m + K1 ”Vk + _gk”K Il gLz

1
+ (i +)(1 +)= + LB HIZIPT + 551 + 3n0 L7 B IEIP)
B pa(D) 28
2 2
T s 2 - L otz ama ok nLim(1 + 3105

1 o 1
2 e 0 0 2
E¢ - | — —wEe
+ e, [llgi 1] = |ve WAL nk(ﬁk—l—nkﬁf—%meJr S @B, [llg 1I7]
1. 1)
- ;‘nkllg,ill2 + IkaIIf?kszK +nLimo; — —nkllgkll2 + 277kaEszk[Ilf,’kII 1

IA

Wi = Il ar ootttk nk(z — (s + 6pba i)IZI°
1
B

where the first inequality holds due to (5.92), (5.93), (5.96), (5.98), and a; = «;8; the last
inequality holds due to (5.76a), (5.76b), ax = k1B, Tk = g—i, and

2
0
gb°

Hvk + + 2pna by + no(bs + 6pba)’ + bs 2, (5.99)

My = (@ —BL - (1 +3LHK,
My = BiL + 2a; +Bp)L* + 8L7K + 12p(3 + 0.5L) LK,
M; = 0.5K — xikoL + 0.5k ko L* + 1.5k1165 L% + i5(L + k; L?),
bg’k = 0.57.(2B — k3) — 2.5K§ = 0.5wi (k1K + 3K% + k4) — 0.5WiniKy.

From (2.6), ay = k1Bk, k1 > L, Br 21 > 1 + 3Lf, and n; = Z*, we have
My = e260K. (5.100)
From (2.6), ax = k18, Br = €1 = (8 + 12p(3 + 0. 5Lf))1/2Lf, and n; = 7=, we have

MM, < e313K. (5.101)

5.8. Proofs 161

From (2.6), a; = 15k, and i, = %2, we have

B’
M; < &sK. (5.102)
From By > &) > pks > k3 and i, = 72, we have
bg,k > boy. (5.103)

From (5.99)—(5.103), we know that (5.90a) holds.
Similar to the way to get (5.90a), we have (5.90b). O

Lemma 5.4. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Suppose oy = 1Bk, Br =

ko(k + 11)?, and ny = ﬁ , where 6 € [0, 1], ko > CQ(Kl,Kz)/l K1 > ¢, ko € (0,c2(k1)), and

1 > (c3(k1, k2)) V0. Let {x;} be the sequence generated by Algorithm 5.2, then
E _ 2 l ol i =02 2 2
¢ [Wiet] £ Wi — eallxillx — €6 vk+ﬁkgk X 1677k||gk|| + pnepn; + prennioy;
(5.104a)

9 . 1 2
E¢, [Wii1] < Wi — egllxelly - 36|‘Vk + ,B_kgl(‘)HK + peisll g1 + pneom; + pnennidy,
(5.104b)

2
[

Ego, [Wags1] < Wag + llxl2 +2pieLg(oy +3073) + (n+ p)Limioy.

(5.104c)

20 L2K 67]k||gk

Proof. (i) Noting that k; > ¢; > 1 and S8 = ko(k+1) > kot? > co(k1, k2, 11,6) > & > 1, we
know that all conditions needed in Lemma 5.3 are satisfied, so (5.90a) and (5.90b) hold.

From k| > ¢ = P (L) + 1, we have
& > 0. (5.105)
From (5.105) and «, € (0, mm{gz, 5}) we have
£4>0, g6 > 0. (5.106)
From t; > (c3(k1, k)7 and c3(k;, k2) = 223 we have
3K3 1
< —. 5.107
2K2li) 16 ()
From «g > 24’;;‘ > fiﬁﬁ,, we have
3K4 1
— < —. 5.108
2K2K0t*?9 16 ()

162 Distributed zeroth-order optimization algorithms

From B; = ko(k + 1;)?, we have

1 1 1 1 1 1 Ko
wp=———=—() < <= <L
B B ko (k+1)f (k+o+ 10 kolk +1)0k + 1 + 1)° B

(5.109)

From (5.109), n; = ,Bk >1,wr <1,and kg > (”

per &4
b < —. 5.110
1Lk < gtfe <3 ()

From (5.109), (5.110), ko > 828‘ and (5.106), we have

284—85wk—b]k>284—8—i9—8—>84>0 (5.111)
Ko

From (5.109), iy =

ﬁ 2. Ko > 2F lg > o m,and (5.106), we have

byx > 286 — > g6 > 0. (5.112)

8
K()t%‘9 h

From (5.107)—(5.109) and i, = 7=, we have

by < zkj:;?g + 22’:;?9 < é (5.113)
From B; > 1 and wy < 1, we have
b3 < &9, (5.114a)
by < &10. (5.114b)
From (5.113), (5.114b), and ky > *22%2, we have
l — (b3 + 6pby) > % — 6pby . > é - 61::;?10 > % (5.115)
From (5.115), i = l’;—i,ﬁk > 1, and w; < 1, we have
bsy < pneqy. (5.116)

From (5.90a), (5.111), (5.112), and (5.114a)—(5.116), we know that (5.104a) holds.
(ii) From (5.90b), (5.111), (5.112), (5.114a), (5.114b), and (5.116), we have (5.104b).
(iii) From (5.98), (5.75d), and (5.76a), we have

2
I

| S 2 2 1 2
E¢ [Waki1] < Way — Zﬂkﬂgiﬂ + ||xk||mszK +nlL le5 le||gk + 2']ka(—|| gl

5.8. Proofs 163
12 1
+ TpLj%kaH%{ +apal +12po3 + S p’Li6; +1IEIP). (5.117)
From Kotf > co(k1,k2) = 96pKrglg > 96pky Ly, we have
6p , 6 1
— Ly < — piLiky < —1y, 5.118
2 of! PikLyka < 1Tl ()
6p 5.3 1 2 1, 1 1 5503 2
— el < el SmcLy < Jete 7P MLy < pLyTk (5.119)
From (5.117)—(5.118), we have (5.104c). O
Now it is ready to prove Theorem 5.3.
Denote
Ve = loeall+ [+ 0] + n(re0 - £,
K B BHllk
Similar to the way to get (3.46)—(3.48), we have
1 2 .
We 2wl + [+ gl) + 00 -) (5.120)
> k7 Vi > 0, (5.121)
and
Wi < k6 Vi (5.122)
From (5.104a) and (5.106), we have
_ 2 _ i 50112 2 2
E¢ [Wiei] £ Wi — eullxilli 1&g I” + pneam; + pneynidy. (5.123)

16

Then, taking expectation in L, summing (5.123) over k € [0, T], and using (2.37) and

e = m and 6 < ks /1 as stated in (5.10), yield
T 2 2
1 pn(enks + €12)K 1
2 =012 5 2
E[Wr] + % Elealluell + 7o mlgl| < Wo + 2 ; T < e
(5.124)
Noting that # = O(+/p), we have
Ko = O(t%) = O(\p). (5.125)
1
From W, = O(n) and (5.125), we have
W, 20p(e11K2 + €12)K2
ey = o 2OPENK eG4 (5.126)

n 20— 1)K

164 Distributed zeroth-order optimization algorithms

From (5.124), (5.121), (5.106), and £ m = $1_ =2 > 200 we have

Tieo IENV f(ZOIP] Zk o ElIZ)I] < L6ko(1 - O)eia

< . (5.127)
Sheo Tk n YoM k(T + 1)1
From (5.127), (5.126), and (5.125), we have (5.11a).
From (5.124), (5.120), and (5.106), we have
L 1
E[f(Xrs)] - f" = EWTH < &, VT € Ny, (5.128)
which gives (5.11b).
From (5.124), (5.121), and (5.106), we have
T
ZE 2] < 222 vT e N, (5.129)
=0 &4
From (5.75g) and (5.128), we have
8RN% < 2nLy(f(%) — f*) < 2nLyea. (5.130)

From (5.76a), (5.129), and (5.130), we know that E[IIgzllz] is bounded. Then, same as
the proof of the first part of Theorem 1 in [151], we have (5.11d).
From (5.120) and (5.122), we have

0 < 26k7(Wy g + Wayg) < Wy < 2k6(Wi g + Wap). (5.131)
Denote %, = E[W,]. From (5.104b), (5.130), (5.131), and (5.10), we have

G < (1 —a)i + (5.132)

a
(t+1)%"

From k; > 1, we have kg > 1. From 0 < x, < 4

3, we have g6 = %(Kz 5K2) < gg- Thus,

& 1
< < — 5.13
a < 20" (5.133)
From (5.106), we know that
a; >0, a; > 0. (5.134)

From (5.132)—(5.134) and (2.45), we have
zk §¢3(k,tl,alaf12720520), Vk€N+’ (5'135)

where the function ¢; is defined in (2.46).
Noting that ¢3(k,1,a1,a2,20,%) = O(n/k*), from (5.135) and (5.131), we have
(5.11c¢).

5.8. Proofs 165

5.8.4 Proof of Theorem 5.4

In addition to the notations defined in Appendix 5.8.3, we also denote the following
notations.

Z 1
Co(k1,k2) = max {81, (?)3 , 48pK25‘10}, &7 = 6(1 + 3Ky + K4 + 2K2K4)K2L4;,
4 |

1 1
Elo=6+Ls+ — L2 L%, &y = L2
B10= 6.+ Ly + (s + DL} + (B + 3L, 811 = (192

Ep = 2(0‘% + 30’%)5‘10, €15 = 2(0’% + 30’%)Lf, €16 = 2LfK6‘

+ L0 +3)
p

To prove Theorem 5.4, the following lemma is used.

Lemma 5.5. Supste AsmmptiOns 5.1-5.3 and 5.5-5.8 hold. Suppose oy = a = k3,
B =0 andn, =n = whereﬂ > Co(ki,Kk2), k1 > c1, and ky € (0, cy(k2)) are constants.
Let {x;} be the sequence generated by Algorithm 5.2, then

1 2 1 - B
Eg, [Wis1] < Wi — eallxlly - 236|‘Vk + BgQHK - §77||§2||2 + pn&in® + pnéund;,
(5.136a)

2
[

Eq [Wako] < Was+ Il 2 - nllgk +2p° Lg(a +303) + (n + p)Lino;.

(5.136b)

Proof. (i) Substituting ay = @ =18, fx =B, =1 = % and wi = 0 into (5.92), (5.93),
(5.96), and (5.98), similar to the way to get (5.99), we have
2

1,
1My -2 My—b, K ”"k + [?kgk K U(Z - 6Pb477)||gk

+2pn(o? + 302)ban? + bsnéy, (5.137)

Eg, [Wii1] < Wi — Ilxil? II*

where
N 8 12
M, = (@ -PL—-(1+3L)K, My = f°L + (22" + ,82)L2 + 8LJ%K +(3+ 0.5Lf)7pL§K,

_ 6 12 2
b= Lt l+ Lt T 5 = 77(2,8 K3) —
n B n

1 1 -
b4 _6+Lf+_L2ﬁ +2K5prﬁ—2, bs =I’lL2(2b47]+3+87])
From (5.137), similar to the way to get (5.90a), we have
1 2
i _ 2 _ 10 (- 2
Eo Wil < W= bl 5 — e + 580 (s 7~ 6pban)Ig
+2pn(o? + 30)ban? + bsno;. (5.138)

From (5.138), similar to the way to get (5.104a), we have (5.136a).
(ii) Noting 17 = 1, 8 = 48pk2&19 = 48pky,Ly, and n = k»/B, similar to the way to get
(5.104c¢), we have (5.136b). m|

166 Distributed zeroth-order optimization algorithms

We are now ready to prove Theorem 5.4.

From B = 8 = ko VpT/ Vn and T > n(Zo(k1, k2)/k2)*/ p, we have B > &(«1, k2). Thus,
all conditions needed in Lemma 5.5 are satisfied. So (5.136a) and (5.136b) hold.

From (5.136a) and (5.12), similar to the way to get (5.129), we have

T ~ = 2
nép 2n&y k5

—_—t —), 5.139

5| (n(T+1) T " \/T(T+1)) (>-139)

which gives (5.13c).
From (5.136b) and (5.12), similar to the way to get (5.127), we have

T 1 T
E[IV/(®0I’] = WD Z E[l201*)
k=0
Wao 2L2 pe 15)7 N
< S(n(T e Dn T AT+ D ZE[”kaK] + m) (5.140)

Noting that 7 = k2/Bx = VYn/ VpT, and n/T < +/p/VnT due to T > n®/p, from (5.140)
and (5.139), we have

\/_

+0
T ()

1 T-1
= D BV = 8(F(R0) = * + 2007 + 30y + 2L5iG)—=
k=0

which gives (5.13a).
Taking expectation in L7, summing (5.136b) over k € [0, T'], and using (5.12) yield

n(ELf(Xre)] = f7) = E[War4i]

21 T+1 T+1
sw4,0+v_L§Z||xk||%{+n515 T Fngie| (5.141)

Noting that Wy = O(n) and vnn/pT < 1 due to T > n*/p, from (5.139) and
(5.141), we have (5.13b).
Similar to the proof of (5.11d), we have (5.13d).

5.8.5 Proof of Theorem 5.5

In addition to the notations defined in Appendix 5.8.3, we also denote the following
notations.

1 . <94K0l‘?7 86K01‘? % 32949Lf(0'% + 30’%)K2
&7 = _mln{)) _}5 €18 =)
K¢ Ko Ko 8 3vkg
2 ke 2
o 2 2 17 2 2
dy = pn(€n1k; + €12 + €13Cg)—, a3 = = pn(eniks + €12)—
K

0 0 Ko

5.8. Proofs 167

All conditions needed in Lemma 5.4 are satisfied, so (5.104a)—(5.104c) hold.
From (5.104a), (4.65), (5.121), and (5.122), we have

nvn

Eg, [Wii1] < Wi — eallxill — 86HVI< + —ng - TWM{ + pnent; + pnemdy
Nk . (€4 &6
<Wy—-— mln{ —, —}Wk + pnalznk + pnslmkéz
Ko m om 8
< Wi — e Wi + pnenn; + pnenmids, Yk € Ny, (5.142)

Denote k = E[Wk], ik = Nk€17,s and Nk = anlzni + pnsunkéi. From (5142), we
have

Zk+1 < (I =rip)ze + rog, Yk € No. (5.143)
From (5.14), we have
as
= = —, 5.144
k = Tk€17 k+1,) ()
— 2 2 aq
P2k = pnenmy + pnenmd; < Gr i (5.145)

From «; > 1, we have k¢ > 1. From 0 < k» < 3, we have & = 4(K2 5K§) < 80 Thus,

& 1
ras = 6 < 20" (5.146)
From (5.106), we know that
az >0, ag > 0. (5.147)
Then, from 6 € (0, 1), (5.143)—(5.147), and (2.41), we have
2 < ¢1(k, 11, a3,a4,60,20,20), Yk € Ny, (5.148)
where the function ¢; is defined in (2.42).
From #; > (pcs(ky, k)" we have
! = 0(p). (5.149)

From &g > cok1,k2)/1], 11 < (pescs(kr, k), co(ki, k2) = €1 = pks, and ¢3(k1,k2) =
243 /K>, we have

0
K Kot Kkypcgcs(ky, K
k L kepes 3(k1, k2)
Ko co(k1,k2) DK3

< 24y, (5.150)

Thus,

¢1(k t,as,as,6,20,z0) = O(). (5.151)

(k+t)9

168 Distributed zeroth-order optimization algorithms

From (5.121), we have

A W,
llcills + Wi < Vi < K—k (5.152)
7

From (5.75g), (5.148), (5.151), and (5.152), we get

pn

-0127 _
EIgIF1 = 0y

), Yk € N,. (5.153)
From (5.149) and (5.153), we know that there exists a constant ¢, > 0, such that
E[l12}I1] < nc,, Vk € Ny, (5.154)

From (5.104b), (5.154), (5.131), and (5.14), we have

ap
Zkeet < (1 —a)py + ———. 5.155
G < (I =a)) ()
Using (2.45), from (5.133) and (5.155), we have
zk S ¢3(k7 tlaalaa2720920)5 Vk € N+’ (5'156)

where the function ¢; is defined in (2.46). From (5.156), (5.131), (2.46), and (5.150), we
have

1 1 n
5 < — gk, tryan, 80,20, %) = O(—2

E 21<
i) < —5< (e

) (5.157)

which yields (5.15a).
From (5.104c¢), (4.65), and 6; < ks, we have

3v
E[Wakr] < EIWai] = TmBIWasd + 1, 1o + 2Py + 30 + (1 + pILIGIL-

2ﬂkL%K
(5.158)
Similar to the way to prove (2.41), from (5.157) and (5.158), we have
- . 18P p
E - < +0 . 5.159
G = 15 s + O) (5.159)
From (5.150), we have

32049L (02 + 302k 25604°L+(02 + 302)c

£1g = AR Ul 73 +37)es (5.160)

3vko v

Thus, from (5.159) and (5.160), we have (5.15b).

5.8. Proofs 169

5.8.6 Proof of Theorem 5.6

In addition to the notations defined in Appendices 5.8.3 and 5.8.5, we also denote the
following notations.

co(ki,k2) Ko Ko 24Kk3 L

B i Rt Y 2 }

A Ky

Colki, Ka) = ==, &3(ko, K1, K2) = max | s ,
8K6 Ko &4 &g K2

S 20,) N

az = mln{l, —}, a3 = pn(e11Ks + €12 + 813Cg)—2

3K6 0

From #; > ¢3(ko, k1, k2) > “’(K‘OK” we have kg > ‘0(’“ %) Thus, all conditions needed in
Lemma 5.4 are satisfied, so (5.143)—(5.147) still hold when 6=1.
From rom #; > ¢3(ko, k1, k2) > max{kes/€s, K¢/Eg}, We have

Galu oy, By (5.161)

Ko Ke
From «y € [3¢yvk2/16,3vk,/16), we have

1_6<Q<_16

3v ko 3¢V (5.162)
Thus,
VK 2
8K6i0 > 3 (5.163)
Hence, from (5.161) and (5.163), we have

asz > as. (5.164)

Then from 6 = 1, (5.143)—(5.147), (5.164), and (2.43), we have
2 < ok, t1,a3,a4,2,20), Yk € Ny, (5.165)

where the function ¢, is defined in (2.44).
From (5.164) and (5.162), we have ¢,(k, t1,a3,a4,2,29) = O(pn/(k + #1)®). Hence,
from (5.75g), (5.165), and (5.152), we get

B = Oy,) Yk e, (5.166)

Noting that #; > ¢3(ko, k1, k2) > 1 , from (5.166), we know that there exists a constant
g pP
ég > 0, such that

E[llg}I”] < né,, Vk € Ny. (5.167)
From (5.104b), (5.167), (5.131), and (5.14), we have

Zee1 S (I —a))Ze + (5.168)

a3
t+1)?

170 Distributed zeroth-order optimization algorithms

Using (2.45), from (5.133) and (5.168), we have
Z < @3k, 11, a1,03,2,%), Yk € Ny, (5.169)

where the function ¢3 is defined in (2.46). From (5.169), (5.131), (2.46), and (5.162), we
have

1 1
Elllxd3] < —% < k,t1,a1,d3,2,%) =0 5.170
lhedllk] < 2 < - gsth 1. 1. 5. 2.%) ((k+t)2) (5.170)
which yields (5.17a).
From «y < 3vk, /16, we have
VK2 . (5.171)
SKO

Same to the way to prove (2.43), from (5.170), (5.171), and (5.158), we have

_ . &13p D
ELfGr) = 1S oo 4 Ol), (5.172)

From (5.162), we have

8Ly} +309)5 _ 128L,(0% + 303)ky _ 2048Ly(0} + 30%)

2 3vka _ - - A2
23 Go 1 3vkg 9¢ov

&g = (5.173)

Thus, from (5.172) and (5.173), we have (5.17b).

5.8.7 Proof of Theorem 5.7

In addition to the notations defined in Appendices 5.8.3, 5.8.5, and 5.8.6, we also denote
the following notations.

" 2g5
Co(ki, k2) = maX{El, —, (
&4 &4

2per

)%’ 28_886’ 4pK2810},

&3 (Ko, K K)—maX{M Ko Ko (16Lf'<3)% (16Lfl<4)% 64po/<2810}
e Ko & & N vk T T N owvkky 1T kg

v 1 ~ ~ ~ % 1 - sk
By = 2e1007 + I—)sgo'% + 661053, 03 =2Lsf" - 2Lf; Zf' .
i=1

To prove Theorem 5.7, the following lemma is used.

Lemma 5.6. Suppose Assumptions 5.1-5.3 and 5.5-5.7 hold and each f; > —oo. Suppose

ax = k1P Br = kolk + 1), and i = 3, where 0 € [0,1], ko > Colk1,k2)/1], k1 > c1,
k3 € (0,ca(k1)), and t; > 1. Let {x;} be the sequence generated by Algorithm 5.2, then

Eo, [Wet] < Wi — ealleall — ey + —gkﬂ — g

5.8. Proofs 171

4 y
+ gLf(bS,k + 6pba i Wax + pnéiom; + pneqmdy, (5.174a)

y . 1 2 4
Ego, [Wi1] < Wi — eallxglly - 86“Vk + ﬁ—gQHK + gprnginzt,k
%

+ pn∈ + png”nkai, (5.174b)
8
Eo, Wakr] € Wasc+ il 1o nkngkuz + L LW
+2p; Ly(0} +253) + (n + p)Limidy. (5.174¢)

Proof. We know that (5.75a)—(5.75g) and (5.85) still hold since Assumptions 5.6 and 5.7
hold.
We have

QIR = Z||Vf<xk>||2<Zsz<ﬁ<xk) £ = 2Ln(fE) - f*) +nd3, (5.175)

where the inequality holds due to (2.15).
We have

ligall® = llgx — & + goll” < 2(llgx — gJI* + 118117 < 2(LHIxxll + 2L Way + nd3),
(5.176)

where the first inequality holds due to the Cauchy-Schwarz inequality; and the last
inequality holds due to (3.30) and (5.175).
From (5.85) and (5.176), we have

Eq [llgfI"] < 16pLWay + 8pLilIxillg + 4npo? + 8npds +0.5np> L35} (5.177)
From the Cauchy-Schwarz inequality, (5.75¢), and (5.175), we have

gk lP = llgRss — g¢ + &P < 2(lgy,, — gl + g)lP) < 205 L7IgEIP + 2L Wy + ndy).
(5.178)

Then, similar to the way to get Lemma 5.4, from (5.75a)—(5.75g), (5.177), and (5.178),
we get Lemma 5.6. O

Now we are ready to prove Theorem 5.7
From #; > &3(kg, k1, K2) = ‘0(’;‘ %) we have Ky > CO('? *) Thus, all conditions needed in
Lemma 5.6 are satisfied, so (5. 174a) (5.174c¢) still hold when 6 = 1.

16L 16L 4pLikye
Similar to the way to get (5.115), from #; > max{(6w(f2“)3 , (fkoi’:“)%, 6 ”V-L;‘zf“’}
have

, We

1 4 1
- - — > -, .
5 3VLf(b3,k + 6pbani = g (5.179)
From (5.174a), (4.65), (5.179), (5.121), and (5.122), we know that (5.142) still holds
when &1, is replaced by &;,.
Then, similar to the way to get (5.17a) and (5.17b), we have (5.19a) and (5.19b).

172 Distributed zeroth-order optimization algorithms

5.8.8 Proof of Theorem 5.8

In addition to the notations defined in Appendix 5.8.4, we also denote the following
notations.

! 1 W 311k
e=5+ Emax{l — &7, &}, Ep = 4—min{4£4, 8e6, V), €5 = _(_0 + DE1 577)’

Ke g4 n 1-¢&
- 5 2 s 2 ~
2p&1o Wo PENKGT . Wo PENKT 2p&10
06=p—,C7=8(—+ f),68=16pb‘10,6‘9=—+ 0% cio = pN 1)
&4 n 1-& n e—& 17

All conditions needed in Lemma 5.5 are satisfied, so (5.136a) still holds.
(i) Taking expectation in L7, summing (5.136a) over k € [0, T], and using &, € (0, ks&¥/?]
yield

X2
pnen ks

1-¢

s

T T
1 _ -
E[Wri]+ &4 § llexll% + 37 § 12217 < Wo + 2pn(oy + 303)8107° (T + 1) +
k=0 k=0

which gives (5.21a)—(5.21b).
(ii) If Assumption 5.4 also holds, then (4.65) holds. From (5.136a), (4.65), and (5.122), for
any k € Ny, we have

1 o2 20 y
E[Wicni] < Wi - aallxilly — 22|+ -8l - T2 (7o - £9
B ik 4
+ 2pn(0'% + 30'%)510172 + pnélméi
< Wi —& W + an(o% + 30’%)5]0172 + pnélméi. (5.180)
From (5.146)
28(,
0<&y<—< —. 5.181

€17 K 20 ()

From (5.180), (5.121), (5.181), and 9,4 € (0, K(;é%], we have

k
E[Wit] < (1= 89" Wo + 2pn(o + 3038107 D (1 = &)
=0

k
+ pnéy ki 2(1 — 17)TET, Vk e N,. (5.182)
=0

From (5.182), (2.36), and £ > max{l — &7, &}, we have
E[Wii] < éleq + np(o? + 303)c10, Yk € Ny, (5.183)

which gives (5.22).

5.8. Proofs 173

5.8.9 Proof of Theorem 5.9

We denote the following notations.

PZ(L) . 461 1 1 5)
= ’ d = 0712’ A9 L T N =% L - L)
' 2y B mln{9L§- el @ = DY)
_ 1+2ypa(L) _ 1 2) 1,1 4
= —2%02@) , €3 = 2(262 + ;Lf)(a-, +303), & = L (48)
Wi + W. 20p(e3 + K2€4)K>
€& = 1,0 4,0 + 239 i n , € = an%(24Lf'€265G; + 462(0'% + 30-%) + €4K§).
n —

To prove Theorem 5.9, the following lemma is used.

Lemma 5.7. Suppose Assumptions 5.1-5.3 and 5.5-5.8 hold. Suppose y € (0,d;) and
1k € (0,da(y)]. Let {x;} be the sequence generated by Algorithm 5.3, then

1
B, [Wiks + Waserr] < Wi+ Wage = llxli o = emdl&17 + presrr; + pnemysy,
(5.184a)
2 23,2 2
+ dpne (o + 305)n; + pneidy,
(5.184b)

Eg¢ [Wijs1]l < Wiy — ||xk||2 kt 12pen;ligll?

N +2pLy(ot + 30)m; + (p + n)L; k07

(5.184c)

Eg, [Wapi] < Wap + ||xk||2Lz,, K~ 77k||gk

Proof. 1t is straightforward to see that for {x;} generated by Algorithm 5.3, Lemma 5.2
and (5.98) still hold. Thus, (5.117) still holds.
We have

1 1
Eq,[Wikei] = Eo[5 lxeally] = B [l = L+ megIi|
1 1 1
= Eq, [lheallc = el + 57z = mexf (L = yL)Kg; + 5l

2

1 1 1
< B[l = 15, _yope + 502Dl + il

A

1 1
+ 5V iz + Smellgill + Enillgillz]

1+ 2yp(L)
2 14+2ypa(L) 5
SEM[e 2yoay il

1 2
EllkuIK lleillc,

2
Il

1
+ eznﬁ(lzpngg + 12pLi |l + 4npo + 12npa; + Ensziéi)

Sl = el oz

174 Distributed zeroth-order optimization algorithms

1
+ emp(12pl1g)I° + 4npos + 12npo3 + Enszfcé]%), (5.185)

where the second equality holds due to (5.23); the third equality holds due to (2.5); the first
inequality holds due to the Cauchy-Schwarz inequality and p(K) = 1; the second inequality
holds due to (2.6); the second last equality holds since that x; is independent of £;; and
the last inequality holds due to (5.76a).

From (5.117) and (5.185), we have

Eg, [Wi i1 + W. < Wik + W. x
Wikt + Wagn] < Wi+ Wag — || k||EK (L 2p L 2 R K

1 24p
- 4_1(1 —48pen; — —Llek)UngkHz

_S 1
- Z“ = 2L g +2pn(2e + ~Ly)(ot + 303

1 2 1 4 2
+ anLf(Zpeznk + Zponk + l—))nkék. (5.186)
From y € (0,d;) and p»(L) < p(L), we have
1
0 —. 5.187
<€ < 16 ()
From n, < dy(y) < 1/(48p(2e; + Ly)), we have
24p 1
48[)627’]k + TLfT]k < 241)(262 + Lf)dz(’y) < E, (51883)
2Ly 1
2Ly < : 1, (5.188b)

— < — <
48p(2e; + Ly) 24p
1 4
2
ZLf(ZpEznk + ;PLka + ;) < &. (5.188¢)

From ny < da(y) < 4€/ (9L?.) and (5.188a), we have

6 9 1
Lo+ 12pL2er; + 2L < (1 +6pQe + L)dy () L2dx(y) < gLk < 3
(5.189)
From (5.186)—(5.189), we have (5.184a).
Similarly, we get (5.184b) and (5.184c). |

Now it is ready to prove Theorem 5.9.

From «;, € (0,d>(y)f] and ny = &,/ (k + 1,)’, we have i < d>(y). Thus, all conditions
needed in Lemma 5.7 are satisfied. So (5.184a) and (5.184b) hold.

Taking expectation in Ly, summing (5.184a) over k € [0,T], and using (2.37) and
Mk = Ky/(k + 11)? and §; < ks /1 as stated in (5.24), yield

1
E[W) 71+ Wara] + Z eluxkuK + glgle]

5.8. Proofs 175

T
1
< Wi + Wag + pnles + K a)k; Z T < nes. (5.190)
=0
Noting that #/ = O(+/p), we have

1 1
Ky = 0(;!) = O(%). (5.191)

From W,y + Wao = O(n) and (5.191), we have

_ Wio + Wap 4 20p(es + K§E4)K,2]

- 01). 5.192
6= = o) (5.192)
From (5.190), (5.187), and Iy m = S/ gty = 207 we have

SieomENVEIF] _ TicomENZIPT 81 - O)es

< . (5.193)
S0 Tk nY_o Mk ky(T + 1)
From (5.191)—(5.193), we have (5.25a).
From (5.190) and (5.187), we have
1
E[f(¥r+1)] = f7 < r—lW4,T+1 < 6. (5.194)
From (5.194) and (5.192), we have (5.25b).
From (5.190) and (5.187), we have
a 2nes
D Rl < == (5.195)
k=0 €l
From (5.75g) and (5.194), we have
12017 < 2nLes. (5.196)

From (5.76a), (5.195), and (5.196), we know that E[Ilgzllz] is bounded. Then, same as
the proof of the first part of Theorem 1 in [151], we have (5.25d).
From (5.184b), (5.196), and (5.24), we have

€6

E <(l-¢)E —_— 5.197
Wikl < (1 = e)E[W] + TETAE ()

From (5.197), (5.187), and (2.45), we have
E[Wix] < ¢3(k, 11, €1, 6,26, W), Yk € N, (5.198)

where the function ¢3 is defined in (2.46).
Noting that ¢s3(k, 11, €1, €5, 20, W1 o) = O(n/k*), from (5.198), we have (5.25c¢).

176 Distributed zeroth-order optimization algorithms

5.8.10 Proof of Theorem 5.10

We use the notations defined in Appendix 5.8.9.

Fromn, =n = vn/pT and T > n/(pda(y)), we have 1 < d>(y). Thus, all conditions
needed in Lemma 5.7 are satisfied. So (5.184a) and (5.184c) hold.

From (5.184a), gy = n = vn/\pT, and 6;; < ks/(pn(k + 1))!/* as stated in (5.26),
similar to the way to get (5.195) and (5.194), we have

T n

=0 n(T + 1) Tt NTT + 1)

which gives (5.27¢).
From (5.184c) and n;, = 1, we have

2 (W10 + W40 ne; ZnK§E4) (5.199)

Eo, [Wakr1] < Wag + el p — —nllgkll2 +2pLy(0} + 307 + (p + m)Liné;. (5.200)

202 r]K

From (5.200) and 6;x < «s/(pn(k + 1))!1/* as stated in (5.26), similar to the way to get
(5.193), we have

T : .
lP] = ——— S0|12
1 ;E[uvmk)n 1= 5T ;:o: E[lI201P]

Wig ; 2 2PLy(0? + 30D 2VPLiKG
(+ > Ellkelzl + .). (5.201)
nT+Dn nT+1) = n n(T +1)
Noting that = vn/ /pT and T > n®/p, from (5.199) and (5.201), we have
= N
= DL BIVAGOIP] = 8(Go) = f* + 207 + 30D)Ly + 2L10) —= + O(),
r k=0 VnT

which gives (5.27a).
Taking expectation in Ly, summing (5.200) over k € [0, T'], and using d;x < «s/(pn(k+
)4 yield

n(ELf(Fra)] = f7) = E[Wa 1]

T
< Wag +2nL; Z Ilxllg + (T + 12p°Ly(o} +303) + 2yprLip VT + 1. (5.202)
k=0

Noting that Wy = O(n), n = «n/\pT,and T > n®/p, from (5.199) and (5.202), we
have (5.27b).
Similar to the proof of (5.25d), we have (5.27d).

5.8. Proofs 177

5.8.11 Proof of Theorem 5.11

In addition to the notations defined in Appendix 5.8.9, we also denote the following
notations.

& = an§(12Lf62dg + 462(0'% + 30'%) + 64/<§),
at] v 202
e =min{—, =, by = €k, by = pn(es + €4k5)K-.
7 {K]7 4} 1 = €Ky, by = pn(es + esky)k,,

All conditions needed in Lemma 5.7 are satisfied, so (5.184a)—(5.184c¢) hold.
Denote W, = W, & + Wa. From (5.184a) and (4.65), we have

%
4
v
4
< (1 — mve)) Wy + pnesnt + pneymior, Yk € Ny. (5.203)

Eq [Wii] < Wi — ||xk||2%E]K — ~mWak + pnesiy; + pnesmdy

< (1 -k min{%, })Wk + pn@n% + pnanéi

Denote % = E[W,], 514 = mre7, and 524 = pnesny; + pnesndz. From (5.203), we have

Zer1 £ (1 = 5107 + s2.4, Yk € Ny, (5.204)
From (5.28), we have
b
= =— 5.205
S1k =€ = g ()
b
_ 2 2 2
S2k = pneny + pnegd; < m. (5.206)
From (5.187), we have
1
O<s1p<€ < T (5.207)
Then, from 6 € (0, 1), (5.204)—(5.207), and (2.41), we have
Zr < ¢k, ty,b1,b2,0,20, %)), Yk e N, (5.208)
where the function ¢, is defined in (2.42).
Noting that #/ = O(p), we have
/0
Ky = 0(;‘) =0(1). (5.209)
From (5.75g), (5.208), and (5.209), we get
e pn
Elllg;II'] = O(), Vk € N,. (5.210)

(k+l1)0

178 Distributed zeroth-order optimization algorithms

From (5.149) and (5.210), we know that there exists a constant d, > 0, such that
E[|1g{I"] < nd,, Yk € Ny. (5.211)

From (5.184b), (5.211), and (5.28), we have

€6
E[W <A -e)E[Wii]+ ——. 5212
Wikl < (1 = e)E[W)] T ()
Using (2.45), from (5.187) and (5.212), we have
E[Wik] < ¢3(k, 11, €1, &, 26, Wor), Yk € N, (5.213)

where the function ¢3 is defined in (2.46). From (5.213), (2.46), and (5.209), we have

pn

2 2 -
E[llxllx] < 2E[Wy k] < 2¢3(k, 11, €1, &, 260, Wox) = O((k PReT

), (5.214)
which yields (5.29a).
From (5.184c), (4.65), and 6; < ksn; we have

24
E[Wax1] < BIWiil = 7nBIWail + 5l 0+ 2PLo(o + 302 + (p + WL

(5.215)

Similar to the way to prove (2.41), from (5.214) and (5.215), we have (5.29b).

5.8.12 Proof of Theorem 5.12

In addition to the notations defined in Appendices 5.8.9 and 5.8.11, we also denote d>(y) =
max{zr, 75

From #; > cfz(y) > %”y), we have 1 = ki—’tl < 2 < dy(y). Thus, all conditions needed

.
in Lemma 5.7 are satisfied, so (5.204)—(5.207) still Ihold when 6 = 1.
From t; > dy(y) > é and k; > 4/v, we have

by = ek > 1. (5.216)
Then from 6 = 1, (5.204)—(5.207), (5.216), and (2.43), we have
zk < ¢2(ka tlsblsbz’ 2’20)’ Yk € N+, (5'217)

where the function ¢, is defined in (2.44).

From «,, > 4/v, we know «,, = O(1), thus ¢s(k, t1, b1, b2, 2,Zy) = O(pn/k). Hence, from
(5.75g) and (5.217), we get
_pn

”t), Vk € N,. (5.218)
1

E[l1201°1 = O(n

Then, similar to the way to get (5.29a) and (5.29b), we get (5.31a) and (5.31b).

5.8. Proofs 179

5.8.13 Proof of Theorem 5.13
In addition to the notations defined in Appendices 5.8.9, 5.8.11, and 5.8.12, we also denote

d(y) = max{l o i },

d = min , —
() { o Ty e

& —}
4L3£’ 4p(262 +Lf) ’

1 1,1 4
& =22+ ELf)(a% +202), & = ZL]%(g + ;), & = 8p2e; + L)Ly

To prove Theorem 5.13, the following lemma is used.

Lemma 5.8. Suppose Assumptions 5.1-5.3 and 5.5-5.7 hold and each f; > —co. Suppose
v € (0,dy) and ni € (0,dy(y)]. Let {xi} be the sequence generated by Algorithm 5.3, then

E¢, Wikt + Wagrr] < Wi+ Wy — ||xk||2%ﬂK - j—tnkllégllz
+ 6317,%W4,k + pnén,% + pnémkéi, (5.219a)
Eg¢, [Wija]l < Wiy - ||xk||2%€]K + 16pe Ly Wa i
+dpne (o + 2538 + pnédy, (5.219b)
Eg¢ [Wagn] < Wap + ”xk”;‘%mK - inkllggllz + SFPLJ%WM«
+2pLy(0; +255); + (p + n)Limd;. (5.219¢)

Proof. We know that (5.75a)—(5.75g) and (5.177) still hold since Assumptions 5.6 and 5.7
hold, and each f* > —oo. Then, similar to the way to get Lemma 5.7, we get Lemma 5.8.

]
Now we are ready to prove Theorem 5.13.
From t; > d(y) > max{k,/d>(y), k,/(4ves)}, we have
Ky Ky Lo~ 1
= <—< dr(y), —. 5.220
W= < g <minfdo), (5.220)

Thus, all conditions needed in Lemma 5.8 are satisfied, so (5.219a)—(5.219¢) hold

From (5.219a), (4.65), and (5.220), we know that (5.203) still holds when &3 and ¢, are
replaced by & and &, respectively.

Then, similar to the way to get (5.31a) and (5.31b), we have (5.33a) and (5.33b).

5.8.14 Proof of Theorem 5.14

In addition to the notations defined in Appendix 5.8.9, we also denote the following
notations.

1 2 Wi+ W. €4
€=05+0.5max{l - &, &}, & = min{e;, vy}, ds = —(———2+ P& {77),
4 €1 n 1-¢

180 Distributed zeroth-order optimization algorithms

Wio+ W. €4k
8(1,0 4,0 +P4 i

dy = 4é—f)(zfz + %Lf), ds =), ds = 16]3(262 + %Lf),

n 1-¢
Wio+ W, €4K3 2 1

d7 = 1.0 40 + pes bAn, dg = ﬂ(?,fz + —Lf).
n €—¢€ & n

All conditions needed in Lemma 5.7 are satisfied, so (5.184a) still holds.
(i) Taking expectation in Ly, summing (5.184a) over k € [0,T], and using 7, = 7 and
8ix € (0, k5€/?] yield

T T
1 1 _
E[Wirq1 + Wara]+ € Z llcg 1% + gﬂz gl
=0 =0

2
pneKsn
1—¢’

< Wio+ Wy + an3)’]2(T +1)+

which gives (5.35a)—(5.35b).
(ii) If Assumption 5.4 also holds, then (4.65) holds. Thus, (5.203) also holds when r; = 7.
From (5.203) and 5, = 7, for all k € Ny, we have

Eo, [Wii1] < (1 — &)W, + pnesn® + pnend;. (5.221)
From (5.187)
5 1
0<g<e<q (5.222)

From (5.221), (5.222), and &; € (0, ksé* |, we have

k k
E[Wi1] < (1= &) ' Wo + pnes® Y (1= &) + pnedn) (1 - &)'é, Vi e N,

=0 =0
(5.223)
From (5.223), (2.36), and € > max{1 — &, €}, we have
E[W;.1] < édy + n(o? + 303)ds, Yk € Ny, (5.224)

which gives (5.36).

Part 11

Distributed Online Convex Optimization

181

Chapter 6

Distributed online primal—dual
optimization algorithm

This and the next chapters consider on online convex optimization problems, which view
optimization as a process or a repeated game. This chapter considers distributed online
convex optimization with time-varying coupled inequality constraints. The global objective
function is composed of local convex cost and regularization functions and the coupled
constraint function is the sum of local convex functions. A distributed online primal—
dual dynamic mirror descent algorithm is proposed to solve this problem, where the local
cost, regularization, and constraint functions are held privately and revealed only after
each time slot. Without assuming Slater’s condition, we first derive regret and constraint
violation bounds for the proposed algorithm and show how they depend on the stepsize
sequences, the accumulated dynamic variation of the comparator sequence, the number of
agents, and the network connectivity. As a result, under some natural decreasing stepsize
sequences, we prove that the proposed algorithm achieves sublinear dynamic regret and
constraint violation if the accumulated dynamic variation of the optimal sequence also
grows sublinearly. In particular, we show that it achieves OQ(T™>!I=%«}) gtatic regret
and O(T'~*/) constraint violation bounds, where x € (0, 1) is a user-defined trade-off
parameter. Assuming Slater’s condition, we show that the dynamic regret bound is similar
to the bound without assuming Slater’s condition, but the constraint violation bound can be
reduced to O(T™{1-%k}) 'Moreover, we show that both static regret and constraint violation
bounds grow as O(VT'). In addition, smaller bounds on the static regret are achieved when
the objective function is strongly convex. Numerical simulations are provided to illustrate
the effectiveness of the theoretical results.

This chapter is organized as follows. Section 6.1 gives the background. Section 6.2
introduces the problem formulation. Section 6.3 provides the distributed online primal—
dual dynamic mirror descent algorithm and analyzes the bounds of the regret and constraint
violation for this algorithm. Section 6.4 presents numerical simulations. Section 6.5
concludes this chapter. To improve the readability, all the proofs can be found in
Section 6.6.

183

184 Distributed online primal—dual optimization algorithm

6.1 Introduction

Centralized online convex optimization with static set constraints was first studied by
Zinkevich [163]. Specifically, he developed a projection-based online gradient descent
algorithm and achieved O(VT) static regret bound for an arbitrary sequence of convex
objective functions with bounded subgradients. It was later shown that this is a tight bound
up to constant factors [166]. The regret bound can be reduced under more stringent strong
convexity conditions on the objective functions [157, 165-167] or by allowing to query
the gradient of the objective function multiple times [168]. When the static constrained
sets are characterized by inequalities, the conventional projection-based online algorithms
are difficult to implement and may be inefficient in practice due to high computational
complexity of the projection operation. To overcome these difficulties, some researchers
proposed primal—dual algorithms for centralized online convex optimization with time-
invariant inequality constraints, e.g., [169—172]. The authors of [173] showed that the
algorithms proposed in [169, 170] are general enough to handle time-varying inequality
constraints. The authors of [174] used the modified saddle-point method to handle time-
varying constraints. The authors of [175, 176] used a virtual queue, which essentially is
a modified Lagrange multiplier, to handle stochastic and time-varying constraints and
the authors of [311] extended the algorithm proposed in [175] with bandit feedback.
The authors of [312] studied online convex optimization with time-varying constraints
in the continuous-time setting and showed that the static regret in continuous-time can be
bounded by a constant independent of the time horizon, as opposed to the sublinear static
regret observed in the discrete-time setting.

Distributed online convex optimization has been extensively studied, so here we
only list some of the most relevant work. Firstly, the authors of [180-182, 186—188]
proposed distributed online algorithms to solve convex optimization problems with static
set constraints and achieved sublinear regret. For instance, the authors of [181] proposed
a decentralized variant of the dynamic mirror descent algorithm proposed in [313]. Mirror
descent generalizes classical gradient descent to Bregman divergences and is suitable for
solving high-dimensional convex optimization problems. The weighted majority algorithm
in machine learning [314] can be viewed as a special case of mirror descent. Secondly,
the authors of [189] extended the adaptive algorithm proposed in [170] to a distributed
setting to solve an online convex optimization problem with a static inequality constraint.
Finally, the authors of [190, 191] proposed distributed primal—dual algorithms to solve
an online convex optimization with static coupled inequality constraints. To the best of
our knowledge, no existing studies considered distributed online convex optimization
with time-varying constraints in the discrete-time setting. In the continuous-time setting,
the authors of [315] extended the online saddle point algorithm proposed in [312] to a
distributed version.

This chapter considers distributed online optimization with time-varying coupled
inequality constraints. The global objective function is composed of local convex cost and
regularization functions and the coupled constraint function is the sum of local convex
functions. Compared to the literature the contributions of this chapter are summarized as
follows.

6.1.

Introduction 185

(Co.1)

(C6.2)

(C6.3)

We propose a novel distributed online primal-dual dynamic mirror descent algorithm
(Algorithm 6.1). In this algorithm, each agent i maintains two local sequences: the
local decision (primal) and dual sequences. An agent averages its local dual variable
with its in-neighbors in a consensus step, and takes into account the estimated
dynamics of the optimal sequences. The proposed algorithm uses different nonin-
creasing stepsize sequences for the primal and dual updates, and a nonincreasing
sequence to design penalty terms such that the dual variables are not growing too
large. These sequences give some freedom in the regret and constraint violation
bounds, as they allow the trade-off between how fast these two bounds tend to zero.
The algorithm uses the subgradients of the local cost and constraint functions at the
previous decision, but the total number of iterations or any other parameters related
to the objective or constraint functions are not used.

Without assuming Slater’s condition, i.e., that the feasible region has an interior
point, in Lemma 6.3 we derive regret and constraint violation bounds for the
algorithm and show how they depend on the stepsize sequences, the accumulated
dynamic variation of the comparator sequence, the number of agents, and the
network connectivity. The same regret bound was achieved by the centralized
dynamic mirror descent proposed in [313] for static set constraints. Particularly,
we show in Theorem 6.1 that our algorithm simultaneously achieves sublinear
dynamic regret and constraint violation if the accumulated dynamic variation of
the optimal sequence grows sublinearly with a known order. Moreover, we show
in Corollary 6.1 that the algorithm achieves O(T™*!!=%}) static regret and O(T /%)
constraint violation bounds, where x € (0, 1) is a user-defined trade-off parameter.
Same results have been achieved in [170]. Compared with [169, 170, 172,173,191],
which assumed the same assumption on the cost and constraint functions as this
chapter, the proposed algorithm has the following advantages. The parameter «
enables the user to trade-off static regret bound for constraint violation bound,
while recovering the O(VT) static regret and O(T**) constraint violation bounds
from [169, 173] as special cases. The algorithms proposed in [169, 170, 173] are
centralized and the constraint functions in [169, 170] are time-invariant. Moreover,
in [169, 173] the total number of iterations and in [169, 170, 173] the upper bounds
of the objective and constraint functions and their subgradients need to be known
in advance to design the stepsizes. The proposed algorithm achieves smaller static
regret and constraint violation bounds than [191], although time-invariant coupled
inequality constraints were considered. The algorithm proposed in [172] achieved a
better constraint violation bound than ours, but their algorithm is centralized and the
constraint function is time-invariant.

Assuming Slater’s condition, we show in Theorem 6.2 that the dynamic regret
bound is similar to the bound without assuming Slater’s condition, but the constraint
violation bound can be reduced to O(T™>!!=%)) Qur results are superior to
[174] in the sense that the accumulated variation of constraints, V({g,}szl) =
Zszl maX,ey ||[gr+1(x) — g:(x)]+||, appears in their bounds and more assumptions are

186

Distributed online primal—dual optimization algorithm

Table 6.1: Comparison of Chapter 6 to some related online convex optimization algorithms.

Reference Problem type Constraint type Regret and constraint violation bounds
(169] | Centralized 809 < Oy Reg(x(r). ¥7)) = OVD). IIEL, gl = O
[170] Centralized 8(x) <0, Reg(x(r), ¥{7)) = o™= IS g(x)]ell = OT' 72,k € (0, 1)
(1721 | Centralized 8() < Oy Reg(x(r). ¥7)) = OVD). £L, i)l IP = O(VT)
[173] Centralized 2(x) <0, Reg(x[»”,f[*”) =0(ﬁ), ”[ZrT:l gDl = O(T¥*)
[174] Centralized gi(x) <0, and REg(x[T]verJ) = O(max[T1/3 Ztrzl [lx; = 7,1”7 T3 V({gzl,T:,), T2/3}),
Slater’s condition IEL, gLl = O(T3),
. <0,, and o
[75] | Centralized | (S0 =0nand Reg(x(71, £7)/T < ce XL, g lll/T < cefor T > 1/&
[190] Distributed g(x) = Reg(x(7y,) = O(VD), 1L, g0e)1sll = O(VT) if dual variables
) Y1 &i(X) <0y generated by the proposed algorithm are bounded
[191] Distributed | 5. g,(%i o | Reglxr ¥y = O 229 ZL, g0l = OT' ™),k € (0.1/4)
i1 &(X) <0,
This &) = Reg(xr), X)) = Omax(T* L1y, = [Tm)),
chapter Distributed iy 8i/(Xi) < IZL, &1l = OT'~/?) (without Slater’s condition),
O XL, g(x)1ll = O(T™@U=%1) (with Slater’s condition), « € (0, 1)

(C6.4)

needed. We show that our algorithm simultaneously achieves sublinear dynamic
regret and constraint violation, if the accumulated variation of the optimal sequence
grows sublinearly. Moreover, we show in Corollary 6.2 that both static regret
and constraint violation bounds grow as O(VT), which are better than the results
achieved by the centralized algorithm in [175]. The authors of [190] achieved the
same bounds, but they assumed that the coupled inequality constraints are time-
invariant and they explicitly assumed boundedness of the dual variable sequence.
The conditions to guarantee this assumption are not so obvious since the dual
variable sequence is generated by the algorithm. In this chapter, we show that the
dual variable sequence is indeed bounded.

When the local objective functions are assumed to be strongly convex, we show
that in Theorem 6.3, without Slater’s condition, the proposed algorithm achieves
O(T*) static regret and O(T'~%/2) constraint violation bounds. Moreover, we show
in Corollary 6.3 that the constraint violation bound can be reduced to Q(T™{1-%«})
when Slater’s condition holds.

Table 6.1 compares this chapter with other online convex optimization algorithms.

6.2

Distributed OCO with time-varying coupled inequality
constraints

We consider the problem of distributed online convex optimization with time-varying
coupled inequality constraints. Specifically, consider a network of n agents indexed by
i € [n]. For each i, let {f;;, : RP — R}, {r;; : R — R}, and {g;; : R” — R™} be

6.2. Distributed OCO with time-varying coupled inequality constraints 187

arbitrary sequences of local convex cost, regularization, and constraint functions over time
t = 1,2,..., respectively, where p; and m are positive integers. At time ¢, each agent i
selects a decision x;; € X;, where X; € R” is a known convex set. After the selection,
the agent receives its cost function f;, and regularization r;, together with its constraint
function g;,, and obtains the loss /;(x;;) = fi.(xi;) + ri;(x;;). Here the regularization
function is used to influence the structure of the decisions. Examples of regularization
include ¢ -regularization r; ,(x;) = A;||x;|l; and £,-regularization r; ,(x;) = %Hxill with A; > 0.
At the same moment, the agents exchange data with their neighbors over a time-varying
directed graph G, = (V, &;), where V = [n] is the agent set and & € V X V is the edge

set. The network’s objective is to choose a global decision sequence xr; = (xi,...,Xr)
with x;, = col(xy,...,X,,) so that the accumulated global loss 21T=1 l,(x;) is competitive
with the loss of any comparator sequence y;r; = (V1,...,yr) with y, = col(yis, ..., Yns)

(i.e., the regret grows sublinearly in T") and at the same time the constraint violation grows
sublinearly in 7', where T is the total number of iterations and [;(x,) = Y%, li,(x;,) is the
global loss function.

From (1.5), we know that the regret of a global decision sequence x|r; with respect to
a comparator sequence y|r) is

T T
Reg(x(ry, yir)) = Z Li(xp) = Z Li(yo).
=1 =1
For the above distributed online convex optimization problem with time-varying coupled
inequality constraints, there are two commonly used comparator sequences. One is the
optimal dynamic decision sequence yir; = X;;; = (x},...,x7) solving the following
constrained convex optimization problem when the sequences of cost, regularization, and
constraint functions are known a priori:

T
min I(x
X € X ; t(t) (61)
S.t. g,(x,) < Om, Yt e [T]’

where X = X; x --- x X, C R” is the global decision set, p = X7 p;, and g(x;) =
>, 8ir(x;,) is the coupled constraint function. In order to guarantee that problem (6.1) is
feasible, for any 7' € N, we assume that X7, the set of all feasible decision sequences, is
nonempty, where

Xr={(x.....xr): x €X, g(x) <0, Vre [T}

With this standing assumption, an optimal dynamic decision sequence to (6.1) always
exists. In this case Reg(x(7), x7,) is called the dynamic regret for x(7). Another comparator

sequence is yiry = ,%FT] = (X}, ..., X}), where X7 is the optimal static decision solving
T
min Z l(x)
rex 4 6.2)

st. &i(x) <0y, YVre[T].

188 Distributed online primal—dual optimization algorithm

Similar to above, in order to guarantee that problem (6.2) is feasible, for any 7 € N, we
assume that X7, the set of all feasible static decision sequences, is nonempty, where

Xr = {(x,...,x): xeX, g(x)<0,, Vte [T]} c Xy

In this case Reg(x(r, X[;) is called the static regret. It is straightforward to see that
Reg(x7), yir)) < Reg(x(7y, X[7)), Vyir) € X7, and that Reg(x(7y, X[7)) < Reg(x(ry, X))
From (1.7), we know that the constraint violation of a decision sequence x|z} is

I3 el |

t=1

This definition implicitly allows constraint violations at some times to be compensated
by strictly feasible decisions at other times. This is appropriate for constraints that have a
cumulative nature such as energy budgets enforced through average power constraints.

Based on the definitions introduced in Chapter 2, the following mild assumption is
made on the time-varying directed graph.

Assumption 6.1. For any t € N,, the graph G; satisfies the following conditions:

(i) The mixing matrix W, is doubly stochastic, i.e.,)\ [W;];j = Z;ZI[W,]U =1, Vi,j e
[n].

(ii) There exists a constant w € (0, 1), such that [W,];; > w if [W];; > 0.

,,,,,

connected.

We make the following standing assumption on the cost, regularization, and constraint
functions.

Assumption 6.2. (i) For each i € [n], the convex set X; is compact, i.e., there exists a
positive constant d(X) such that

lx =yl < dX), Vx,y € X;, Vi € [n]. (6.3)

(ii) The functions {f;,}, {ri,}, and {gi,} are convex and uniformly bounded on X,, i.e., there
exists a constant F' > 0 such that

[fis(OI < F, [rig(ol < F, lgi (0l < F, Vi € Ny, Vi€ [n], Vx € X;. (6.4)

(iii) The subgradients Vf;,, Vr;,, and Vg;, exist and they are uniformly bounded on X,
i.e., there exists a constant G > 0 such that

IVl < G, [Vris)ll < G, Vg (0l < G, Vi €Ny, Vi€ [n], VxeX,;. (6.5

Our goal in this chapter is to solve the following problem.

6.3. Distributed online primal—dual dynamic mirror descent algorithm 189

Problem 6.1. Develop a distributed algorithm to solve the problem of distributed
online optimization with time-varying coupled inequality constraints with guaranteed
performance measured by regret and constraint violation.

We are satisfied with low regret and constraint violation, by which we mean that both
Reg(x(r}, yir;) and ||[2,T:1 g+(xp)]+|| grow sublinearly with T, i.e., there exist x;, x> € (0, 1)
such that Reg(x(ry,yir)) = OT*') and ||[Z,T:1 gi(x)1+]l = O(T*?). This implies that the
upper bound of the time averaged difference between the accumulated cost of the decision
sequence and the accumulated cost of any comparator sequences tends to zero as T goes to
infinity. The same thing holds for the upper bound of the time averaged constraint violation.
The novel algorithm we design explores the stepsize sequences in a way that allows the
trade-off between how fast these two bounds tend to zero.

6.3 Distributed online primal-dual dynamic mirror descent
algorithm

In this section, we first propose a distributed online primal-dual dynamic mirror descent
algorithm. Then, we derive regret and constraint violation bounds for this algorithm.

6.3.1 Algorithm description
The regularized Lagrangian function associated with the considered problem at each time
tis

ﬁt+l

5 g2, (6.6)

Ar(xe, ur) = filxg) + () + u;rgt(xt) -

where {u, € R} is the dual variable or Lagrange multiplier vector sequence and {5; > 0}
is the regularization sequence. Inspired by the dynamic mirror descent [313], which is
a generalization of the composite objective mirror descent algorithm [316], a centralized
online primal—-dual dynamic mirror descent algorithm to solve the considered problem is

X1 = argrgin{atﬂ((x, Vfi(x) + (Vg(x)) Ty + ri(xp)) + Dy(x, x,)}, (6.7a)
Urpr = [ty + Ves1(8(X0) — Bre1tte)] 4, (6.7b)
Xeg1 = Pp1 (Kig1)s (6.7¢)

where {a; > 0} and {y, > O} are the stepsize sequences used in the primal and dual updates,
respectively; i; : R? — R s a function to define the Bregman divergence Dy (-, -), which is
differentiable and strongly convex with convexity parameter o; > Oon X;; and @, : X —» X
is a dynamic model and characterizes a prior knowledge of the considered problem, akin
to developing a state space model for stochastic filters [313], and if the prior knowledge
is lacking then @, is simply set to the identity mapping. When r, is a constant mapping
and @, is the identity mapping, then the centralized online algorithm (6.7) is Algorithm 1
in [173]. The potential drawback of that algorithm is that the upper bounds of the objective

190 Distributed online primal—dual optimization algorithm

Algorithm 6.1 Distributed Online Primal-Dual Dynamic Mirror Descent Algorithm

1: Input: nonincreasing sequences {a,}, {8/}, {y:} € (0, 1]; differentiable and strongly
convex functions {¢;, i € [n]}.

2: Initialize: x;; € X; and ¢;; = 0,,, Vi € [n].

3: forr=2,... do

4 fori=1,...,nin parallel do

5: Observe Vi 1(xi-1), Vgir-1(Xir-1), 8ir-1(Xiy—1), and 7,1 ();

6 Determine ®;,(-);

7 Update
G =) [Wirlijdjots (6.92)

j=1
iy =V firm1(Xi1) + (Vi1 (Xi=1)) Gigs (6.9b)
Xi, = argmin{a(x, a;) + ;ri-1(X) + Dy, (X, xi -1}, (6.9¢)
xeX;

biy = Vgir1 (i) (Kiy — Xip—1) + 8ir—1(Xiy—1), (6.9d)
Giy = [Gis + vi(biy — BeGit)]+, (6.9¢)
Xip = (I)i,l(;ci,t); (6.91)

8: Broadcast g;; to N, out(G,) and receive ¢ j from j € N}"(g,).

9: end for

10: end for

11: Output: {x,}.

and constraint functions and their subgradients need to be known in advance to choose the
stepsize sequences. In order to avoid using these upper bounds, inspired by the algorithm
proposed in [175], we slightly modify the dual update equation (6.7b) as

U1 = [y + yr1(8i(x0) + Vg () (1 — X)) — Brrs)]+ (6.8)

Then we modify the centralized online primal-dual dynamic mirror descent algorithm
(6.7a), (6.8), and (6.7c) to a distributed manner, which is given in pseudo-code as
Algorithm 6.1. The key difficulty caused by the distributed setting is that each agent does
not know the global dual variable. In order to overcome this, the consensus step (6.9a) is
introduced such that each agent has an estimation of the global dual variable.

Remark 6.1. In order to execute Algorithm 6.1, at each iteration t, each agent i needs
to know the regularization function at the previous time t — 1, i.e., ri;—1(-). This is in
many situations a mild assumption since regularization functions are normally predefined
to influence the structure of the decision. Furthermore, g;,1(xi;—1), Vfi—1(Xii—1), and
Vgii—1(xis—1) rather than the full knowledge of fi,—1(-) and g;,—i(-) are needed, similar
to the assumption on most online algorithms in the literature, cf., [169, 170,172,173, 191].

6.3. Distributed online primal—dual dynamic mirror descent algorithm 191

Note that the total number of iterations or any parameters related to the objective or
constraint functions, such as upper bounds of the objective and constraint functions or their
subgradients, are not used in the algorithm. Also note that no local information related to
the primal is exchanged between the agents, but only local dual variables.

Remark 6.2. In Algorithm 6.1, the sequences {a;}, {B;}, and {y;} play a key role in deriving
the regret and constraint violation bounds. They allow the trade-off between how fast these
two bounds tend to zero, as will be seen in the next section. With some modifications, all
the results in this chapter still hold if the coordinated sequences {a,}, {8;}, and {y,} are
replaced by uncoordinated ones {a;,}, {Bi.}, and {y;,}, respectively.

The minimization problem (6.9¢) is the composite objective mirror descent [316] and is
strongly convex, so it is solvable at a linear convergence rate and closed-form solutions are
available in special cases. For example, if 7;, is a constant mapping and Euclidean distance
is used as the Bregman distance, i.e., Dy, (x,y) = [lx - y||2, then (6.9¢) can be solved by
the projection X;; = Px, (i1 — %ai,,). One mild assumption on the Bregman divergence
is stated as follows.

Assumption 6.3. For all i € [n], function ; : R’ — R is differentiable and strongly
convex with convexity parameter o; > 0 on X;. Moreover, for ally € X;, Dy, (-,y) : RP - R
is Lipschitz-continuous on X;, i.e., there exists a constant K > 0 such that

1Dy, (x1,¥) = Dy, (x2,)| < Kllx1 — x2l, VX1, x2 € X, (6.10)

This assumption is satisfied when ; is Lipschitz-continuous on X;. From Assump-
tions 6.2 and 6.3, it follows that

Dy, (x,y) < dX)K, Vx,y € X,, Vi € [n]. 6.11)

The dynamic mapping ®;, used in (6.9f) plays the role of a prediction, which is a
decentralized variant of the dynamical model ®, introduced in [313] and a generalization
of the time-invariant linear mapping A used in [181]. If the optimal sequence of agent i
has the dynamics x;, = @; (x;, ;) for some true dynamic mapping @7, : X; — X;, then
®;, can be viewed as an estimate of (DZr If ®;, is equal or close enough to CD;‘J, then
X, = O,) = O () — @ip(x],) is small. @, is chosen as the identity mapping
if at time ¢ agent i has no knowledge about the dynamics of the optimal sequence. The
following assumption on the dynamic mapping ®;, is needed.

Assumption 6.4. For any t € N, and i € [n], the dynamic mapping ®;, is nonexpansive,
ie.,

DW,‘((DI',I(X)’ (Di,z()’)) < Dybi(x’ Y)’ Vx,y € Xi‘ (612)

The assumption is used to exclude the situation that any poor prediction made at one
step could be exacerbated as the algorithm moves forward. The same assumption can also
be found in [181,313]. An example of the mapping ®;, that satisfies his assumption is the
identity mapping.

192 Distributed online primal—dual optimization algorithm

6.3.2 Regret and constraint violation bounds

This section presents the main results on regret and constraint violation bounds for
Algorithm 6.1, but first some preliminary results are given.

Preliminary results

Firstly, we state some results on the local dual variables.

Lemma 6.1. Suppose that Assumptions 6.1-6.2 hold. For all i € [n] and t € Ny, §;; and
qi; generated by Algorithm 6.1 satisfy

F F
gl < ﬁ_’ G rs1ll < ﬁ_’ (6.13a)
t t
-1
sz = Gl < nTBy D ysm A7, (6.13b)

s=1
A nB 2
B MOt gl e+ B0+ B0+ (2 B ge (6130
27t+1 2 a

where q is an arbitrary vector in R7}, w and ¢ are constants given in Assumption 6.1, F, G,
and d(X) are constants given in Assumption 6.2, and

= _ %quj, T= (1 — 2_::2)_2 >1, B =2F +GdX), A = (1 _ 2_1::2)1/1’

n n t
A= lgis = al? = (= By D Nigie = i, Er(t) = n*TBiF)" 7y X

i=1 i=1 s=1

E)(1) =
277 day,

in{o;}.
ie[n]{ i}

Proof. See Section 6.6.1. O

Remark 6.3. An upper bound of the local dual variables is given in (6.13a) even
without Slater’s condition. (6.13b) is a standard estimate from the consensus protocol with
perturbations and time-varying communication graphs [190] and presents an upper bound
on the deviation of the local estimate from the average value of the local dual variables
at each iteration. (6.13c) gives an upper bound on the regularized drift of the local dual
variables A;, which extends Lemma 3 in [313] from a centralized setting to a distributed
one.

Next, we provide an upper bound on the regret for one update step.

Lemma 6.2. Suppose that Assumptions 6.1-6.4 hold. Let {x;} be the sequence generated
by Algorithm 6.1 and {y,} be an arbitrary sequence in X, then

4nG?«a
(3178 (x) + l(x) = () < [g)T —— Z ies1 = Piga i)l

az+1

6.3. Distributed online primal—dual dynamic mirror descent algorithm 193

+&(y) + 2E1(t) — E2(0) + E5(0), Y€ N, (6.14)
where K is a constant given in Lemma 6.3, and

1 n

Ay]

E3(r) = Dy, OG> Xi) = Dy, Yips15 Xigr1))-
1

i=
Proof. See Section 6.6.2. O
Finally, we derive regret and constraint violation bounds for Algorithm 6.1.

Lemma 6.3. Suppose that Assumptions 6.1-6.4 hold. Let {x;} be the sequence generated
by Algorithm 6.1. Then, for any T € N, and any comparator sequence yiri € Xr,

KVoyr) 1w w1 1 5
Reg(xiry, yr)) < a—T) Z (— - +ﬂz+1)||%',z||

= o Vo Yl

T T T

+Ci Z?’m +C1,2Zar+1 + ZE3(I), (6.152)
=1 =1 =1

T 2 KV:; 1 T n 1)
H[;gt(mLH < EAT)2nFT + 2 - Z} 35, 5 Bl =

T T T

+Cu Yyt +Cra) i +) Ex(0)), (6.15b)
=1 =1 =1

where Vo(yr)) and V} are the accumulated dynamic variation of the sequence y(r) with
respect to {®;,} and the minimum accumulated dynamic variation of all feasible sequences,
respectively, defined as

T-1 n

Voirp) = Z Z yisr1 = Pigs1 Gill, Vg = y[ITIIIEi/I\l,T Vo(yi71),

t=1 i=1

and
3n’tB\F n(B))? 4nG?
Ci1= Gihd +n(1), 1,2=n ,
1-2 2 [od
Z[ZtTflgt(xt)L 1 d GZQ’H] Brs1
=—————— E4T)=4n{— + + .
9= TR) 5 Zl(c "2
Proof. See Section 6.6.3. O

Remark 6.4. Note that the dependence on the stepsize sequences, the accumulated
dynamic variation of the comparator sequence, the number of agents, and the network
connectivity is characterized in (6.15a) and (6.15b). The accumulated variation of

194 Distributed online primal—dual optimization algorithm

constraints or the pointwise maximum variation of consecutive constraints defined in
[174] do, however, not appear in (6.15a) and (6.15b). This regret bound is the same
as the regret bound achieved by the centralized dynamic mirror descent in [313], while
[313] only considered static set constraints. The term Vy in (6.15b) can be replaced
by Vo(yir) due to Vi < Vo(yir)). Moreover, if all {®,;} are the identity mapping, then
V&; = miny[T]E/\v,T VCI)()’[T]) = V@(i’?) =0

In order to obtain sublinear regret and constraint violation bounds, the sequences

}, {B:}, and {y;} should be properly chosen. Firstly, note that a; appears in both the

denomlnator and numerator of (6.15a) and (6.15b), so we should let a; O(-) with

¢ € (0,1) because otherwise one of the terms that contained o, will grow hnearly or

superlinearly. Then, noting that the upper bound of the dual sequence is unclear, we should

y[—lﬂ - % — Brr1a:41 < 0. In the next section, we characterize the regret and constraint
violation bounds based on such sequences.

Dynamic regret and constraint violation bounds

This section states the main results on dynamic regret and constraint violation bounds for
Algorithm 6.1. The succeeding theorem characterizes the bounds based on some natural
decreasing stepsize sequences.

Theorem 6.1. Suppose that Assumptions 6.1-6.4 hold. Let {x;} be the sequence generated
by Algorithm 6.1 with

1 1 1
a; = < Bi=—,v= , Ve Ny, (6.16)

where k € (0,1) and c € (0, 1) are constants. Then, for any T € N,

Reg(x(r), X{)) < CiT™ =) L KTV (x[7))s (6.17a)
T
2
||[Z gl(-xl)]+|' < Cszaxl2—0,2—k] + Kcz’leax{l,1+C—K}V(=Ik), (617b)
=1
where
C C 2G? 1
c, =L = Co1(nF +Cy), Coy = 2n(——— + —— +2).
K - ’ ’ (l-coc 1-«
Proof. See Section 6.6.4. O

Remark 6.5. Sublinear dynamic regret and constraint violation is thus achieved if
V¢(xfT]) grows sublinearly. If, in this case, there exists a constant v € [0, 1), such that
Vq,(xFT]) = O(T"), then setting ¢ € (0,1 — v) in Theorem 6.1 gives Reg(x[T],xE‘T]) =o(T)
and |I[Z,T:1 g:(x)1+ll = o(T). Note that Vq)(x[*T]) depends on the dynamic mapping ®;;.
In practice, agents may not know what is a good estimate of ®;, and ®;; may change
stochastically. It is for future research how to estimate ®;, from a finite or parametric class
of candidates.

6.3. Distributed online primal—dual dynamic mirror descent algorithm 195

From (6.17b), we can see that the constraint violation bound is strictly greater than
O(NT) due to max{2 — ¢,2 — «} > 1. In the following we show that an O(VT) bound on
constraint violation can be achieved if all {®;,} are the identity mapping and the constraint
functions {g;,} satisfy Slater’s condition, which was also assumed in [174, 175].

Assumption 6.5. (Slater’s condition) There exists a constant € > 0 and a vector x. € X,
such that

gi(x.) < —¢€l,, te N,. (6.18)

Theorem 6.2. Suppose that Assumptions 6.1-6.5 hold. Let {x;} be the sequence generated
by Algorithm 6.1 with all {®;,} being the identity mapping, and

1 1 1
a; = tl_—K’ ﬁt = t—K, Y = tl_—K’ Vte N, (619)
where k € (0, 1). Then, for any T € N,
Reg(x(r), X{p) < CiT™ ™4 4 2KT' ™V (x}), (6.20a)
T
> sl || < cometioes, (6.20b)
=1

where Vi(x{)) is the accumulated variation of the optimal sequence X7 defined ad

T-1

Vi) = Y Iy = %1,
=1

and
B (B, +2
C3=I’l(232+ 2 +G(2t)\/ﬁ),
1 -« oK
5 1 2B3
By = max {26 + 2(&% + nd(X)K)>, =}, By =2F + C\,.
&

Proof. See Section 6.6.5. m|

Remark 6.6. From (6.20b), we note that under Slater’s condition the constraint violation
bound is not affected by the optimal sequences or the pointwise maximum variation
of consecutive constraints, which is different from the bounds obtained in [174]. From
(6.20a), it follows that sublinear dynamic regret could be achieved if Vi(x;,) grows
sublinearly with a known upper bound. Then, there exists a constant v € [0, 1), such that
Vl(xE‘T]) = O(T"), so setting k € (v, 1) in Theorem 6.2 gives Reg(x[T],xE‘T]) = o(T) and
II[Z,T:1 g:(x)1+ll = o(T). Under the additional assumption that the accumulated variation of
constraints, V({gr}trzl) = Z,T:I maX,ex |[[gr+1(x) — g:/(X)]+|l, grows sublinearly with a known
upper bound, similar results have been achieved by the modified centralized online saddle-
point method proposed in [174]. However, [174] assumed not only that the time-varying

196 Distributed online primal—dual optimization algorithm

constraint functions satisfy Slater’s condition but also that the slack constant is larger than
the pointwise maximum variation of consecutive constraints. The latter assumption is not
always satisfied. Moreover, in [174] the total number of iterations T needs to be known in
advance.

Static regret and constraint violation bounds

This section states the main results on static regret and constraint violation bounds for
Algorithm 6.1. When considering static regret, {®;,} should be set to the identity mapping
since the static optimal sequence is used as the comparator sequence. In this case, replacing
x|, by the static sequence X7, in Theorem 6.1 gives the following results on the bounds of
static regret and constraint violation.

Corollary 6.1. Under the same conditions as stated in Theorem 6.1 with all {®;,} being
the identity mapping and c = «, it holds that

Reg(x(r), X)) < C T, (6.21a)
T
H[Z g,(x,)L” < G2, (6.21b)
t=1
Proof. Substituting ¢ = « in Theorem 6.1 gives the results. O

Remark 6.7. From Corollary 6.1, we know that Algorithm 6.1 achieves the same static
regret and constraint violation bounds as in [170]. As discussed in [170], k € (0,1)
is a user-defined parameter which enables the trade-off between the static regret bound
and the constraint violation bound. Corollary 6.1 recovers the O(NT) static regret and
O(T3*) constraint violation bounds from [169, 173] when k = 0.5. Moreover; the result
extends the O(T*?3) bound for both static regret and constraint violation achieved in
[169] for linear constraint functions. However, the algorithms proposed in [169, 170, 173]
are centralized and the constraint functions considered in [169, 170] are time-invariant.
Moreover, in [169, 173] the total number of iterations and in [169, 170, 173] the upper
bounds of the objective and constraint functions and their subgradients need to be known
in advance to choose the stepsize sequences. Furthermore, Corollary 6.1 achieves smaller
static regret and constraint violation bounds than [191], although [191] considered time-
invariant coupled inequality constraints. However, [191] did not require the time-varying
directed graph to be balanced. Although the algorithm proposed in [172] achieved more
strict constraint violation bound than our Algorithm 6.1, that algorithm assumed time-
invariant constraint functions and the centralized computations.

*

Similarly, replacing x,;, by the static sequence X7 in Theorem 6.2 gives the following
results on the bounds of static regret and constraint violation.

Corollary 6.2. Under the same conditions as stated in Theorem 6.2, it holds that

Reg(x(7, X)) <C T4, (6.22a)

6.3. Distributed online primal—dual dynamic mirror descent algorithm 197

L3 s | <camesi-sa, 6o
=1

Remark 6.8. Setting k = 0.5 in Corollary 6.2 gives Reg(x(r1,X7) = O(VT) and
II[Z,T:1 g(x))+ll = O(\/T). Hence, Algorithm 6.1 achieves stronger results than [175]
and the same results as [176, 190]. However; the algorithms proposed in [175, 176] are
centralized and in [176] it is assumed that the constraint functions are independent and
identically distributed. Moreover, in [190] the coupled inequality constraints are time-
invariant and the boundedness of the dual variable sequence generated by the proposed
algorithm is explicitly assumed.

The static regret bounds in Corollaries 6.1 and 6.2 can be reduced, if a generalized
strong convexity of the local objective functions f;; + r;; is assumed. We put the strong
convexity assumption on the local cost functions f;, so r;, can be simply convex, such as
an {;-regularization.

Assumption 6.6. For any i € [n], there exist constants y; > 0 such that for any t € N,, f;,
are y;-strongly convex on X; with respect to ;.

Theorem 6.3. Suppose Assumptions 6.1-6.4 and 6.6 hold. Let {x;} be the sequence
generated by Algorithm 6.1 with

1 1 1
Bi= = VEE N, (6.23)

@ = tmaX{l—K,K} *

where k € (0, 1). Then, for any T € N,,

Reg(x[T],,\‘E‘TJ) < max{Cy, C4}T*, (6.24a)
1300l = veor
=1
where
Cy= ”(fli)z + Blf“ + % + 2nd(X)K(By)'™*, By = [WL)] = min(y)
Proof. See Section 6.6.6. O

Corollary 6.3. Under the same conditions as stated in Theorem 6.2, if Assumption 6.6
also holds. Then,

Reg(x(7), ifﬂ) < C4TX, (6.25a)

H[zT: gt(xt)LH < Gy, (6.25b)
t=1

198 Distributed online primal—dual optimization algorithm

Proof. (6.25a) follows from the first step in the proof of (6.24a) and (6.25b) follows from
(6.20b). O

Remark 6.9. With some minor modifications, the results stated in Theorem 6.3 and
Corollary 6.3 still hold if Assumption 6.6 is replaced by the assumption that for any i € [n]
and t € Ny, fi, or riy is pi-strongly convex on X; with respect to ;.

6.4 Simulations

This section evaluates the performance of Algorithm 6.1 in solving the multi-target
tracking problem introduced in Section 1.1. In the simulations, for each agent i € [n],
®@;, is set as the identity mapping and the strongly convex function y;(x) = ol|x]? is used
to define the Bregman divergence Dy,. Thus, Dy, (x,y) = ollx — ylI?, Vi € [n]. The stepsize
sequences given (6.23) are used. Moreover, agent i could use a regularization function
rig(Xig) = Aitllxieh +/l,-,2||x,»,,||2 to influence the structure of its action, where A; ; and 4, are
nonnegative constants. At each time ¢, an undirected graph is used as the communication
graph. Specifically, connections between vertices are random and the probability of two
vertices being connected is p. To guarantee that Assumption 6.1 holds, edges (i,i + 1), i €
[n — 1] are added and [W,];; = ﬁ if (j,i)e & and [W,]; =1 - ZjeN;"(g,)[Wt]ij-

We assume n =50,m =5,0 =10, p; = 6,X; = [0,517, {iy = Ay = 1, &in = Ain = 30,
i € [n], and p = 0.2. Each component of x;; is drawn from the discrete uniform distribution
in [0, 10] and each component of D;, is drawn from the discrete uniform distribution in
[—5, 5] We let fi,t = (2(4,2 + /l,»,z)xgr + gi,lni,t + /1,‘,1 1[,[)/(24"2), where Xng = Ai,txgt with
A, being a doubly stochastic matrix and x?,1 being a vector that is uniformly drawn from

X;. In order to guarantee the constraints are feasible, we let d;, = D,-,,x?[.

6.4.1 Dynamics of optimal sequences

Under the above settings, we have that x, = xgl. To investigate the dependence of the
dynamic regret and constraint violation with ®@;,;, we run Algorithm 6.1 for two cases: ®@;, is
the identity mapping and the linear mapping A, ;. Figures 6.1 (a) and (b) show the evolutions
of Reg(x(r}, x;‘ﬂ)/ T and ||[ZIT= 1 &(x)14|l/T, respectively, and we can see that knowing the
dynamics of the optimal sequence leads to smaller dynamic regret and constraint violation.

6.4.2 Regularization function

To highlight the dependence of the dynamic regret and constraint violation with the
regularization function, we run Algorithm 6.1 for two cases. Case I: f;,(x;) = £.1(mis, Xi) +
GiallHiexi =yl rig(xi) = Aiplixills + 2i2llxl* and Case IT: f;,(x;) = &1 (i, xi)+ il Hipxi —
yidl? + Aiallxilly + Aiallxill?, ri.(x;)) = 0. Figures 6.2 (a) and (b) show the evolutions of
Reg(x(ry, x?T]) /T and II[Z,T:1 g:(x)1+1l/T, respectively, for these two cases. From these two
figures, we can see that having the regularization term explicitly leads to smaller dynamic
regret and constraint violation.

6.4. Simulations 199

4
10 %10 : ‘ ‘
— %, =1,
or — 0= A |]
sl J
& J
~
x & 1
»
< J
Ra)
= J
O
a J
0 L L L I T T s
0 10 20 30 40 50 60 70 80 90 100
Rounds
(a) Evolutions of dynamic regret Reg(xr;, X{rp) /T.
150 ‘ ‘
—_—D =1,
_(bi‘t = Ai,t
&~
=100, 1
=
g
S
e 1
N soft]
0 ‘ ! ‘ ‘ ‘ ‘ ———————
0 10 20 30 40 50 60 70 80 90 100

Rounds

(b) Evolutions of constraint violation ||[Z,T:] g1/ T.

Figure 6.1: Comparison of different ®;, in the multi-target tracking problem.

200 Distributed online primal—dual optimization algorithm

/T

*

Reg(xr), x

0 10 20 30 40 50 60 70 80 90 100
Rounds

(a) Evolutions of dynamic regret Reg(xr;, X{rp) /T.

Case |
Case Il

150

0 ‘
0 10 20 30 40 50 60 70 80 90 100
Rounds

(b) Evolutions of constraint violation ||[Z,T:] g1/ T.

Figure 6.2: Effects of the regularization function in the multi-target tracking problem.

6.5. Summary 201

6.4.3 Effects of parameter «

To investigate the dependence of the dynamic regret and constraint violation with the
parameter x, we run Algorithm 6.1 with x = 0.1,0.3,0.5,0.7,0.9. Figures 6.3 (a) and
(b) show effects of x on Reg(x[T],xE‘T])/T and ||[ZtT:1 8:(x)1+ll/T, respectively, when
T = 100,500, 1000. From these two figures, we can see that x almost does not affect
Reg(x(ry, xTT])/T and ||[Z,T=1 g:(x)1+|l/T when T is large (e.g., T > 500). This phenomenon
is not contradictory to the theoretical results shown in Theorem 6.3 since the theoretical
results provide upper bounds of Reg(xry, xfT])/ T and ||[Z;T:1 g (x4 /T.

6.4.4 Comparison to other algorithms

Since there are no distributed online algorithms to solve the problem of distributed online
optimization with time-varying coupled inequality constraints, we compare Algorithm 6.1
with the centralized online algorithms in [173-175]. Here, Algorithm 1 in [173] with @ =
10,6 = 1,and u = 1/ VT, Algorithm 1 in [174] with @ = u = T~'/3, and the virtual queue
algorithm in [175] with V = VT and @ = V? are used. Figures 6.4 (a) and (b) show the
evolutions of Reg(x[T],xE‘T])/ T and II[ZtT:1 g:/(x)]+1l/T, respectively, for these algorithms.
From these two figures, we can see that in this example Algorithm 6.1 achieves smaller
dynamic regret and constraint violation than the algorithms in [174, 175] and almost the
same values as the algorithm in [173].

6.5 Summary

In this chapter, we considered an online convex optimization problem with time-varying
coupled inequality constraints. We proposed a distributed online primal-dual dynamic
mirror descent algorithm to solve this problem. We derived regret and constraint violation
bounds for the algorithm and showed how they depend on the stepsize sequences, the
accumulated dynamic variation of the comparator sequence, the number of agents, and the
network connectivity. We proved that the algorithm achieves sublinear regret and constraint
violation for both convex and strongly convex objective functions. We showed that the
results in this chapter can be cast as extensions of existing literature. Future research
directions include considering a strict form of the constraint violations and learning the
dynamics of the optimal sequence.

6.6 Proofs

6.6.1 Proof of Lemma 6.1

(i) We prove (6.13a) by induction.
It is straightforward to see that g;; = §io» = 0,,, Vi € [n], thus ||g;1]| < ﬁﬁl, G2l <

Bﬁl, Vi € [n]. Assume that (6.13a) is true at time ¢ for all i € [n]. We show that it remains

202 Distributed online primal—dual optimization algorithm

].5001 T T — \\i_;_‘*
& 1000 ——T =100 ||
= —+—T = 500
e —e—T = 1000
&
Ro)
S
2 500 1
[- —O- -© ©
0 s s s s s s s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KR
(a) Dynamic regret Reg(x(ry, xE‘TJ)/ T at T = 100, 500, 1000.
3 T T T T
l»_ ../‘*
25F 1
&~
>~ 2r b
=
= —a—"T = 100
st ——T =500 | |
S —e—T = 1000
ol
Aot 1
05T + —+ + &
(¢, —— —O- —-0—— ©
0 s s s s s s s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KR

(b) Constraint violation ||[Z,T:] g ()] l/T at T = 100, 500, 1000.

Figure 6.3: Effects of parameter « in the multi-target tracking problem.

6.6. Proofs 203

5
2 %10

1.8

1.6
e 141
= ol — Algorithm 6.1
W —[173]
= 1f —[174] 1
" ———[175]
S 08
QO
& 0.6

0.4

0.2

0 ‘ ‘ : ‘
0 10 20 30 40 50 60 70 80 90 100
Rounds
(a) Evolutions of dynamic regret Reg(xry, Xirp) /T.
180 T T
— Algorithm 6.1
160 | —[173]]
—[174]
140 ———[175]

0 | ! T T
0 10 20 30 40 50 60 70 80 90 100

Rounds

(b) Evolutions of constraint violation ||[Z,T:1 gl /T

Figure 6.4: Performance of online convex optimization algorithms in the multi-target
tracking problem.

204 Distributed online primal—dual optimization algorithm

true at time 7 + 1. (2.9) and (6.9d) imply

(1- %+1ﬂz+l)5]i,r+l + '}’r+1bi,t+1 <(1- '}/t+l,8l+l)qi,t+l + 7t+lgi,t(55i,z+1)- (6.26)

Noting that ||[x].]| < |[y|| for all x <y, (6.9¢), (6.26), and (6.4) imply

g ll < (A = V1B DN Gi g1l + Vst llgie (K D

F F
+ 7t+1F = s VI € [n]’
ﬁz+1 ,Bz+1

where the last inequality holds due to the sequence {£;} is nonincreasing. The convexity of
norms and Z'}:1[Wz]ij =1 yield

F
<{- 7t+lﬂt+l)ﬁ_ + Yt F < (1 = vi1Bis1)
t

F
[<Z Willlg el < Z[W,],j Vi € [n].
j= ﬁt+1 ,Bt+l

Thus, (6.13a) follows.
(ii) We can rewrite (6.9¢) as

n

qit+1 = Z[Wt]uq;t zt’

j=1
where e = [= Y+1B+1)Gige1 + Ve1bige11+ — Gigs1. From (6.4), (6.5), and (6.3), we have
111l < Nlgir(xill + IV &is (xi(Xips1 — Xi)Il < F + Gd(X), Vi € [n]. (6.27)
Thus, (2.10), (6.13a), and (6.27) give

||E,q,|| S = Y41Be41Giss1 + Yes1bigr1ll < Bryisr, Vi € [n]. (6.28)

Then, Lemma 2 in [190], g;; = 0,,, Vi € [n], and (6.28) yield

1
1gise1 = Genll < nTBy)"y A7, Vi € [n].
s=1
So (6.13b) follows due to 3 [W,l;j = 1 and Git — Gll = 1| 2, (Wilijgje — @l <

Z?:] [Wt]ij“CIj,t = qill.
(iii) Applying (2.10) to (6.9¢) gives

g = ql* < (1 = Bryo)Giy + ¥ibis — gl
= ||51i,z - CIHZ + (Vt) ||bi,t _ﬁt%,tnz + Z%@i,t)TVgi,t—l(xi,z—l)(;ci,z = Xis-1)

= 274" Vgi 1 (X)) Fig — Xigm1) + 2¥1(Gis — @) iu—1(Xip—1)
- 2B71(Gis — 9) " G- (6.29)

6.6. Proofs 205

For the first term of the right-hand side of (6.29), by convexity of norms and Z;le [Wiaalij =
1, it can be concluded that

J=1

s P =) Wi = YWt € YWl - alf. 630
=1 =1

For the second term of the right-hand side of (6.29), (6.13a) and (6.27) yield

) bis = Bediisl* < (Bryn)*. (6.31)

For the fourth term of the right-hand side of (6.29), (6.5) and the Cauchy-Schwarz
inequality yield

G« a
Ulgl? + =%, — xial?). (6.32)
o da;

For the fifth term of the right-hand side of (6.29), we have

_ZYIqTVgi,t—l(-xi,t—l)(jzi,t = Xi-1) < 271(

2YdGiy = @) " is-1(Xig—1) = 2¥1(Gr-1 — @ " i1 (K1) + 2 Gis — Gr—1) " i1 (Xip—1).
(6.33)

Moreover, from (6.4) and (6.13b), we have

(6.34)

o o 2y,E1 (1= 1)
2v1Gi = Gi-1)" 8i—1(Xi—1) < 2¥llGis — G lllgie—1 (xip—Il < %T

For the last term of the right-hand side of (6.29), neglecting the nonnegative term S,||G:.|*
gives

~2BGis = @) Gix < Byl =11 — gl (6.35)

Then, combining (6.29)-(6.35), summing over i € [n], and dividing by 2y,, and using
Y IWilij = 1, ¥t € Ny yields (6.13c¢).

6.6.2 Proof of Lemma 6.2

From (2.9), we have

i (xie) = Lis(in)

= fiuxi) = fuQin) + rig(xig) — Fig(Kie) + rig(Kige1) = ri(vig)

SAVSi(Xin)s Xig = Vi) + AVri(Xi), Xip = Xige1) + (Vi (K p01)s Xi g1 = Vi)

=V fii(xie) + Vri (i), Xip — Xige1) + AV fio(Xi0) + Vri(Zige1), Xise1 — Yia)- (6.36)

We now bound each of the two terms above. For the first term, (6.5) and the Cauchy-
Schwarz inequality give

4G2(l,+1

g
- - a -2
(Vi) + Vri(xio), Xip — Xire1) < 2Glxip — Xl < I 1 = Xl +
t+1

" (6.37)

206 Distributed online primal—dual optimization algorithm

For the second term, we have

(Vfirxig) + Vri(Zige1)s Xigr1 — Vi)
= ((V&is(Xi) " Gige1s Yie = Kige1) + (@igs1 + Vrig(Fige1)s Fige1 = Via)
= <(Vgi,[(-xi,l))Tqi,T+l’ Yig = Xig) + <(Vgi,t(xi,z))Tin,z+1a Xip = Xire1)
+{aisr1 + Vi (Fipr1), Xige1 = Yia)- (6.38)

From (2.9) and §G;, > 0,,, YVt € N, Vi € [n], we have

<(Vgi,t(xi,z))Tgli,z+1a)’i,t = Xi1) < (‘?i,t+l)—rgi,t()’i,z) - (Z]i,t+1)Tgi,t(xi,z)

= (Qz)T(gi,r(Yi,t) = 8it(Xir)) + (Gise1 — ‘?z)T(gi,t(Yi,t) — gir(Xir)). (6.39)
Similar to (6.34), we have

2E; (1)

(Qi,t+1 - E],)T(g,;,(y,-,t) - gi,t(xi,I)) < P (6.40)

Applying (2.21) to the update rule (6.9¢c), we get

(i1 + Vi (Fige1), Xiper = Vi)

1 - -
< Dy, G Xi) = Dy, Git> Xip1) — Dy (Xip41, X))

Ay]

1
= Dy, Oiss Xi) = Dy, Qi1 Xipa1) + Dy, Oiprt> Xipa1) — Dy (D1 (ig)s Xi1)
t+1

+ Dy (Pisr10ie)s Xies1) — Dy, Vit Xivr1) — Dy, (Kiga1, Xir))

1 g
) (-Z)w,-(yi,t, xi,t) - Dwi()’i,zﬂ , xi,z+1) + K||}’i,t+l - (Di,z+l()’i,t)|| - §||xi,t+l - xi,rllz),
1+
(6.41)

IA

where the last inequality holds due to (6.9f), (6.12), (6.10), and (2.18).
Combining (6.36)—(6.41) and summing over i € [n] yields (6.14).

6.6.3 Proof of Lemma 6.3

(i) The definition of A, given in Lemma 6.1 yields

A

1 n
- = 1- i1 — 2 _ = 2
5 = oy, ;« Byl — I = llgis — gl

1, 1 1
== > (—lgi-1 — gl = —llgis — qll*
2;(%_141 4 7[6]1 q)

IR)
+5 2o = — =Bl gl (6.42)
= Yt Vi1

6.6. Proofs 207

For any nonnegative sequence (i, >, ..., it holds that

T t T T—t ' 1 T
> Z Lo A = ; Lt Z:(; T ; Lot (6.43)

t=1 s=1

Let g, : R7 — R be a function defined as

T
+Z G? aHl ,BHI))” ”2 (6.44)

t=1 -

T

T l
ge@) = (D" &lx)) q-n 7—
Combining (6.13c) and (6.14), summing over ¢ € [T], neglecting the nonnegative term

lgir+1 = gl and using (6.42)~(6.44), llgix = ql* < 2lgil* + 2llgl* = 2llgll*, and g,(y,) <
0., yir) € Xr yields

4nG?
8c(q) + Reg(xr), yir) < Cri Z)’m + Zam + ZEs(f)

t=1 - t=1

1 T n 1 1 2
-3 Z Z (% - + Brar lgis = gl
=1
T
. KZ Z lyis+1 — (Di,H—l(yi,t)”’ Vg eR™. (6.45)

=1 i=1 @t

Then, substituting g = 0, into (6.45), setting y;7+1 = DP;7r+1(yir), noting that {a,} is
nonincreasing, and rearranging the terms yields (6.15a).
(ii) Substituting g = ¢g. into g.(q) gives

IZE gx)lol?

gc(Qc) = Eu(T)

(6.46)
Moreover, (6.4) gives

|Reg(xm,ym)| < 2nFT, Vy[T] € Xr. (6.47)

Substituting g = g, into (6.45), combining (6.46)—(6.47), and rearranging the terms gives
(6.15b).

6.6.4 Proof of Theorem 6.1
(i) Applying (2.37) to the third and forth terms of the right-hand side of (6.15a) gives

C
Cii Z Yot € =T (6.482)

Cip (6.48b)

208 Distributed online primal—dual optimization algorithm

Noting that {a,} is nonincreasing and (6.11), for any s € [T], we have

T
> Es()

2

s i=

-(yi,t+1 > Xit+1))

T n
1=

1
1 (;{Dwi (Vi Xi,

+ZZ - Dw,(yzz,xzt)
= o1 @+l

1 1 < 1
< —) DyQisXis)— ——) Dy,Qit+1, Xi + - —)dX)K
azl 0 Oiss i) am; i,) = =)dC0)
XK
o dOK (6.49)
ar+1

Combining (6.152) and (6.48a)—(6.49), setting y;, = x;,, Y¢ € [T], and noting that the
second last term of the right-hand side of (6.15a) is nonpositive due to % - # + 81 >0
yield (6.17a).

(ii) Using (2.37) gives

E4(T) < Cy Tmaxt1=e1=x) (6.50)

Combining (6.15b) and (6.48a)—(6.50) and noting that the last term of the right-hand
side of (6.15b) is nonpositive due to % - # +Bi41 > 0 give (6.17b).

6.6.5 Proof of Theorem 6.2

(i) Substituting ¢ = 1 — k in (6.17a) gives (6.20a).
(ii) We first show that ||g,|| < B, by induction, where ¢, = col(qi, - .., gns)-

It is straightforward to see that ||g,|| = O < B,. Suppose that there exists 7, € N, such
that ||g,|| < B,, Vt € [T1]. We show that ||gr,+1]| < B, by contradiction. Now suppose that
llgr,+1ll > B>. Noting that ||gr,+1lli = llgr,+1lli = llgr,+1ll > B2 and ||g1|l; = 0, we know
that there exists #p € [7] such that ||g,ll; < %. Let t; = max{ty : [Ig,lli < %, to € [T1]}.
Combining (6.13c) and (6.14), substituting ¢ = 0,, and y, = x,, setting {®,;} as the identity
mapping, and using |/,(x;) — [;(x.)| < 2F and (6.18) yields

Ige1l? = (1= Breryes DIl < 2Byt + 291 E3(t + 1) = 26llG i yes1- (6.51)

Summing (6.51) over ¢ € {t,... T1} using (6. 11) a/r =y = t, - and B, > 0, and noting
that llgr, 11l > B, llgy Il < 11G, Il < 2, and llg Iy > 2, Ve e {t; + 1,..., Ty} gives

3(By)?

T,
o <llaralf =lig | + 3" Braryvisillad?

=t

T] Tl
<2B3) it +2ndCOK = 26) Gl Vern

t=t 1=t

6.6. Proofs 209

2B
< ZB(Ty + DS = (11 + DY) + 2B3 + 2nd(X)K
K

eB _
- 72((T1 + 1) = (ty + 1)) + &Bs — 2él|gy, |11

(By)?
< 2nd(X)K + 2eB; < > (6.52)

which is a contradiction. Thus, |lg7, 11l < Bs.
We now show (6.20b) holds. Applying (2.22) to the update (6.9c) and noting ||G; s+1]] <
llg/ll < B, gives

larsraimll + @1 G < Ga’t+1 (By +2). (6.53)
ag

1% 41 — Xifll <

(6.9a) and (6.9¢) give

Gire1 2 (1 = Bri1vis1) Z[Wz]ijCIj,z + %+1bi,t+1- (6.54)

=

Summing (6.54) over i € [n], dividing by ny.,, and using)", [W];; = 1, YVt € Ny, (6.5),
(6.9d), and (6.53) yields

‘?t+1 1
,E 2 (Yz+l _BHI q: + szzﬂ

1 1 G*a
> (—— =Bt)3 + ~8i(x)) = ——"(By + D)1, (6.55)
Y+l n a

Summing (6.55) over ¢ € [T] gives

- th(xt) < — + Z,BHI% + Z Hl +2)1,,. (6.56)

Noting that ||[x]+]| < |[y|| for all x < y and using ||g,]| < llg/|| < B> and (2.37) yields (6.20b).

6.6.6 Proof of Theorem 6.3

(i) We first show that Reg(x(r}, ¥;) < C4T* when a; = .
Under Assumption 6.6, (6.36) can be replaced by

lioCxi) = LiiQiy) <AV fii(xin), Xip = Yigy + (Vrig(Xig), Xip — Kige1)
+(Vrif(Xipe1)s Xiger = Vi) = Dy, Vi Xir)
=(Vfi(xip) + Vri(xip), Xip — Xige1)
+ AV firxig) + Vri(Kige1), Xigsr = Yie) = KDy, Viss Xig)- (6.57)

210 Distributed online primal—dual optimization algorithm

Thus, (6.14)—(6.15b) still hold if replacing E(f) by

n

1
Es(t) = Z (a(ﬂp, s i) = Dy Oigs1s Xigs1) = 1Dy, G Xi))-

i=1

Then,
T T {
ZZZI Es(r) = ; 2 (a—tﬂm(y;,nxi,t) T -(yi,z+1,xi,z+1))
Ty {
+ ;) (a,+1 — 1) Dy, G Xia). (6.58)
Noting that £ > 0, Dy, () 2 0,and ;= — & —p = FHs —f —p < x —p <0, Vr 2 By

and using (6.49) and (6.58) yields

Z Es(1) = Z E5(1) + Z Es(1)

=By
T n
nd(X)K 1 1
< + Z (- _/J)Dl//,(ylhxl £
ap, =B, i1 [e738] a;

+ Z Z Dw,()’zr»xz)= _Dw,(% t+15 Xi z+l))

t=By i=1
< 2nd(X)K.

Q’B4

(6.59)

Replacing (6.49) with (6.59) and along the same line as the proof of (6.17a) in Theorem 6.1
gives that Reg(x(r), ¥.) < C4T* when a; = .

Next, we show that (6.24a) holds. When « € (0, 0.5), we have @, = 1/¢!=. Thus, from
the above result, we have Reg(xry, X7) < C4T*. When « € [0.5,1), we have a; = 1/¢*.
Thus, (6.21a) gives Reg(x(ry, X3) < CT*. In conclusion, (6.24a) holds.

(ii) Substituting ¢ = 1 — « when « € (0,0.5) and ¢ = xk when « € [0.5, 1) in (6.17b) gives
(6.24b).

Chapter 7

Distributed bandit online primal—dual
optimization algorithms

In this chapter, distributed bandit online convex optimization with time-varying coupled
inequality constraints is considered, motivated by a repeated game between a group of
learners and an adversary. The learners attempt to minimize a sequence of global loss
functions and at the same time satisfy a sequence of coupled constraint functions, where
the constraints are coupled across the distributed learners at each round. The global loss
and the coupled constraint functions are the sum of local convex loss and constraint
functions, respectively, which are adaptively generated by the adversary. The local loss
and constraint functions are revealed in a bandit manner, i.e., only the values of loss
and constraint functions are revealed to the learners at the sampling instance, and the
revealed function values are held privately by each learner. Both one- and two-point bandit
feedback are studied with the two corresponding distributed bandit online algorithms used
by the learners. We show that sublinear expected dynamic regret and constraint violation
are achieved by these two algorithms, if the accumulated variation of the comparator
sequence also grows sublinearly. In particular, we show that O(T?) expected static regret
and O(T7/4=%) constraint violation bounds are achieved in the one-point bandit feedback
setting, and Q(T™*:1-41) expected static regret and O(T'~/?) constraint violation bounds
in the two-point bandit feedback setting, where T is the total number of rounds and
01 € (3/4,5/6] and « € (0, 1) are user-defined trade-off parameters. The effectiveness
of the theoretical results is illustrated by numerical simulations.

This chapter is organized as follows. Section 7.1 introduces the background. Sec-
tion 7.2 gives the problem formulation. Sections 7.3 and 7.4 provide the distributed
bandit online algorithms for one- and two-point bandit feedback, respectively, and present
their expected regret and constraint violation bounds. Section 7.5 presents numerical
simulations. Section 7.6 concludes this chapter. To improve the readability, all the proofs
can be found in Section 7.7.

211

212 Distributed bandit online primal—dual optimization algorithms

7.1 Introduction

Bandit online convex optimization is online convex optimization with bandit feedback, i.e.,
at each round only the values of the loss functions are revealed, rather than the entire loss
function, the gradient of the loss function, or some other information. Bandit feedback is
suitable to model various applications, where the entire function or gradient information
is not available, such as online source localization, online routing in data networks,
and online advertisement placement in web search [165]. For such applications, existing
online algorithms are inapplicable but gradient-free (zeroth-order) optimization methods
are needed. Gradient-free optimization methods have a long history [271] and have an
evident advantage since computing a function value is much simpler than computing
its gradient. Gradient-free optimization methods have gained renewed interests in recent
years, e.g., [147,150,213,243]. Essentially, a bandit online convex optimization algorithm
is a gradient-free method to solve online convex optimization problems. In a bandit setting,
a sublinear static regret bound may not be guaranteed if the adversary still can arbitrarily
choose the loss function. Under completely adaptive adversary, the authors of [164] gave
an example to show that any algorithm suffer at least linear regret. Therefore, the power of
the adversary should be limited to achieve a sublinear regret bound. For a so called adaptive
adversary [164], the adversary chooses f, based only on the learner’s past decisions
X1,...,X—1, but not on her current decision x,. In other words, the adversary chooses f;
at the beginning of round #, before the learner chooses her decision.

A key step in bandit online convex optimization is to estimate the gradient of the loss
function by sampling the loss function. Various algorithms have been developed and can
be divided into two categories depending on the number of samplings. Algorithms with
one sampling at each round have been proposed in [212,317-324]. Specifically, in [212],
O(T3'*) expected static regret bound was achieved for Lipschitz-continuous functions,
where T is the total number of rounds. Better regret bounds can be guaranteed if additional
assumptions are made. The authors of [317] considered linear loss functions and achieved
O(VT) expected static regret bound. The authors of [318,319] also considered linear
loss functions and proposed algorithms that achieved O(/T log(T')) expected static regret
bound. The authors of [320] studied smooth loss functions and achieved O(T?/3(log(T))'/?)
expected static regret bound. The authors of [321] considered strongly convex and smooth
loss functions and achieved O(+/T log(T)) expected static regret bound. One common
assumption in [318-321] is that the convex domain admits a self-concordant barrier. The
authors of [322] showed that O(VT log(T)) expected static regret bound can be achieved
for Lipschitz-continuous loss functions with one-dimensional domains, but they did not
develop any explicit algorithm. This result was extended to arbitrary dimensions in [323],
but still without any explicit algorithm. Based on the application of the ellipsoid method to
online learning, the authors of [324] proposed an algorithm for Lipschitz-continuous loss
functions and achieved O(VT log(T')) expected static regret bound.

Algorithms with two or more samplings at each round have been proposed in
[164,214,280,325-327]. The expected static regret bounds can then be reduced compared
to the one-sample case. The authors of [164] extended the one-point sampling bandit
algorithm proposed in [212] to a two-point sampling bandit algorithm and obtained

7.1. Introduction 213

O(log(T)) expected static regret bound for Lipschitz-continuous and strongly convex loss
functions. Moreover, with p + 1 samplings at each round, where p is the state dimension,
they proposed a deterministic algorithm and showed that the algorithm can achieve O(VT)
static regret bound for Lipschitz-continuous and smooth loss functions, and O(log(T"))
static regret bound for strongly convex and smooth loss functions. The author of [280]
proposed a simple algorithm with two samplings at each round and obtained O(VT)
expected static regret bound for Lipschitz-continuous loss functions. Without assuming
that the decision set is bounded, the author of [326] proposed a class of algorithms with
one and two samplings at each round and obtained O(T2/*) and O(VT) expected static
regret bounds, respectively, for smooth loss functions.

Aforementioned studies did not consider equality or inequality constraints. In the
literature, there are few studies considering bandit online convex optimization with such
constraints, although such constraints are common in applications. The authors of [169]
studied online convex optimization with static inequality constraints and bandit feedback
for constraints, while the authors of [328] studied online convex optimization with time-
varying inequality constraints and bandit feedback for loss functions. The authors of [329]
studied online convex optimization with time-varying inequality constraints and bandit
feedback for both loss and constraint functions.

Most existing bandit online convex optimization studies are in a centralized setting
and only few studies considered distributed bandit online convex optimization. When loss
functions are strongly convex, the authors of [330] proposed a consensus-based distributed
bandit online algorithm with one sampling at each round and obtained O(VT log(T))
expected static regret bound. When loss functions are quadratic, the authors of [188]
proposed a consensus-based distributed bandit online algorithm with two samplings at each
round and obtained O(VT) expected static regret bound when there are set constraints.
When there are static linear inequality constraints, they also established O(T™*®.1-8}) and
O(T'#/2) bounds on the expected static regret and constraint violation, respectively, where
B € (0,1) is a user-defined trade-off parameter of the proposed algorithm.

This chapter considers the problem of distributed bandit online convex optimization
with time-varying coupled inequality constraints. This problem can be interpreted as a
repeated game between a group of learners and an adversary. The learners attempt to
minimize a sequence of global loss functions and at the same time satisfy a sequence
of coupled constraint functions. The global loss and the coupled constraint functions are
the sum of local convex loss and constraint functions, respectively. They are generated
adaptively by the adversary. The local loss and constraint functions are revealed in a bandit
manner and the revealed information is held privately by each learner.

We first consider that the situation that at each round each learner can sample both her
local loss and constraint functions at one point. We have the following contributions.

(C7.1) We propose a distributed bandit online algorithm based on the one-point sampling
gradient estimator (Algorithm 7.1) to solve the considered optimization problem.
To the best of our knowledge, this is the first algorithm to solve the online convex
optimization problem with time-varying inequality constraints in the one-point
bandit feedback setting. An advantage of our algorithm is that the total number of

214

Distributed bandit online primal—dual optimization algorithms

(C7.2)

rounds is not used in the algorithm and thus does not need to be known a priori,
which is an improvement compared to the one-point sampling bandit algorithms
in [212,318-321,328,330]. Moreover, note that these studies did not consider bandit
feedback for time-varying inequality constraints or did not even consider time-
varying inequality constraints at all.

We show in Theorem 7.1 that sublinear expected regret and constraint violation
bounds are achieved by the proposed algorithm if V(x), the path-length of the
optimal dynamic decision sequence, grows sublinearly with a known order. We also
show in Corollary 7.1 that O(T?") expected static regret and O(T7/#~%) constraint
violation bounds are achieved, where 6; € (3/4,5/6] is a user-defined trade-
off parameter. As a special case, when there are no inequality constraints, the
proposed algorithm achieves O(T3/*) expected static regret bound, which is the same
expected static regret bound that has been achieved by the one-point sampling bandit
algorithm in [212]. However, in [212] the total number of iterations, 7', as well as
the Lipschitz constant and upper bound of the loss functions are needed for the
algorithm.

We then consider that the situation that at each round each learner can sample both her
local loss and constraint functions at two points. We have the following contributions.

(C7.3)

(C7.4)

We propose a distributed bandit online algorithm based on the two-point sampling
gradient estimator (Algorithm 7.2). This algorithm does not require the total number
of rounds or any other parameters related to the loss or constraint functions, which is
different from the two-point sampling bandit algorithms in [164, 169, 188,214,280,
325,327-329].

In an average sense, the two-point sampling based distributed bandit online algo-
rithm is as efficient as the algorithms proposed in [169, 170, 173] and Chapter 6,
although [170, 173] and Chapter 6 are in a full-information feedback setting and
[169] considers bandit setting only for the constraint functions. Specifically, we
show in Theorem 7.2 that sublinear expected regret and constraint violation bounds
are achieved by the proposed algorithm if the path-length of the optimal dynamic
decision sequence grows sublinearly with a known order v € [0, 1). For example,
O(T*)12) expected dynamic regret and O(TG™/4) constraint violation bounds
are achieved by our algorithm. Thus the bounds achieved by the centralized two-
point sampling bandit algorithms in [325, 329] are recovered by our algorithm. We
also show in Corollary 7.2 that O(T™1-1}) expected static regret and O(T /%)
constraint violation bounds are also achieved, where x € (0, 1) is a user-defined
parameter. Thus the bounds achieved by the centralized two-point sampling bandit
algorithm in [169, 280] are also recovered with « = 1/2. However, in [280, 325]
static set constraints rather than time-varying inequality constraints are considered,;
in [169] static inequality constraints and full-information feedback for the cost
function are studied; and in [169, 280, 325, 329] the total number of rounds as well
as the Lipschitz constant of the loss function are needed.

7.2. Distributed bandit OCO with time-varying coupled inequality constraints

215

Table 7.1: Comparison of Chapter 7 to some related bandit online convex optimization

algorithms.
Reference Problem Constraint Information Regret and constraint violation bounds
type type feedback
[212] Centralized g(x) =0, One-point sampling E[Reg(xm,i*?ﬂ)] =O(T3%)
[324] Centralized g(x)=0, One-point sampling E[Reg(x(r), ¥{7))] = O(T'* log(T))
[280] Centralized g(x) =0, Two-point sampling E[Reg(xm,ic[*.l.])] =O(T"?)
[325] Centralized 2(x)=0, Two-point sampling E[Reg(x(7), X{;)] = O(max{(TV(x[*TJ))”z, T'/2})
: -poi E[R JE =0T),
[169] Centralized 8(x) <0y Vi and two-point [eg;xm s =9 3 4)
sampling for g EllI[Z., g1l = O(T¥*)
Vg, and one-point E[Reg(x7), x{7))] = O(max{T3/* Vi), T3/4y),
§/(x) < 0, sampling for f, r = o1
[328] Centralized an’d Slater’s : “[%H ool 157)* 12
condition Vg, anq two-point E[Reg(xlrj,xm)] = O(max{T ‘V(xm), 7)),
sampling for f; IZL, gl = OT')
E[R)] = OWTV(x))'2)),
[329] | Centralized | g(x)<0, | Two-point sampling [Reglxtr, p))) = O Vi) /)4)
E[l[X; 81Nl = 0TV (xip))'™)
E[R ,x0] =0 T V(xi,), TO)),
_ One-point sampling [T eg(x(r), ¥ry)] 7/45[:”{ Cetry) hH
This - &) = I[X=1 8Gx) 14l = O(T"*7%1), where 6, € (3/4,5/6]
. Distributed 1 gix) <
chapter B . . E[Reg(x(r), X{7))] = Omax{T*V (xjy)), T,
0, Two-point sampling T i 1=x/2 171
X< &)l = OT), where k € (0, 1)

Table 7.1 compares this chapter with other bandit online convex optimization algo-
rithms.

7.2 Distributed bandit OCO with time-varying coupled inequality
constraints

We consider the problem of distributed bandit online convex optimization with time-
varying coupled inequality constraints. This problem can be defined as a repeated game
between a group of n learners indexed by i € [n] and an adversary. At round ¢ of the game,
the adversary first arbitrarily chooses n local loss functions {f;, : R” — R, i € [n]} and n
local constraint functions {g;, : R” — R™, i € [n]}, where p; and m are positive integers.
Then, without knowing {f;,, i € [n]} and {g;;, i € [n]}, all learners simultaneously choose
their decisions {x;; € X, i € [n]}, where X; C R”" are known convex sets. Each learner i
samples the values of f;; and g;, at the point x;, as well as at other potential points, i.e.,
the learners receive bandit feedback from the adversary. These values are held privately
by each learner. At the same moment, the learners exchange data with their neighbors
over a time-varying directed graph G,. The goal of the learners is to cooperatively choose
a global decision sequence x[7; = (xi,...,x7), where T is the total number of rounds
and x; = col(xy,,...,x,,) is the decision vector, such that the accumulated global loss
Zthl fi(xy), where fi(x;) = X, fi.(x;;) is the global loss function, is competitive with the
loss of any comparator sequence y;r; = (y1,...,yr) with y; = col(yis,...,yns) (i.€., the
regret is as small as possible) and at the same time the constraint violation is as small as

216 Distributed bandit online primal—dual optimization algorithms

possible.
From (1.5), we know that the regret of a global decision sequence x[7; with respect to
a comparator sequence yrj is

T T
Reg(xr), yi11) = Z Si(x) — Z Sio).
=1 =1

For the above distributed bandit online convex optimization problem with time-varying
coupled inequality constraints, two commonly used comparator sequences are yir; =
xE‘T] = (x],...,xp) and yiry =)EE‘T] = (X},...,X}), where X}, which solve the following
two constrained convex optimization problems

T
e X ;f’ () (7.1)
s.t. gi(xy) <0, Yt €[T],
and
T
i Q400 7
S.t. g:(x) <0, Yte[T],

respectively, where X = X x --- x X, € R” is the global decision set, p = >\, p;, and
g(x) = X%, gis(x;,) is the coupled constraint function.
From (1.7), we know that the constraint violation of a decision sequence x|z} is

135l

Based on the definitions introduced in Chapter 2, we make the following assumptions
on the time-varying directed graph G, as well as the loss and constraint functions.

Assumption 7.1. For any t € N, the directed graph G, satisfies the following conditions:

(i) The mixing matrix W, is doubly stochastic, i.e.,)\ [W;];j = ;f:l[W,],-j =1, Vije
[n].

(ii) There exists a constant w € (0, 1), such that [W];; 2 w if [W;];; > 0.

,,,,,

connected.

Assumption 7.2. (i) For each i € [n], the convex set X; is closed. Moreover, there exist
r;i > 0 and R; > 0 such that

r,-B‘”’ cX; C R,‘BP’, (7.3)

and r; is known a priori.

7.3. Distributed bandit online primal—dual algorithm based on one-point sampling 217

(ii) For each i € [n], {fi,(x)} and {[gi;/(x)];, j € [m]} are convex and uniformly bounded
on X, i.e., there exist constants Fy > 0 and Fg, > 0 such that for all t € N,, j €
[m]7 X € Xi:

Ifir (O < F, [[81(X)]jl < F. (7.4)

(ili) For each i € [nl, fi; and gi; are differentiable on X;. Moreover, {Vf;,} and
{VIgi/(0)];, j € [m]} are uniformly bounded on X, i.e., there exist constants Gy, > 0
and Gg, > 0 such that for allt e Ny, j € [m], x € X,

IVl < G, [IVIgis(0)]jll < G, (1.5

Assumption 7.1 is a mild assumption and common in the literature on distributed
optimization. Assumption 7.2 appears often in the literature of bandit online convex
optimization. From Assumption 7.2 and Lemma 2.6 in [157], it follows that for all
teN,,ien], je[m], x, yeX,

i () = fieOWI < Ggllx = yll, (7.6a)
ILgi. (0]; = [8is M)l < G llx = yll, (7.6b)

ie., {fi,(x)} and {[g;;(x)];} are Lipschitz-continuous on X; with constants G and Gg,,
respectively.
Our goal in this chapter is to solve the following problem.

Problem 7.1. Develop distributed algorithms to solve the problem of distributed bandit
online optimization with time-varying coupled inequality constraints with guaranteed
performance measured by expected regret and constraint violation.

The considered problem can be viewed as an extension of the problem studied in
Chapter 6, from full information feedback to bandit feedback. As discussed in Section 7.1,
two main motivations of considering bandit feedback are that (i) gradient information is not
available in many applications [165]; and (ii) computing a function value is much simpler
than computing its gradient [213]. We consider two scenarios: one-point and two-point
bandit feedback. More specifically, one-point bandit feedback means that at each round
each learner samples her local loss and constraint function values at her decision point
in the last round. Two-point bandit feedback means that each learner can do one more
sampling at an any other point.

7.3 Distributed bandit online primal-dual algorithm based on
one-point sampling

In this section, we consider the one-point feedback scenario. We propose a distributed
bandit online primal-dual algorithm based on the one-point sampling random gradient
estimator introduced in Section 2.8 to solve the considered optimization problem and
derive its expected regret and constraint violation bounds.

218 Distributed bandit online primal—dual optimization algorithms

Algorithm 7.1 Distributed Bandit Online Primal-Dual Algorithm Based on One-Point
Sampling

1: Input: nonincreasing sequences {«;}, {Bi}, {vis} € (0, +c0), {&,} € (0, 1), and {5;,} C
0,7 4-1], i € [n], t €N,
2: Initialize: Ui € Sei, Zi,1 € (1- gi,l)Xz‘s Xi1 =z + 6i,1ui,l, and gi1 = 0,, ic[n].

3: fort=2,... do

4 for i € [n] in parallel do

5: Select vector u;, € SP" independently and uniformly at random.

6 Sample f; 1 (xi;—1) and g; ;1 (Xi-1).

7 Update
Gis = Z[Wt—l]ijqj,t—l, (7.72)

=1

Zip = Pa-g,% i1 — Qigiy), (7.7b)
Xip = Zig + Oiglliys (7.7¢)
iz = [(1 = BiryiodGis + Via8ir-1 (Xig—1)]+- (7.7d)

8: Broadcast g;, to N?"'(G,) and receive ¢, from j € Nl.i“(g,).

9: end for

10: end for

11: Output: {x,}.

7.3.1 Algorithm description

The proposed algorithm is given in pseudo-code as Algorithm 7.1. In this algorithm,
each agent i maintains four local sequences: the local primal decision variable sequence
{xi;} € X, the local intermediate decision variable sequence {z;,} C (1 — &;,)X;, the local
dual variable sequence {g;,} € R, and the estimates of the average of local dual variables
{Gir} € RY. They are updated recursively by the update rules (7.7a)—(7.7d). In (7.7b), a;, is
the updating direction information for the local intermediate decision variable defined as

iy = Vi firm1@igmts Gip—1s Uig—1) + (V181 (Ziv—15 Oip—1, Uig-1)) " Giss (7.8)

where V1 i1 (Zis—1, is-1, tis—1) and Vg1 (Zis—1,0;4-1, Uj;—1) are the one-point sampling
random estimators of Vf;,_;(z;,-1) and Vg;,_1(z;;—1), respectively, as defined in (2.25),
0ii—1 > 0 is an adaptive smoothing parameter, and u;,—; € S” is a uniformly distributed
random vector. Recall that

& Di
Vi fii=1(Zi=15 0=t Uiy—1) = 6—fi,r—1(Zi,r—1 + O p— 1 Ui =1 Ui -1
ii-1

Di '
= Sirm1(Xig—1)uip—y € RV,
i1

7.3. Distributed bandit online primal—dual algorithm based on one-point sampling 219

and
(Vilgis—1 (=1 Oip—1, thip—1)]1) T
. (Vil8i-1iy=156is-1, Ui—1)]2) " -
Vi8i-1(Zig—1, 0011, Uiy—1) = . e R"™Pi,
(Vilgi-1(i=1, g1, Uig—1)]m) "
where
& Di
Vil8i-1(Zist-15 i1, Uip-1)1 = 5 [gir-1(Zip—1 + Oip1ttip—1)]iUi -1
i1
Di

3 [8i—1(Xi—)]itti -1 € R?, VI € [m].
ii—1

The intuition of the update rules (7.7a)—(7.7d) is as follows. The regularized Lagrangian
function associated with the constrained optimization problem with cost function f and
constraint function g is

B
Alx,) = f(x) +p" g(x) = EIIMIIZ, (7.9)
where u € R7 is the Lagrange multiplier and 8 > 0 is the regularization parameter. A(x, u)

is a convex-concave function. A standard primal—dual algorithm to find its saddle point is

Xee1 = Pr(x — a(Vf (i) + (V)" 1), (7.10a)
Mier = [+ y(g(xr) — Brua)]+ (7.10b)

where @ > 0 and y > 0 are the stepsizes used in the primal and dual updates, respectively.
The update rules (7.7a)—(7.7d) are the distributed, online, and gradient-free extensions of
(7.10a) and (7.10b).

Remark 7.1. The differences between Algorithm 7.1 and the centralized one-point
sampling bandit algorithm in [328] are (i) in [328] full-information feedback for the
constraint functions is used; and (ii) in the update of the dual variables in Algorithm 7.1,
i.e., (7.7d), there is an additional term —@;y;.Gi;, which comes from the regularized
Lagrangian function and it plays a key role to bound the dual variables as shown later
in Lemma 7.1.

The sequences {a;,}, {Bis}, {vis), {€is), and {6;,} used in Algorithm 7.1 are predetermined
and the vector sequences {u;,} are randomly selected. Moreover, {§;,}, {zi/}, {xi,}, and
{gis} are random vector sequences generated by Algorithm 7.1. Let I, denote the o-
algebra generated by the independent and identically distributed (i.i.d.) random variables
Ul ... Uy, and let U, = (J_; U Tt is straightforward to see that §r1, Ziy, Xi—1, and
gis, i € [n] depend on U,_; and are independent of 2 for all s > .

220 Distributed bandit online primal—dual optimization algorithms

7.3.2 Expected regret and constraint violation bounds

This section states the main results on the expected regret and constraint violation bounds
for Algorithm 7.1. The following theorem characterizes these bounds based on some
specially selected stepsizes, shrinkage coefficients, and exploration parameters.

Theorem 7.1. Suppose that Assumptions 7.1-7.2 hold. Let {x;} be the sequence generated
by Algorithm 7.1 with

r? 2 1 1 r

a~:—’ .:—7 L= ,'Z—,~: ,l
Lt 4mpi2F§[l6‘ ﬁl,t 192 Vit é‘:l,l (f+1)93 it —(l+1)63

s € [n], r € N4,

(7.11)

where 6, € (0,1), 6, € (0,0,/3) and 65 € (0,,(0, — 0,)/2] are constants. Then, for any
T € N, and any comparator sequence yir| € Xr,

E[Reg(x[T],_)’[T])] S ClTmax{é)],1—61+263,1—63+92] + C],]Tel V(y[T]), (7123)
T
E[”[> g,(x,)L”] < CT' 2, (7.12b)
=1
where
Co Smszf,,Rl2 1
C = ZCIJ+0_ Cll_Zr—2 CQ—C21 ZFf+C1))2,
j=1 i=1 i i=1
oo Z mF G (2r; + R;) _ Z Gfl(zr, +R) _ Z F?
BT T-0+0, Cia= £ 4mF2 (1 -6, +205)°
6mn*F*r wo\-2
_ 8 2
F _Iir(glﬁl)]({ng}, Co—ﬁ+2mnF,T—(l—ﬁ) > 1,
wo! F2 1

55) C21‘2”(1+52$’]‘{F2(1 9|+293)} 1—92)’

w and t are constants given in Assumption 7.1, r;, R;, Fy, Fg, Gy, and G,, are constants
given in Assumption 7.2, and

T-1 n

Vo) = D i =il

=1 i=1
is the accumulated variation (path-length) of the comparator sequence yr.

Proof. See Section 7.7.1. O

Remark 7.2. From (7.12b), we see that Algorithm 7.1 achieves sublinear expected
constraint violation. From (7.12a), we see that Algorithm 7.1 can achieve sublinear

7.3. Distributed bandit online primal—dual algorithm based on one-point sampling 221

expected dynamic regret if V(X)) grows sublinearly with a known order. In this case,
there exists a known constant v € [0, 1), such that V(xE‘T]) = O(T"), then setting y|r| = xfT]
and 0y € (0,1 —v) in Theorem 7.1 gives E[Reg(x[T],xE‘T])] =o(T).

Remark 7.3. To the best of our knowledge, Algorithm 7.1 is the first algorithm to solve the
online convex optimization problem with time-varying inequality constraints in the one-
point bandit feedback setting. In Algorithm 7.1 the information about the total number of
rounds is not used, which is an improvement compared to the one-point sampling bandit
algorithms in [212,317-321,328,330,331]. Note that these studies did not consider bandit
feedback for time-varying inequality constraints or did not even consider time-varying
inequality constraints at all. The potential drawback of Algorithm 7.1 is that in order to use
the sequences defined in (7.11), each learner i needs to know F, the uniform upper bound
of her time-varying constraint function. One way to overcome this is to let a;, = 7;/1°" and
03 € (62,01 — 62)/2), where T; > 0 is a user-defined parameter. In this case, similar to the
way we prove (7.12a) and (7.12b), we can establish similar results as (7.12a) and (7.12b)
Jor T = (dmmaxiey{p? F37i/ri) O =%72%) rather than any T € N,.

Remark 7.4. The preliminary results on the expected regret and constraint violation
bounds are stated by (7.43a) and (7.43b) in Lemma 7.3 in Section 7.7. The intuition of
the choices of the sequences given in (7.11) is to let the terms in the right-hand side of
(7.43a) and (7.43b) be as small as possible. Specifically, the first four terms in the right-
hand side of (7.43a) need to be sublinear. Moreover, the coefficient 0fE[||q,»,,||2] should be
nonpositive otherwise it is unclear how to show that the last terms in the right-hand side
of (7.43a) and (7.43b) are sublinear.

Setting yir) = X[, in Theorem 7.1 gives following results, which characterize the
expected static regret and constraint violation bounds.

Corollary 7.1. Under the same conditions as in Theorem 7.1 with 8, € (3/4,5/6], 6, =
20, — 3/2, and 63 = 6 — 1/2, it holds that

E[Reg(x(r), ¥;)] < C1T", (7.13a)
T

B[>][] < a0 (7.13b)
=1

Remark 7.5. The parameter 0 in Corollary 7.1 is a user-defined parameter influencing
the step length in (7.11). It enables the trade-off between the expected static regret bound
and the expected constraint violation bound. Same as [212], if there are no inequality
constraints, i.e., gi; = 0, Vi € [n], Yt € N, then by setting a;; = 13%, Bir=vit=0, &, =
Oiy = (z+?)‘/4 in (7.11), we have that (7.13a) can be replaced by E[Reg(x[r}, VE‘T])] <
4G, 2r4R) (2r,+R)

1
(t+1)]/4 ’
Ci T34, where €, = 2 (55— 6R? + i f‘) Hence, Algorithm 7.1 achieves the

same expected static regret bound as the bandit algorlthm in [212]. However, in [212] the
total number of rounds, the Lipschitz constant, and upper bound of the loss functions need
to be known in advance to run the algorithm.

222 Distributed bandit online primal—dual optimization algorithms

Algorithm 7.2 Distributed Bandit Online Primal-Dual Algorithm Based on Two-Point
Sampling

1: Input: nonincreasing sequences {a;,}, {Bi}, {¥is} € (0, +00), {&is} € (0, 1), and {6;,} €
0,r&-1], i € [n], t e N,.

2: Initialize: Xi1 € 1- gi,l)Xi and qgiq1 = 0,, i€ [n].

3: fort=2,... do

4. for i € [n] in parallel do

5 Select vector u;,_; € SP" independently and uniformly at random.
6: Sample fi;1(xi1 + Oip1ttiz1)s fir1(Xi1)s &ir-1(Xip1 + i 1uip1) and
8i—1(Xir-1)-
7 Update
Gis = Z[Wt—l]ijqj,t—l, (7.14a)
=1
Xir = Poa-g iz, (X1 = @isbis), (7.14b)
Giy = [(1 = Yisi)Gis + VisCisl+- (7.14¢)
8: Broadcast g;, to N?"'(G;) and receive ¢, from j € N;"(gt).
9: end for
10: end for

11: Output: {x,}.

7.4 Distributed bandit online primal-dual algorithm based on
two-point sampling

In this section, we consider the two-point feedback scenario. We propose a distributed
bandit online primal—dual algorithm based on the two-point random sampling gradient
estimator introduced in Section 2.8 to solve the considered optimization problem and
derive its expected regret and constraint violation bounds.

7.4.1 Algorithm description

With two-point bandit feedback at each round each learner samples the values of her
local loss and constraint at two points. This gives the freedom to design a more efficient
algorithm which at the same time avoids the potential drawback of Algorithm 7.1 stated
in Remark 7.3 on knowing the upper bounds of the time-varying constraint functions. The
proposed algorithm is given in pseudo-code as Algorithm 7.2. In (7.14b), b;, is the updating
direction information for the local primal decision variable defined as

bir = Vit (it Gigmts Uir-1) + (Vagirmt (K1 sty Ui 1)) Giss (7.15)

where V, Sirm1(Xig=1, 041, uiy—1) and @281‘,:—1 (Xi4-1,0i4-1, Ui s—1) are the two-point sampling
random estimators of Vf;,_1(x;,—1) and Vg;,_1(x;;,—1), respectively, as defined in (2.26),

7.4. Distributed bandit online primal—dual algorithm based on two-point sampling 223

0i1—1 > 0 is an adaptive smoothing parameter, and u;,—; € S” is a uniformly distributed
random vector. Recall that

A p,‘ .
Vo fim1 (K=t it Uip—1) = ——(fim1 (K1 + Gip—1ip—1) = firm1 (Xipm1)ip—1 € R7,

i1
and
(Valgis—1(Kip—1, Oip—t, thip—1)]1) "
. (Valgis1(Xigm1, Gim1s i -1)12) T <p,
Vagi—1(Xiy—1,0i4-1, Uiy—1) = . € R™7,
(Valgi—1 (Kip—1, Oip—15 thip—1)1m) "
where

Vol gir—1(Xis—1,0ip—1, Uip—1)]s

= P gttt + G ttig-1) = it (i) Dit-1 € R, VI [m]
i1
Similarly, in (7.14c), c;, is the updating direction information for the local dual variable
defined as

Ciy = Vagis1(Xis—1,Oip—1, Ui—1)(Xip — Xig—1) + &i—1(Xi—1)- (7.16)

In addition to that Algorithm 7.2 uses a two-point sampling gradient estimator, another
difference between Algorithms 7.1 and 7.2 is that when updating the local dual variable,
in Algorithm 7.2, ¢;, is used to replace g;,—1(x;,—1), which is a key difference between
Algorithm 7.2 and the centralized two-point sampling bandit algorithm in [329]. This
modification is inspired by the algorithm proposed in [175] and Algorithm 6.1, and helps
to avoid using the uniform upper bound of each learner’s time-varying constraint function,
i.e., to remove the potential drawback stated in Remark 7.3.

7.4.2 Expected regret and constraint violation bounds

This section states the main results on the expected regret and constraint violation bounds
for Algorithm 7.2.

Theorem 7.2. Suppose that Assumptions 7.1-7.2 hold. Let {x;} be the sequence generated
by Algorithm 7.2 with

1 1 1 1 P

= —, :—’i:—,i:—,.e , te€N,, 7.17
a; B: pr Vi e f,z +1 ot +1 i€ [n] + ()

:t_K’

where k € (0,1) is a constant. Then, for any T € N, and any comparator sequence y|r| €
Xr,

E[Reg(x(r}, yir))] < C3T™ 14 4 OR L T*V(yiry)s (7.18a)

224 Distributed bandit online primal—dual optimization algorithms

E[”[ig,(x,)LH] < G2, (7.18b)
=
where
Cs = Z(ZG}‘}(V,' +R;) + 8R? + ZWTG&'R" + lizf;i) + %
Cy = (c4,1(2Zn]:Ff,. + c3))%, Cyy = Zz(%ﬁi“ +1),
Co = @ +2nB2, B) = VmF, + \mpGyRumaxs Ruax = %ﬁf{ki}.
Proof. See Appendix 7.7.2. o

Remark 7.6. The bounds obtained in (7.18a) and (7.18b) are the same as the bounds
shown in (6.17a) and (6.17b) achieved by Algorithm 6.1 in Chapter 6 under the same
assumptions, although Chapter 6 considered a full-information feedback setting. In other
words, in an average sense, Algorithm 7.2, which only uses two-point bandit feedback, is
as efficient as Algorithm 6.1, which uses full-information feedback. By comparing (7.11),
(7.12a), and (7.12b) with (7.17), (7.18a), and (7.18b), respectively, we see that if a two-
point sampling gradient estimator is used, then not only the uses of F,,, the uniform upper
bound of the time-varying constraint functions, is avoided, but also the upper bounds of the
expected regret and constraint violation are both reduced. An advantage of Algorithm 7.2
is that the total number of rounds or any other parameters related to loss or constraint
functions are not used, which is different from the two-point sampling bandit algorithms
in [164,169, 188,214,280, 325, 327-329].

Remark 7.7. Similar to the analysis in Remark 7.2, from (7.18b), we know that Algo-
rithm 7.2 achieves sublinear expected constraint violation. Algorithm 7.2 can also achieve
sublinear expected dynamic regret if V(x[r)) grows sublinearly with a known order. In this
case, there exists a known constant v € [0, 1), such that V(xE‘T]) = O(T"). Then setting
Y = x[*T] and k € (0,1 — v) in Theorem 7.2 gives E[Reg(x[T],x[*T])] = o(T). One
special case is to set k = (1 —v)/2 in (7.18a) and (7.18b). It gives E[Reg(x[r],fc;‘n)] =
O(TY*™2y and E[||[Z,T:] 2:(x)1LI = OT /%), which recovers the bounds achieved by
the centralized two-point sampling bandit algorithms in [325, 329].

Setting yr) = ¥/, in Theorem 7.2 gives the following results.

Corollary 7.2. Under the same conditions as stated in Theorem 7.2, it holds that

E[Reg(x(7), ¥[7))] < C3T™17, (7.19a)

E[H[i g,(x,)L”] < C,T' 2, (7.19b)
t=1

7.5. Simulations 225

Remark 7.8. The parameter k for the sequences {a;,}, {Bi;}, and {y;,} in Corollary 7.2
enables the user to trade-off the expected static regret bound for the expected constraint
violation bound. For example, setting k = 1/2 in Corollary 7.2 gives E[Reg(x[T],J?E‘T])] =
o(\/7) and E[II[Z,T:1 g1+l = O(T3'*). These two bounds are the same as the bounds
achieved in [169, 170, 173]. In other words, Algorithm 7.2 is as efficient as the algorithms
proposed in [169, 170, 173]. However, [170, 173] use full-information feedback and [169]
considers bandit setting only for the constraint functions. The algorithms proposed in [169,
170, 173] are centralized and the constraint functions considered in [169, 170] are time-
invariant. Moreover, in [169, 173] the total number of rounds and in [169, 170, 173] the
upper bounds of the loss and constraint functions and their subgradients need to be known
in advance to execute the algorithms. Also, an O(NT) expected static regret bound was
achieved by the bandit algorithm in [280]. However, in [280] static set constraints (rather
than time-varying inequality constraints) are considered and the proposed algorithm is
centralized (rather than distributed). Moreover, in [280] the total number of rounds and
the Lipschitz constant need to be known in advance.

7.5 Simulations

This section evaluates the performance of Algorithms 7.1 and 7.2 in solving the DERs
coordination problem introduced in Section 1.1. The local cost and constraint functions
are given as

Jii(xip) = XZ;HZ I oxip + iy, Xig)s 8ix(Xig) = X; [o] D xip +{Piy, Xig) + Ciy,

l[l[

respectively, where I1;, € RP*Pi 7;, € R, @;, € RP*Pi_ ¢;, € RPi, and ¢;; € R. At each
time #, an undirected graph is used as the communication graph. Specifically, connections
between vertices are random and the probability of two vertices being connected is p > 0.
Moreover, edges (i,i + 1), i € [n — 1] are added and [W,];; = 1/n if (j,i) € & and
Wi = 1- ZjeM"(g,)[Wt]ij' The parameters are set as: n = 50, m = 1, p; = 6, X; =
[-10,10]”, and p = 0.2. Each element of I1,,, m;;, @i, ¢is, and ¢;, are drawn from the
discrete uniform distribution in [-5, 5], [0, 10], [-5, 5], [-5, 5], and [-5, —1], respectively.
Under above settings, Assumptions 7.1-7.2 hold.

Since there are no other distributed bandit online algorithms to solve the problem
of online optimization with time-varying coupled inequality constraints, we compare
our Algorithms 7.1 and 7.2 with the centralized one- and two-point sampling bandit
algorithms in [328], which use full-information feedback for the constraint functions,
and the centralized two-point sampling bandit algorithm in [329]. Figures 7.1 (a) and (b)
show the evolutions of E[Reg(x[r],er])] /T and E[II[Z,T:1 g:(x)1+11/T, respectively. The
average is taken over 100 realizations. Note that E[||[szl g:(x)1:11l/T — 0. This is in
agreement with (7.12b), (7.18b), and the theoretical results shown in [328, 329]. From
the zoomed figures, we see that the centralized algorithms in [328, 329] achieve smaller
expected dynamic regret and constraint violation than our distributed algorithms, which is
reasonable. We also see that Algorithm 7.2 achieves smaller expected dynamic regret and
constraint violation than Algorithm 7.1, which is consistent with our theoretical results.

226 Distributed bandit online primal—dual optimization algorithms

4
310 ; ;
— Algorithm 7.1
—— Algorithm 7.2
25 ———[328] (One-Point Sampling) | |
—[328] (Two-Point Sampling)
& —[329]
&2 ,
%
=
J
5350 : : ; ‘]
g 1.5
— 5300
=
! 5250 ¢ |
5200 & ‘ ‘ :]
200 250 300 350 400 450 500
0.5 : .

0 50 100 150 200 250 300 350 400 450 500
Rounds

(a) Evolutions of expected dynamic regret E[Reg(x;ry, x{;)1/7

25 210° ; ;
— Algorithm 7.1
— Algorithm 7.2
2 ———[328] (One-Point Sampling) | |
~ —[328] (Two-Point Sampling)
= —[329]
T
=15 g
g
SN
sd g J
a 0]
K 201 N\ |
0.5 \ q
o ‘
200 250 300 350 400
0 : ‘ ‘ ‘ ‘ . ‘

0 50 100 150 200 250 300 350 400 450 500
Rounds

(b) Evolutions of expected constraint violation E[II[Z,T:1 g:(x)1L 1/ T.

Figure 7.1: Performance of bandit online convex optimization algorithms in the DERs
coordination problem.

7.6. Summary 227

7.6 Summary

In this chapter, we considered the distributed bandit online convex optimization problem
with time-varying coupled inequality constraints. We proposed distributed bandit online
algorithms with one- and two-point bandit feedback. We showed that sublinear expected
regret and constraint violation can be achieved by both proposed algorithms. We showed
that the results can be cast as nontrivial extensions of existing literature on online
optimization and bandit feedback. Future research directions include considering an
adaptive choice of the number of samplings at each round by different learners, relaxing
the doubly stochastic assumption, studying sampling noise, achieving a smaller regret
bound under stronger assumptions for the cost functions, and trying to establish sublinear
constraint violation under a stricter constraint violation metric.

7.7 Proofs

7.7.1 Proof of Theorem 7.1

To prove Theorem 7.1, the following three lemmas are used. Lemma 7.1 presents the
results on the local dual variables, while Lemma 7.2 provides an upper bound for the
regret of one round. Lemma 7.3 provides the expected regret constraint violation bounds
for Algorithm 7.1 for the general case.

To simplify notation, we denote 3; = B, ¥ = Vi, and & = &; ;.

Lemma 7.1. Suppose that Assumptions 7.1-7.2 hold. For all i € [n] and t € Ny, §;; and
qi; generated by Algorithm 7.1 satisfy

ViF, ViF,

G 41l < 5 gl < 5 (7.20a)
t—1

Wit = @l < 2VmnFer)y A7 (7.20b)
s=1

Az+l _ T 2 NP)

> <G — q) &(x1) + 2mnFym + ——llqll” + d1 (D), (7.20c)

2V41 2

where q is an arbitrary vector in RY}, and
n n
A=) llgi = alP = (1 =By D llgir = all,
i=1 i=1
1 n t
a = Z iy, di(t) = 2mn2F§TZ Yer1 A5
i=1 s=1

Proof. This lemma is Lemma 6.1 under bandit setting and the ideas of the proofs of these
two lemmas are similar.

228 Distributed bandit online primal—dual optimization algorithms

(i) From (7.4), we have
llgis(xi)ll < VmF,, Vi€ [n], Vi € N,. (7.21)

We prove (7.20a) by induction.

\MF

It is straightforward to see that ¢;; = G;» = 0,,, Vi € [n], =, llgiall <

\/;F Vi € [n]. Assume that (7.20a) is true at time ¢ for all i € [n]. We show that it remains
true at time 7 + 1. Firstly, from (2.11a), (7.7d), (7.21), 1 — y1+18:+1 = 0, and B; > B We
know that for all i € [n],

||Qi,t+1|| <(l- 7t+1ﬁt+1)”qi,t+1” + 71+1||gi,t(xi,t)||

F,
<A =ymfu)—— \/_ + Vi1 \/_F

B
ViiF,
<A =-ym1fu)—— Bt + Vi1 ‘/_F
t+1
F
< @,
ﬂz+1
Then, the convexity of norms and Z Wilij = 1 yield
N C VmF
142l < ;[WMLJH%MH < Z[W’]”ﬁTlg
F
_ NmF, , Vie[n].
t+1
Thus, (7.20a) follows.
(ii) Note that (7.7d) can be rewritten as
Gigr1 = Z[Wt]ijqj,t + éft, (7.22)

J=1
where Eg, = [(A = Y1Brs1)Gise1 + 71+18i,t(xi,z)]+ = Gitel- Then, (2.10), (7.20a), and (7.21)
give
||€f{,|| <N = Ys1Bes1Gies1 + Ver18is(Xipll < 2 VmFgysp1, Vi € [n]. (7.23)

Then, from Assumption 7.1, Lemma 2 in [190], ¢;; = 0,,, Vi € [n], and (7.23), we know
that for any i € [n] and r € N,

t
1giss1 = Guorll < 2VmnFer > yea A, (7.24)
s=1
Thus, (7.20b) follows due to ¥ [Wil;; = 1 and [1gis+1 — @l = 1 25 [Wilijqe — Gl <
Z?:] [Wt]ij”%,z =il

7.7. Proofs 229

(iii) Applying (2.10) to (7.7d) yields

igic — gl <L = Bryddis + Vigiv-1(Xis—1) — ql*
=11Gis — qll* + ¥} gi—1(xii=1) = Bl
+ ZYI(qi,t - Q)Tgi,t—l (xi,t—l) - Zﬂt%(@‘,t - CI)TQi,h (7.25)

For the first term of the right-hand side of (7.25), by convexity of norms and Z’}zl (Wioilij =
1, it can be concluded that

1i = gl = 1 D Wil = D Wi Ll

j=1 j=1
< > Wiilillg e — gl (7.26)
j=1

For the second term of the right-hand side of (7.25), (7.20a) and (7.21) yield

Yillgie1(xim1) = Bidiid* < @ NmFgy,). (7.27)
For the fourth term of the right-hand side of (7.25), we have
2¥(Gis = @ " gis1(Xig-1)
=2y(gs—1 — C])Tgi,t—l(xi,z—l) +2y(Giy — Qt—l)—rgi,t—l(xi,t—l) (7.28)
Moreover, from (7.21) and (7.20b), we have
2YGix = @r-1) " 8iu-1(Xiu=1) < 2¥il1Gis = Gr-1llgi -1 (X1
< 2y, di(t - 1)

n

(7.29)

For the last term of the right-hand side of (7.25), neglecting the nonnegative term S,y||G:.|*
gives

=2B1(Giz — @) Gix < Brylgl? = 11Gis — qlI*). (7.30)

Combining (7.25)—(7.30), summing over i € [n], dividing by 2y,, using)\ [W,_1];; =
1, ¥t € Ny, setting t = ¢ + 1, and rearranging the terms yields (7.20c). O

Lemma 7.2. Suppose that Assumptions 7.1-7.2 hold. Let {x;} be the sequence generated
by Algorithm 7.1 and {y;} be an arbitrary sequence in X, then

Ji(x) = fi0) < @) (8(3v) = 81(x0)) + 2d1 (1) + da(t) + d3(1) + By, [da(1)]

22
NP 3 2R i — vl
D)
L,

, V1 eN,, (7.31)

P P Qi 1+1

230 Distributed bandit online primal—dual optimization algorithms

where d(t) is given in Lemma 7.1, and

< 2R,2(‘§:t _§t+1))

dy(0) =) (261, + RN VMG lgicll + G) +

P @i+l

ping/ai’H'l 2 N 2
dy(t) = 2m maX{T}(n||q|| + Z llgic — qll)
it i=1

i€[n]

n

W¥is = zial® = Wiwsr = ziontl*
d(t)=)" 5 S = (=&
P @i t+1

Proof. Foranyi € [n],t € N, and x € (1 — &)X, denote

(0 = Evemr [fi(x + 6:v)), 8ia(x) = Epeprlgin(x + 614v)].

From Lemma 2.16, (7.4), (7.21), (7.6a), and (7.6b), we know that fl.ft(x) and §;,(x) are

convex on (1 — &)X, and for any i € [n], t € N, and x € (1 — &)X,

V5(x) = By [V £(0)],
Jii(x) < f,gt(x) < fis(x) + Gfbis,
pif’y,
T’
V2i(x) = Ey [Vigi (1),
8i(x) < 8is(x) < gis(x) + Gy, 61,
Vmp;F,,

6

IV £ (Ol <

V18 (0ll <
18:, (Il < VmF,,.
Then, (7.6a), (7.6b), (7.3), and (7.32b) yield

1fie(xie) = fis@idl < Gglixis — zigll < G654,
gis(xin) = izl < VmGglixis — zifll < VmGy, 6,
fii()v’i,r) = Ju Qi) = fiQin) = fiaQin) + fff()v’i,t) = JiuOi)
< Gpllis = yidll + f7:Gi) = fisGin)
< GpRi& + Gbis,
fir(zia) = i@ <0,
I8i, (i) — 8is il < VmGy Rié,.

From that (%) is convex on (1 — &)X, we have that

[iGid) = 150010 <V @s zia = i)
= (Ey, (Vi fir(io)ls zis = ie)

(7.32a)
(7.32b)

(7.32¢)

(7.32d)
(7.32¢)

(7.32f)

(7.32g)

(7.33a)
(7.33b)

(7.33¢)
(7.33d)

(7.33e)

7.7. Proofs 231

= Ey [V firzin) zis = Fir)ls (7.34)

where the first equality holds from (7.32a) and the last equality holds since z;; is
independent of 11,.

Next, we rewrite the right-hand side of (7.34) into two terms and bound them
individually.

Ey,[(V1 fi4(@i): Zis = Fi)]
= Ey, [V fiiZin)s Zia = Zige1)] + Ey, [V fie(Zia)s Zier = ia)]. (7.35)

For the first term of the right-hand side of (7.35), the Cauchy-Schwarz inequality and
(7.32c) give

S & pifFy,
<V1ﬁ,t(zi,t)szi,t - Zi,t+1> < ”Vlﬁ,t(zi,t)””Zi,t - Zi,t+1” < ||Zi,1 - Zi,z+1||
it
P?F,zcia’i,m-l 1 5
<) + llzis = zige1ll”. (7.36)
6, iz

For the second term of the right-hand side of (7.35), it follows from (7.8) that

Ex, [V £i(zi)s ziger = Fir)] = B K(V1810(@i) @it Vi — i)
+ Ey, [{@ise15 Zige1 = Vi)
= Eu,[{(V1814(2i)) " Gig1s Fi — i)
+ B (V18002 Givsts 2ig — Zig1)]
+ Ey, (i1, 2ige1 = Vi)l (7.37)

For the first term of the right-hand side of (7.37), noting that x;, and §; ,+; are dependent of
U,, from (7.32d), Gis+1 = Om, G > 0., (7.32e), and that g;, is convex, we have

Eu,[<(@1gi,t(zi,t))-rqi,t+l9_)v}i,t - Zi,t)] = <(E1I, [@lgi,t(zi,t)])-rqt,tﬂ’)v}i,t - Zi,t>
= <(Vgi,t(zi,t))TC7i,z+l’)V’i,t - Zi,t>
< (Z]i,t+1)T§i,t()v’i,z) - [qi,l+1)T§i,t(Zi,t)
= (C_]t)T(gi,z()v’i,t) - gi,t(zi,t))
+(Giar1 = 30" @ia(ia) — 8ia(zia))
< (q:)T(gi,z()v’i,t) + 6i,tGg[1m - 8i(Zir)
+ Gise1 — 30" @it Gin) — 8i(zin))- (7.38)

From (7.20b) and (7.32g), we have

. . 2d;(t
@it = 80" Qusi) — i) < 2. (739)

232 Distributed bandit online primal—dual optimization algorithms

For the second term of the right-hand side of (7.37), from the Cauchy-Schwarz inequality,
(7.32f), and (7.26) we have

<(@1gi,t(zi,t))-rqi,t+l»Zi,t —Zi1) = qTﬁlgi,z(Zi,z)(Zi,z — Zit+1)
+(Gipr1 — q)Tﬁlgi,t(Zi,t)(Zi,t = Zig+1)

ety ey 1y P
= i+l — Zit
5,2, 841
ZmpizF;Q’i,zH ~) 1)
———NGi —4ll” + Iz 1 — Zidll
6” 8a’it+1
272
P,-F zt+1 2
< 2mmax { =—5—(lql +Z[W,L,||q,, qll)
i€[n] 4
1t j
2
+ Iziss1 — il (7.40)
4

For the last term of the right-hand side of (7.37), noting that y;, € (1 — &)X, € (1 — &41)X;
due to & > &4 and applying (2.12) to the update rule (7.7b) yield

v v 2 v 2 2
2a’i,t+l<ai,t+l’Zi,z+1 - ym) < ”yi,z - Zi,z” - ”yi,z — Zit+l |- - ||Zi,z+1 - Zi,z”
v 2 v 2 v 2
= Wit = Zigetll” = Wi = Zigatll” + Vi — zidll

" 2 2
= Wit = Zigatll” = Nziser = zidll” (7.41)

The first two terms of the right-hand side of (7.41) can be bounded by

¥ise1 — Zi,z+1||2 = ¥ie = Zi,z+1||2 S Wiert = VirlllFierr + Fiw — 22is41ll
S AR = E)yiger = (L= EDyidll
= AR = &) Wi — Yi) + (& — Er1)yidll
< ARlyis1 = yidll + 4R} & — &), (7.42)
where the last inequality holds since {&;} C (0, 1) is nonincreasing.

Combining (7.33¢)—(7.42), taking expectation in ;, summing over i € [n], and
rearranging the terms yields (7.31). O

Lemma 7.3. Suppose that Assumptions 7.1-7.2 hold. Let {x;} be the sequence generated
by Algorithm 7.1. Then, for any T € N, and any comparator sequence yir; € Xr,

E[Reg(xr}, ¥i17)] < Z E[d, ()] + Co Z Viel + Z Z Zn: ZRIZ

=1 =1 =1 im1 diT+l1

o X 2Rl =yl 1%
i+l — Vit
+ Z; EZ Elllgi), (7.432)
=1

@ t+1

7.7. Proofs 233

4 p F i+
E[u[z 81l IP] < ds(T) Z B0+ Co Yy + DS 1
t=1

t=1 i=

@iy P T < =i = qell 1), .
where
~ - Pi g @i+l 1 1
=) (amma [P),
o pl g,azH—l
ds(T) = 2n(— +;(4m1112[2}1)]g{ RLE)
T
qc = % S RT

Proof. (i) For any A € (0, 1) and nonnegative sequence {}, >, ..., it holds that

T T-t T
ZZAHW ngzas Z G- (7.44)
t=1 s= t=1 s=0 t=1
Thus,
T 2 T
2mn*tB,F,
di< — 1% . 7.4
; 0 < ——— ;m (7.45)

The definition of A, given in Lemma 7.1 yields

T n
At+1 l 2 2
— = 1 - it — — i —
§ Tror = 20y 2 = B ie i = e — o)

1=
1 &]
=5 (=lgis - ql?)
e
T n
1 1 1
+5 = — =Bt llgis — gl
3 t:ZI - ()/H] ” ﬂt+1) qit— 4
v, 1 1
=5 2. (- lai = gl = —ligirsi - alP)
= YT+1
e, 11
+ = - — = Bun1)llgic — gl
) Z - (7r+1 ” ,3r+1) qir — 4

T
2 2
< 5, -llalf +) § %H———ﬁm)llqn I, (7.46)

=1 i=1 Y

234 Distributed bandit online primal—dual optimization algorithms

where the last inequality holds due to g;; = 0,, and ||g; 741 — ¢lI* = 0.
From the properties of conditional expectation, we know that

Eq(, [Ey,[ds(D]] = E[da(1)], V1 € [T], (7.47)

where we recall the definition Uy = JI_, ;.
Noting that {a,} is nonincreasing and (7.3), for any s € [T'], we have

T T 1 1
D=5 (G s =20l = =Wz = zenl)
Qi r+1

1=s t=s i=1

T n

| =

1 | Ly, s
+ - —_—— PRp— .
> Z 2 (%l an)ny,,, 2l
1 n
< Y. — o |12
= za’i,s £ ”yt,s Zl,s” it ; ”yt T+1 — <i, T+1||
n
1 1
+2 - —)R?
;(ai,T+l a'ls) '
'y 2R?
< . (7.48)
i=1 Qi T+1
Let g, : R} — R be a function defined as
O) (T))
gel@) = (D &) g - ==l (7.49)
=1

Combining (7.20c) and (7.31), summing over ¢ € [T], using (7.45)—(7.49) and g,(y,) <
0., yir € Xr, and taking expectation in Uy yields

PlF Qi t+
Elc(q)] + E[Reg(xir). yir)] < Z Eld(1)] + C Z Yot + Z D —1

t=1 i=1
T

i 2R2 . Z Z 2R; ”ygtil_ Vil

_alT+1 =1 i=1

1 N
+s Z &Elllg; - g1, Vg € R, (7.50)
=1
Then, substituting ¢ = 0, into (7.50), setting y;7+1 = Yir, and noting that {a,} is

nonincreasing yields (7.43a).
(ii) Substituting g = ¢g. into g.(q) gives

T 2
M2y &) (7.51)

8:(qc) = 4s(D)

7.7. Proofs 235

Moreover, (7.4) gives

n
| Reg(xpry, yr)| < 2T) Fy, VMypry € Xr. (7.52)
i=1

Substituting ¢ = g. and y, = X}, t € [T + 1] into (7.50), combining (7.51)—(7.52), and
rearranging the terms gives (7.43b). O

We are now ready to prove Theorem 7.1.
(i) Applying (2.65), (2.37), and (7.20a) to the first three terms of the right-hand side of
(7.43a) and noting 6, < 65 gives

T
Z Eld>(1)] < C1oT' ™% + C 5T + €y log(T), (7.53a)
=1
T Co
C < 7%, 7.53b
O;YM =% ()
T n 22
p,'F - r+1
) —(f;‘z ML i, (7.53¢)

From (7.11) and 6, — 265 > 6, we know that

B 1 Lt t 2
T+ D02+ D 2 (r+ 1)
1 t+1 t 2
< + O

G+ @+ 2 (t+ 1)
t t
= —— <0
(r+ 1) o

a;

(7.54)

Combining (7.43a) and (7.53a)—(7.54) yields (7.12a).
(ii) Using (2.37) and noting 6, — 263 > 6, gives

ds(T) < Cy T, (7.55)

Combining (7.43b) and (7.53a)—(7.55) gives
T
E[H[> g,(x,)LHz] < CT (1.56)
=1

Finally, combining (7.56) and (E[I[Z., &(x)1:I)* < EMIZL; gx)]4l*] (which
follows from Jensen’s inequality) gives (7.12b).

236 Distributed bandit online primal—dual optimization algorithms

7.7.2 Proof of Theorem 7.2

The proof is similar to the proof of Theorem 7.1 with some modifications. Lemmas 7.1-7.3
are replaced by Lemmas 7.4-7.6.
To simplify notation, we denote @, = iy, Br = Biss Vi = Vig and & = &;;.

Lemma 7.4. Suppose that Assumptions 7.1-7.2 hold. For all i € [n] and t € N, §;; and
qi; generated by Algorithm 7.2 satisfy

B, B,
1Gi sl < —, llgidl £ —, (7.57a)
1+ B{ ' Bt
-1
Wit = @l < 20817 Y yen A7 (7.57b)
s=1
AHI - T 2
e < (G — q@) 8(x1) + 2By + de(2)
Yi+1

1 n
*+3 D @mpiGl e +Brnligll + da o), (7.57¢)
i=1
where q is an arbitrary vector in RY}, and

t
ds(t) = 2NmP B Ft) e A
s=1

1

4ay

dq(t) =

n n

5 . N
§ (17 141 = Xifll” + § (Qi,t+1)Tvzgi,z(xi,t)(xi,Hl = Xiz).
i=1 i=1

Proof. From the fifth part in Lemma 2.16 and (7.6b), we know that for all i € [n], x €
(1-¢)X;, and 1 € Ny,

IV2gi, (0Nl < VmpiGy,. (7.58)
Hence, (7.16), (7.3), (7.4), and (7.58) yield

lleirs1ll < NgieCxinll + 1V2gi (i MCx 1 = i)l
< VmFy, + 2Nmp;GoR; < By, Vi € [n], ¥t € N,. (7.59)
Replacing z;; and g;,(z;;) by x;; and ¢; 41, respectively, and following steps similar to
those used to prove (7.20a) and (7.20b) yields (7.57a) and (7.57b).
Applying (2.10) to (7.14c¢) yields
||C]i,t - 51”2 <I(1 _,Bt')’t)@',z + ViCir — 4”2
= 1Gis = gl +¥7llcis = Bidiall® + 21(Gir) " Vagism1 (iam1) iy = Xig1)
- 2%6]1—@2&3—1(xi,t—l)(xi,t = Xig—1) + 2v(Giy — Q)Tgi,t—l(xi,t—l)
- 2B¥1(Gis —)" G- (7.60)

7.7. Proofs 237

For the fourth term of the right-hand side of (7.60), (7.58) and the Cauchy-Schwarz
inequality yield

. 1
~2714" Va1 (i) = Xipm1) S 20 (mpi Gl + oIy = xialP). - (7.61)
t

Replacing (7.25) by (7.60), using (7.61), and following steps similar to those used to
prove (7.20c) yields (7.57c). m|

Lemma 7.5. Suppose that Assumptions 7.1-7.2 hold. Let {x;} be the sequence generated
by Algorithm 7.2 and {y;} be an arbitrary sequence in X, then

Ji(x) = £ < (@) () = g1(x1)) + 2ds(t) — Ev [d7 ()] + ds(1) + Ey[do(1)]

2Rillyist — v
+Zp,(;2a,+1+z Viger = viall g (7.62)

Ayl

where

a0 = 3 (Gus + RENVIG gl + Gy + o —Eeidy

@
=1 t+1

2 v 2 v
- xi,t” - ||yi,t+1 - xi,t+1”), Yie = (1 = &)yiy

do(t) =
(1) e,

Proof. Replacing z;,, a;,, and (7.32¢) by x;, b;;, and
V2 £l < piGy. (7.63)

respectively, deleting (7.40), and following steps similar to those used to prove (7.31) yields
(7.62). m]

Lemma 7.6. Suppose that Assumptions 7.1-7.2 hold. Let {x,} be the sequence generated
by Algorithm 7.2. Then, for any T € N, and any comparator sequence yiri € Xr,

T
E[Reg(x(r), y117)] < Z E[ds()] + Co Z Yee1 + Z jle + Z Zp, G yon

t=1 t=1 t=1 i=1

n

+

2R xV(y) 1 !
2Rmax V(yi71) EZ —;—ﬁHl)E[Ilqi,zIIz], (7.64a)

= o1 71+1

~

2R?

4 T
5) S-S5
=1 =1

04
=1 T+1

T n :n
+ZZplea,+1+2 f

t=1 i=1 i

238 Distributed bandit online primal—dual optimization algorithms

ey, | 1
+= — — = B)Elllgis — 4.I7), 7.64b)
> ; 2 <%+1 " ﬁm) 9ir =4) (
where
1 < 2[%; gil(xp)]
_ 2 ~2 P =1 81\ 1+ m
do(T) = 2”(71 + ;(2’”17,- G, ir1 +,3r+1)), qc = —dud) eRY.

Proof. With Lemmas 7.4 and 7.5 at hand, the proof of Lemma 7.6 follows steps similar to
those used to prove Lemma 7.3. O

With Lemmas 7.4-7.6 at hand, the proofs of (7.18a) and (7.18b) in Theorem 7.2 follow
steps similar to those used to prove (7.12a) and (7.12b) in Theorem 7.1.

Part 111

Distributed Event-Triggered Control

239

Chapter 8

Distributed dynamic event-triggered
control algorithms

In this and the following two chapters, in order to achieve a common control objective
for a networked system, we propose distributed event-triggered algorithms to reduce the
amount of information exchanged. In this chapter, we propose two novel dynamic event-
triggered control laws to solve the average consensus problem for first-order continuous-
time multi-agent systems over undirected graphs. Compared with most existing triggering
laws, the proposed laws involve internal dynamic variables, which play an essential role in
guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Moreover,
some existing triggering laws are special cases of ours. For the proposed self-triggered
algorithm, continuous agent listening is avoided as each agent predicts its next triggering
time and broadcasts it to its neighbors at the current triggering time. Thus, each agent only
needs to sense and broadcast at its triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. It is proved that the proposed
triggering laws ensure that the state of each agent converge exponentially to the average of
all agents’ initial states if and only if the underlying graph is connected. The idea behind
these approaches will also play an important role in the following two chapters. Numerical
simulations are provided to illustrate the effectiveness of the theoretical results.

This chapter is organized as follows. Section 8.1 gives the background. Section 8.2
introduces the problem formulation. Section 8.3 presents two distributed dynamic event-
triggered control algorithms to determine triggering times such that average consensus
is achieved exponentially. A self-triggered control algorithm to solve the aforementioned
problem is presented in Section 8.4. Simulations are given in Section 8.5. This chapter is
concluded in Section 8.6.

8.1 Introduction
The consensus problem has a long history in computer science, particular in distributed

computing [332]. For multi-agent systems, consensus means that the group of agents reach
an agreement upon a certain quantity of interest that may depend on the initial states of

241

242 Distributed dynamic event-triggered control algorithms

all agents. In the study of complex networks, the synchronization has sometime a similar
meaning as consensus.

There is a huge amount of research work on consensus or synchronization in the
past decades. Here we only recall some of them. In [333-337], the authors introduced
theoretical frameworks for analysis of consensus for first-order linear multi-agent systems
with an emphasis on the role of directed information flow, robustness to changes in
network topology due to link/node failures, time-delays, and performance guarantees. One
fundamental result is that the performance of the consensus protocol is determined by the
algebraic connectivity. Consensus is achieved if and only if the underlying fixed undirected
graph is connected or directed graph has a directed spanning tree [333-335]. In [338], the
authors studied general linear multi-agent systems with directed communication graphs.
Similar work can be found in earlier studies [198,339], in which the authors presented
a framework for analysing synchronization of linearly coupled ordinary differential equa-
tions. In [340], the authors used a high-gain methodology to construct linear decentralized
consensus controllers for general linear multi-agent systems with time-invariant and time-
varying topologies. In [341], the authors considered consensus for first-order multi-agent
systems with stochastically switching topologies modeled as a stochastic process. In [342],
the authors studied asynchronous consensus problems for continuous-time multi-agent
systems with discontinuous information transmission. In [343], the authors investigated
the joint effect of agent dynamics, network topologies and communication data rate on the
consensus problem. In [344], the authors considered nonlinear consensus protocols.

The average consensus problem involves a group of agents in a network who seeks the
average of a set of network-wide measurements or states. It has been widely investigated
because its many applications in sensor networks, mobile robots, autonomous underwater
vehicles, and unmanned air vehicles, e.g., [336] and the references therein. In these
studies, agents have continuous-time dynamics and actuation. However, continuous com-
munication cannot usually be implemented in multi-agent systems, since the interactions
among agents are typically realized over a digital communication channel with limited
capacity. Moreover, in order to simplify and reduce communication, the information
exchange should be kept as small as possible. In order to realize this, in practice,
typically agents communicate with their neighbors and take actions at discrete time points.
There are various studies considered agents with discrete-time dynamics or continuous-
time dynamics but discontinuous information transmission, e.g., [342, 343]. In these
studies, time-triggered sampling was used to determine when agents should establish
communication with its neighbors, which is often implemented periodically. A nice feature
of such a model is that analysis and design becomes rather straightforward and the vast
literature on sample-data control can be used [192]. Drawbacks are that agents need to
take actions in a synchronous manner, which is often hard to implement when the number
of agents is large, and it is not energy-efficient to communicate when the state has not
changed much.

Event-triggered sampling has been proposed for single-agent systems [345-347]. The
concept was originally extended to multi-agent systems in [193]. In event-triggered multi-
agent systems actuation updates and inter-agent communications occur only when some
specific events are triggered, for instance, a measure of the state error exceeds a specified

8.1. Introduction 243

threshold. The control is often constant between any two consecutive triggering times.
In [348], by introducing an internal dynamic variable, a new class of event-triggered
mechanisms was presented and it was extended to discrete-time setting in [349]. The idea
of using internal dynamic variables in event- and self-triggered control can also be found
in [350-354]. Many researchers studied event-triggered control for multi-agent systems
recently [193-195, 200, 355-360]. A key challenge is how to design triggering laws to
determine the corresponding triggering times, while excluding Zeno behavior, i.e., infinite
number of triggers in a finite time interval [196].

To overcome the drawback of continuous monitoring of the triggering law, self-
triggered control were proposed for single-agent systems [361-363]. Many researchers
have investigated self-triggered control for multi-agent systems [193, 200, 358]. For self-
triggered single-agent systems, the next triggering time is determined at the previous
triggering instance. However, the self-triggered approaches for multi-agent systems men-
tioned above are not in accordance with this. Although continuous sensing of each
agent’s own and neighbors’ states is avoided in these studies, continuous listening is
still needed since the triggering times are determined during runtime and not known in
advance. To overcome this drawback, some researchers introduced local clock variables
in the self-triggering policy [350], others combined event-triggered control with periodic
sampling [351, 355, 357], and some proposed cloud-supported algorithms [364]. By
introducing an internal dynamic variable, a new class of event-triggering mechanisms
was presented in [348] and later extended to a discrete-time setting in [349]. The idea
of using internal dynamic variables in event- and self-triggered control can also be found
in [350-352,365]. In this chapter, we make essential modifications to the dynamic event-
triggering mechanism for single-agent systems in [348] and extend it to multi-agent
systems.

In this chapter, we propose two novel dynamic event-triggered control laws to solve
the average consensus problem for first-order continuous-time multi-agent systems over
undirected graphs. We have the following contributions.

(C8.1) The first main contribution of this chapter is in the introduction and convergence
analysis of dynamic event- and self-triggered control laws for multi-agent systems.
The control laws are truly distributed in the sense that they do not require any a
priori knowledge of global network parameters. We prove that the proposed dynamic
triggering laws yield consensus exponentially fast, and we show that they are free
from Zeno behavior by verifying that the triggering time sequence of each agent is
divergent. We show also that the triggering laws in [194, 195] are special cases of
our event-triggered law.

(C8.2) To overcome the main disadvantage of event-triggered laws, i.e., avoid continuous
sensing and listening, we present a self-triggered control law. The main idea to avoid
continuous listening is that each agent predicts its next triggering time and broadcasts
it to its neighbors at the current triggering time. As a result, each agent only needs
to sense and broadcast at its triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. This is to say that, in terms
of avoiding continuous listening, our self-triggered algorithm improves the ones

244 Distributed dynamic event-triggered control algorithms

in [193,200, 358] and other studies using a similar approach. Although continuous
sensing, broadcasting, listening, and receiving are also avoided in [351,355,357] by
combining event-triggered control with periodic sampling, the additional periodic
sensing and listening are still needed. Moreover, it is not clear how to show that the
average inter-event time is strictly larger than the required sampling period. Our self-
triggered control law is reminiscent of the event-triggered cloud access in [364]. The
main difference is that we do not need the cloud to store data and we use different
analysis techniques.

8.2 Average consensus for first-order multi-agent systems
We consider a set of n agents modelled as single integrators

%) = ui(), i € [n], t >0, 8.1
where x;(¢) € R is the state and #;(¢) € R is the control input.

Remark 8.1. For the ease of presentation, we study the case where all the agents have
scalar states, i.e., x; € R. However, the analysis in this chapter is also valid for the cases
where the agents have vector-valued states, i.e., x; € RP.

Definition 8.1 (Average consensus). We say average consensus for the multi-agent system
(8.1) is achieved if lim,_,q x;(t) = % Z;Ll x;(0), Vi € [n].

The classic distributed consensus protocol is given by [336,337],
ui(t) = - Z L;jx (1), (8.2)
j=1

where L;; is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is undirected. Figure 1.10 shows how agents communicate when the
control input has the form (8.2).

To implement the consensus protocol (8.2), a continuous exchange of information
among agents and a continuous update of actuators are needed. However, it is often
impractical to require continuous communication and update in real applications.

Inspired by the idea of event-triggered control for multi-agent systems [193], we use
the event-triggered control input

uilt) = = " Ligxi(t]). (8.3)
=1

Note that the event-triggered control input (8.3) only updates at the triggering times and
it remains constant between any two consecutive triggering times. Figure 1.9 shows how
agents communicate when the control input has the form (8.3).

Our goal in this chapter is to solve the following problem.

8.3. Distributed dynamic event-triggered control algorithms 245

Problem 8.1. Propose methods to determine the triggering times such that average
consensus is reached, while continuous exchange of information, continuous update of
actuators, and Zeno behavior are avoided.

For simplicity, let x(r) = col(x;(?), ..., x,(?)), Xi(t) = x;i(t; (1)) x(t) = col(x1(p), ..., X, (1),
ei(t) = x;(t) — x;(¢), and e(¥) = col(el(t), -, e,(1) = X(t) — x(¢). Then we can rewrite the
multi-agent system with agent dynamics as in (8.1) and event-triggered control input as in
(8.3) in the stack vector form

%(f) = —Li(t) = —=L(x(D) + e(t)).

8.3 Distributed dynamic event-triggered control algorithms

In this section, we will propose two distributed dynamic event-triggered control algorithms
to design the triggering times such that the average consensus can be achieved.

8.3.1 Continuous approach

We first show that the average state in (8.1) is constant.

Lemma 8.1. Consider the multi-agent system (8.1)—(8.3), and assume that the underlying
graph G is undirected. The average of all agents’ states X(t) = % >, xi(2) is constant, i.e.,
x(t) = x(0), YVt > 0.

Proof. It follows from (8.1)—(8.3) that the time derivative of the average value is given by
i) = - Z qi(t) = -~ Z Z Lix(t]) = == Z xi(t]) Z Lij=0.
i=1 j=1
Thus X(¢) is constant. |

Now, consider a Lyapunov candidate as follows

V(x(n) = 1xT(r>Knx<t> = lxT(t)(In - %1,11: (1)
= Z K0 - 52(0) = Z(x,-(r) — %(0))". (84)
i=1

Then the derivative of V(x()) along the trajectories of the multi-agent system (8.1)—(8.3)
satisfies

V) = D 160 - KOl = Y xi(i(0) - X0) Y 50 = > xi(0i()
i=1

i=1 i=1 i=1

= D0 Y (Lt) = Z xi(1) Z Lij(xj() + ()
i=1 j=1

i=1 j=1

246 Distributed dynamic event-triggered control algorithms

= - Z q1t) - Z Z xi()Lije (1) = Z 4i(1) - Z Z ei(t)Lix (1)

i=1 j=1 i=1 j=1
=- Z a(0) - Z Z ei(DLij(x;(1) = xi(1))
i=1 j=1,j#i
n n n 1
Z a(0) - Z Lye = 3 >, Lig(x0 = 6@y’
i=1 j=1,j#i i=1 j=1,j#i
=- Z gi(0) + Z Li}(t) - 21 ,Zl 7 L0 = xi(0)?
x 1
- Zl 54i(0) + Zl Lie}(1), (8.5)
where
1 n
4i(t) = =5 D Lij(xj(0) = xi(0)* 2 0, (8.6)
j=1

and the equalities denoted by = hold due to
1 n n n
Z gi(1) = Z D L0 = xi@)F = Y xiOLyxi(1) = xT (LX),
=1 < =1 i=1 j=1

and the inequality holds due to ab < a* + %bz.
Similar to [193] and [358], the following law can be used to determine the triggering
times:

£ =0, 4, =min{r: Lic(n)~ %qi(t) >0, 124}, keN,, 8.7)

where o; € (0, 1) is a design parameter. From the way to determine the triggering times by
(8.7), we have

LieX(t) < %qi(z‘), Vi > 0. (8.8)

Then, from (8.5) and (8.8), we have

V(x(@) < - Zl %qm + Z] LaeX(t) < —%(1) 21] qit) = —%(1 —)X (DLX (D)
1
< _5(1 - o-max)pZ(L)xT(t)Knx(t) = _(1 - O-max)pZ(L)V(x(t))v

where 0max = maX;ep, {0} < 1 and the last inequality holds due to (2.6). Then

V(x(1)) < V(x(0))e~1=Tmdo2D1 yyp >) (8.9)

8.3. Distributed dynamic event-triggered control algorithms 247

This implies that system (8.1)—(8.3) reaches average consensus exponentially if the
underlying graph G is connected.

Remark 8.2. Note that (8.7) is a static triggering law since it does not involve any extra
dynamic variables but the agent state variables x;(t), X;(t) and x;(t), j € N;. The static
triggering law (8.7) is distributed since each agent’s control input only depends on its own
state information and its neighbors’ state information, without any a prior knowledge of
any global parameters, such as the eigenvalues of the Laplacian matrix.

Remark 8.3. Ifwe consider the same unweighted graph asin [193], i.e., a;j = 1 if (v;,v;) €
&, then Li; = [N;|. Noting a(l —alNi|) < g7 and (3 (x;(1) = xi(1))* < 2INil X', (1) —
xi(0)%, we have ‘T'a(llNaWD(Z;' (0 = X)) < zmﬂi(l‘)- In other words, the distributed
triggering law (10) proposed in [193] is a special case of the static triggering law (8.7).

The main purpose of using event-triggered control is to reduce the overall need of
actuation updates and communication between agents, so it is essential to exclude Zeno
behavior. However, as stated in [193], Zeno behavior may not be excluded under (8.7). In
order to explicitly exclude Zeno behavior, in the following we propose a dynamic triggering
law to determine the triggering times.

Inspired by [348], we propose the following internal dynamic variable 7; to agent i:

i) = ~Bim(0) = 5i(Lie}(©) = S ai(0). i € [n], (8.10)

where 7;(0) > 0, 8; > 0, 6; € [0,1], and o; € [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. These dynamic variables are correlated in the
triggering law, as defined in our first main result.

Theorem 8.1. Consider the multi-agent system (8.1)—(8.3). Suppose that the underlying

graph G is undirected. Given 6; > 1ﬁ_§ and the first triggering time tl = 0, agent i

determines the triggering times {t;;},i":z by

thy = min{t: 6(Lue}(r) - —iqi(t)) > (1), 12 1}, 8.11)
where q;(t) and n;(t) are defined in (8.6) and (8.10), respectively. Then,
(i) average consensus is achieved exponentially if and only if G is connected;
(ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. From the
way to determine the triggering times by (8.11), we have

6(Lic}(0) = Fqi) <m0, Vi = 0. (8.12)

From (8.10) and (8.12), we have

ni(t) = —-Bimi(t) — n,(t) vt > 0.

248 Distributed dynamic event-triggered control algorithms

Thus
9
ni(®) = n:(0)e B+ > 0, Vi > 0. (8.13)

Consider a Lyapunov candidate
n
W), 1(0) = V(x(@) +) mito),
i=1

where n(t) = col(n,(¢), . . ., 11,(¢)). Then the derivative of W(x(t), 7(r)) along the trajectories
of the multi-agent system (8.1)—(8.3) and system (8.10) satisfies

W), n(0) = V) + i)

i=1

<- ; %Qi(t) + ; Lyer(t) — ;ﬁini(t) + Z} 51‘(%%‘(1) - Liie?(l‘))

i=

=-> %(1 - 0)ai) = Y Bmn) + 6= V(S a0 - Liel 1)
i=1 i=1 i=1

n] n n] _ 6[
< - Z] 5 (1=)ai(r) - ;ﬁmi(t) + Zl —5

== 3 S0 o= (Bi=)ty
i=1 !

i=1
n 1 n
< =1 =)) 30000 = ka Y mi(0)
i=1 i=1

< =1 = T)AL VD) = kg) mi(0)
i=1

< —kwW(x(t), (1)),
where
-6

1

kg = min{B; — 1 } >0, kw = min{(1 - oma)p2(L), kg} > 0.

Then
V(x(2)) < W(x(1), n(®)) < W(x(0), n(O))e‘kW’, YVt > 0. (8.14)

This implies that system (8.1)—(8.3) reaches average consensus exponentially.

(ii) Next, we prove that there is no Zeno behavior by contradiction. Suppose there exists
Zeno behavior. Then there exists an agent i, such that limy_ e t}; = Ty, where Ty is a
positive constant.

8.3. Distributed dynamic event-triggered control algorithms 249

Whether G is connected or not, from the proof in (i) we know that all the agents in the
same connected component reach consensus and there is a result similar to (8.14). Thus,
we know that there exists a positive constant M, > 0 such that |x;(f)| < M, for all # > 0 and
i=1,...,n. Then, we have

lu; ()] < 2MyL;;, Yt > 0.
\/’m e—%(ﬁiJr%)To
4oL My

positive integer N(gg) such that

Let &y = > 0. Then from the property of limits, there exists a

ti € [To — &0, Tol, Yk = N(&p). (8.15)

Noting ¢;(f) > 0 and (8.13), we can conclude that one necessary condition to guarantee
that the inequality in (8.11) holds is

. 7:(0) _1(g4 0%
(1) = x:(0)| > 077 2 Pit gt
%) = xi(D] = 4/ oL

Again noting |%;()| = [u;(t)] < 2MoL;; and |2:(#}) — x;(#})| = O for any triggering time 7;, we
can conclude that one necessary condition to guarantee that the above inequality holds is

. \ ,'0 _lg. 40
(t—£)2MoL;; > NO) s, (8.16)
Now suppose that the N(gp)-th triggering time of agent i, th(ag)’ has been determined.
Let tj\,(go) 4 and ff\,(go) 1 denote the next triggering time determined by (8.11) and (8.16),
respectively. Then

V1i(0) o S BHD

i i i i _
INe+1 ~ INGey) 2 INGgy+1 ~ INgeg) =

2 GiL?iMO
> —77,-(0) e_%(ﬂ”%)’;vwoﬂl > —771'(0) e_%(ﬁﬁ%;)To =2g, (8.17)
2 H,-L?iMo 2 Hl-LfiMo
which contradicts to (8.15). Therefore, Zeno behavior is excluded. |

Remark 8.4. Note that (8.11) is a dynamic triggering law since it involves the extra
dynamic variables n;(t). Similar to the static triggering law (8.7), it is also distributed.
The static triggering law (8.7) can be seen as a limit case of the dynamic triggering law
(8.11) when 6; grows large. Thus, from the analysis in Remark 8.3, we can conclude that
the distributed triggering law (10) proposed in [193] is a special case of the dynamic
triggering law (8.11).

Remark 8.5. If we choose 6; = 0 in (8.10) and o; = 0 in (8.11), then n;(t) = 1;(0)e P!
and now the inequality in (8.11) is |e;(t)| > \/ni(O)e‘%’/ VO;L;;. The later is the triggering

function (7) proposed in [195] with ¢y = 0, c¢; = n:(0)/ Vb;Li;, @ = B;/2. However, we
do not need the constraint @ < p,(L) which is necessary in [195].

250 Distributed dynamic event-triggered control algorithms

If we choose 8; large enough, then ky = (1 —0max)p2(L). Hence, in this case, from (8.9)
and (8.14), we know that the trajectories of the multi-agent system (8.1) —(8.3) under static
triggering law (8.7) and dynamic triggering law (8.11) have the same guaranteed decay
rate given by (8.9).

Remark 8.6. Intuitively, from (8.16), one can conclude that the larger n;(0) the larger
the inter-event time. This is also consistent with the definition of 9. However, how those
design parameters 1n;(0), B;, &, 0, 0; affect the inter-event times and decay rate in theory is
unclear. We leave this as a future research direction.

8.3.2 Discontinuous approach

In the above static and dynamic triggering laws, continuous updating of the control input
is avoided. However, in order to monitor the inequalities (8.7) and (8.11), each agent still
needs to continuously monitor its neighbors’s states, which means continuous broadcasting
and receiving are still needed. In what follows, we will modify the above results to avoid
these two requirements.

We estimate the upper bound of the derivative of V(x(#)) along the trajectories of the
multi-agent system (8.1)—(8.3) in a different way. Similar to the derivation process to get
(8.5), we have

n

V(x(0) =) (o) Z ~Lijj(1) = Z(x,a) — e(1)) Z Lijs(t)

i=1 Jj=1 Jj=1

o Z gi(t) + Z Z €L (1)

i=1 j=1

S Z qi(t) + Z Z ei(DLij(%;(1) — (1))

i=1 j=1,j#i
Z Gi(t) - Z Z Lije}(r) - Z Z . 4<x](r> 0)
i=1 j=1,j#i i=1 j=1,j#i
Y a0+ Y L0 - Y D AL 0 -t
i=1 i=1 i=1 j=1
=- Z %@(r) + Z Lie; (1), (8.18)
i=1 i=1

where

. 1< . .
i) = -3 ; Lij(%;(0) - 2(1))* 2 0, (8.19)

8.3. Distributed dynamic event-triggered control algorithms 251

and the equalities denoted by = hold due to
Dlan = Z Z Lij(&(0) = 2 =) Z R(0)Ly (1) = 2 (OLR(),
i=1 i=1 j=1 i=1 j=1

and the inequality holds due to ab < a* + }sz.
Similar to [194] and [358], the following law can be used to determine the triggering
times:

=0, fi,, =min{t: Lie}() - —q,(t) >0, t214), keN,, (8.20)

where o; € (0, 1) is a design parameter. From the way to determine the triggering times by
(8.20), we have

LieX(t) < %f][(t), Vi >0. (8.21)

Then, from (8.18) and (8.21), we have

n

. 1 - 1 -
V) <=) 540 + 3 Lici(t) < =5 (1=) D 40
i=1 i=1

i=1
= 3 (1~ T L)
Furthermore,
XT(OLX() = (R(7) + e)TLEQ@) + () < 28T (OLA(E) + 27 (D) Le(?)

_Ellrmax
min;ep,{L;;}

< 28T (L) + 2L < 257 L) + i)
i=1

L max
(24 Mo

it {Lii})fc (OLA(), (8.22)

where the first inequality holds since L is positive semi-definite as well as 2a"Lb < a" La+
b"Lb,Ya,b € R", and the second inequality holds due to a"La < IILIlllall?>, Ya € R”, and
the last inequality holds due to (8.21). We then obtain

(1 = omax) mlnlE[n]{ }
4 min; L;; + 2||L||0max
_ (1 = omax) mlnlE[n] {Li;}
4 minje,){Li;} + 2||LII0 max
(1 = O max) min;ep, {L;}

= —2 minie[n]{L”} T ”L”o_mdeZ(L)V(x(t))

V(x(h) < — x () Lx(7)

p2(L)xT (1)K, x(1)

Hence,

(I-ormax) minje |, {L;) p2(L)t

V(x(1)) < V(x(0))e Zmmicta Tt ioma 257 gy > (), (8.23)

252 Distributed dynamic event-triggered control algorithms

This implies that system (8.1)—(8.3) reaches average consensus exponentially if the
underlying graph G is connected.

Remark 8.7. Similar to the analysis in Remark 8.2, (8.20) is a static triggering law and it
is also distributed. Moreover, similar to the analysis in Remark 8.3, we can conclude that
the distributed triggering law (6) proposed in [194] is a special case of the static triggering
law (8.20).

In [357] it is argued that the distributed triggering law (6) in [194] “does not discard
the possibility of an infinite number of events happening in a finite time period”. Zeno
behavior may also not be excluded under the static triggering law (8.20). In the following,
in order to explicitly exclude Zeno behavior, we will replace the static triggering law (8.20)
by the dynamic one.

Similar to (8.10), we propose an internal dynamic variable y; to agent i:

0 = =Bixi(0) = 5i(LueX) = 0. i € [, (8.24)

where y;(0) > 0, 8; > 0, §; € [0,1], and o; € [0, 1) are design parameters and can be
arbitrarily chosen in the given intervals. Our second main result is given in the following
theorem.

Theorem 8.2. Consider the multi-agent system (8.1)—(8.3). Suppose that the underlying
graph G is undirected. Given 6; > 1‘%6 and the first triggering time t’i = 0, agent i

determines the triggering times {t;(};ozz by
. . IR .
f,,; = min {t : Hi(Li,-eiZ(t) - jqi(t)) > yi(®), t = t}c}, (8.25)
where q;(t) and x(t) are defined in (8.19) and (8.24), respectively. Then,
(i) average consensus is achieved exponentially if and only if G is connected;
(ii) there is no Zeno behavior.

Proof. (i) The necessity is straightforward and we only prove sufficiency here. Similar to
(8.13), we have

%
X = xi(0e P 5 0, Vi > 0.

Consider a Lyapunov candidate
FOe(0),x(0) = V() +) xild),
i=1

where () = col(y1(?), ..., x.(t)). Then the derivative of F(x(t), y(¢)) along the trajectories
of the multi-agent system (8.1)—(8.3) and system (8.24) satisfies

FO0), (1)) = V(x(0) +) xit)
i=1

8.3. Distributed dynamic event-triggered control algorithms 253

<- Zl %qim + Zuie%m - Zﬁfxi(t) + Z&(%qim - Lig (1))
- Zl 20— i) - 2@%(» + 2(&- - (%0 - i)
< —Zl S0 =i - Z,Bm(t) + Zl o

- —Z] S0 = i) - Zl (b= 5 Yt

<-(1- crmax)i] 200~ ka inm

1 n
= 5 (1 = T T OLKW) ~ kg ;x,-a).

Similar to the derivation process to get (8.22), we have

X (OLx(t) < 28T (OLA() + 2I|LIle()]?

L max A~ 2|
< 28T (LA + L} Z qi(t) + % in(t)

minjep, {Lii} miniets {6iLii} 4

= (2 BT i+ S)

Min;e(y){Li; minjep, {6;Lii} 4

2|1L| N

< ke XT(HLR() + ———— i),
< ki (OLE) min;e,{6;L;;} ;X()
where
L max 2 1 — Umax L
k. = max {2 N |.| llo ’ (— T L }
mingep{Li} kg minge{6;Li;}
Then,
—1(1 — Oma)X (OLE() < —L(l — Oma) X (OLx(t) + @ Zn: (1)
2 max — 2kx max 2 L Xl .
Thus,

. 1 ki <
F(x(1), x(1) < —z—kx(l — Omax)X" (HLx(1) — Ed ;Xi(t)

_pa(L)
=Tk,

k n
(1 =)2 (DKx(0) = 5 > xil0)
i=1

254 Distributed dynamic event-triggered control algorithms

k. 2
< kpF(x(1), x(1)),

L ki
=200 v -3 v
i=1

where

. L k
kr = min {I%(] = Omax)s 3‘1}

X

Hence,
V(x(®) < F(x(1), x(1)) < F(x(O),)((O))e’kF’, vVt > 0. (8.26)

This implies that system (8.1)—(8.3) reaches average consensus exponentially.
(ii) The way to exclude Zeno behavior is the same as the proof of Theorem 8.1. |

Remark 8.8. The triggering law (8.25) is dynamic and it is also distributed. One can
easily check that every agent does not need to continuously access its neighbors’ states
when implementing the static triggering law (8.20) and dynamic triggering law (8.25).
The static triggering law (8.20) can be seen as a limit case of the dynamic triggering law
(8.25) when 6; grows large. Thus, from the analysis in Remark 8.7, we can conclude that the
distributed triggering law (6) proposed in [194] is a special case of the dynamic triggering
law (8.25).

If we choose S; large enough, then kp = %pz@). Hence, in this case,
from (8.23) and (8.26), we know that the trajectories of the multi-agent system (8.1)—
(8.3) under static triggering law (8.20) and dynamic triggering law (8.25) have the same
guaranteed decay rate given by (8.23).

Remark 8.9. In [358], the authors propose three distributed triggering laws for multi-
agent systems with event-triggered control and directed topologies. With some modifica-
tions, similar to this chapter, the three distributed triggering laws in [358] can be extended
to dynamic triggering laws as the one in Theorems 8.1 and 8.2. In other words, the results
in Theorems 8.1 and 8.2 can be extended to the case that the underlying graph is directed
and has a directed spanning tree. Moreover, the results in Theorems 8.1 and 8.2 also can
most likely be extended to general linear and even nonlinear multi-agent systems. However,
in the general linear case, the triggering laws are not distributed anymore since global
information, such as the eigenvalues of the Laplacian matrix, is needed. Actually, to the
best of our knowledge, in all the existing studies that considered event-triggered control
for general linear multi-agent systems, the use of the eigenvalues of the Laplacian matrix
cannot be avoided. And for the nonlinear case, some standard continuity assumptions,
such as upper and lower Lipschtiz continuity assumptions, for the nonlinear dynamics are
normally required.

8.4. Distributed self-triggered control algorithm 255

8.4 Distributed self-triggered control algorithm

When applying the dynamic triggering law (8.25) in Theorem 8.2, although each agent
avoids to continuously monitor its neighbors’ states, agent i still needs to continuously
sense its own state since it has to continuously monitor the triggering law (8.25) and
continuously listen to xj(t,i), k € N,, j € N, since it does not know the triggering times
of its neighbors, t , k e N,, j e N, in advance. The way to avoid continuous sensing is
straightforward since the control input of each agent is piecewise constant and the state of
each agent can be predicted by simple calculation as (8.27) in the following. The challenge
is to avoid continuous listening. If every agent i € [n], at its current triggering time #,
can predict (determine) its next triggering time t,i .1 and broadcast it to its neighbors, then

at time tf{ agent i knows agent j’s latest triggering time r]i) which is before tjc and its
. TNk

next triggering time r]’(o~ which is after t,i, for j € N;. In this case, agent i only needs
Ik

listen to and receive information at {tf(},;";], Jj € N; since it knows these time instants in
advance. In this case, each agent only needs to to sense its state information and broadcast
its triggering information at its own triggering times, and to listen to and receive incoming
information from its neighbors at their triggering times. Inspired by this, in the following
we will propose a self-triggered algorithm such that at time t;'{ each agent i could determine
t,.., in advance. The idea is explained below.

Denote u;(f) = Xj(l,{,(,)) - x,'(t,’;v(t)), then we have
J 1

n n
Xi(1) = wi (1) = — Z Lijxj(t;ij(,)) =- Z Lijuij(1).
=1 =1
Thus,

! : n
xi(1) = x(1h) + f wi(s)ds = x; (i) - f " Lijuij(s)ds, 1 € [t 1},)). (8.27)
A #t

k j=1

Then, for ¢ € (4.1,), we have

lei(D] = |xi(t) = xi(1)] = . (8.28)

n ¢
Z f Liju,-j(s)ds
=1 Vi

Here we need to highlight that u;;(#) may not be a constant for all 7 € [t,i, tfc +1) since x j(tij([))
may not be a constant for all ¢ € [, #). So at time 7, we do not know the value of |e;(r)|
for all ¢ € (#,,1,,) in advance. However, if at time ; we can estimate the upper bound of
u;j(t), then we can also estimate the upper bound of |e;(#)|. In this case, we can estimate ;
at time 7, .

In order to estimate the upper bound of u;;(¢), we first need to simplify the dynamic
triggering laws (8.11) and (8.25) in Theorems 8.1 and 8.2. As Remark 8.5 pointed out,
if we choose ¢; = 0in (8.10) and o; = 0 in (8.11), then 7;(f) = 17:(0)e”’ and now the

+1

256 Distributed dynamic event-triggered control algorithms

inequality in (8.11) is |e;(?)| > aie‘%’ with a; = /n;(0)/ V6;L;; > 0. Here, a; can be chosen
as any positive real numbers since 77;(0) can be chosen as any positive real numbers. Then
from Theorem 8.1, we derive the following corollary!.

Corollary 8.1. Consider the multi-agent system (8.1)—(8.3). Suppose that the underlying
graph G is undirected. Given a > 0, 8 > 0 and the first triggering time t’; = 0, agent i
determines the triggering times {t;'(},i"’=2 by

= minft: le ()] > ——=e ¥, 124}, (8.29)

ii
Then,
(i) average consensus is achieved exponentially if and only if G is connected;
(ii) there is no Zeno behavior.

Remark 8.10. The design parameters a and B can be distributively chosen for each agent
in the above corollary, but their effects on inter-event times and decay rate are not clear in
theory. The reason that we require every agent to choose the same design parameters here
is that it is convenient to design the self-triggered algorithm in the following.

Next, let us estimate the upper bound of |x;(f) — x;(#)] which will be used later. From
the way to determine the triggering times in (8.29), we have

a s
lei(| < —=e"2', V1> 0. (8.30)
NI»

2]

From (8.5) and (8.30), we have

n

V) < -y %qi(t) + > Liek() < —%xT(t)Lx(t) + > ate
i i=1

i=1 i=1

< —%pz(L)xT(t)K,,x(t) +nale P = —py,(L)V(x(1)) + nate ™.

Then,
L
M < naze(pz(L)_ﬁ)l'
dt
Thus,
—-p2(L)t na? Bt —pa(L)t .
V(x(0) < V(0e + (P — e if py(L) # B,
V(0)e 2Dt 4 palte D1 £ po(D) = B.

1f we choose 6; = 0 in (8.24) and o; = 0 in (8.25), then Corollary 8.1 is also a special case of Theorem 8.2.

8.4. Distributed self-triggered control algorithm 257

From the fact that for any given & > 0, ¢ > 1 + &t holds, we have
V(x(1)) < kie D' + kye ™ ' Wt > 0,

where

ki =
1 V(x(0)) — 2=, if po(L) = B,
ky = e, ifpa(L) # B,
=, if po(L) = B,
ky = B, if po(L) # B,
B-e ifpa(L) =P,

and ¢ € (0, 8) is a design parameter. Then, from (8.4), we have

{V<x(0)> p'ggfﬁ, if pa(L) # B,

Z Ix;(7) = X(O)]> = 2V(x(1)) < 2(k1e P + kpe 1), V1 > 0.

i=1

Thus,
[xi(2) = x; (O] < [x: (@) = X(O)] + |x;(2) — X(O0)
< \/2(|xi(t) = X(O)P + |x;(1) = XO)>) < f*(1), V120,

where

fx(l‘) =2 \/kle—Pz(L)l + kyehot.,
Now, let us estimate the upper bound of u;;(¢) as follows
by (O = (’>) 3t)| = (6 <t>) x(0) + 2,(8) = (1) + xi0) = X8},)|

< Ix(y, (,)) (0] + (1) = xi (0] + 16i(0) = i1)

)e-z + £5), Yt > 0. (8.31)

(T
VI L

Finally, let us estimate the upper bound of e;(f). For t € [£, ¢

i
i1)> denote

1 J _ J
(1) = min {t, 0 (l')+1}’ 120 = max{t 0 <f>+1} (8.32)

. . l 2

Figure 8.1 illustrates the relation of t fiots By k (1 l](t) and ; (t)
From the definition of u;;(f) and tl (t) we know that u;;(f) is constant for all ¢ €

[t’,t1 (). And for 1 > !, (1), (1) can be bounded above by (8.31). Thus, from (8.28),

fort e ¢,) we have
/ l[zj
,](f u;j(s)ds + f u,-j(s)ds)
! 4

telt,t).t

le;(D)| = Lljul](s)ds < gi(t),

k+1
ki (r’)+]

258 Distributed dynamic event-triggered control algorithms

1 2
ti;(t) t3;(t)
0 ¢ . ¢ j o ti Time
ke F Cei(ehyer *1
(a) The case ofr’ (i <t
1
t(®) ()
0 o ti tt Jjo Time
tki(tk) k fort tkj(tk)+1
(b) The case of t;(e 2 =

Figure 8.1: Illustration of the relation of t’ t

i 4 1 2
e LE LG 1 tl.j(t) and £; j(t).

N
+17 k)’ k/(tL)+1’

where

n

Xob [(ks

J=1J# k(e)41

gi(®) = i (8 = tui ()| =

Hence, one necessary condition to guarantee that the inequality in (8.29) holds, i.e.,

le;(D)] =

——z
, Yt e [tk,tk+l)
il
is
a _B P
gi) 2 —=e ', Vi€ [, 1),
12

. g
Noting that %e‘i’ decreases with respect to ¢, g;(f) increases with respect to ¢ during

[t,2), and g;(#}) = 0, for given ;, agent i can estimate 7, by solving

@ & i
git) = ——=e 2, t21. (8.33)
VLii
l ' .o 7 . 1
In other words, if at time 7 agent i knows tk (@ k (1 x](tk @)) Lj;, Yj € N, then it

can determine its next triggering time 7, , by solving (8.33). The above implement idea is
summarized in Algorithm 8.1.

The following theorem proves that consensus is achieved exponentially and there is no
Zeno behavior when every agent performs Algorithm 8.1.

8.4. Distributed self-triggered control algorithm 259

Algorithm 8.1 Distributed Self-Triggered Control Algorithm

1: Choose @ > 0,8 > 0and ¢ € (0,0);

2: Agenti € [n] sends L; to its neighbors;

3: Agent i initializes #; = O and k = 1;

4: Attime s = 1, agent i senses its own state x;(,), and updates its control input u;(z,)
by (8.3), and determines t}; . by (8.33)!, and broadcasts its triggering information
{t1> Xi(t)} to its neighbors;

5: At agent i’s neighbors’ triggering times which are between [7, 7,], agent i listens to
and receives triggering information from its neighbors?, and updates its control input
ui(-) by (8.3);

6: Agentiresets k = k + 1, and goes back to Step 4.

Theorem 8.3. Consider the multi-agent system (8.1)—(8.3). Suppose that the underlying
graph G is undirected. If all agents perform Algorithm 8.1, then

(i) average consensus is achieved exponentially if and only if G is connected;

(ii) there is no Zeno behavior.

Proof. The necessity is straightforward.

Under Algorithm 8.1, we have |e;(7)] < %e‘gl for all i € [n] and ¢t > 0. Then from
Corollary 8.1, we know that consensus is achieved exponentially.

The method of the exclusion of Zeno behavior is similar to the corresponding proof of
Theorem 8.1. O

Remark 8.11. Self-triggered control approaches has also been proposed in [193, 200,
358,366—-369]. However, one potential drawback of these studies and other studies using a
similar approach is that continuous listening is still needed. One can verify that continuous
sensing, broadcasting, listening, and receiving are avoided under Algorithm 8.1. Although
these are also avoided in [351, 355, 357, 370] by combining event-triggered control with
periodic sampling, periodic sensing and listening are still needed. Moreover, it is not clear
how to show that the average inter-event time is strictly larger than the required sampling
period in theory. In order to perform Algorithm 8.1, the global parameters V(x(0)), n, and
p2(L) are needed to be known in advance, which may be a drawback.

Table 8.1 summarizes the communication requirements for agent i € [n] if the dynamic
triggering laws (8.11) and (8.25), and Algorithm 8.1 are performed.

1 ; J J e gl i
Agent i uses tk/(’i> to replace tk/(zi)ﬂ to determine ;| by (8.33) when 7} = rlij(ti)'

’In other words, agent i onlys listen to incoming information at its neighbors’ triggering times. Thus
continuous listening is avoided.

260

Distributed dynamic event-triggered control algorithms

Table 8.1: Summary of the communication requirements for agent i when dynamic

triggering laws (8.11) and (8.25), and Algorithm 8.1 are performed.

Law (8.11) Law (8.25) Algorithm 8.1
Broadcasting time All1>0 AN AN
Listening time All1>0 All>0 {f,je N2,
Receiving time Allr20 {t,je N2, (. je N2,
Information broadcasted {xi(r),t > 0} [BAGAI {th s DI,
Zeno behavior No No No

8.5 Simulations

In this section, a numerical example is given to demonstrate the presented results. Consider
a connected undirected graph in Figure 2.2 (a). We choose an arbitrary initial state x(0) =
[6.2945,8.1158, —7.4603,8.2675]". Then the average initial state is ¥(0) = 3.8044.

Figure 8.2 (a) shows the state evolutions of the multi-agent system (8.1)—(8.3) under the
static triggering law (8.7) with o; = 0.5. Figure 8.2 (b) shows the corresponding triggering
times for each agent.

Figure 8.3 (a) shows the state evolutions of the multi-agent system (8.1)—(8.3) under
the dynamic triggering law (8.11) with o; = 0.5, ;(0) = 10, 8; = 1,6; = 1 and 6; = 1.
Figure 8.3 (b) shows the corresponding triggering times for each agent.

Figure 8.4 (a) shows the state evolutions of the multi-agent system (8.1)—(8.3) under
the static triggering law (8.20) with o; = 0.5. Figure 8.4 (b) shows the corresponding
triggering times for each agent.

Figure 8.5 (a) shows the state evolutions of the multi-agent system (8.1)—(8.3) under
the dynamic triggering law (8.25) with o; = 0.5, x;(0) = 10,8, = 1,6, = 1 and 6; = 1.
Figure 8.5 (b) shows the corresponding triggering times for each agent.

Figure 8.6 (a) shows the state evolutions of the multi-agent system (8.1)—(8.3) when
each agent performs Algorithm 8.1 witha@ = 10, =1and ¢ = g Figure 8.6 (b) shows the
corresponding triggering times for each agent. And the smallest inter-event time is 0.009
in this simulation.

It can be seen that average consensus is achieved when performing the four triggering
laws and Algorithm 8.1 proposed in this chapter. Moreover, as stated in Theorems 8.1-8.3,
from the simulations we can also see that there is no Zeno behavior under the dynamic
triggering laws (8.11) and (8.25) and Algorithm 8.1. It can also be seen that the average
inter-event times under the dynamic triggering laws (8.11) and (8.25) are in general
larger than these determined by the corresponding static triggering laws (8.7) and (8.20),
respectively, and they are also larger than that determined by Algorithm 8.1. Although there
is also no Zeno behavior under the static triggering laws (8.7) and (8.20) in the simulations,
it is still not clear if this could be proved in theory.

8.5. Simulations 261

8 ! q
Agent 1
Agent 2
6 Agent 3| |
Agent 4
4t j
2L]
=
5 of 1
2k]
4+ |
6]
Il Il Il Il Il Il Il Il Il

0 02 04 06 08 1 12 14 16 18 2
Time

(a) The state evolutions of the multi-agent system (8.1)—(8.3) under the static
triggering law (8.7).

Agent 4% % % % x * * ¥ % X %k %x 0 ox x * ok %
Agent 3 ,
Agent 2%% % % * * * ok % J

Agent 1+ R E R R R E E T EE

0 02 04 06 08 1 12 14 16 18 2
Time

(b) The triggering times for each agent.

Figure 8.2: Performance of the distributed static event-triggered control algorithm with
continuous broadcasting and receiving.

262 Distributed dynamic event-triggered control algorithms

8 ! q
Agent 1
Agent 2
6 Agent 3| |
Agent 4
4t |
2L]
=
5 of 1
2k]
4+ |
6]
Il Il Il Il Il Il Il Il Il

0 02 04 06 08 1 12 14 16 18 2
Time

(a) The state evolutions of the multi-agent system (8.1)—(8.3) under the dynamic
triggering law (8.11).

Agent 4% * * * * ok x
Agent 3 ,
Agent 2% % * * * ¥ ¥ * * % *
Agent 1 ,

0 02 04 06 08 1 12 14 16 18 2
Time

(b) The triggering times for each agent.

Figure 8.3: Performance of the distributed dynamic event-triggered control algorithm with
continuous broadcasting and receiving.

8.5. Simulations 263

8 ! q
Agent 1
Agent 2
6 Agent 3| |
Agent 4
4t j
2L]
=
5 of 1
2k]
4+ |
6]
Il Il Il Il Il Il Il Il Il

0 02 04 06 08 1 12 14 16 18 2
Time

(a) The state evolutions of the multi-agent system (8.1)—(8.3) under the static
triggering law (8.20).

Agent 4% % * % % * D *
Agent 3
Agent 2% % * * * * * * * ¥ -

Agent 14 % % % % % * * % * % % * ¥ ¥ * ¥ % o

0 02 04 06 08 1 12 14 16 18 2
Time

(b) The triggering times for each agent.

Figure 8.4: Performance of the distributed static event-triggered control algorithm with
discontinuous broadcasting and receiving.

264 Distributed dynamic event-triggered control algorithms

8 ! q
Agent 1
Agent 2
6 Agent 3| |
Agent 4
4+ AN J
2L]
=
5 of 1
2k]
4+ 4
6]
Il Il Il Il Il Il Il Il Il

0 02 04 06 08 1 12 14 16 18 2
Time

(a) The state evolutions of the multi-agent system (8.1)—(8.3) under the dynamic
triggering law (8.25).

Agent 4% * * * * * * * kK
Agent 3 ,
Agent 2% % % % % % * % * ¥ *
Agent 1+ * * * * .

0 02 04 06 08 1 12 14 16 18 2
Time

(b) The triggering times for each agent.

Figure 8.5: Performance of the distributed dynamic event-triggered control algorithm with
discontinuous broadcasting and receiving.

8.5. Simulations 265

8 ! q
Agent 1
Agent 2
6 Agent 3| |
Agent 4
a4l j
2 |- -
=
g of 1
2k]
4+ |
6]

0 02 04 06 08 1 12 14 16 18 2
Time

(a) The state evolutions of the multi-agent system (8.1)—(8.3) when performing
Algorithm 8.1.

Agent 4% * % % * % ¥ S e SR S

Agent 3 1

Agent 2%% ** * * ¥ x * * * * %k Kk %X % %

Agent 14+ =+ * * * * * B *

Time
(b) The triggering times for each agent.

Figure 8.6: Performance of the distributed self-triggered control algorithm.

266 Distributed dynamic event-triggered control algorithms

8.6 Summary

In this chapter, we presented two dynamic triggering laws and one self-triggered algorithm
for multi-agent systems with event-triggered control over undirected graphs. We showed
that, some existing triggering laws are special cases of the proposed dynamic triggering
laws and average consensus is achieved exponentially if and only if the communication
graph is connected. In addition, Zeno behavior was excluded by proving that the triggering
time sequence of each agent is divergent. Moreover, each agent only needs to sense and
broadcast at its own triggering times, and to listen to and receive incoming information
from its neighbors at their triggering times. Thus continuous listening is avoided. Future
research directions include considering the influence of parameters in the proposed
dynamic triggering laws.

Chapter 9

Distributed event-triggered saturation
control algorithms

In this chapter, the global consensus problem for first-order continuous-time multi-
agent systems with input saturation is considered. We first show that the underlying
directed graph having a directed spanning tree is a necessary and sufficient condition
for global consensus; thus, this condition for consensus without input saturation extends
to the case with saturation constraints. Moreover, in order to reduce the overall need
of communication and system updates, we then propose an event-triggered consensus
protocol and a triggering law, which do not require any a priori knowledge of global
network parameters. Furthermore, in order to avoid continuous listening, we also propose
a self-triggered algorithm. It is shown that Zeno behavior is excluded for these systems and
that global consensus is achieved, again, if and only if the underlying directed graph has a
directed spanning tree. We use a new Lyapunov function to show the sufficient condition
and it inspires the triggering law. Numerical simulations are provided to illustrate the
effectiveness of the theoretical results.

This chapter is organized as follows. Section 9.1 gives the background. Section 9.2
reviews the global consensus problem for the first-order continuous-time multi-agent
systems with input saturation. Section 9.3 shows that the underlying digraph having
a directed spanning tree is a necessary and sufficient condition for global consensus.
Sections 9.4 and 9.5 use event- and self-triggered control to solve the same problem,
respectively. Simulations are given in Section 9.6. The chapter is concluded in Section 9.7.
Section 9.8 gives the proof of the main results.

9.1 Introduction

Physical systems are subject to physical constraints, such as input, output, communication,
and sensor constraints. These constraints normally lead to nonlinearities in the closed-
loop dynamics. Thus the behavior of each agent is affected and special attention to the
constraints needs to be taken in order to understand their influence on the consensus
convergence. Some recent investigations on this problem include, for example, [371]

267

268 Distributed event-triggered saturation control algorithms

considered the global consensus problem for multi-agent systems with input saturation;
[372] considered the leader-following consensus problem for multi-agent systems subject
to input saturation; [373] studied global consensus for discrete-time multi-agent systems
with input saturation constraint; [374, 375] investigated initial conditions for achieving
consensus in the presence of output saturation; [371] shown that the distributed consensus
protocol asymptotically leads to consensus, for multi-agent systems with input saturations
and directed topologies; and [376] achieved the same result under a more general problem
settings.

In almost all real applications, actuators have bounds. However, there are few event-
triggered studies took saturation into consideration. In fact, even for a single-agent system
with input saturation and event-triggered control, the stability problem is challenging. [377]
addressed the influence of actuator saturation on event-triggered control. [378] studied a
global stabilization of multiple integrator system using event-triggered bounded control.
Consensus problem with input saturation and event-triggered control is challenging since
the constraints lead to nonlinearities in the closed-loop dynamics. [379] proposed a
distributed event-triggered control strategy to achieve consensus for multi-agent systems
subject to input saturation through output feedback. Different from this chapter, the
underlying graph they consider is undirected and they do not exclude Zeno behavior in
their analysis. [380] investigated the event-triggered semi-global consensus problem for
general linear multi-agent systems subject to input saturation. However, the underlying
graph is assumed to be undirected and in order to determine the triggering times, each
agent needs to continuously measure its neighbors’ states, i.e., continuous communication
is still needed.

In this chapter, we solve the global consensus problem for multi-agent systems with
input saturation over digraphs. We have the following contributions.

(C9.1) We first show that the multi-agent systems achieve consensus if and only if the
underlying digraph has a directed spanning tree. In other words, the existence of a
directed spanning tree is a necessary and sufficient condition for consensus for both
multi-agent systems with and without input saturation, despite that the saturation
gives rise to a more complex nonlinear dynamic behavior.

(C9.2) We then consider event-triggered control and propose a distributed triggering law,
which leads to global consensus under the same necessary and sufficient directed
spanning tree condition. By distributed, we mean that the event-triggered control
input together with the triggering law do not require any a priori knowledge of global
network parameters. The triggering law is a special kind of dynamic triggering law,
and is free from Zeno behavior, and is inspired by the Lyapunov function we use in
the proof of the above consensus result. The Lyapunov function is different from the
one in [371,376]. As a result, continuous broadcasting, receiving, and updating are
avoided.

(C9.3) Note that in the above distributed triggering law, continuous sensing is needed since
each agent has to continuously monitor the triggering law and continuous listening is
also needed since the triggering times are determined during runtime and not known

9.2. Global consensus for multi-agent systems with input saturation 269

in advance. Inspired by the idea of the self-triggered algorithm in Section 8.4, we
also propose a self-triggered algorithm to avoid continuous sensing and listening.
9.2 Global consensus for multi-agent systems with input saturation
We consider a set of n agents modeled as single integrators with input saturation:
Xi(1) = saty(ui(1), i € [n], 20, .1

where x;(¢) € R” and u;(f) € R? are the state and the control input of agent i, respectively,
p > 0 is the state dimension, and sat(-) is the saturation function with % being a positive
constant referred to as saturation level. For any s = col(sy,...,s,) € R?, the saturation
function sat;(s) is defined (with slight abuse of notation) as

sat;(s) = col(saty(s1),...,saty(s))), 9.2)
where
h, if s; > h,
saty(s;)) =4s;, ifs)| <h,
—I’l, if s < —h.

Remark 9.1. For the ease of presentation, we focus on the case where all the agents have
the same saturation level. The analysis can be readily extended to the case where the agents
have different saturation levels.

Definition 9.1 (Global consensus). We say global consensus for the multi-agent system
(9.1) is achieved if

lim Jlxi(0) = x; Il = 0, Vi, j € [n], Yx(0) € R?, [€ [n].

Our first goal in this chapter is to solve the following problem.

Problem 9.1. Design control input for the saturated multi-agent system (9.1) such that
global consensus is achieved.

The following properties about the saturation function are useful for our analysis.

Lemma 9.1. For any real constants a and b,

%az > f saty(s)ds > %(sath(a))z, (a- b)2 > (saty(a) — sath(b))z.
0

Lemma 9.2. Suppose that L is the Laplacian matrix associated with a digraph G that
has a directed spanning tree. For xi,...,x, € R?, define n; = sat,(— Z?:] Lijx;). Then
m=---=m,ifand only if x; = -+ = x,,.

270 Distributed event-triggered saturation control algorithms

/[I G N—— 5 (o)

Sensor L>' >[Sensor]
x;(t) x;(t) x;(t) x;(t)
[Control] [Control]
\Lui ®) U (f)l/

)]

K Agent i / \ Agent j)

Figure 9.1: Illustration of how one agent communicates with another agent when the
control input is saturated.

Proof. The sufficiency is straightforward. Let us show the necessity. Let u; = — Z;le Lijx;.
From m; = .-+ = m,, we know that forany / = 1,...,p, ¢;(u;) > 0, Vi € [n], or ¢;(i;) <
0, Vi € [n], or ¢;(u;) = 0, Vi € [n], where ¢;(u;) is the [-th component of y;.

From Lemma 2 in [371], we know that neither ¢;(i;) > 0, Vi € [n] nor ¢;(i;) <
0, Vi € [n] holds. Thus —2;?:1 Lijci(xj) = ¢i(u;) = 0, Vi € [n]. From Lemma 2.1, we
know rank(L) = n — 1. Thus, we have ¢;(x;) = ¢/(x;), Vi, j € [n]. Hence x; = --- = x,. O

9.3 Distributed continuous-time saturation control algorithm

In this section, we show that consensus is achieved by the classic distributed continuous-
time consensus protocol even in the presence of input saturation if G has a directed
spanning tree. The mathematical analysis is inspired by [381].

We consider the classic distributed continuous-time consensus protocol

ui(t) = — Z L,‘jx]‘(l‘), 9.3)
=

where L;; is the element of the Laplacian matrix L. In this chapter, we assume that the
underlying graph G is directed. The communication in a multi-agent system described by
(9.1) and (9.3) is illustrated in Figure 9.1. Note that the control signal is saturated before it
is transmitted to the actuator..

In the following, we show a necessary and sufficient condition to consensus for system
(9.1) and (9.3).

Theorem 9.1. Consider the multi-agent system (9.1) and (9.3). Global consensus is
achieved if and only if the digraph G has a directed spanning tree.

9.4. Distributed event-triggered saturation control algorithm 271

Proof. The necessity in Theorem 9.1 is a direct result of Lemma 2.3. We illustrate the main
idea of the proof of sufficiency here, while the detailed proof is given in Section 9.8.1. We
first consider the case where G is strongly connected, i.e., M = 1 in (2.2), and show that
consensus is achieved. We next consider the case where G has a directed spanning tree
but it is not strongly connected, i.e., M > 2. From the first case (M = 1), it follows
that all agents in SCC,, achieve consensus since SCCy, is either strongly connected
or of dimension one. Then, we consider SCCy,_; and note that all agents in SCCy,_y,
which is either strongly connected or of dimension one, achieve the same consensus
value as those in SCCy, since the agents in SCC,; and SCC,y,_; are not influenced by
SCCy,...,SCCys_, and the consensus problem of this subsystem can be treated as a leader—
follower problem where agents in SCC,, are leaders and agents in SCCy,_; are followers.
Notice that SCCy,...,SCCys_,, are either strongly connected or of dimension one. By
applying a similar analysis, consensus of SCC,,, SCC,;1,...,SCCy can be treated as
a leader—follower consensus problem with agents in SCCy;, SCCy_y,...,SCC,,+ being
leaders and agents in SCC,, being followers. Therefore, the result follows. O

Remark 9.2. The proof of Theorem 9.1 is based on the Lyapunov function

- P = 2 Lijar(x(0)
LEOEDWDY f saty(s)ds, 9.4)
=1 =1 Y0

i=

where x(t) = col(x1(?),...,x,(t)) and & = col(&y,...,&,) is the vector defined in Lemma
2.1. It is different from the one used in [371]. In addition, our Lyapunov function facilitates
the design of event-triggered control as shown in Section 9.4.

Remark 9.3. When h — oo, i.e., the multi-agent system is free from saturation, Theorem
9.1 corresponds to the well-known result for the consensus problem of multi-agent systems
without saturation [334, 335]. The main differences between the case with and without
saturation are the convergence speed and the consensus value. For the saturated case,
the convergence speed is slower and the consensus value is not fully determined by the
Laplacian matrix L and the initial states of the agents. From the proof of Theorem 9.1, we
know that the saturation is no longer active after a finite time Ty > 0 which depends on
the initial value of each agent, the saturation level, and the communication network. Thus
after T, the convergence speed is exponential and the consensus value is determined by the
state of each agent at T».

9.4 Distributed event-triggered saturation control algorithm

To avoid continuous exchange of information among agents and update of actuators, we
equip the consensus protocol (9.3) with an event-triggered communication scheme. The
control signal is only updated when the triggering condition is satisfied. It results in the
following multi-agent system with input saturation and event-triggered control input

Xi(t) = saty(#;(¢)), i € [n], t 2 0, 9.5)

272 Distributed event-triggered saturation control algorithms

#i(t) = =)" Lipx(t]). (9.6)
j=1

Note that the consensus protocol (9.6) only updates at the triggering times and is constant
between two consecutive triggering times. For simplicity, let X;(f) = x;(t;; (t)), and e;(1) =
£i(1) = xi(0).

Our second goal in this chapter is to solve the following problem.

Problem 9.2. Propose methods to determine the triggering times such that consensus is
reached, while continuous exchange of information, continuous update of actuators, and
Zeno behavior are avoided.

This problem is solved by the following theorem.

Theorem 9.2. Consider the multi-agent system (9.5)—(9.6). Given a; > 0, 8; > 0 and the
first triggering time t‘i = 0, agent i determines the triggering times {t,i},‘;‘;z by

., =min{t: |le; 0 > a;eP, t > 1) 9.7)
Then,
(i) there is no Zeno behavior;
(ii) global consensus is achieved iff the underlying digraph G has a directed spanning tree.
Proof. The proof is given in Section 9.8.2. O

Remark 9.4. The event-triggered control input (9.6) together with the triggering law (9.7)
is fully distributed. That is, each agent only requires its own state information and its
neighbors’ state information, without any a priori knowledge of any global parameter;
such as the eigenvalue of the Laplacian matrix. This is different from [195, 366].

9.5 Distributed self-triggered saturation control algorithm

When performing the event-triggered control input (9.6) together with the triggering law
(9.7), each agent needs to broadcast its state to its neighbors at its triggering times, and
to receive and to update its input at its neighbors’ triggering times. Thus, continuous
broadcasting, receiving, and updating are avoided. However, continuous sensing is needed
since each agent has to continuously monitor the triggering law and continuous listening
is also needed since the triggering times are determined during runtime and not known in
advance. Inspired by the idea of self-triggered algorithm in Section 8.4, if each agent can
predict its next triggering time and broadcast it to its neighbors at the current triggering
time, then each agent only needs to sense and broadcast at its own triggering times, and to
listen to and receive incoming information from its neighbors at their triggering times. In
the following we will propose a self-triggered algorithm such that at time t;; each agent i
could estimate 7, . The idea is illustrated as follows.

9.5. Distributed self-triggered saturation control algorithm 273

From x;(t) = sat,(i1;(t)), we have

!
xi(t) = x;(1h) + f saty(#;(s))ds, t € [ti, ;1.
p

k

Thus for 1 € 1,1,), we have

lleiDll = 1xi(5) = xi(Oll = '

f saty(0:(s))ds

Here we need to highlight that sat;(#;(#)) may be not a constant vector for all 7 € [, t,i+1)
since x j(li,(t)) may be not a constant vector for all 7 € [£, t;'c +1) Which is due to that agent j
J

may trigger at some time instants in this interval. So at time t;; we do not know what is the
value of |le;(1)|| for all ¢ € (7,1, ,). However, we know sat,,(#;(#)) is a constant vector for
1 € [#f,T/(t)), where

T!(1) = min {z’

K+ I € Ni}’

ie., T/(z) is the first triggering time of all agent i’s neighbors after time 7. Although,

at time 7, agent i does not know sat,(#;(r)) for t > T}(#}), it knows |¢;(sat,(%;(1))| < h,
l=1...,p.Hence

T2(t) = min {T} (), 1}, fort €[4, 1},),

< 0i(D),

¢ T2(1) t
||e,-(r)||=] f sat(@i(s))ds f saty(@,())ds + f saty(@,())ds
7 4 T?

£ (@

where

and
0i(t) = (T7(1) — (lIsaty @) + (&t = TH (DA P, for 1 € [t} 13,.))-
Then, a necessary condition to guarantee that the inequality in (9.7) holds, i.e.,
le:OI* > aie™, Ve [t 1,),
is
0i(t) > Vare ', Vi e (£, 1},)

. Bi
Noting that +/a;e 2" decreases with respect to ¢, 0;(f) increases with respect to ¢ during
(% 1,1)» and 0;(1)) = 0, for given f;, agent i can estimate 7, , by solving

oit) = Nae ¥, 12 1. 9.8)

274 Distributed event-triggered saturation control algorithms

Algorithm 9.1 Distributed Self-Triggered Saturation Control Algorithm

1: Agenti € [n] chooses @; > 0 and 3; > 0;

2: Agent i initializes #{ =0 and k = 1;

3. Attime s = f;, agent i senses x;(7,), and updates u;(z,) by (9.6), and determines ¢, , by
(9.8)!, and broadcasts its triggering information {tj{ e xi(t;'{)} to its neighbors;

4: At agent i’s neighbors’ triggering times which are between [7, t,’{ 11> agent i listens to

and receives triggering information from its neighbors?, and updates its u;(-) by (9.6);

5. Agentiresets k = k + 1, and goes back to Step 3.

. . l . j . . .
In other words, if at time #; agent i knows r @ k (@1 ,(k)) Vj € N;, then it

can estimate its next triggering time #,,, by solving (9.8). The above implement idea is
summarized in Algorithm 9.1.

The following theorem shows that consensus is achieved and there is no Zeno behavior
when every agent performs Algorithm 9.1.

Theorem 9.3. Consider the multi-agent system (9.5)—(9.6). If all agents perform Algorithm
9.1, then,

(i) there is no Zeno behavior;
(ii) global consensus is achieved iff the underlying digraph G has a directed spanning tree.

Proof. The method of the exclusion of Zeno behavior is similar to the way in the proof of
Theorem 9.2. Under Algorithm 9.1, we have |le;(®)||> < aje™® for all i € [n] and ¢t > 0.
Then from Theorem 9.2, we know that consensus is achieved. O

Remark 9.5. In order to perform Algorithm 9.1, no global parameters are used, i.e.,
Algorithm 9.1 is distributed.

9.6 Simulations

In this section, simulations are given to demonstrate the theoretical results. Consider again
the digraph and the corresponding multi-agent system in Figure 2.1. Let the saturation level
be i = 10. We choose an arbitrary initial state x(0) = [6.2945, 8.1158, —7.4603, 8.2675,
2.6472,-8.0492, —-4.4300]".

Figure 9.2 (a) shows the state evolutions of the multi-agent system (9.1)—(9.3) and
Figure 9.2 (b) shows the saturated input of each agent. We see that consensus is achieved,
even if some agents are saturated initially.

We next consider the case with event-triggered control input. Figure 9.3 (a) shows the
state evolutions of the multi-agent system (9.5)—(9.6) under the triggering law (9.7) with

J i
) to replace tk/(il to determine #; k @

’In other words agent i only listen to incoming information at its nelghbors triggering times. Thus
continuous listening is avoided.

! Agent i uses t’ by (9.8) when 7} =

9.6. Simulations

275

8 T 4
Agent 1
6 Agent 2| |
Agent 3
Agent 4
4+ —— Agent 5|7
Agent 6
2 F Agent 7|4
—
+~
< or 8
8
2k B
-4 R
6]
8L L L L L L L
0 0.5 1 15 2 25 3 35 4

Time

(a) The state evolutions of the multi-agent system (9.1)—(9.3).

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 6]
Agent 7| |

25
Time

3 3.5

(b) The saturated input of each agent.

Figure 9.2: Performance of the distributed continuous-time saturation control algorithm.

276 Distributed event-triggered saturation control algorithms

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5|7
Agent 6
Agent 7|4

6 7 8 9 10
Time

(a) The state evolutions of the multi-agent system (9.5)—(9.6) under the triggering
law (9.7).

10

Uj (t)

Time

(b) The saturated input of each agent.

Figure 9.3: Performance of the distributed event-triggered saturation control algorithm.

9.7. Summary 277

Agent 796 KK FRk ok Fork SR K Bk M RO BORKORORORK OBk Bk ok Shkckkkk

Agent 6 ,
Agent 5% * * * * * * ,
Agent 4 sxkx ka6 * ek ok KR ok K R Ll

Agcnt S HEK K HOORE K ROOKR K K HRFOE KK K ORORK X ¥ K|

Agent Dk KRRRHK K KKK Kk KKK K KK Bk Rk Rk kkRk K kK

Agent 14 #xx FeoBe B OB Kk SHORK B o B ORORk 0
Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10
Time

Figure 9.4: The triggering times for each agent determined by the distributed event-
triggered saturation control algorithm.

a; = 10 and B; = 1. Figure 9.3 (b) shows the saturated input of each agent. Figure 9.4 shows
the corresponding triggering times for each agent. We see that consensus is achieved also
in this case. Moreover, from Figure 9.4, we see that each agent only needs to broadcast its
state to its neighbors at its triggering times. Thus continuous broadcasting and receiving
are avoided.

Figure 9.5 (a) shows the state evolutions of the multi-agent system (9.5)—(9.6) when
each agent performs Algorithm 9.1 with @; = 10 and 8; = 1. Figure 9.5 (b) shows the
saturated input of each agent. Figure 9.6 shows the corresponding triggering times for
each agent. From Figure 9.5 (a) and (b), we see that consensus is achieved and sat;,(¢;(¢))
is within the saturation level. Moreover, from Figure 9.6, we see that each agent only
needs to sense and broadcast at its triggering times. Thus continuous sensing, broadcasting,
receiving, and listening are avoided. Note however that both the event-triggered control
and self-triggered control give rise to a less smooth state evolutions because of the large
variability in the control input.

9.7 Summary

In this chapter, we studied the global consensus problem for multi-agent systems with
input saturation constraints over digraphs. We showed that global consensus is achieved if
and only if the underlying directed communication network has a directed spanning tree by
using a Laypunov function. Moreover, we considered event-triggered control and presented

278 Distributed event-triggered saturation control algorithms

8 ! 1
Agent 1
6 b Agent 2| |
Agent 3
Agent 4
4r Agent 5|7
Agent 6
2 B Agent 7|4
S
< or 1
8
27 D B
v A2
-4 4
6 1
-8 I I I I I I I
0 0.5 1 15 2 25 3 35 4
Time

(a) The state evolutions of the multi-agent system (9.5)—(9.6) when each agent
performs Algorithm 9.1.

8 i
6l [Wﬂ
4 || _J
E Al L_»(i
’ Ui
I i :
. i |
0 0.5 1 1.5 Tiine 2.5 3 3.5 4

(b) The saturated input of each agent.

Figure 9.5: Performance of the distributed self-triggered saturation control algorithm.

9.8. Proofs 279

Agent 796 KooKk K K K K KKK K KKK K K K KK KK KK KM IKAHIN
Agent 6
Agent 596 * Kk Kk Kk Kk KKK KK KKK KKK KK K KKK RNk
Agent 4% % % % % % %k kK kKRR KRR RRRRRRRRRIRIRRRE
Agent 3% % x kK K K K K K K K RRRFRRRRAORRRAFFRRIK
Agent 296 F ok K K K K K KK K K KK KK K K KKK K KKK KFRANRNK

Agent 15 * % % % % % % % ¥ KK HRRR R KRR

0 0.5 1 15 2 25 3 35 4
Time

Figure 9.6: The triggering times for each agent determined by the distributed self-triggered
saturation control algorithm.

a distributed triggering law and a self-triggered algorithm to reduce the overall need of
communication and system updates. We showed that global consensus is still achieved
under the same connectivity condition. Furthermore, Zeno behavior was excluded. Future
research directions include considering more general systems such as double integrator
systems and comparing the convergence speed between the saturation and non-saturation
cases.

9.8 Proofs

9.8.1 Proof of sufficiency of Theorem 9.1

The proof of sufficiency follows the structure outlined after the theorem stated in
Section 9.3. More specifically, we first show consensus for the case where M = 1 in (2.2)
which corresponds to only one SCC. Then, we consider the case M = 2 in (2.2), and show
that the agents in SCC; and SCC; reach consensus. We finally argue that the general case
where M > 2 follows in a similar way.
(i) In this step, we consider the situation where G is strongly connected, i.e., M = 1 in
(2.2).

We first prove that consensus is achieved. Consider the Lyapunov candidate (9.4)
introduced in Remark 9.2. From Lemma 2.1, we have &; > 0, i € [n], since G is strongly

280 Distributed event-triggered saturation control algorithms

connected. From Lemma 9.1, we know that

= X Lija(x;(0)
Vala(t)) 1= f saty(s)ds 0,
0

and Vj(x(#)) = 0 if and only if — Z’}zl Lijci(xj(t)) = 0. Then, we know that

V(x(®) = ifi zp: Vi(x) =2 0,

i=1 =1

and V(x(¢)) = 0 if and only if — Z’}:] Lijei(xj(t)) = O forall i € [n] and [€ [p]. This is
furthermore equivalent to x;(#) = --- = x,(#) due to rank(L) = n — 1. Hence, we have
V(x(t)) = 0 and V(x(¢)) = 0 if and only if x;(¢) = - - - = x,,(¢).
The derivative of V(x(¢)) along the trajectories of (9.1)—(9.3) is
n P n n
Vo) = Y& sat(= Y. L)) = D Lijeii 1)
=1 =1 j=1 =1

n

P n
= > & > sat(eiu@)) = D Lijsati(ei(u(1))))

=1 =1 j=1
= D Elsaty)T) ~Lijsat(u (1)
i=1 j=1
==) &4}, 9.9)
i=1

where
1 n
g0 = =3 D Lyllsaty u;(1)) = saty (@) = 0.
j=1
and the last equality of (9.9) holds since

n n 1 n
= 2660 = Y 5 Y GiLylisaty (1) = satuO)IP
i=1

=1 < =1

n 1 n
= >3 D EililsatuO)F + lsatn(u)IP)
i=1 < j=1

n n

= 3 ElLyi(satui(0) sat ()

i=1 j=1

1 n n 1 n n
= 5 D Isat)P Y &Ly + 5 3 EllsatuuenIP Y Ly
J=1 i=1 i=1 j=1

9.8. Proofs 281

= 3 ElLyi(sat i) sat, ()

i=1 j=1

== D> ElLyj(saty(u; (1)) sat, (1), 9.10)

i=1 j=1

where we have used £"L = 0, and L1,, = 0, in (9.10).

From (9.9), we know that V(x(s)) < 0 and V(x(t)) = 0 if and only if sat,(u;(t)) =
saty(u;(1)), Yi,j € [n]. It follows from Lemma 9.2 that, this is equivalent to x;(f)
xj(t), i, j € [n]. Thus, by LaSalle Invariance Principle [382], we have

lim [|xi(r) = x;(0)ll = 0, Vi, j € [n], .11

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.
Noting that — Z;le Lijc)(xj(1)), i € [n], | € [p] are continuous with respect to ¢, it
follows from (9.11) that there exists a constant 7; > 0 such that

)] = | = 3 LyeCan| < b, Ve z Ty,

=

In other words the saturation function in (9.1) is not active after 7. Thus,
5t = — Z Lijx;(0), t = T). 9.12)
j=1

Finally, we estimate the convergence speed, which will be used later. Consider the
function

N 1
V() = 55T (U ® 1,)x(0). (9.13)

From Lemma 2.2, we know that V(x(#)) > 0. The derivative of V(x(¢)) along the trajectories
of system (9.12) satisfies

V(x(0) = X" (1)U ® 1,)x(t) = x" (1)U ® I,)(~L ® 1,)x(r) = —x" (1)(R ® I,))x(r)

R R
< L2 U e)x) = —2pp 2((11))

o(U) V(x(0), Yt > T).

Thus,
~ ~ p2(R)
V(x(0) < V(x(Tl))e_zT;/)(t_Tl), Vi > T).

Noting that V(x(#)) is continuous with respect to 7, there exists a positive constant C; such
that

V(x(1) < Cy, Yt €[0,Ty].

282 Distributed event-triggered saturation control algorithms

Then,
~ PR
V(x(t)) < Coe 250", V1 > 0, 9.14)

~ (R)
where Cp = max{V(x(T,)), C1e2/L2(T)T‘).
Moreover, from Lemma 2.2, we know that

S ol = ST OETL Ity < 2 oD w e 1
j=1
=P (L(U)) V(x() < (L(U))C 2R V> 0. 9.15)

(ii) In this step, we consider the case where M > 2, but we first introduce some notations
which will be used later.

Let Ny = 0, N, = Z'In:l n,, | € [M], where n,, is the dimension of L™". Then
the i-th agent in SCC,, is the N,,_; + i-th agent of the whole graph. In the following,
we exchangeably use V" and vy, _ 4; to denote this agent. Accordingly, denote x!'(f) =
Xy 410, RO = R 4i(0), WD) = uy,4i(0) and u” (1) = Ol (1), ..., ul! (1).

In the following we only consider the case where M = 2. The case where M > 2 can
be treated in a similar manner, as discussed in the proof sketch in Section 9.3.

First, note that the agents in SCC, do not depend on any agents in SCC;. Thus, SCC,
can be treated as a strongly connected digraph. Then, from the analysis in (i), we have

lim |} (1) = X0l = 0, i, j € [na],
1—+o00

and that there exists a constant 7, > 0 such that

n

i@l = |- > LRaCdm)| < b, V2T, 9.16)
=1

In addition, similar to (9.15), we have
ny
EP@IP = > BN < Cze™, 1> 0,
j=1

where C3 and Cy4 are two positive constants.
Second, let us consider SCC;. Similar to V(x) defined in (9.4), define

mo P o)
ACOEDWY fo saty(s)ds, 9.17)
i=1 =1

217 (1))

ny P :
Va(x(h) = Zgrf Z fo saty(s)ds. 9.18)
i=1 =1

9.8. Proofs 283

From the definition of the component operator ¢;(-), we know cl(ui1 M) =- Z;f‘zl Ll.l]’.l cl(xi1 (1))—
an L1 2cz(x?(t)) and ¢;(u} (1)) = an L2 2cz()cf(t)). From Lemma 9.1, we have V{(x) > 0
and Vg(x) > 0.

Similar to the way to get (9.9), we have

Va(x(0) =). ~E} (),
i=1
where

gi(0 = -3 Z L3 lIsaty(u3(0) = saty ;) = 0.

Moreover, similar to the analysis of V(x(f)) in (i), we know that V,(x(¢)) = 0 if and only if
X (D) = x5(0), Vi, j € [na]l.
The derivative of V;(x(f)) along the trajectories of (9.1)—(9.3) satisfies
ni)4
Vi(x(0) = Z P saty(euf ()it} (1)
=1 =1
n

P
=& > alsaul 0)(- Z L' ei(sat, (u}(1))) - Z L} e(sat,(3(1))))
i=1 =1

n

- Z &l (saty(u} ()7 (= D L saty(uf (1) - Z L} saty(u3(1)))

i=1 Jj=1

= —(sau(u! (1) (Q' @ I)sat(u' (1)) - Z €l (saty(ul (1) Z LEPsaty (1)

j=1
< —oa(Q Isatu(I + ‘% Z lsaty ! ()P
2,02(Q) Z Hg Ll 2sath(uz(t))”
i€[ny],j€[ny { Ll’z 2}
< - pZ(Q)”Sath(u I + o maxz;zilel)l &) lIsaty (e (1))
ie[n1,jelna L1:2y2
<- pZ(Q PO oty DIP + maxzzzi’éﬁ)]{(i e s,

where the first inequality holds due to Q' > 0 which is stated in Lemma 2.4.
Let us treat y;(t) = e S >0, i € [n], as an additional state of each agent, and let
y(£) = col(y1 (), ..., y.(t))". Consider a Lyapunov candidate:

v v v 2111112 maxle[m]]e[nz] L1 2)2 C
3(x(0), y(1) = Vi(x(1)) + Va(x(1)) + 32O Can 3 Zyl(t)

284 Distributed event-triggered saturation control algorithms

The derivative of V3(x(¥), y(¢)) along the trajectories of (9.1)-(9.3) is

2n1ny MaXe[n,], jefn,] (L %))

V3(x(0), y(0) = Vi(x() + Va(x(1)) — 220N & Zyz(t)

Then, we have

Vx50 < 2L s <t>>||2+Z 240

M1y MaXiepn,] jepm (L])2

n
2 ij
— . > 0.

20,(0Nn (6 ;:1 yi(®), t20

By LaSalle Invariance Principle, similar to the analysis in (i), we have
lim ||x;(2) — x;()ll = 0, Vi, j € [n].
1—00

Thus, consensus is achieved. Moreover, similar to the analysis in (i), we can show that after
a finite time 7, > 0 the saturation is no longer active.

9.8.2 Proof of Theorem 9.2

(i) Similar to the proof of excluding Zeno behavior in Theorem 8.1, we prove that there is
no Zeno behavior by contradiction. Suppose there exists Zeno behavior. Then there exists

an agent i, such that limy_, t}; = T, for some constant 7. Let &g = 2\\%11 ¢~38T0 > 0. Then
from the property of limits, there exists a positive integer N(gg) such that

€ [Ty — €0, Tol, Yk = N(&p). 9.19)
Also noting [|sat;(s)|| < h+/p for any s € R”, we have
lIsat;, (@)1l < h+/p.
Noting

'd”ei(t)” < ||%:(D)] = |Isaty(it;(1))]] < h‘/_’

and IIfc,(t,;) x; (¢ ')|| 0 for any triggering time ¢/, we conclude that one necessary condition
to guarantee ||e; (t)|| > e P> 1 is

(t =)P = Vae ¥, 1> 1.
Then, similar to (8.17), we have

l‘i \/ae 3Pit Mo+l > YL ‘/CT 18Ty _ = 2&,
N(go)+1 — N(&‘o) 2 \/_h \/_h

9.8. Proofs 285

which contradicts (9.19). Therefore, there is no Zeno behavior.
(ii) (Necessity) Necessity follows from Lemma 2.3.
(Sufficiency) (ii-1) In this step, we consider the situation where G is strongly connected,
ie, M =1in(2.2).
We first show that consensus is achieved. Let f;(¢) = sat,(ié1;(t)) — sat;(u;(t)). We have

= DL ELNHOIP = = > (= &Ll +) &L FOIP)
j=1

i=1 j=1,j#i i=1
= D LELAOIP = D ELA[OIP
i=1 j=1 i=1
= ELall oI, 9.20)
i=1
where the equality denoted by = holds due to ¢TL = 0,.
We have
= 20D ELLFO) saty (1)
i=1 j=1
== >0 D ELGLAO) Tsat (D) — saty(u; ()]
=l j=1
== >0 > ELGLAO Tsat(n) — saty(u;(1)]
i=1 j=1,j#i
n n 1
<=2 2 EL{(IHOIF + Flsantun) = sat(u;(O)IF)
i=1 j=1,j#i
n n 1 n n
== > GLIAOIP =7 > > Elillsatn(u(n) = sat ()P
i=1 j=1,j#i i=1 j=1,j#i
n n 1 n n
== > GLIAOIP = 3 > > Elylisatyu(n) = saty(u ()
i=1 j=1,j#i i=1 j=1
N I,
= D ELAFOIP + 5 > &gl 9.21)
i=1 i=1

where the equality denoted by = holds due to &L = 0,; the inequality holds due to the
Cauchy-Schwarz inequality; and the equality denoted by = holds due to (9.20) and the
definition of ¢} (7).

The derivative of V(x), as defined in (9.4), but along the trajectories of (9.5)-(9.6),

286 Distributed event-triggered saturation control algorithms

satisfies

n)4 n n
V) = Y&) sat(= Y Lieixo))(=) LijeiCii (1)
j=1 Jj=1

i=1 =1

Z & Z saty(ciw (= D, Ligsati(c(@ (1))
=1 1= j=1

- Z Elsat ()T) Lyjsaty(it;(1)
i=1 j=1

=) Elsatyi0)") Lij(saty(u (1) + £1()
i=1 J=1

= 2 > Ellijlsaty (D) Tsat () = YY" EL(f(0) T satu(ui(1)

i=1 j=1 i=1 j=1

aPPNIR v 1,

- Z &} +) GLAKOIF + 5) &40
i i=1 i=1
Z T4+ ZlflL,,nf;(r)u

- Z s q; (1) + Zn: &iLillsaty(@:(1)) — saty, (ui(0)]>
i=1
< Z b+ S Gl - ol
i=1
=- Z S+ Y et Y oo
i=1 =1

- Z %Qf(f) + I'Iel[a)]({fiLﬁ}eT(l)(LTL ® Ip)e(t)

IA *

/\

IA

Z 3410+ max{éiLi) WD Y e, 922)

i=1

where the inequality denoted by ; holds due to (9.10) and (9.21); and the inequality

denoted by *5* holds due to Lemma 9.1.
Let us treat z;(f) = e, t+ > 0 as an additional state to agent i, i € [n], and let
z(t) = col(zy(?), ..., z,(?)). Consider a Lyapunov candidate:

W(x(1), 2(1)) = V(x(0)) + ZmaX{& i}p(L"L) Z _Zl(t)-

9.8. Proofs 287

The derivative of W(x(#), z(¢)) along the trajectories of (9.5)—(9.6) and 7;(¢) = —5;z;(¢) is
W(x(0), 2(1)) = V(x) = 2 max{&Li}p(L"L) Z aje P!
ie[n] p—
Z S0+ max{&iLi}o(L"L) Z llei(0)I
2 1
-2 iLii LL i it
5161[2}1>I<{§ ho(); e

—Z'fl {0 - maxE L) Y e <0
i=1

By LaSalle Invariance Principle, similar to the proof of Theorem 9.1, we have
Lim [lx;(#) — xi(Dll = 0, i, j € [n], (9.23)

i.e., consensus is achieved.
We next show that the input of each agent enters into the saturation level in finite time.
Noting that ¢;(#;(£)) = — X."_, Lijei(x;(2)— Z 1 Lijei(ej(1), (9.7), - 7=1L,-jcl(xj(t)), i€
[n], I € [p] are continuous Wlth respect to f, 1t follows from (9.23) that there exists a
constant T3 > 0 such that

el < |- Z Lijen(xj(a| + | - Z Lijei(ej(0)| < h, Vi > T,
J=1 j=1

In other words, the saturation function in (9.5) is no longer active after 73. Thus, the multi-
agent system (9.5) with event-triggered control input (9.6) reduces to

xi(f) = - Zn: Lijxi(t), t > Ts.
=1
Finally, we estimate the convergence speed, which will be used later. Similar to the
proof of Theorem 2 in [358], we conclude that there exist Cs > 0 and C¢ > O such that
V(x(1)) < Cse™ ', V1 > T3,
where V(x(1)) is defined in (9.13). Similar to (9.14), we have
V(x(1)) < C7e™', V1 >0,

where C is a positive constant.
Moreover, similar to the analysis for obtaining (9.15), we have

Dl = " o) = " Lije)P
i=1 i=1 j=1

288 Distributed event-triggered saturation control algorithms

Y sl +20(L7D) Z llei(DI> < Coe™ ', V1 20, 9.24)
=1 i=1

where C9 and Cy are two positive constants.
(ii-2) In this step, we consider the situation where G has a directed spanning tree but it is not
strongly connected, i.e., M > 2 in (2.2). For simplicity, we only consider the case where
M = 2. The general case can be treated in a similar manner. We use the same notation
as in the proof of Theorem 9.1. For simplicity, let &'(f) = fy,_,+:(2), €'(t) = en,_,+i(1),
S0 = Sy iD, @ = @y, ois B = By yis and 27(1) = col(@(0), ..., & (1))-

First, let us consider SCC, and note that no agent in SCC, is dependent on any agent in
SCC,;. Thus, SCC; can be treated as a strongly connected digraph. Then, from the analysis
in (ii-1), we have that

lim ||} (1) = 550l = 0, i, j € [na],
—00

and that there exists a constant 74 > 0 such that
ny

@) = | = Y L@)| < b Vi = T,

=1

In addition, similar to (9.24), we have

ny
I2@IP = Y I @IP < Cre ', £ 0,
=1
where Cy; and C(are two positive constants.

Second, let us consider SCC;. Similar to (9.22), the derivative of V,(x(¢)), as defined in
(9.18), but along the trajectories of system (9.5)—(9.6), satisfies

ny o g2 ny
IACOEEDY %q?(t) +d)l IP,
i=1

i=1

where
dl = m[a)]({fllezl,z}p((LZ,Z)TLz,Z)
1€ln

The derivative of Vi(x(?)), as defined in (9.17), but along the trajectories of system
(9.5)-(9.6), satisfies
) ny P
Vi) = > Y saty(entu! ())eif ()

i=1 =1

ni)4 ni ny
= >& > atsau]) -) L esau(@)(0) = > L elsat @ 1))))
i=1 =1 j=1 j=1

n

= Z &l (sat(u) (=) L saty(@(0) - Y LiPsau, @)
j=1

J=1

9.8. Proofs 289

= > &l tsau(@) - o) (- Z L} sat(@)(1) - Z L} saty(@(1)))
i=1
= —(saty(@' (1)) (Q' ® I)saty (@' (1)) + Z & (saty(@; ()" Z L sat (@)
i=1 j=1
+ D E G OT(D] L satu@) + Z LZsaty (1))
i=1 j=1

< ~pa(@ e 0))F + 242 Z Isatu (@} (I

+ pz(lQl) i Hfil iL Sath(ﬁz(l))” pz(Q) Z |Isaty (& (0))II*
pz(Q)ZHZf Lol +) ”f (””“ZHf ZL *saty i)
<P 2(Q PAQ) Lty (f))||2+d22||f,~l(t)||2+d3||sath(122(t))||2, (9.25)
i=1

where

dy = 2+) max (@ LEY)— . d = 2mmy_max (/L)

+1).
4 ijeln] p2(0Y)’ ielny].jelna) p2(QY))

Similar to the analysis to get (9.22), from (9.25), we have

Pz(Q) N

Vi(x(0) < = == sat@) + da Z lle; (DI + d Z lle; I + dslisat @ ()],

where
d4 = dzp(LTL).

Let us treat 777(¢) = e ¥, t > 0, as an additional state of agent V), r = 1,2, i € [ny],
Hiz(t) =€ >0, asan additional state of agent viz, i € [ny], and 9} (t)=0,t>0,asan
additional state of agent vi, i€ [m] Let n(t) = col(n}(®),...,ny @), m;(®),...,n, (1) and
6(r) = col((1), ..., 0, (1), 92(1‘) L0, (D).

Consider the Lyapunov candidate

W (x(0), n(0), (1)) = V1 (x(0)) + Va(x(n)) + 2—d3 Z 07(1)

d +d
ZZ (1 ';24)G’ 2() ZZ —]71 ([)
i=1

290 Distributed event-triggered saturation control algorithms

The derivative of W,(x(), n(?), 6(¢)) along the trajectories of system (9.5)—(9.6) satisfies

W, (x(0), (1), 6(1) = V1 (x(1)) + Va(x(1)) = 2C11d3 Z 07 (1)
=1

—2Z(d1+d4)a 2(1) - 2Zd4a L(0).
i=1

Then, for any ¢ > T4, we have

Pz(Q)

W), m(e), 00)) <~ =2 lsaty !)] + Z ‘3‘11)

ni
~ Cds Z O Z(ah +dpaln}(t) - Y dsaln} o).
i=1 i=1 i=1
By LaSalle Invariance Principle again, we have
lim [1x;(6) = 50l =0, i, j € [n].

Thus, consensus is achieved. Moreover, similar to the analysis in (ii-1), we can show that
after a finite time the saturation is no longer active.

Chapter 10

Distributed event-triggered formation
control algorithms

In this chapter, event- and self-triggered control algorithms are proposed to establish
prespecified formations with connectivity preservation. Each agent only needs to update
its control input by sensing the relative state to its neighbors and to broadcast its triggering
information at its own triggering times. The agents listen to and receive neighbors’
triggering information at their triggering times. Two types of system dynamics, single and
double integrators, are considered. It is shown that all agents converge to the prespecified
formation exponentially with connectivity preservation and exclusion of Zeno behavior.
Numerical simulations are provided to illustrate the effectiveness of the theoretical results.

The rest of this chapter is organized as follows. Section 10.1 gives the background.
Section 10.2 introduces the formation control problem. Section 10.3 provides event-
triggered formation control algorithms for first-order continuous-time multi-agent systems
with connectivity preservation. Section 10.4 extends the results to second-order systems.
Simulations are given in Section 10.5. This chapter is concluded in Section 10.6. Proofs
can be found in Section 10.7.

10.1 Introduction

Generally speaking, formation control for a multi-agent system is about making the agents
move to a desired geometric shape. In the survey paper [383], the authors categorized
the existing results on formation control into position-, displacement-, and distance-
based control according to types of sensed and controlled variables, as summarized in
Table 10.1. In position-based control, agents sense their own positions with respect to
a global coordinate system. They actively control their own positions to achieve the
desired formation, which is prescribed by desired positions with respect to the global
coordinate system. This kind of work can be found in [384-387]. In displacement-based
control, agents actively control displacements of their neighboring agents to achieve the
desired formation, which is specified by the desired displacements with respect to a global
coordinate system under the assumption that each agent is able to sense relative positions

291

292 Distributed event-triggered formation control algorithms

Table 10.1: Summary of formation control principles.

Position-based Displacement-based Distance-based
Sensors Positions Relative positions Relative positions
Controls Positions Relative positions Inter-agent distances
Coordinates Global coordinate system Orientation aligned local coordinate systems Local coordinate systems
Interactions Usually not required Existence of a spanning tree Rigidity or persistence

to its neighboring agents with respect to the global coordinate system. This implies that the
agents need to know the orientation of the global coordinate system. However, the agents
require neither knowledge on the global coordinate system itself nor their positions with
respect to the coordinate system. This kind of work can be found in [388-392]. In distance-
based control, inter-agent distances are actively controlled to achieve the desired formation,
which is given by the desired inter-agent distances. Individual agents are assumed to
be able to sense relative positions to their neighboring agents with respect to their own
local coordinate systems. The orientations of local coordinate systems are not necessarily
aligned with each other. This kind of work can be found in [393-396].

In the study of distributed coordination, such as consensus and formation control,
one vital assumption is that the associated communication graph is connected or has a
directed spanning tree, at least in some average sense. However, in realistic applications,
it is difficult to guarantee this assumption. For example, in mobile robot networks with
limited communication range, connectivity of the initial deployment of the robots do not
guarantee connectivity in the future.

Motivated by this, many researchers have studied connectivity preservation for multi-
agent systems. In particular, the control should ensure that the associated communication
graph remains connected during the evolution of the system. For instance, in [397],
the authors presented a geometric analysis of wireless connectivity in vehicle networks.
In [398], the authors proposed a decentralized control strategy that drives a system of
multiple nonholonomic kinematic unicycles to agreement and maintains at the same time
the connectivity properties of the initially formed communication graph. In [388], the
authors designed nonlinear control input based on an edge-tension function to solve the
formation control problem while ensuring connectedness. In [399], the authors proposed
a centralized feedback control framework based on artificial potential fields to maintain
graph connectivity. In [400], the authors introduced a general class of distributed potential
functions guaranteeing connectivity for single-integrator agents. In [401], based on the
navigation function formalism, the authors developed a decentralized controller to enable a
group of agents to achieve a desired global configuration while maintaining global network
connectivity. In [402], the authors provided a decentralized robust control approach, which
guarantees that connectivity is maintained when certain bounded input terms are added to
the control law.

In this chapter, we study formation control for multi-agent systems with connectivity
preservation and event-triggered control. We have the following contributions.

10.2. Formation control for multi-agent systems with connectivity preservation 293

(C10.1) We propose distributed triggering laws for agents to determine their triggering times
and one corresponding algorithm for each agent to avoid continuous monitoring
of its own triggering law. The advantages of this algorithm are that absolute
measurements of states are avoided and it is only at its triggering times that each
agent needs to update its control input by sensing the relative states, to broadcast
its triggering information, including current triggering time and control input at this
time, to its neighbors. The main disadvantage is that continuous listening is still
needed. To overcome this, we then present two self-triggered algorithms.

(C10.2) Two types of system dynamics, single integrators and double integrators, are
considered. We show that under the proposed event- and self-triggered algorithms
all agents converge to prespecified formations exponentially with connectivity
preservation. In addition, Zeno behavior can be excluded by proving that the inter-
event times are lower bounded by a positive constant for single integrators and
the triggering time sequence of each agent is divergent for double integrators. Two
related existing studies are [403], [404]. However, [403] does not explicitly exclude
Zeno behavior, but it is well known that such behavior can be problematic, see [196].
And it is under the assumption that no agent exhibits Zeno behavior, that [404]
proves asymptotic rendezvous can be achieved.

10.2 Formation control for multi-agent systems with connectivity
preservation

Consider a connected and undirected graph G with n vertices and n, edges. Let B(G)
denotes its incidence matrix which is defined in Section 2.2 and d;; € R” the desired
internode displacement of edge (i, j) € E(G). Denote ® = {col(y,...,7,) ER" : 7;—7; =
d;ij, ¥(i, j) € EG)}. We call the set of desired internode displacements {d;;, (i, j) € E(G))
a formation associated with G and we say it is feasible if @ # 0.

Definition 10.1 (Achieving desired formation). Consider a multi-agent system with n
agents whose underlying graph is G. Let x;(t) € R? denotes the position of agent i at
time t > 0. The multi-agent system converges to a desired formation {d;;, (i, j) € E(G)} if

lim(xi(1) = x,(0)) = dyj, Vi,) € EG)-

In practice, agents normally have limited communication capabilities and one agent
cannot exchange information with the agents that outside its communication radius. For
simplicity we assume all agents have the same communication radius A > 0. Figure 10.1 (a)
shows the initial positions of three agents and each agent has the same communication
radius A; and Figure 10.1 (b) shows the desired formation {d;,, d;3, d»3}. We say the graph
G and the multi-agent system are consistent if ||x;(#) — x;()|| < A for all (i, j) € &G) and
all times ¢ > 0. Namely, the communication channels are kept for all time. Notice here that
we assume the following.

294 Distributed event-triggered formation control algorithms

Agent 1d13A gent 3

Agél]t | Ag‘ént 3
w. ._L __________________

A‘~g%nt 2/

(a) The initial positions of three agents. (b) The desired formation {d|,, d;3, d»3}.

Figure 10.1: Illustration of formation control.

Assumption 10.1. The desired formation {d;;, (i, j) € E(G)} is feasible and ||d;j|| < A,
Y@, j) € &(G).

Definition 10.2 (Achieving desired formation with connectivity preservation). A group
of agents are said to converge to the desired formation with connectivity preservation if
they converge to the desired formation while the graph G remains consistent with their
dynamics.

Note that we do not assume new edges are created, while we only show that old edges
are maintained. Our goal in this chapter is to solve the following problem.

Problem 10.1. Propose distributed event-triggered control input and determine the
corresponding triggering times for first- and second-order multi-agent systems such
that the desired formation is achieved with connectivity preservation, while continuous
exchange of information, continuous update of actuators, and Zeno behavior are avoided.

10.3 Distributed event-triggered formation control for single
integrators

In this section, we consider the case that the dynamics of agents are modeled as single
integrators

X =u(t), i€n], 120, (10.1)

where x;(f) € R” is the position and u;(f) € R” is the control input of agent i with p > 0
being the dimension.

10.3. Distributed event-triggered formation control for single integrators 295

From Assumption 10.1, we know @ # (. Choose any col(ry,...,7,) € ®. Let y;(t) =
xi(t) — 7; for i € [n] and y(¢) = col(y1(?), ..., y.(t)). Then, we can rewrite the above multi-
agent system as

Yi(®) = ui(9), i € [n], £ = 0. (10.2)

At time ¢, for ||y;(r) — y;(®)ll < A - ||d;jll, the edge-tension function v;; (introduced
in [388]) is defined as

Ilyi())=y; (I P
—=——_ if (i, j) € EG),
Vii(ALy(5)) = 4 AT 0,0 @ J). @)
0, otherwise

with

Ay

2A-2|dilI-llyi ()~ oo
Wiy A D) _ [FTES IR 5i(1) = v (1), i G, j) € EG),
0, otherwise.

We denote as w;;(7) the weight coefficient of the partial derivative of v;; with respect to
y; as above, i.e.,

A2l D=y O e o
wij() = { BTGB O=, 00 if (i, j) € &(G),
0, otherwise.

Note that w;;(#) can also be written as a function of x;(#) and x;(¢) due to y;(¥) — y;(t) =
x;(1) —)Cj(l) - dij-

Let L, denotes the Laplacian matrix associated with G after assigning the above weight
w;(?) to edge (i, j) € E(G). Then, from Lemma 2.6, we have

L, =B@QG)B@G",

where Q(G) = Diag([w(er),- - ,w(e,,)]), where w(er) = w;; with e; being the label of
edge (i, j).

In order to reduce the overall need of communication and system updates, we use the
event-triggered control input

(1) =) =ity) 0ilth) = ¥t) (10.3)
JEN;

= Z _wij(t;;i(;))(xi(tii(;)) - xj(t/iq(;)) —d;j). (10.4)
JEN;

One can see that the above control input uses relative state information and only updates
at the triggering times. Figure 10.2 illustrates how one agent gathers relative state
information. Specifically, Figure 10.2 (a) shows that each agent continuously sense the
relative state information between itself and its neighbors and use such information to
generate its control input. Figure 10.2 (b) shows a similar process except that each agent
only senses the relative state information at discrete time instants {ti, té,)

296 Distributed event-triggered formation control algorithms

T L I e PO

x(6)-x,(¢) % (ti)-xi(ti)
[Control] [Control]
\ Agent i / \ Agent i)
(a) Continuous-time control input. (b) Event-triggered control input.

Figure 10.2: Illustration of how one agent gathers relative state information.

Remark 10.1. The control input (10.4) is constant during each interval [t tli 1) In other
words, the control input (10.4) of each agent is not affected by its neighbors during [t};, t;'()
On the contrary, the control input (1.10) is not necessarily a constant during [t., t;'(1) Since

X j(t,j;j(l)) normally is not a constant for all t € [t t}; +1)- In other words, the control input

(1.10) of each agent is affected by its neighbors during each interval [tf{, t;; +1)- Another
difference between (10.4) and (1.10) is that the (weighted) summation of the control input
(1.10) is zero, which does not present in (10.4).

10.3.1 Distributed event-triggered formation control algorithm

In the following theorem, we will give triggering laws to determine the triggering times
such that the formation with connectivity preservation can be established and Zeno
behavior can be excluded.

Theorem 10.1. Given a graph G which is undirected and connected, and a desired
formation associated with G which satisfies Assumption 10.1. Consider the multi-agent
system (10.1) with event-triggered control input (10.4) associated with G. Assume that at
the initial time,

l1x:(0) — x;(0) — dijll = llyi(0) = y;(O)l < A —ldijll, Y, j) € EG). (10.5)

. . B B T .
Givena > 0,0 < < ﬂohwzth Bo = ;%U(g)) and Ay = max(; jegg) A - ld;jll, and given
the first triggering time 1| = 0, agent i determines the triggering times {1,}° , by

fi,, =min{t: [le; Ol = ae™, t > 1}, (10.6)
where

eilt) = D w00 = xi(0) = dif) = > wijlth)l) = Xt) = diy)-

JEN; JEN;

Then,

10.3. Distributed event-triggered formation control for single integrators 297

Algorithm 10.1 Distributed Event-Triggered Formation Control Algorithm for Single
Integrators

1: Choose @ > 0and 0 <8 < By;
2: Agent i € [n] sends {d;;, (i, j) € E(G)} to its neighbors;
3: Agent i initializes #; = O and k = 1;
4. At time s = 1, agent i senses the relative position x;(s) — x;(s) and predicts future
relative position x;(¢) — x;(¢), t > s, Yj € N; by (10.7);
5. Agent i substitutes these relative positions into e;(¢) and finds out T;; .1 Which is the
smallest solution to equation |le;(?)]| = ae ™, t > s;
6: Agent i continuously listens to whether there is broadcasting from its neighbors and
receives the broadcasted information if it occurs;
7: if there is broadcasting from its neighbors at ¢y € (s, T;;) i.e., there exists j € N; such
that agent j broadcasts its triggering information at #y € (s, -rj(+1)] then
8: agent i receives information at ¢y, and updates s = fy, and goes back to Step 4;
9: else
10: agent i determines ,, = 7., and updates its control input u;(f;,) by sensing
the relative positions to its neighbors, and broadcasts its triggering information
{t,i+1, u,-(t;'m)} to its neighbors, and resets k = k + 1, and goes back to Step 4;
11: end if

@ lxi(1) = x;@l < A, V(I j) € 8@G), Vi =0;
(i) limeo(xi() — x;(2)) = d;j, V(i, j) € E(G), exponentially;

(iii) there exists a constant € > 0, such that .

i, — 1> Vien], YkeN,.

Proof. The proof is given in Section 10.7.1. O

Apparently, in order to monitor the inequality in the triggering law (10.6), each agent
needs to continuously sense the relative positions to its neighbors. This may be a drawback.
In the following we will give an event-triggered algorithm to avoid this. In other words, the
following algorithm is an implementation of Theorem 10.1, but it only requires agents to
sense, broadcast and receive at the triggering times. The idea is illustrated as follows.

Each agent i € [n], at any time s > 0, knows its last triggering time t;'q(s) and its control
input u;(s) = ui(t,ii (S)) which is a constant until it determines its next triggering time. If agent
i also knows the relative position x;(s) — x;(s) and u;(s) = u j(t,{/(lg)) which is a constant until
agent j determines its next triggering time, for j € N;, then agent i can predict

xi(0) = xj(1) = x;(8) = x;(8) + (1 = $) i1y () — uj(t,f/(s))), tzs, (10.7)

until ¢ < min{t,’;_(s) Ry t,{,(s) +1}- This means continuous sensing, broadcasting and receiving
i J
are not needed any more. The above implement idea is summarized in Algorithm 10.1.

IThis kind of situation can only occur at most finite times during (s, Tf{ +1) since [Nl is finite and there is no
Zeno behavior.

298 Distributed event-triggered formation control algorithms

Remark 10.2. In order to implement Algorithm 10.1, By should be known first. However
Bo is a global parameter since it relates to pz(B(g)B(g)T) and Ny. We can lower bound 3

by —*~ due to Ay < A and p,(B(G)B(G)") > ———, see [405].

4
n(n-1)A n(n 1)’

10.3.2 Distributed self-triggered formation control algorithms

When applying Algorithm 10.1, although continuous broadcasting and sensing are avoided,
each agent still needs to continuously listen to incoming information from its neighbors
since the triggering times are determined during runtime and not known in advance. If
every agent i € [n], at its current triggering time 7., can predi